Concentration estimates for the isoperimetric constant of the supercritical percolation cluster

Eviatar B. Procaccia* Ron Rosenthal ${ }^{\dagger}$

Abstract

We consider the Cheeger constant $\phi(n)$ of the giant component of supercritical bond percolation on $\mathbb{Z}^{d} / n \mathbb{Z}^{d}$. We show that the variance of $\phi(n)$ is bounded by $\frac{\xi}{n^{d}}$, where ξ is a positive constant that depends only on the dimension d and the percolation parameter.

Keywords: Isoperimetric constant ; Percolation, concentration.
AMS MSC 2010: 60K35;82B43.
Submitted to ECP on January 12, 2012, final version accepted on July 19, 2012.
Supersedes arXiv:1110.6006v2.

1 Introduction

Let $\mathbb{T}^{d}(n)$ be the d dimensional torus with side length n, i.e. $\mathbb{Z}^{d} / n \mathbb{Z}^{d}$, and denote by $\mathbb{E}_{d}(n)$ the set of edges of the graph $\mathbb{T}^{d}(n)$. Let $p_{c}\left(\mathbb{Z}^{d}\right)$ denote the critical value for bond percolation on \mathbb{Z}^{d}, and fix some $p_{c}\left(\mathbb{Z}^{d}\right)<p \leq 1$. We apply a p-bond Bernoulli percolation process on the torus $\mathbb{T}^{d}(n)$ and denote by $C_{d}(n)$ the largest open component of the percolated graph (In case of two or more identically sized largest components, choose one by some arbitrary but fixed method). Let $\Omega=\Omega_{n}=\{0,1\}^{\mathbb{E}_{d}(n)}$ be the space of configurations for the percolation process and denote by $\mathbf{P}=\mathbf{P}_{p}$ the probability measure associated with the percolation process. For a subset $A \subset C_{d}(n)(\omega)$ we denote by $\partial_{C_{d}(n)} A$ the boundary of the set A in $C_{d}(n)$, i.e. the set of edges $(x, y) \in \mathbb{E}_{d}(n)$ such that $\omega((x, y))=1$ and with either $x \in A$ and $y \notin A$ or $x \notin A$ and $y \in A$. Throughout this paper c, C and c_{i} for $i \in \mathbb{N}$ denote positive constants which may depend on the dimension d and the percolation parameter p but not on n. The value of the constants may change from one line to the next.

Next we define the Cheeger constant
Definition 1.1. For a set $\emptyset \neq A \subset C_{d}(n)$, we denote

$$
\psi_{A}=\frac{\left|\partial_{C_{d}(n)} A\right|}{|A|}
$$

where $|\cdot|$ denotes the cardinality of a set. The Cheeger constant of $C_{d}(n)$ is defined by:

$$
\phi=\phi(n):=\quad \min _{\substack{ \\\emptyset \neq A \subset C_{d}(n) \\|A| \leq\left|C_{d}(n)\right| / 2}} \psi_{A}
$$

[^0]In [5] Benjamini and Mossel studied the robustness of the mixing time and Cheeger constant of \mathbb{Z}^{d} under a percolation perturbation. They showed that for $p_{c}\left(\mathbb{Z}^{d}\right)<p<1$ large enough $n \phi(n)$ is bounded between two constants with high probability. In [7], Mathieu and Remy improved the result and proved the following on the Cheeger constant

Theorem 1.2. For every $p>p_{c}\left(\mathbb{Z}^{d}\right)$, there exist constants $c_{2}(p), c_{3}(p), c(p)>0$ such that for every $n \in \mathbb{N}$

$$
\boldsymbol{P}\left(\frac{c_{2}}{n} \leq \phi(n) \leq \frac{c_{3}}{n}\right) \geq 1-e^{-c \log ^{\frac{3}{2}} n}
$$

Recently, Marek Biskup and Gábor Pete brought to our attention that better bounds on the Cheeger constant exist in both [8] and [3]. The following theorem is stated in [8] Corollary 1.4 without asymptotic rate, however going over the proof one obtains the following statement:

Theorem 1.3. [8] For $d \geq 2$ and $p>p_{c}\left(\mathbb{Z}^{d}\right)$ and for every $C>0$, there are constants $\alpha(d, p)>0$ and $\beta(d, p)>0$ such that

$$
\boldsymbol{P}\binom{\forall S \subset \mathcal{C}_{d}(n) \text { connected, }}{\text { if } C n \leq|S|<\frac{\left|\mathcal{C}_{d}(n)\right|}{2} \text { then } \frac{\left|\partial_{C} S\right|}{|S|^{(d-1) / d}} \geq \alpha} \geq 1-\exp \left(-\beta n^{(d-1) / d}\right) .
$$

Our result can be obtained with the use of [7] however we use Theorem 1.3 as it simplifies the proofs.

In 2011 Itai Benjamini gave the following conjecture as an extension to the known results about the Cheeger constant:

Conjecture 1.4. The limit $\lim _{n \rightarrow \infty} n \phi(n)$ exists.
Even though the last conjecture is still open, and the expectation of the Cheeger constant is quite evasive, we managed to give a good bound on the variance of the Cheeger constant. This is given in the main Theorem of this paper (The proof is presented in page 9):

Theorem 1.5. There exists a constant $\xi=\xi(p, d)>0$ such that

$$
\operatorname{Var}(\phi) \leq \frac{\xi}{n^{d}}
$$

A major ingredient of the proof is Talagrand's inequality for concentration of measure on product spaces. Talagrand's inequality requires control over the influence of a single edge on the Cheeger constant. Such a bound can be achieved using results on the isoperimetric profile of the giant component and the fact that with high probability edges outside the giant component have little effect over the Cheeger constant. This inequality is used by Benjamini, Kalai and Schramm in [4] to prove concentration of first passage percolation distance. A related study that uses another inequality by Talagrand is [1], where Alon, Krivelevich and Vu prove a concentration result for eigenvalues of random symmetric matrices.

