ELECTRONIC COMMUNICATIONS in PROBABILITY

Illustration of various methods for solving partly Skorokhod's embedding problem*

Ju-Yi Yen[†] Marc Yor[‡]

Abstract

We show that excursion theory and Azéma's exponential result allow to solve partly Skorokhod's embedding problem.

Keywords: Azéma exponential result; excursion; Skorokhod embedding. **AMS MSC 2010:** 60G46; 60G48. Submitted to ECP on July 20, 2012, final version accepted on June 11, 2013.

1 Some particular Brownian stopping times

Throughout the paper, (B_t) denotes one-dimensional standard Brownian motion, and (L_t) is its local time. In the sequel, we look at some variant of the Azéma-Yor algorithm [2] for solving Skorokhod's embedding problem with the help of stopping times depending only on Brownian motion and its supremum.

1.1

In this paper, we wish to identity the law of B_{θ_F} , for the stopping time:

$$\theta_F = \inf\{t : F(L_t; |B_t|) \ge a\}.$$

The function $F : \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is a continuous function with the following property: denoting $F(\sigma, x) \equiv F_{\sigma}(x)$, we assume that F_{σ} is strictly increasing from 0 to ∞ , and we denote by $F_{\sigma}^{-1}(\cdot)$ the inverse of F_{σ} :

$$F_{\sigma}^{(-1)}(y) = \inf\{x : F(\sigma, x) = y\}.$$

Thus, we may rewrite:

$$\begin{aligned} \theta_F &= \inf\{t : |B_t| \ge F_{L_t}^{-1}(a)\} \\ &= \inf\{t : h(L_t)|B_t| \ge 1\} := \theta^{(h)}, \end{aligned}$$

where:

$$h(l) = \frac{1}{F_l^{-1}(a)}.$$

^{*}Supported in part by NSF Grant DMS-0907513.

[†]Department of Mathematical Sciences, University of Cincinnati, USA. E-mail: ju-yi.yen@uc.edu

[‡]Institut Universitaire de France & LPMA, Université Pierre et Marie Curie, Paris, France.

Illustration of various methods for solving partly Skorokhod's embedding problem

The main result in this paper is that:

$$|B_{\theta^{(h)}}| \sim \frac{1}{h(H^{-1}(\mathbf{e}))} \tag{1.1}$$

where e is a standard exponential variable, $H(x) = \int_0^x dy h(y)$. As an illustration, we note that for $h_1(l) = l$,

$$|B_{\theta^{(h_1)}}| \sim \frac{1}{\sqrt{2\mathbf{e}}}.$$

It would be interesting to know which class of distributions is obtained from the RHS of (1.1). In fact, if $h(H^{-1}(u)) = \varphi(u)$ is Lipschitz, then H is the only solution of the ordinary differential equation $H'(t) = \varphi(H(t))$; H(0) = 0. Thus, the family of laws obtained from (1.1) is quite rich; for example take for h a positive power of l.

1.2

The remainder of this paper consists in three sections:

- in Section 2, we use Azéma exponential result to obtain (1.1);
- in Section 3, we use an excursion argument for the same purpose;
- in Section 4, we mention two points to be looked at carefully;
- in Section 5, we sketch how the previous arguments allow to recover the Azéma-Yor algorithm for solving Skorokhod's embedding problem.

2 A proof of (1.1) via Azéma's exponential result

2.1

We first state Azéma's exponential result:

Proposition 2.1 (Azéma [1]). Let $(A_t^{\mathcal{L}}, t \ge 0)$ be the predictable compensator of $1_{(\mathcal{L} \le t)}$, where \mathcal{L} stands for the end of a predictable set on $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$, i.e.

$$\mathcal{L} = \sup\{t : (t, \omega) \in \Gamma\},\$$

for Γ a predictable set.

