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1 Introduction

Herein, we consider a nonlinear filtering problem in which the signal to be estimated is
a reflecting diffusion process in a random environment. The motivation comes from the
tracking problem of a dinghy lost on a lake or ocean based upon infrared camera readings.
Whereas in calm waters the dinghy moves as a diffusion process reflecting at the shores,
lake swells provide a random environment potentially altering its motion greatly.

For concreteness, we let the lake be D = (0, 1)d, denote by ∂D the boundary of D,
and define D = D ∪ ∂D. Formally, the D-valued signal process Xt for the dinghy can be
described by the following stochastic differential equation (SDE)

(1.1) dXt =

(

−1

2
a∇W + c

)

(Xt)dt+ σ1(Xt)dBt + χ∂D(Xt)(aU)(Xt)dξt,

whereW is a C(D)-valued random variable, Bt is a standard Rd1-valued Brownian motion
independent of W , σ1 : Rd → Rd×d1 is a measurable matrix-valued function, a = σ1σ

T
1 ,

c = (c1, . . . , cd)
T is a measurable vector field, χ is the indicator function, U is the unit

inward normal, and ξt is the local time of Xt. Note that Equation (1.1) is purely heuristic
because almost all paths of the random environment W may be only continuous not
differentiable. To use a symmetric Dirichlet form to construct a diffusion process formally
associated with Equation (1.1), we assume that ci =

1
2

∑d
j=1

∂aij
∂xj

for 1 ≤ i ≤ d. Here, the

derivatives are taken in the Schwartz distribution sense.
The Rd-valued observation sequence {Yj} is defined by

(1.2) Yj = h(Xtj ) + Vj ,

where tj = jε for some fixed constant ε > 0 and j ∈ N, h : D → D is a one-to-
one continuous differentiable vector field so the Jacobian J(h) 6= 0 on D, and {Vj} is
a sequence of i.i.d. N(0, σ2) random vectors independent of Xt for some fixed positive
definite matrix σ2.

Recently, there have been many developments in the study of diffusion processes in
random environments (see Tanaka (1995) for a survey). In Kouritzin, Long and Sun
(2003), we began the study of the nonlinear filtering problem in which the signal to be
estimated is a diffusion in a random medium and the signal may be correlated with the
observation noise. Using Dirichlet form theory, we introduced a precise nonlinear filtering
model for the signal process and established a multiple Wiener integrals representation
for the unnormalized pathspace filtering process. Among other things, this representation
generalizes Kunita (1982)’s Wiener chaos expansion [cf. also Ocone (1983)] to the singular
coefficients case. Combining this representation with the idea of Lototsky, Mikulevicius
and Rozovskii (1997)’s spectral approach we thus provided the capability to develop a
numerical scheme for nonlinear filtering of diffusions in Brownian environments.

In this work, we consider the same filtering problem from a different viewpoint. Our
practical simulation experience suggests that particle and space discretization methods of
implementing filters often work better than chaos methods. Therefore, it is important
to come up with particle system approximations for the conditional distributions of the
signal based upon the observations. The difficulty that arises is that we do not want to
introduce an extremely large number of particles to account for the random environment.
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Instead, we try to “learn” the environment. Under the assumption that the observation
noise is independent of the signal, we develop a nonparametric estimation method for
finding workable approximate solutions to the conditional distributions of the signal state
given the back observations. In this connection, we also refer the interested reader to
Chow, Khasminskii and Liptser (1997, 2001), Elliott (2001), Kouritzin, Rémillard and
Chan (2001) for some other recent works on nonparametric and parametric estimations
for filtering problems. Since the functional estimations in our approximate filters are based
upon long time observations, it is important to study the convergence of the approximate
filters over an infinite interval. Following Budhiraja and Kushner (1999, 2000a, 2000b)’s
occupation measure arguments, we show that the pathwise average distance, per unit time,
of the approximate filter from the optimal filter is asymptotically small in time.