2 The Cheeger constant

Before turning to the proof of Theorem 1.5, we give the following definitions:
Definition 2.1. For a function $f: \Omega \rightarrow \mathbb{R}$ and an edge $e \in \mathbb{E}_{d}(n)$ we define $\nabla_{e} f: \Omega \rightarrow \mathbb{R}$ by

$$
\nabla_{e} f(\omega)=f(\omega)-f\left(\omega^{e}\right)
$$

Isoperimetric constant of the supercritical percolation cluster
where

$$
\omega^{e}\left(e^{\prime}\right)= \begin{cases}\omega\left(e^{\prime}\right) & e^{\prime} \neq e \\ 1-\omega\left(e^{\prime}\right) & e^{\prime}=e\end{cases}
$$

In addition, for a configuration $\omega \in \Omega$ and an edge $e \in \mathbb{E}_{d}(n)$, let $\hat{\omega}^{e}=\min \left\{\omega, \omega^{e}\right\}$ and $\check{\omega}^{e}=\max \left\{\omega, \omega^{e}\right\}$.

Definition 2.2. For $n \in \mathbb{N}$ we define the following events:

$$
\begin{align*}
H_{n}^{1}\left(c_{1}\right) & =\left\{\omega \in \Omega:\left|C_{d}(n)(\omega)\right|>c_{1} n^{d}\right\} \\
H_{n}^{2}\left(c_{2}, c_{3}\right) & =\left\{\omega \in \Omega: \frac{c_{2}}{n}<\phi(n)(\omega)<\frac{c_{3}}{n}\right\} \\
H_{n}^{3} & =\left\{\omega \in \Omega: \forall e \in \mathbb{E}_{d}(n) \quad\left|C_{d}(n)(\omega) \triangle C_{d}(n)\left(\omega^{e}\right)\right| \leq \sqrt{n}\right\} \tag{2.1}\\
H_{n}^{4}\left(c_{4}\right) & =\left\{\omega \in \Omega: \exists A:|A|>c_{4} n^{d}, \psi_{A}(\omega)=\phi(n)(\omega)\right\} \\
H_{n}^{5}\left(c_{5}\right) & =\left\{\omega \in \Omega: \forall e \in \mathbb{E}_{d}(n) \exists A:|A|>c_{5} n^{d}, \psi_{A}\left(\omega^{e}\right)=\phi(n)\left(\omega^{e}\right)\right\}
\end{align*}
$$

and

$$
\begin{equation*}
H_{n}=H_{n}\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right)=H_{n}^{1}\left(c_{1}\right) \cap H_{n}^{2}\left(c_{2}, c_{3}\right) \cap H_{n}^{3} \cap H_{n}^{4}\left(c_{4}\right) \cap H_{n}^{5}\left(c_{5}\right) \tag{2.2}
\end{equation*}
$$

We start with the following deterministic claim:
Claim 2.3. Given $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}>0$, there exists a constant $C=C\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, d, p\right)>$ 0 such that if $\omega \in H_{n}\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right)$ then for every $e \in \mathbb{E}_{d}(n)$

$$
\left|\nabla_{e} \phi(\omega)\right| \leq \frac{C}{n^{d}}
$$

In order to prove Claim 2.3 we will need the following two lemmas:
Lemma 2.4. Fix a configuration $\omega \in \Omega$ and an edge $e \in \mathbb{E}_{d}(n)$. Let $A \subset C_{d}(n)\left(\hat{\omega}^{e}\right)$ be a subset such that $|A|=\alpha n^{d}$. Then

$$
\left|\nabla_{e} \psi_{A}\right| \leq \frac{1}{\alpha n^{d}}
$$

Proof. Since A is a subset of $C_{d}(n)\left(\hat{\omega}^{e}\right)$ it follows that A is also contained in $C_{d}(n)\left(\breve{\omega}^{e}\right)$ and the size of $\partial_{C_{d}(n)} A$ is changed by at most 1 by adding an edge e. It therefore follows that

$$
\begin{align*}
\left|\nabla_{e} \psi(A)\right| & =\left|\psi_{A}(\omega)-\psi_{A}\left(\omega^{e}\right)\right|=\left|\psi_{A}\left(\hat{\omega}^{e}\right)-\psi_{A}\left(\check{\omega}^{e}\right)\right| \\
& \leq\left|\frac{|\partial A|}{|A|}-\frac{|\partial A|+1}{|A|}\right|=\frac{1}{|A|} . \tag{2.3}
\end{align*}
$$

Lemma 2.5. Let G be a finite graph, and let $A, B \subset G$ be disjoint such that there exists a unique edge $e=(x, y)$, such that $x \in A$ and $y \in B$, then

$$
\psi_{A \cup B} \geq \min \left\{\psi_{A}, \psi_{B}\right\}-\frac{2}{|A|+|B|}
$$

Proof. From the assumptions on A and B it follows that

$$
\begin{equation*}
\psi_{A \cup B}=\frac{|\partial(A \cup B)|}{|A \cup B|}=\frac{|\partial A|+|\partial B|-2}{|A|+|B|} \geq \min \left\{\frac{|\partial A|}{|A|}, \frac{|\partial B|}{|B|}\right\}-\frac{2}{|A|+|B|} \tag{2.4}
\end{equation*}
$$

and so the lemma follows.