Then, under the hypothesis (CA): all martingales are continuous, and \mathcal{L} avoids all (\mathcal{F}_t) stopping times T, i.e.: $P(\mathcal{L} = T) = 0$, the variable $A_{\infty}^{\mathcal{L}}$ is a standard exponential variable with mean 1.

2.2

We compute $(A_t^{\mathcal{L}^{(h)}})$ where $\mathcal{L}^{(h)} = \sup\{t \le \theta^{(h)} : B_t = 0\}.$

Proposition 2.2.

$$A_t^{\mathcal{L}^{(h)}} = H(L_{\theta^{(h)} \wedge t}).$$

Proof. We use the balayage formula (see, e.g. [3], Chapter VI) to assert that, for any bounded predictable process (K_s) , one has:

$$K_{g_t}|B_t| = \int_0^t K_{g_s} d|B_s|.$$

where $g_t = \sup\{s < t : B_s = 0\}$. In fact, we shall use the following variant:

$$K_{g_t}h(L_t)|B_t| = \int_0^t K_{g_s}h(L_s)d|B_s|.$$

ECP 18 (2013), paper 48.

ecp.ejpecp.org

Illustration of various methods for solving partly Skorokhod's embedding problem

Thus, applying the optional stopping theorem, we get:

$$E\left[K_{g_{\theta}(h)}\right] = E\left[\int_{0}^{\theta^{(h)}} K_{s}h(L_{s})dL_{s}\right].$$

which yields the desired result.

2.3

As a consequence of the definition of $\theta^{(h)}$, we get

$$|B_{\theta^{(h)}}| = \frac{1}{h(L_{\theta^{(h)}})}$$
(2.1)

from Proposition 2.2, we deduce:

$$L_{\theta^{(h)}} \stackrel{\text{(law)}}{=} H^{-1}(\mathbf{e}) \tag{2.2}$$

which proves, together with (2.1) that (1.1) is satisfied.

3 The excursion theory argument

3.1

Call $(\tau_l, l \ge 0)$ the inverse local time. The excursion theory argument runs in the following equalities between the random sets:

$$\begin{split} &(L_{\theta^{(h)}} \ge l) = (\theta^{(h)} \ge \tau_l) \\ &= (\forall \lambda \le l, \text{ for } t \in (\tau_{\lambda-}, \tau_{\lambda}), \text{ one has: } h(\lambda)|B_t| < 1) \\ &= \bigg(\sum_{\lambda \le l} \mathbf{1}_{\{h(\lambda)} \sup_{\tau_{\lambda-} \le t \le \tau_{\lambda}} |B_t| \ge 1\} = 0 \bigg). \end{split}$$

From excursion theory, we now deduce:

Proposition 3.1.

$$L_{\theta^{(h)}} \stackrel{(law)}{=} H^{-1}(\mathbf{e}),$$

hence (1.1) holds.

Proof. By excursion theory, the process

$$N_l^{(h)} = \sum_{\lambda \le l} \mathbf{1}_{\{h(\lambda)} \sup_{\tau_{\lambda-} \le t \le \tau_{\lambda}} |B_t| \ge 1\}$$

is an inhomogeneous Poisson process, whose intensity measure may be expressed simply in terms of the Itô measure n; precisely, we have:

$$(L_{\theta^{(h)}} \ge l) = (N_l^{(h)} = 0)$$

hence, denoting by ε the generic excursion, and $V(\varepsilon)$ its life time:

$$\begin{split} P(L_{\theta^{(h)}} \ge l) &= \exp\left(-\int_0^l d\lambda \ \mathbf{n}\big(h(\lambda) \sup_{t \le V(\varepsilon)} |\varepsilon_t| \ge 1\big)\right) \\ &= \exp\left(-\int_0^l d\lambda \ \frac{1}{1/h(\lambda)}\right) \\ &= \exp(-H(l)) \\ &= P(\mathbf{e} \ge H(l)), \end{split}$$

ECP 18 (2013), paper 48.

ecp.ejpecp.org

hence the result. For the second equality, we have used:

$$\mathbf{n}\big(\sup_{t\leq V(\varepsilon)}|\varepsilon_t|>a\big)=\frac{1}{a}.$$

4 Taking some care

In our discussion, two points need to be looked at carefully.