The remainder of this article is organized as follows. In Section 2, we perform non-
parametric functional estimations for an unknown path of the random environment. In
Section 3, we construct approximate filters using the obtained estimators and study their
approximations to optimal filters over very long time intervals. Moreover, we introduce a
particle filter algorithm for combined state and nonparametric estimation. In Section 4,
we use simulation results to show the efficiency of the nonparametric estimation method.
Finally, in the Appendix, we give the proof of the limit result in Section 3.

2 Nonparametric functional estimations

We start by introducing a precise signal and observation model. With the most natural
example of a random environment, a Brownian sheet, in mind, we assume that the random
environmentW is a C(D)-valued random variable. That is, we assume that each randomly
given outcome of the environment is a continuous function on D. In this section, we will
use the observations to construct estimators for the fixed unknown path of the random
environment. Hereafter, to simplify the notation, we letW denote the random environment
outcome as well as the C(D)-valued random variable as the context will clarify the exact
meaning.

Suppose that a = {aij}di,j=1 is a symmetric matrix-valued function satisfying the uni-
formly elliptic condition

1

λ

d
∑

i=1

η2i ≤
d
∑

i,j=1

aij(x)ηiηj ≤ λ
d
∑

i=1

η2i , ∀η ∈ Rd, ∀x ∈ D

for some constant λ > 1. Let W be the fixed unknown path of the random environment.
We use H1,2(D) to denote the (1, 2)-Sobolev space on D and define

dµ := e−W (x)dx.

Then, we consider on L2(D;µ) the symmetric bilinear form

(2.1)











E(u, v) = 1
2

∫

D

d
∑

i,j=1

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x)µ(dx), u, v ∈ D(E),

D(E) = H1,2(D).
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One can check that E is a regular Dirichlet form satisfying the local property so it is asso-
ciated with a strong Markov diffusion process (CD [0,∞), B(CD[0,∞)), (Xt)t≥0, (Px)x∈D)
[cf. Fukushima, Oshima and Takeda (1994), Theorem 7.2.1 and Theorem 7.2.2]. Here-
after, CD[0,∞) is the path space on D and B(CD[0,∞)) is its Borel σ-algebra. For any
t ≥ 0 and ω ∈ CD[0,∞), the coordinate Xt(ω) refers to the state of the process at time t
on the path ω, and for any x ∈ D, the probability measure Px describes the probabilistic
behavior of the paths when they are started at the point x at time 0. The association
means that if we denote by (pt)t>0 and (Tt)t>0 the semigroups associated with Xt and E ,
respectively, then ptf = Ttf dx − a.e. for any f ∈ L∞(D;µ) and any t > 0. Comparing
their (formal) generators, one can consider Xt to be a solution to the formal Skorohod
SDE (1.1) [cf. Freidlin (1985), Section 1.6].

If W ≡ 0, we use E0 to denote the Dirichlet form (2.1). Moreover, we denote its asso-
ciated Markov process and transition semigroup by X0

t and (p0t )t>0, respectively. From,
e.g. Theorem 2.2. of Fukushima and Tomisaki (1996), we know that X0

t is in fact a strong
Feller diffusion. The relationship between (pt)t>0 and (p0t )t>0 can be characterized by

(2.2) ptf = e
W
2 p0t (e

−W
2 f), ∀f ∈ Bb(D), ∀t > 0,

where Bb(D) denotes the set of all bounded measurable functions on D. Therefore, Xt is
also a strong Feller diffusion.

If W ≡ 0 and a ≡ Id, the d-dimensional unit matrix, then the diffusion associated with
(2.1) is the reflecting Brownian motion on D. By the ergodicity of the reflecting Brownian
motion and the result on comparison of irreducibility [Fukushima, Oshima and Takeda
(1994), Corollary 4.6.4], one can see that E is also irreducible and thus Xt is an ergodic
diffusion with the stationary distribution µ/µ(D).