Proof of Claim 2.3. We separate the proof into six different cases according to the following table:

$e=(x, y)$	$\omega(e)=0$ $\left(\omega=\hat{\omega}^{e}\right)$	$\omega(e)=1$ $\left(\omega=\check{\omega}^{e}\right)$
$x, y \notin C_{d}(n)$	1	2
$x, y \in C_{d}(n)$	3	4
$x \in C_{d}(n), y \notin C_{d}(n)$		
or		
$y \in C_{d}(n), x \notin C_{d}(n)$	5	6

- Cases 1 and 2: In those cases the set $C_{d}(n)$ and the edges available from it are the same for both configurations ω and ω^{e}. It therefore follows that $\nabla_{e} \phi(\omega)=0$. See Figure 1a, and 1b.
- Case 3: In this case the set $C_{d}(n)$ is the same for both configurations ω and ω^{e}, however the set of edges available in $C_{d}(n)$ is increased by one when moving to the configuration ω^{e}, see figure 1c. Fix a set $A \subset C_{d}(n)(\omega)$ of size bigger than $c_{4} n^{d}$ which realizes the Cheeger constant. It follows that

$$
\psi_{A}(\omega)=\phi(\omega) \leq \phi\left(\omega^{e}\right) \leq \psi_{A}\left(\omega^{e}\right)
$$

and therefore by Lemma 2.4 we have

$$
\left|\phi\left(\omega^{e}\right)-\phi(\omega)\right| \leq \psi_{A}\left(\omega^{e}\right)-\psi_{A}(\omega) \leq \frac{1}{c_{4} n^{d}},
$$

as required.

- Case 4: We separate this case into two subcases according to wether the set $C_{d}(n)(\omega) \backslash C_{d}(n)\left(\omega^{e}\right)$ is an empty set or not. If $C_{d}(n)(\omega) \backslash C_{d}(n)\left(\omega^{e}\right)=\emptyset$ then we are in the same situation as in Case 3, see Figure 1d, and so the same argument gives the desired result. So, let us assume that $C_{d}(n)(\omega) \backslash C_{d}(n)\left(\omega^{e}\right) \neq \emptyset$, see Figure 1 e . Since $\omega \in H_{n}^{3}$, we know that

$$
\begin{equation*}
\left|C_{d}(n)(\omega) \backslash C_{d}(n)\left(\omega^{e}\right)\right| \leq \sqrt{n} \tag{2.5}
\end{equation*}
$$

and since $\omega \in H_{n}^{1}, C_{d}(n)(\omega)$ and $C_{d}(n)\left(\omega^{e}\right)$ are not disjoint. Since $\omega \in H_{n}^{4}$, there exists a set $A \subset C_{d}(n)(\omega)$ of size bigger than $c_{4} n^{d}$ realizing the Cheeger constant in the configuration ω. We denote $A_{1}=A \cap C_{d}(n)\left(\omega^{e}\right)$ and $A_{2}=A \cap$ $\left(C_{d}(n)(\omega) \backslash C_{d}(n)\left(\omega^{e}\right)\right)$. Applying Lemma 2.5 to A_{1} and A_{2} we see that

$$
\begin{equation*}
\psi_{A}(\omega)=\psi_{A_{1} \cup A_{2}}(\omega) \geq \min \left\{\psi_{A_{1}}(\omega), \psi_{A_{2}}(\omega)\right\}-\frac{2}{|A|} \tag{2.6}
\end{equation*}
$$

From (2.5) it follows that $\left|A_{2}\right| \leq \sqrt{n}$ and therefore $\psi_{A_{2}}(\omega) \geq \frac{1}{\sqrt{n}}$ which gives us that $\min \left\{\psi_{A_{1}}(\omega), \psi_{A_{2}}(\omega)\right\}=\psi_{A_{1}}(\omega)$. Indeed, if the last equality doesn't hold then

$$
\frac{c_{2}}{n} \geq \psi_{A}(\omega) \geq \psi_{A_{2}}(\omega)-\frac{2}{|A|} \geq \frac{1}{\sqrt{n}}-\frac{2}{c_{4} n^{d}}
$$

which for large enough n yields a contradiction. Consequently from (2.6) we get that

$$
\psi_{A_{1}}(\omega)-\frac{2}{c_{4} n^{d}} \leq \phi(\omega) \leq \psi_{A_{1}}(\omega)
$$

and so

$$
\phi\left(\omega^{e}\right)-\frac{2}{c_{4} n^{d}} \leq \psi_{A_{1}}\left(\omega^{e}\right)-\frac{2}{c_{4} n^{d}} \leq \psi_{A_{1}}(\omega)-\frac{2}{c_{4} n^{d}} \leq \phi(\omega)
$$

Figure 1: Illustrations of the different cases
i.e. $\phi\left(\omega^{e}\right)-\phi(\omega) \leq \frac{2}{c_{4} n^{d}}$.

For the other direction, since $\omega \in H_{n}^{5}$, there exists a set $B \subset C_{d}(n)\left(\omega^{e}\right)$ of size bigger than $c_{5} n^{d}$ realizing the Cheeger constant in ω^{e}, then

$$
\phi(\omega) \leq \psi_{B}(\omega) \leq \psi_{B}\left(\omega^{e}\right)+\frac{1}{|B|}=\phi\left(\omega^{e}\right)+\frac{1}{|B|} \leq \phi\left(\omega^{e}\right)+\frac{1}{c_{5} n^{d}}
$$

Consequently,

$$
\left|\phi(\omega)-\phi\left(\omega^{e}\right)\right| \leq \max \left\{\frac{2}{c_{4} n^{d}}, \frac{1}{c_{5} n^{d}}\right\}
$$

as required.