(i) First, we want $\theta^{(h)} < \infty$ a.s. This may be ensured as follows: there is the representation:

$$h(L_t)|B_t| = \beta \Big(\int_0^t h^2(L_s)ds\Big),$$

as a consequence of Dubins-Schwarz and the balayage formula,

where $(\beta(u), u \ge 0)$ is a reflecting Brownian motion. Thus,

if $\int_0^{\infty} h^2(L_u) du = \infty$ a.s., it follows that $\theta^{(h)} < \infty$ a.s. Now, it is easily shown that $\int_0^{\infty} h^2(L_u) du = \infty$ iff $\int_0^{\infty} h(l) dl = \infty$, a condition we assume in the paper. Indeed, that these two integrals are infinite simultaneously follows from the general fact that the bracket of a martingale at infinity is infinite if and only if its local time at infinity is infinite. Here, this martingale is $M_t = h(L_t)B_t$, whose local time is $H(L_t)$.

(ii) Some care also has to be taken in the application of the optional stopping theorem in our proof of Proposition 2.2. But, in fact, replacing $\theta^{(h)}$ by $\theta^{(h)} \wedge n$, and using dominated convergence, and monotone convergence, we justify the use of the optional stopping theorem.

5 A relation with the Azéma-Yor algorithm for solving Skorokhod's problem

We note that the arguments in Section 2 and Section 3 allow (almost) to recover the Azéma-Yor result for Skorokhod embedding. Azéma-Yor [2] have obtained an explicit solution to Skorokhod's embedding problem, as follows: given a probability $\mu(dx)$ on \mathbb{R} , with first moment, and centered, if:

$$T_{\mu} = \inf\{t : S_t \ge \psi_{\mu}(B_t)\},\$$

then

$$B_{T_{\mu}} \sim \mu$$

where $S_t = \sup_{s \le t} B_s$, and $\psi_{\mu}(x) = \frac{1}{\mu[x,\infty)} \int_{[x,\infty)} t d\mu(t)$ is the Hardy-Littlewood function attached to μ .

Indeed, similar calculation as above show that, if

$$G_{\mu} = \sup\{t \le T_{\mu} : S_t - B_t = 0\},\$$

then the increasing process associated to G_{μ} is: $\Sigma(S_{t \wedge T_{\mu}})$, where $\Sigma(x) = \int_{0}^{x} \frac{dy}{y - \phi(y)}$, with ϕ the inverse of ψ_{μ} . Thus,

$$\Sigma(S_{T_{\mu}}) \stackrel{\text{(law)}}{=} \mathbf{e},$$

ECP 18 (2013), paper 48.

ecp.ejpecp.org

Illustration of various methods for solving partly Skorokhod's embedding problem

that is:

$$P(S_{T_{\mu}} \ge x) = \exp(-\Sigma(x)).$$

But, it is easily shown, from this result, that:

$$B_{T_{\mu}} = \phi(S_{T_{\mu}}) \sim \mu.$$

References

- Azéma, J.: Quelques applications de la théorie générale des processus. I. Invent. Math. 18, (1972), 293–336. MR-0326848
- [2] Azéma, J. and Yor, M.: Une solution simple au problème de Skorokhod. Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Math. 721. Berlin, Springer, (1979), 90–115. MR-544782
- [3] Revuz, D. and Yor, M.: Continuous martingales and Brownian motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer-Verlag, Berin, 1999. xiv+602 pp. MR-1725357

Acknowledgments. The first author is grateful to the Academia Sinica Institute of Mathematics (Taipei, Taiwan) for their hospitality and support during some extended visit.