Let σ2 be a fixed d× d-positive definite matrix and {Vj} a sequence of i.i.d. N(0, σ2)
random vectors on some probability measure space (ΩV ,FV , PV ). We define the obser-
vation sequence {Yj} by Equation (1.2) and denote Yj = σ{Yi, 1 ≤ i ≤ j} for j ∈ N.
Furthermore, we let Ω1 = CD[0,∞)× ΩV , F1 = B(CD[0,∞))×FV , and

P 1 =
1

µ(D)

∫

D
(Px × PV )µ(dx).

In the sequel, we use ||f ||∞ and ||f ||2 to denote respectively the supremum norm and
L2(D;µ)-norm of any measurable function f on D.

Theorem 1. Suppose that the fixed unknown path W of the random environment and
the Jacobian J(h) are 1-periodic in each argument of the vector x. Then, there exists a
sequence {Θn} of 1-periodic C∞(D)-valued random variables adapted to the filtration {Yn}
such that

lim
n→∞

||Θn − (W + lnµ(D))||∞ = 0

in probability P 1.

Proof. We denote O0 = lnµ(D) and define

Ck :=
1

µ(D)

∫

D
e−2πik

T h(x)µ(dx)
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=

∫

D
e−2πik

T xe−(W◦h
−1(x)+O0)|J(h−1)(x)|dx, ∀k ∈ Zd.

Then, by the ergodicity of Xt and the independence of {Xt} and {Vj}, we obtain from the
Birkhoff ergodic theorem [cf. Rosenblatt (1971), Theorem IV.3.1] that for k ∈ Zd

(2.3) lim
m→∞

1

m

m
∑

j=1

e−2πik
T Yj

= lim
m→∞

1

m

m
∑

j=1

e−2πik
T (h(Xtj

)+Vj)

=
1

µ(D)

∫

D

∫

Rd

e−2πik
T (h(x)+y) 1

(2π)
d
2 |σ2|

1

2

e−
yT σ

−1

2
y

2 dyµ(dx)

= e−2π
2kT σ2kCk, Px × PV − a.e., ∀x ∈ D.

From (2.3) we see that the Fourier coefficients of e−(W◦h
−1+O0)|J(h−1)| can be esti-

mated using the observations so we may apply trigonometric Fourier series to conduct
functional estimation for W + O0. To do this, we first give an estimation of the conver-
gence rate for (2.3). Following, e.g. Lemma 1.2 of Ledoux (2001), one can see that E
satisfies the Poincaré inequality and thus (Tt)t>0 has the exponential L

2-convergence rate.
Namely, there exists a constant α > 0 such that

∣

∣

∣

∣

∣

∣

∣

∣

ptf −
1

µ(D)

∫

D
fdµ

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ e−αt||f ||2, ∀f ∈ L2(D;µ), ∀t > 0.

In particular, for any k ∈ Zd

(2.4)

∣

∣

∣

∣

∣

∣
pt

(

e−2πik
T h − Ck

)∣

∣

∣

∣

∣

∣

2
≤ 2e−αt, ∀t > 0.

Therefore, we obtain from the independence of {Xt} and {Vj}, the independence of {Vj},
the Markovian property of Xt and (2.4) that

(2.5)
sup
k∈Zd

∫

∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

e−2πik
T Yj − e−2π

2kT σ2kCk

∣

∣

∣

∣

∣

∣

2

dP 1

≤ 2 sup
k∈Zd







∫

∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

e−2πik
T h(Xtj

)
(

e−2πik
TVj − e−2π

2kT σ2k
)

∣

∣

∣

∣

∣

∣

2

dP 1

+e−4π
2kT σ2k

∫

∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

e−2πik
T h(Xtj

) − Ck

∣

∣

∣

∣

∣

∣

2

dP 1







= 2 sup
k∈Zd







∫

1

m2





m
∑

j=1

∣

∣

∣
e−2πik

TVj − e−2π
2kT σ2k

∣

∣

∣

2

+

m
∑

j 6=j′

e
−2πikT (h(Xtj

)−h(Xt
j′
))
(

e−2πik
TVj − e−2π

2kT σ2k
)
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·
(

e2πik
TVj′ − e−2π

2kT σ2k
)]

dP 1

+
1

e4π2kT σ2km2





m
∑

j=1

∫

D
ptj |e−2πik

T h − Ck|2µ(dx)