- Case 5: The proof of this case follows the proof of case 4 above, see Figure 1f.
- Case 6: This case is impossible by the definition of the set $C_{d}(n)(\omega)$.

Next we turn to estimate the probability of the event H_{n}.
Claim 2.6. There exist constants $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}>0$ and a constant $c>0$ such that for large enough $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\boldsymbol{P}\left(H_{n}^{c}\right) \leq e^{-c \log ^{\frac{3}{2}} n} \tag{2.7}
\end{equation*}
$$

Proof. Since $\mathbf{P}\left(H_{n}^{c}\right) \leq \sum_{i=1}^{5} \mathbf{P}\left(\left(H_{n}^{i}\right)^{c}\right)$, it's enough to bound each of the last probabilities separately. The proof of the exponential decay of $\mathbf{P}\left(\left(H_{n}^{1}\right)^{c}\right)$ for appropriate constant is presented in the Appendix.

By [7] Theorem 3.1 and section 3.4, there exists a constant $c>0$ such that for n large enough, $\mathbf{P}\left(\left(H_{n}^{2}\right)^{c}\right) \leq e^{-c \log ^{3 / 2} n}$ for some constants $c_{2}, c_{3}>0$.

Turning to bound $\mathbf{P}\left(\left(H_{n}^{3}\right)^{c}\right)$, we notice that the set $C_{d}(n)(\omega) \triangle C_{d}(n)\left(\omega^{e}\right)$ is independent of the status of the edge e and therefore

$$
\begin{align*}
\mathbf{P}\left(\left(H_{n}^{3}\right)^{c}\right) & =\frac{1}{1-p} \mathbf{P}\left(\left\{\omega \in \Omega: \exists e \in \mathbb{E}_{d}(n) \quad\left|C_{d}(n)(\omega) \triangle C_{d}(n)\left(\omega^{e}\right)\right| \geq \sqrt{n}, e \text { is closed }\right\}\right) \\
& \leq \frac{1}{1-p} \mathbf{P}\left(\left\{\omega \in \Omega: \exists e \in \mathbb{E}_{d}(n) \quad\left|C_{d}(n)(\omega) \triangle C_{d}(n)\left(\omega^{e}\right)\right| \geq \sqrt{n}, e \text { is closed }\right\} \cap H_{n}^{1}\right) \\
& +\frac{1}{1-p} \mathbf{P}\left(\left(H_{n}^{1}\right)^{c}\right) . \tag{2.8}
\end{align*}
$$

We already gave appropriate bound for the last term and therefore we are left to bound the probability of $\left\{\omega \in \Omega: \exists e \in E_{d}(n) \quad\left|C_{d}(n)(\omega) \triangle C_{d}(n)\left(\omega^{e}\right)\right| \geq \sqrt{n}, e\right.$ is closed $\} \cap H_{n}^{1}$. Notice that the occurrence of this event implies the existence of an open cluster of size bigger than \sqrt{n} which is not connected to $C_{d}(n)$. An appropriate bound for this event can be found in Lemma 3.2.

In order to deal with the event $\left(H_{n}^{4}\right)^{c}$ we denote G_{n} the event in Theorem 1.3,

$$
G_{n}=\left\{\forall S \subset \mathcal{C}_{d}(n) \text { connected : } C n \leq|S|<\frac{\left|\mathcal{C}_{d}(n)\right|}{2}, \frac{\left|\partial_{\mathcal{C}} S\right|}{|S|^{(d-1) / d}} \geq \alpha\right\}
$$

By [8] there exists a constant $\beta>0$ such that $\mathbf{P}\left(G_{n}^{c}\right)<e^{-\beta n\left(\frac{d-1}{d}\right)}$ for large enough $n \in \mathbb{N}$. As before we write

$$
\mathbf{P}\left(\left(H_{n}^{4}\right)^{c}\right) \leq \mathbf{P}\left(\left(H_{n}^{4}\right)^{c} \cap H_{n}^{1} \cap H_{n}^{2} \cap G_{n}\right)+\mathbf{P}\left(\left(H_{n}^{1}\right)^{c} \cup\left(H_{n}^{2}\right)^{c} \cup G_{n}^{c}\right)
$$

and by the probability bound mentioned so far it's enough to bound the probability of the first event $\left(H_{n}^{4}\right)^{c} \cap H_{n}^{1} \cap H_{n}^{2} \cap G_{n}$. What we will actually show is that for appropriate
choice of $0<c_{4}<\frac{1}{2}$ we have $\left(H_{n}^{4}\right)^{c} \cap H_{n}^{1} \cap H_{n}^{2} \cap G_{n}=\emptyset$. Indeed, since we assumed the event G_{n} occurs we have that for large enough $n \in \mathbb{N}$ and every set $A \subset C_{d}(n)(\omega)$ of size smaller than $c_{4} n^{d}$,

$$
\left|\partial_{C_{d}(n)} A\right| \geq \alpha|A|^{\frac{d-1}{d}} .
$$

It follows that

$$
\begin{equation*}
\psi_{A} \geq \alpha \frac{1}{|A|^{1 / d}} \geq \frac{\alpha}{c_{4}^{1 / d} n} \tag{2.9}
\end{equation*}
$$

Choosing $c_{4}>0$ such that for large enough $n \in \mathbb{N}$ we have $\frac{\alpha}{c_{4}^{1 / d}}>c_{3}$, we get a contradiction to the event H_{n}^{2}, which proves that the event $\left(H_{n}^{4}\right)^{c} \cap H_{n}^{1} \cap H_{n}^{2} \cap G_{n}$ is indeed empty.