+

m
∑

j<j′

∫

D
2Re

{

(e−2πik
T h − Ck)ptj′−tj (e

2πikT h − Ck)
}

µ(dx)











≤ 2 sup
k∈Zd







1

m2

∫ m
∑

j=1

∣

∣

∣
e−2πik

TVj − e−2π
2kT σ2k

∣

∣

∣

2
dP 1

+
1

m
||e−2πikTh − Ck||22 +

2

m

m−1
∑

j=1

||ptj/2(e−2πik
T h − Ck)||22







≤ 16

m



1 +
m−1
∑

j=1

e−αjε





≤ 16

m

(

1 +
1

eαε − 1

)

.

Let {ml} be a sequence of positive integers satisfying

lim
l→∞

(2l + 1)3d

ml

l
∨

k1,...,kd=−l

e4π
2kT σ2k = 0.

By (2.5), we find that

(2.6) lim
l→∞

l
∑

k1,...,kd=−l

e2π
2kT σ2k

∣

∣

∣

∣

∣

∣

1

ml

ml
∑

j=1

e−2πik
T Yj − e−2π

2kT σ2kCk

∣

∣

∣

∣

∣

∣

= 0

in probability P 1. For a q ∈ Zd
+ satisfying qu ≤ l for any 1 ≤ u ≤ d, we define

Sl,q(x) =
∑

|ku|≤qu,1≤u≤d





e2π
2kT σ2k

ml

ml
∑

j=1

e−2πik
T Yj



 e2πik
T x, ∀x ∈ D.

Then, by (2.6),

(2.7) lim
l→∞

l
∨

q1,...,qd=0

max
x∈D

∣

∣

∣

∣

∣

∣

Sl,q(x)−
∑

|ku|≤qu,1≤u≤d

Cke
2πikT x

∣

∣

∣

∣

∣

∣

= 0

in probability P 1. We denote the Cesàro means by

C l(x) =
1

(l + 1)d

l
∑

q1,...,qd=0

∑

|ku|≤qu,1≤u≤d

Cke
2πikT x, ∀x ∈ D.
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Since W,J(h−1) ∈ C(D) and both of them are 1-periodic in each argument of the vector
x,

(2.8) lim
l→∞

∣

∣

∣

∣

∣

∣
C l − e−(W◦h

−1+O0)|J(h−1)|
∣

∣

∣

∣

∣

∣

∞
= 0

[cf. Zygmund (1959), Chapter XVII, Theorem 1.20]. Now, we consider the approximate
Cesàro means

Λl =
1

(l + 1)d

l
∑

q1,...,qd=0

Sl,q.

By (2.7) and (2.8), we know that

lim
l→∞

∣

∣

∣

∣

∣

∣
Λl − e−(W◦h

−1+O0)|J(h−1)|
∣

∣

∣

∣

∣

∣

∞
= 0

in probability P 1. Thus

lim
l→∞

|| ln{(Λl ◦ h)|J(h)|}+ (W +O0)||∞ = 0

in probability P 1. Let {gl} be a sequence of smooth functions on D satisfying

lim
l→∞

||gl − |J(h)|||∞ = 0.

We define
Φl = − ln{(Λl ◦ h)gl}.

Then
lim
l→∞

||Φl − (W +O0)||∞ = 0

in probability P 1. Therefore, we obtain the desired adapted sequence {Θn} by letting

Θn =

{

0, n < m1,
Φn, mn ≤ n < mn+1.

Remark 1. Many random environments in practical applications only take effect in
some subdomains of D. So it is not a strong restriction to assume in Theorem 1 that
W satisfies the periodic boundary condition. Also, a lot of practical nonlinear sensor
functions (via some linear transformations if necessary) satisfy the periodic boundary
condition in Theorem 1. In the proof of Theorem 1, we made no attempt to optimize the
positive integers ml. In practical filtering, we usually let ml be some suitably chosen large
numbers (cf. the simulation in Section 4 for an example of choosing ml).

3 Approximate filters and approximations over long time intervals

We let (Ω2,F2, (B2t )t≥0, P 2) be a standard Rd1-valued Brownian motion, define Ω = Ω1×
Ω2, F = F1×F2, P = P 1×P 2, and take {Θn} to be a sequence of C∞(D)-valued random
variables adapted to the filtration {Yn} such that

lim
n→∞

||Θn − (W +O)||∞ = 0
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in probability P 1, where W is the fixed unknown path of the random environment and O
is some constant (cf. Theorem 1). Then, we define on (Ω,F , P ) a sequence of reflecting
diffusion processes {Xn

t } by

(3.1) dXn
t =

(

−1

2
a∇Θn + c

)

(Xn
t )dt+ σ1(X

n
t )dB

2
t + χ∂D(X

n
t )(aU)(Xn

t )dξ
n
t ,

where ξnt is the local time of Xn
t for n ∈ N. Compared with the signal process Xt, X

n
t is a

strong Feller process defined using the approximation Θn to W that is constructed using
only the observations rather than the unknown path W .

Let E denote expectation with respect to P . For φ ∈ C(D), the filtering problem is to
evaluate

(3.2) 〈Πj , φ〉 = E[φ(Xtj )|Yj ],

which is the least square estimate of φ(Xtj ) given all the observations up to time tj . We
define for j ∈ N,

ςj(x) = exp

{

hT (x)σ−12 Yj −
hT (x)σ−12 h(x)

2

}

, ∀x ∈ D

and set ηj =
∏j

i=1 ςi(Xti). Then, we define a probability measure P 0 on (Ω,F) by

dP 0

dP

∣

∣

∣

∣

Ft

= η−1bt/εc, ∀t ≥ 0,

where bt/εc denotes the greatest integer not more than t/ε and Ft := σ{Xs, 0 ≤ s ≤
t} ∨ Ybt/εc ∨ σ{B2s , 0 ≤ s ≤ t}. Let E0 denote expectation with respect to P 0. Under P 0

the distribution of {Xtj} is the same as under P and {Yj} is a sequence of i.i.d. N(0, σ2)
random vectors independent of {Xtj}.

Owing to the Markov property of Xt, the optimal filter defined by Equation (3.2)
satisfies the semigroup relation

(3.3) 〈Πj , φ〉 =
E0{Πj−1,Yj}

[φ(Xt1)ςj(Xt1)]

E0{Πj−1,Yj}
[ςj(Xt1)]

, ∀j ∈ N.

Hereafter, we use the notation E0{Πj−1,Yj}
[F (Xt1 , Yj)] for the conditional expectation (un-

der P 0) of a function F of Xt1 , Yj given the data Yj , where the initial distribution of X is
Πj−1.

For n ∈ N, we define the approximate filter Πn
· using the recursive representation

(3.4) 〈Πn
j , φ〉 =

E2{Πnj−1
}[φ(X

n
t1)ςj(X

n
t1)]

E2{Πnj−1
}[ςj(X

n
t1
)]

, ∀j ∈ N.

Hereafter, we use the notation E2{Πnj−1
}[F (Xn

t1)] for the expectation (under P 2) of a function

F of Xn
t1 , where the initial distribution of Xn is Πn

j−1.
Now, we can state the main theoretical result of this section which shows that the

pathwise average distance, per unit time, of the approximate filter from the optimal filter
is asymptotically small in time. The proof of this limit result will be given in the Appendix.
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Theorem 2. Let the filtering model be as in Section 2. Define the approximate filter Πn
·

via Equation (3.4), where Xn
t satisfies Equation (3.1). Let {Nn} be a sequence of positive

integers satisfying limn→∞ n/Nn = 0. Then, for any φ ∈ C(D),

lim
n→∞

1

Nn

Nn
∑

j=1

[

〈Πn
j , φ〉 − 〈Πj , φ〉

]2
= 0

in probability P .