Finally we turn to deal with the event $\left(H_{n}^{5}\right)^{c}$. As before it's enough to bound the probability of the event $\left(H_{n}^{5}\right)^{c} \cap H_{n}^{1} \cap H_{n}^{2} \cap H_{n}^{3} \cap H_{n}^{4} \cap G_{n}$. We divide the last event into two disjoint events according to the status of the edge e, namely

$$
\begin{align*}
V_{n}^{0} & :=\left(H_{n}^{5}\right)^{c} \cap H_{n}^{1} \cap H_{n}^{2} \cap H_{n}^{3} \cap H_{n}^{4} \cap G_{n} \cap\{\omega(e)=0\} \\
V_{n}^{1} & :=\left(H_{n}^{5}\right)^{c} \cap H_{n}^{1} \cap H_{n}^{2} \cap H_{n}^{3} \cap H_{n}^{4} \cap G_{n} \cap\{\omega(e)=1\}, \tag{2.10}
\end{align*}
$$

and will show that for right choice of $c_{5}>0$ both V_{n}^{0} and V_{n}^{1} are empty events.
Let us start with V_{n}^{0}. Going back to the proof of Claim 2.3 one can see that under the event $H_{n}^{1} \cap H_{n}^{2} \cap H_{n}^{3} \cap H_{n}^{4}$ there exists a constant $c>0$ such that

$$
\begin{equation*}
\phi\left(\omega^{e}\right) \leq \phi(\omega)+\frac{c}{n^{d}} \leq \frac{c_{3}}{n}+\frac{c}{n^{d}}, \tag{2.11}
\end{equation*}
$$

and therefore $\phi\left(\omega^{e}\right) \leq \frac{\tilde{c}_{3}}{n}$ for any $\tilde{c}_{3}>c_{3}$ and $n \in \mathbb{N}$ large enough. If $\emptyset \neq A \subset C_{d}(n)\left(\omega^{e}\right)$ is a set of size smaller than $\frac{n}{\tilde{c}_{3}}$ then

$$
\begin{equation*}
\psi_{A}\left(\omega^{e}\right) \geq \frac{1}{|A|}>\frac{\tilde{c}_{3}}{n} \tag{2.12}
\end{equation*}
$$

and therefore A cannot realize the Cheeger constant. On the other hand, if $A \subset$ $C_{d}(n)\left(\omega^{e}\right)$ satisfy $\frac{n}{\bar{c}_{3}} \leq|A| \leq c_{5} n^{d}$ then

$$
\left|\partial_{C_{d}(n)\left(\omega^{e}\right)} A\right| \geq\left|\partial_{C_{d}(n)\left(\omega^{e}\right)}\left(A \cap C_{d}(n)(\omega)\right)\right|-1 \geq \mid \partial_{C_{d}(n)(\omega)}\left(A \cap C_{d}(n)(\omega) \mid-2\right.
$$

and therefore (Since we assumed the event G_{n} occurs)

$$
\begin{align*}
\psi_{A}\left(\omega^{e}\right) & \geq \frac{\left|\partial_{C_{d}(n)(\omega)}\left(A \cap C_{d}(n)(\omega)\right)\right|}{|A|}-\frac{2}{|A|} \\
& =\frac{\left|\partial_{C_{d}(n)(\omega)}\left(A \cap C_{d}(n)(\omega)\right)\right|}{\left|A \cap C_{d}(n)(\omega)\right|} \frac{\left|A \cap C_{d}(n)(\omega)\right|}{|A|}-\frac{2}{|A|} \tag{2.13}\\
& \geq \frac{\alpha}{\left|A \cap C_{d}(n)(\omega)\right|^{\frac{1}{d}}} \cdot \frac{|A|-\sqrt{n}}{|A|}-\frac{2 \tilde{c}_{3}}{n} \\
& \geq \frac{\alpha}{2 c_{5}^{\frac{1}{d}} n}-\frac{2 \tilde{c}_{3}}{n},
\end{align*}
$$

where the last inequality holds for large enough n, since $\lim _{n \rightarrow \infty} \frac{|A|-\sqrt{n}}{|A|}=1$. Taking $c_{5}>0$ small enough such that $\frac{\alpha}{2 c_{5}^{\frac{1}{d}}}-2 \tilde{c}_{3}>c_{3}$ we get a contradiction to (2.11). It follows that no set $A \subset C_{d}(n)\left(\omega^{e}\right)$ of size smaller than $c_{5} n^{d}$ can realize the Cheeger constant which contradicts $\left(H_{n}^{5}\right)^{c}$, i.e, $V_{n}^{0}=\emptyset$.