The approximate filters defined by Equation (3.4) usually require excessive compu-
tations. So it is attractive to construct numerically feasible approximations via particle
filters. In the remaining part of this section, we consider the simplest one which is based
upon pure random sampling of the approximating process X l

t . Here l ∈ N, the order of
the approximate Cesàro mean, is a suitably chosen large number. The basic algorithm for
combined state and nonparametric estimation is as follows.

Initialization: Let {X i,l
tj
}Ml

i=1 be a set of particles, where Ml is the number of particles. In
the initialization stage, each particle’s state is independently initialized according to the
uniform distribution on D.

Evolution: In the evolution stage, each of the particles is independently evolved according
to the approximate SDE of the signal as described in Equation (3.1). Here Θl is defined
through the observation sequence:
(a) Let ml ∈ N be a sufficiently large number. For a q ∈ Zd

+ satisfying qu ≤ l for any
1 ≤ u ≤ d, we define

Sl,q(x) =
∑

|ku|≤qu,1≤u≤d





e2π
2kT σ2k

ml

ml
∑

j=1

e−2πik
T Yj



 e2πik
T x, ∀x ∈ D

and

Λl =
1

(l + 1)d

∑

|ku|≤qu,1≤u≤d

Sl,q.

(b) Let gl ∈ C∞(D) be an approximate function of h. We define

Θl = − ln{(Λl ◦ h)gl}.

Selection: In the selection stage, particles are weighted based upon their likelihood given
the current observation. The approximate filter Πl

j is defined by the sample average:

〈Πl
j , φ〉 =

∑Ml

i=1 φ(X
i,l
tj
)ςj(X

i,l
tj
)/Ml

∑Ml

i=1 ςj(X
i,l
tj
)/Ml

.

The evolution and selection steps are repeated at each observation time.

Similarly as in the proof of Theorem 3.1 of Budhiraja and Kushner (2000b), one can
show that the conclusion of Theorem 2 holds (cf. Appendix). Also, this scheme can be
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generalized in many ways. Common variance reduction methods such as antithetic vari-
ables and stratified sampling can be used. We refer the interested reader to Budhiraja and
Kushner (2000b) for more details. Furthermore, one expects to improve the performance
of the particle filter algorithm using many recently developed powerful interacting and
branching particle filters.

4 Simulation Results

Simulation results based upon the above particle filter algorithm are presented below for
one dimensional case. We set W (x) = Zx − xZ1, where Z is the standard R1-valued
Brownian motion, and use the nonlinear sensor function h(x) = 1

3(1 + x − cosπx). We
specify the signal noise via σ1 = 0.1, the observation noise via

√
σ2 = 0.04, and the time

period between observations to be ε = 1 time unit. We let l = 12, ml = 1200, and use
Ml = 2000 particles for the approximate filter.
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The curve in the first figure represents an unknown path of the random environment.
The curves in the second and third figures represent the signal state and the observation,
respectively. When the values of the observations are out of the interval [0, 1], we truncate
them. The fourth figure gives the estimations of the signal based upon the weighted
particle method. Here, the filter does not have access to the true random environment,
but rather must contend with noisy estimates. The filter performs better as time goes
on and we get improved functional estimation in environment. The results show that our
nonparametric estimation method provides an effective solution to the nonlinear filtering
problem for reflecting diffusions in random environments.

Appendix: Proof of Theorem 2

Many arguments in the proof are similar to those used in Theorem 2.1 of Budhiraja and
Kushner (2000b); however, the proof is nontrivial considering the dependence of Xn and
Y and the construction of our approximate filters. Also, we have to be very careful when
dealing with asymptotic properties of nonlinear filters because of the gap recently found
in Kunita’s classic paper (1971) [cf. Budhiraja (2003)]. In the following, we will refer to
the proof in Budhiraja and Kushner (2000b), and to concentrate on the differences.