Finally, for V_{n}^{1}. The case $A \subset C_{d}(n)\left(\omega^{e}\right)$ such that $|A|<\frac{n}{\tilde{c}_{3}}$ is the same as for the event V_{n}^{0}. If $A \subset C_{d}(n)\left(\omega^{e}\right)$ satisfy $\frac{n}{\tilde{c}_{3}} \leq|A| \leq c_{5} n^{d}$ then

$$
\left|\partial_{C_{d}(n)\left(\omega^{e}\right)} A\right| \geq\left|\partial_{C_{d}(n)(\omega)} A\right|-1
$$

and therefore as in the case of V_{n}^{0}

$$
\begin{align*}
\psi_{A}\left(\omega^{e}\right) & \geq \frac{\left|\partial_{C_{d}(n)(\omega)} A\right|-1}{|A|} \\
& \geq \alpha \frac{|A|^{\frac{d-1}{d}}}{|A|}-\frac{1}{|A|} \geq \frac{c_{6}}{2 c_{5}^{1 / d} n}-\frac{\tilde{c}_{3}}{n} \tag{2.14}
\end{align*}
$$

where again the last inequality holds only for large enough n. Choosing c_{5} small enough, we again get a contradiction to (2.11), and as before this yields that $V_{n}^{1}=\emptyset$.

Proof of theorem 1.5. By [10] (Theorem 1.5) the following inequality holds for some $K=K(p)$,

$$
\begin{equation*}
\operatorname{Var}(\phi) \leq K \cdot \sum_{e \in \mathbb{E}_{d}(n)} \frac{\left\|\nabla_{e} \phi\right\|_{2}^{2}}{1+\log \left(\left\|\nabla_{e} \phi\right\|_{2} /\left\|\nabla_{e} \phi\right\|_{1}\right)} \tag{2.15}
\end{equation*}
$$

where $\left\|\nabla_{e} \phi\right\|_{2}^{2}=\mathbf{E}\left[\left(\nabla_{e} \phi\right)^{2}\right]$ and $\left\|\nabla_{e} \phi\right\|_{1}=\mathbf{E}\left[\left|\nabla_{e} \phi\right|\right]$. Observe that

$$
\left\|\nabla_{e} \phi\right\|_{1}=\left\|\nabla_{e} \phi \mathbb{1}_{\left\{\nabla_{e} \phi \neq 0\right\}}\right\|_{1} \leq\left\|\nabla_{e} \phi\right\|_{2}\left\|\mathbb{1}_{\left\{\nabla_{e} \phi \neq 0\right\}}\right\|_{2}
$$

and therefore

$$
\frac{\left\|\nabla_{e} \phi\right\|_{2}}{\left\|\nabla_{e} \phi\right\|_{1}} \geq \frac{1}{\sqrt{\mathbf{P}\left(\nabla_{e} \phi \neq 0\right)}} \geq 1
$$

Consequently, if we fix some edge $e_{0} \in \mathbb{E}_{d}(n)$,

$$
\begin{equation*}
\operatorname{Var}(\phi) \leq K \sum_{e \in \mathbb{E}_{d}(n)}\left\|\nabla_{e} \phi\right\|_{2}^{2}=K\left|\mathbb{E}_{d}(n)\right| \cdot\left\|\nabla_{e_{0}} \phi\right\|_{2}^{2}=K d n^{d} \cdot\left\|\nabla_{e_{0}} \phi\right\|_{2}^{2} \tag{2.16}
\end{equation*}
$$

where the first equality follows from the symmetry of $\mathbb{T}_{d}(n)$.

$$
\begin{equation*}
\left\|\nabla_{e_{0}} \phi\right\|_{2}^{2}=\mathbf{E}\left[\left|\nabla_{e_{0}} \phi\right|^{2} \mathbb{1}_{H_{n}}\right]+\mathbf{E}\left[\left|\nabla_{e_{0}} \phi\right|^{2} \mathbb{1}_{H_{n}^{c}}\right] . \tag{2.17}
\end{equation*}
$$

Notice that since $\left|\nabla_{e_{0}} \phi\right| \leq 2 d$ we have $\mathbf{E}\left[\left|\nabla_{e_{0}} \phi\right|^{2} \mathbb{1}_{H_{n}^{c}}\right] \leq 4 d^{2} \mathbb{P}\left(H_{n}^{c}\right)$. Thus applying Lemma 2.6,

$$
\begin{equation*}
\mathbf{E}\left[\left|\nabla_{e_{0}} \phi\right|^{2} \mathbb{1}_{H_{n}^{c}}\right] \leq 4 d^{2} e^{-c \log ^{\frac{3}{2}}(n)} \tag{2.18}
\end{equation*}
$$

and by Lemma 2.3

$$
\begin{equation*}
\mathbf{E}\left[\left|\nabla_{e_{0}} \phi\right|^{2} \mathbb{1}_{H_{n}}\right] \leq \frac{C^{2}}{n^{2 d}} \tag{2.19}
\end{equation*}
$$

Thus combing equations (2.18) and (2.19) with equation (2.16) the result follows.

3 Appendix

In this Appendix for completeness and future reference, we sketch a proof of the exponential decay of $\mathbf{P}\left(\left(H_{n}^{1}\right)^{c}\right)$ and the decay of probability for the size of the second largest component of percolation in a box.

The proof of the first estimate follows directly from two papers [6] by Deuschel and Pisztora and [2] by Antal Pisztora, which together gives a proof by a renormalization argument. We borrow the terminology of [2] without giving here the definitions.

Lemma 3.1. Let $p>p_{c}\left(\mathbb{Z}^{d}\right)$. There exist $c_{1}, c>0$ such that for n large enough

$$
\boldsymbol{P}_{p}\left(\left|C_{d}(n)(\omega)\right|<c_{1} n^{d}\right)<e^{-c n}
$$

Proof. By [6] Theorem 1.2, for every $\epsilon>0$ there exists a $p_{c}\left(\mathbb{Z}^{d}\right)<p^{*}<1$ such that for every $p>p^{*}$ there exists a constant $c>0$ for whom, $\mathbf{P}_{p}\left(\left|C_{d}(n)(\omega)\right|<(1-\epsilon) n^{d}\right)<e^{-c n}$. Since $\left\{\left|C_{d}(n)(\omega)\right|<\tilde{c}_{1} n^{d}\right\}^{c}$ is an increasing event, by Proposition 2.1 of [2] for $N \in \mathbb{N}$ large enough, i.e., such that $\bar{p}(N)>p^{*}$,

$$
\begin{equation*}
\mathbb{P}_{N}\left(\left|C_{d}(n)(\omega)\right|<\tilde{c}_{1} n^{d}\right) \leq \mathbb{P}_{\bar{p}(N)}^{*}\left(\left|C_{d}(n)(\omega)\right|<\tilde{c}_{1} n^{d}\right)<e^{-c n} \tag{3.1}
\end{equation*}
$$

where \mathbb{P}_{N} is the probability measure of the renormalized dependent percolation process and $\mathbb{P}_{\bar{p}(N)}^{*}$ is the probability measure of standard bond percolation with parameter $\bar{p}(N)$. From the definition of the event $R_{i}^{(N)}$, the crossing clusters of all the boxes B_{i}^{\prime} that admit $R_{i}^{(N)}$ are connected to each other, thus

$$
\mathbf{P}_{p}\left(\left|C_{d}(n N)(\omega)\right|<\tilde{c}_{1}(n N)^{d}\right)<e^{-c n}
$$

Next, for completeness, we turn to prove that all components outside the giant one are small.

Lemma 3.2. Let $p>p_{c}\left(\mathbb{Z}^{d}\right)$ and denote by $\mathcal{K} \subset \mathbb{T}^{d}(n) \backslash C_{d}(n)$ the largest connected component of the graph $\mathbb{T}^{d}(n) \backslash C_{d}(n)$. Then there exist constants $c, C>0$ such that

$$
\boldsymbol{P}_{p}(|\mathcal{K}|>C \sqrt{n}) \leq e^{-c n^{\frac{1}{4}}}
$$

Proof. We separate the proof into two parts: First, following ideas from Section 4 of [9], we prove the theorem for $p_{c}(\mathbb{Z})<p<1$ close enough to one. Secondly, we use a renormalization argument to show that the argument for large enough p can be used to prove the lemma for any $p_{c}\left(\mathbb{Z}^{d}\right)<p<1$ in the cost of changing the value of the constant c.

Since there exists $\bar{c}>0$ such that

$$
\sharp\left\{* \text {-connected edge sets of size } k \text { in } \mathbb{T}^{d}(n)\right\} \leq n^{d} \cdot \bar{c}^{k},
$$

we get by a union bound that ${ }^{1}$

$$
\begin{aligned}
& \mathbf{P}_{p}\left(\exists A \subset \mathbb{E}^{d}(n): A \text { is } *-\text { connected },|A|>n^{\frac{1}{4}}, \forall e \in A, \omega(e)=0\right) \\
\leq & \sum_{k=\left\lfloor n^{\frac{1}{4}}\right\rfloor}^{\infty} n^{d} \cdot \bar{c}^{k}(1-p)^{k} .
\end{aligned}
$$

If $p^{*}<p<1$, where p^{*} solve the equation $\bar{c}(1-p)=1$, we get that there exists some constant $c=c(p)>0$ such that

$$
\mathbf{P}_{p}\left(\exists A \subset \mathbb{E}^{d}(n): A \text { is } * \text { - connected },|A|>n^{\frac{1}{4}}, \forall e \in A, \omega(e)=0\right) \leq e^{-c n^{\frac{1}{4}}}
$$

Using the proof of Lemma 3.1 for large values of p we see in the cost of increasing the value of p^{*} we can ensure that for every $p^{*}<p<1$ there exists $\tilde{c}>0$ such that for large enough $n \in \mathbb{N}$ we have $\mathbf{P}_{p}\left(|\mathcal{K}| \geq\left|\mathbb{T}^{d}(n)\right| / 2\right) \leq e^{-\tilde{c} n}$. Thus we only need to deal with the

[^1]case $\sqrt{n}<|\mathcal{K}|<\left|\mathbb{T}^{d}(n)\right| / 2$. If $\sqrt{n}<|\mathcal{K}|<\left|\mathbb{T}^{d}(n)\right| / 2$, by the isoperimetric inequality for $\mathbb{T}^{d}(n)$ there exists some $\delta>0$ such that $|\partial \mathcal{K}| \geq \delta|\mathcal{K}|^{\frac{d-1}{d}} \geq \delta|\mathcal{K}|^{\frac{1}{2}} \geq \delta n^{\frac{1}{4}}$. Since \mathcal{K} is a maximal connected set in $\mathbb{T}^{d}(n) \backslash C_{d}(n)$ we get that $\omega(e)=0$ for every $e \in \partial \mathcal{K}$. Recalling that $\partial \mathcal{K}$ is $*$-connected (see [6] Lemma 2.1 or [11]) we can conclude that
$$
\mathbf{P}_{p}\left(\sqrt{n}<|\mathcal{K}|<\left|\mathbb{T}^{d}(n)\right| / 2\right) \leq \mathbf{P}_{p}\binom{|\partial \mathcal{K}| \geq \delta n^{\frac{1}{4}}, \partial \mathcal{K} \text { is } * \text { - connected },}{\forall e \in \partial \mathcal{K}, \omega(e)=0} \leq e^{-c n^{\frac{1}{4}}}
$$