Proof. The basic idea of the proof is to apply the method of occupation measures. For
each n, j ∈ N, we define the process

Ψn(j, ·) = (Xj+·,Π
n
j+·, Yj+· − Yj , Bj+· −Bj),

where Πn
· is defined in Equation (3.4) and Bj :=

∑j
i=1 Vi. For an arbitrary measurable

set C in the product path space of Ψn(j, ·), we define the measure-valued random variable
Qn,Nn(·):

Qn,Nn(C) =
1

Nn

Nn
∑

j=1

IC(Ψ
n(j, ·)),

where IC(Ψ
n(j, ·)) denotes the indicator function of the event Ψn(j, ·) ∈ C. By the com-

pactness of the state space, one can show that the families {Xj+·, j ∈ N}, {Πn
j+·, n, j ∈ N},

{Yj+· − Yj , j ∈ N}, {Bj+· − Bj , j ∈ N} are tight and thus the sequence {E[Qn,Nn(·)]} is
tight. Therefore, the sequence {Qn,Nn(·)} of measure-valued random variables is tight by
Theorem 1.6.1 of Kushner (1990).

We need to determine the sample values Qω of any weak sense limit Q(·). For each ω,
Qω induces a process

Ψω
· = (Xω

· ,Π
ω
· , Y

ω
· , B

ω
· ).

The proof of the stationarity of the (Xω
· ,Π

ω
· ) in Budhiraja and Kushner (1999) will work

without any change for our problem. By virtue of the assumption that limn→∞ n/Nn = 0,
one can similarly prove that the relationship between Xω

· and Y ω
· is characterized by (1.2)

as in Theorem 5.1 of Budhiraja and Kushner (1999). Also, the proof that Xω has the law
of evolution of X· for almost all ω is the same as in Budhiraja and Kushner (1999).

Let p0(t, x, y) be the transition density function of X0
t . By Theorem 2.4.4 of Davies

(1989), we know that there exists c > 0 such that

0 ≤ p0(t, x, y) ≤ ct−
d
2
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almost everywhere on D×D for all 0 < t < 1. Then, (T 0t )t>0, the L
2-semigroup associated

with the Dirichlet form E0, is ultracontractive (cf. Lemma 2.1.2 of Davies (1989)). By
the eigenfunction expansion of p0(t, x, y) (cf. Theorem 2.1.4 of Davies (1989)) and the
argument as in the proof of Theorem 2.4 of Bass and Hsu (1991), one can see that there
exist T > 0 and c′ > 0 such that

∣

∣

∣

∣

p0(t, x, y)− 1

µ(D)

∣

∣

∣

∣

≤ e−c
′t

almost everywhere on D ×D for all t ≥ T . In other words, p0(t, x, y) approaches the sta-
tionary distribution uniformly and exponentially. So by Equation (2.2) and the Remarks
after Theorem 7.2 of Budhiraja and Kushner (1999), we conclude that the filter {Πj}
forgets its initial condition. Thus, the signal-filter pair {Xtj ,Πj} has a unique probability
invariant measure by Theorem 7.1 of Budhiraja and Kushner (1999) [cf. also Budhiraja
(2003)].

By Theorem 1 and Equation (2.2) (cf. also the remark below A.2.1 of Budhiraja
and Kushner (2000a) , one can see that for any sequence {νn} of probability measures
on D converging weakly to some probability measure ν on D, (Xn

0 , X
n
t1) with the initial

distribution νn converges weakly to (X0, Xt1) with the initial distribution ν. Following
the idea of Theorem 2.1 of Budhiraja and Kushner (2000b), we can thus establish the
representation (3.3) for almost all ω. Furthermore, we obtain as in Budhiraja and Kushner
(1999) that

lim
n→∞

1

Nn

Nn
∑

j=1

[

〈Πn
j , φ〉 − φ(Xtj )

]2
= lim

n→∞

1

Nn

Nn
∑

j=1

[

〈Πj , φ〉 − φ(Xtj )
]2

in probability P for any φ ∈ C(D). The proof is therefore done by Theorem 5.2 of
Budhiraja and Kushner (2000b).
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