Next we turn to the renormalization argument. Notice that the by the definition of \mathcal{K} which ignores the percolation structure outside of $\mathbb{T}^{d}(n) \backslash C_{d}(n)$ we have that $\{|\mathcal{K}|>$ $\sqrt{N}\}$ is a decreasing event. By Proposition 2.1 of [2] for $N \in \mathbb{N}$ large enough, i.e., such that $\bar{p}(N)>p^{*}$, we have

$$
\begin{equation*}
\mathbb{P}_{N}(|\mathcal{K}|>\sqrt{n}) \leq \mathbb{P}_{\bar{p}(N)}^{*}(|\mathcal{K}|>\sqrt{n})<e^{-c n^{\frac{1}{4}}} \tag{3.2}
\end{equation*}
$$

where \mathbb{P}_{N} is the probability measure of the renormalized dependent percolation process and $\mathbb{P}_{\bar{p}(N)}^{*}$ is the probability measure of standard bond percolation with parameter $\bar{p}(N)$. Assume that $\mathcal{K} \subset \mathbb{T}^{d}(n) \backslash C_{d}(n)$ is a connected component under the law of \mathbf{P}_{p}. By the definition of good boxes \mathcal{K}_{N} contain a cluster that is contained in $C_{d}(n)$ under \mathbf{P}_{p} and this cluster intersect every connected set of size $N / 10$ (see [2]) thus there exists a connected component $\mathcal{K}_{N} \subset \mathbb{T}^{d}(n) \backslash C_{d}(n)$ under the law of \mathbb{P}_{N} such that

$$
\mathcal{K} \subset \bigcup_{x \in \mathcal{K}_{N} \cup \partial \mathcal{K}_{N}} B(x, N)
$$

where $B(x, N)$ is the box of size N centered around x. Consequently we have the following estimate for the size of \mathcal{K}

$$
\begin{equation*}
|\mathcal{K}| \leq N^{d}\left(\left|\mathcal{K}_{N}\right|+\left|\partial \mathcal{K}_{N}\right|\right) \leq(2 d+1) N^{d}\left|\mathcal{K}_{N}\right| \tag{3.3}
\end{equation*}
$$

Thus, using (3.3) and (3.2) we get that

$$
\begin{align*}
\mathbf{P}_{p}(|\mathcal{K}| \geq \sqrt{n}) & \leq \mathbb{P}_{N}\left(\left|\mathcal{K}_{N}\right| \geq \frac{\sqrt{n / N}}{(2 d+1) N^{d}}\right) \\
& \leq \mathbb{P}_{\bar{p}(N)}^{*}\left(\left|\mathcal{K}_{N}\right| \geq \frac{\sqrt{n}}{(2 d+1) N^{\left(d+\frac{1}{2}\right)}}\right) \leq e^{-\frac{c}{\left((2 d+1) N^{\left(d+\frac{1}{2}\right)}\right)^{\frac{1}{4}}} n^{\frac{1}{4}}} \tag{3.4}
\end{align*}
$$

as required.

References

[1] N. Alon, M. Krivelevich, and V.H. Vu. On the concentration of eigenvalues of random symmetric matrices. Israel Journal of Mathematics, 131(1):259-267, 2002. MR-1942311
[2] P. Antal and A. Pisztora. On the chemical distance for supercritical Bernoulli percolation. The Annals of Probability, 24:1036-1048, 1996. MR-1404543
[3] N. Berger, M. Biskup, C.E. Hoffman, and G. Kozma. Anomalous heat-kernel decay for random walk among bounded random conductances. 44(2):374-392, 2008. MR-2446329
[4] I. Benjamini, G. Kalai, and O. Schramm. First passage percolation has sublinear distance variance. Annals of Probability, 31(4):1970-1978, 2003. MR-2016607
[5] I. Benjamini and E. Mossel. On the mixing time of a simple random walk on the super critical percolation cluster. Probability Theory and Related Fields, 125(3):408-420, 2003. MR-1967022
[6] J.D. Deuschel and A. Pisztora. Surface order large deviations for high-density percolation. Probability Theory and Related Fields, 104(4):467-482, 1996. MR-1384041

Isoperimetric constant of the supercritical percolation cluster
[7] P. Mathieu and E. Remy. Isoperimetry and heat kernel decay on percolation clusters. The Annals of Probability, 32(1):100-128, 2004. MR-2040777
[8] Gabor Pete. A note on percolation on z^{d} : isoperimetric profile via exponential cluster repulsion. Electron. Commun. Probab., 13:no. 37, 377-392, 2008. MR-2415145
[9] E.B. Procaccia and E. Shellef. On the range of a random walk in a torus and random interlacements. Arxiv preprint arXiv:1007.1401, 2010.
[10] M. Talagrand. On Russo's approximate zero-one law. The Annals of Probability, 22:15761587, 1994. MR-1303654
[11] A. Timar. Bondary-connectivity via graph theory. To appear in Proceedings of the American Mathematical Scociety, 2007.

Acknowledgments. The authors would like to thank Itai Benjamini for suggesting the problem. We would also like to thank the detailed comments of an anonymous referee. The research of R.R was partially supported by ERC StG Number 239990

[^0]: *Weizmann Institute of Science. E-mail: eviatarp@gmail. com
 ${ }^{\dagger}$ Hebrew University of Jerusalem. E-mail: ron. rosenthal@mail.huji.ac.il

[^1]: ${ }^{1}$ The choice of $n^{\frac{1}{4}}$ is arbitrary and the only requirement it is $\gg \log (n)$ and smaller than \sqrt{n}.

