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Abstract

We investigate dual mechanisms for interacting particle systems. Generalizing an
approach of Alkemper and Hutzenthaler in the case of coalescing duals, we show
that a simple linear transformation leads to a moment duality of suitably rescaled
processes. More precisely, we show how dualities of interacting particle systems of
the form H(A,B) = q|A∩B|, A,B ⊂ {0, 1}N , q ∈ [−1, 1), are rescaled to yield moment
dualities of rescaled processes. We discuss in particular the case q = −1, which ex-
plains why certain population models with balancing selection have an annihilating
dual process. We also consider different values of q, and answer a question by Alkem-
per and Hutzenthaler.
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1 Introduction and main result

Dualities have proved to be a powerful tool in the analysis of interacting particle
systems and population models. For interacting particle systems, one generally con-
siders two kind of duals: coalescing and annihilating duals, [11, 9, 12]. In connection
with population models, rescaled interacting particle systems and their limits are of
considerable interest, and it is natural to ask in which sense rescaling preserves duali-
ties. Alkemper and Hutzenthaler [1] consider the case of coalescing dual mechanisms,
and derive a ‘prototype’ moment duality under rescaling. Swart [14] uses a similar
idea to obtain dualities of stepping stone models. In this paper, we consider a general
form of a duality for interacting particle systems, cf. [12]. This includes coalescing as
well as annihilating dual mechanisms. We prove a ‘prototype’ moment duality of lin-
early transformed rescaled processes, in a similar fashion as for the coalescing case,
and we discuss the situation for annihilating duals in some more details. As an appli-
cation, we consider one-dimensional branching annihilating processes and their duals.
Our approach explains why population models with balancing selection generally have
an annihilating dual process, as was found, for example, in [4] in a spatial population
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Graphical representation of moment dualities

model. We also introduce randomized dual mechanisms, and anser a question posed in
[1]. Finally we discuss connections to the Lloyd-Sudbury approach, [12, 14].

For a Markov process (Xt)t≥0 we write Px for the law of the process started in x,

and Ex for the corresponding expectation. Two Markov processes (Xt)t≥0, (Yt)t≥0 with
state spaces E and F, respectively, are called dual with respect to the duality function
H : E × F → R if for all t ≥ 0, x ∈ E, y ∈ F the equality

Ex[H(Xt, y)] = Ey[H(x, Yt)] (1.1)

holds. This means that the long-term behaviour of one process is – to some extent
– determined by the long-term behaviour of the other process. The usefulness of a
duality depends on the duality function H. If for example (Xt) takes values in R, and
(Yt) in N, we call a duality with respect to the function

H(x, y) = xy

a moment duality, since it determines all the moments of Xt. For practical purposes,
it is often useful to have a pathwise construction of the dual processes, which means
that they can be constructed on the same probability space in some explicit way, for
example as functions of one underlying driving process. In the case of interacting
particle systems, this construction is usually provided by the graphical representation,
[10, 9]. We explain this below in the setup that we use for the present paper.

Let N ∈ N, and let EN := {0, 1}N . We write x ∈ EN as a vector x = (xi)1≤i≤N .

A partial order on EN is given by x ≤ y ⇔ xi ≤ yi ∀1 ≤ i ≤ N. We write x ∧ y
for the minimum of x and y with respect to this ordering. Let (XN

t )t≥0 and (Y Nt )t≥0

denote Markov processes defined on some probability space (Ω,F ,P) with values in
EN , XN

t = (XN
t (i))i=1,...,N . Let ANt := {i : XN

t (i) = 1} and BNt := {i : Y Nt (i) = 1};
this defines processes taking values in the subsets of {1, ..., N}. We write |XN

t | := |ANt |
for the cardinality of the set ANt , that is for the number of 1’s. Sudbury and Lloyd [12]
argue that in this context, duality functions that are functions of A ∩B alone should be
of the form

H(A,B) = q|A∩B|, A,B ⊂ {1, ..., N},

for some q ∈ R \ {1}. We take this as a motivation to say that two EN−valued Markov
processes (XN

t ), (Y Nt ) are q−dual if

Ex[q|X
N
t ∧Y

N
0 |] = Ey[q|X

N
0 ∧Y

N
t |] ∀x, y ∈ EN , t ≥ 0. (1.2)

That is, the duality function is H(x, y) = q|x∧y|. Special cases are q = 0, which is called
coalescing duality, and q = −1, which is called annihilating duality. In these cases
the duality function becomes 0|x∧y| = 1{x∧y=0}, and (−1)|x∧y| = 1 − 2 × 1{|x∧y| is odd},
respectively.

We now describe the graphical representation for such dualities. For each i ∈
{1, ..., N}, draw a vertical line of length T, which represents time up to a finite end
point T. We consider ordered pairs (i, j) with i, j ∈ {1, ..., N}. For each such pair, run
m ∈ N independent Poisson processes with parameters (λkij), k = 1, ...,m. At the time of
an arrival draw an arrow from the line corresponding to i to the line corresponding to
j, marked with the index k of the process. Do this independently for each ordered pair,
for each k = 1, ...,m. For each k, we define functions fk, gk : {0, 1}2 → {0, 1}2. A Markov
process (XN

t ) with càdlàg paths is then constructed by specifying an initial condition
x = (xi)i=1,...,N , and the following dynamics: XN

t = x until the time of the first arrow in
the graphical representation. If this arrow points from i to j and is labelled k, then the
pair (xi, xj) is changed to fk(xi, xj), and the other coordinates remain unchanged. Go
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Graphical representation of moment dualities

on until the next arrow, and proceed exactly in the same way. The dual process (Y Nt )

is constructed using the same Poisson processes, but started at the final time T > 0,

running time backwards, inverting the order of all arrows, and using the functions gk

instead of fk.
This kind of construction goes back to Harris [10] and is of widespread use. A detailed
account can be found in Griffeath [9] and Liggett [11]. In the representations consid-
ered there, the interpretation of the mechanisms fk, gk is such that one thinks of a
particle at the tail of an arrow in the graphical representation having some effect on
the configuration at the tip, for example by jumping there, or by branching, and subse-
quent coalescence, or annihilation, or death. The rates of the Poisson processes then
naturally have the interpretation of giving a rate per particle for some event to happen.
In our case, the functions fk, gk are considered to act on pairs of sites with a certain
rate, whether or not the sites are occupied. Note that given a process, the graphical
representation is of course not unique, since different mechanisms can be combined to
have the same effect.

Following [1], we call the functions fk, gk basic mechanisms, and we generalize the
definition of dual basic mechanisms given by Alkemper and Hutzenthaler. For x =

(x1, x2) ∈ {0, 1}2 we use the notation x† := (x2, x1); the dagger accounts for the reversal
of an arrow.

Definition 1.1. Two basic mechanisms f, g : {0, 1}2 → {0, 1}2 are called q-dual mecha-
nisms if and only if

q|x∧(g(y†))†| = q|f(x)∧y| ∀x, y ∈ {0, 1}2. (1.3)

It is easy to see, cf. Lemma 1.2, that two processes constructed using q−dual mech-
anisms are q−dual processes.

x1

y1

x2

y2

-
�

(f(x))1 (f(x))2

(g(y†))2 (g(y†))1

Figure 1

Lemma 1.2. Fix m ∈ N, q ∈ R \ {1} and T > 0. For every k = 1, ...,m, let fk, gk be
q−dual basic mechanisms. Consider independent Poisson processes with parameters
λkij , µ

k
ij , k = 1, ...,m, i, j ∈ EN , which satisfy λkij = µkji for all k, i, j. Let XN

0 and Y N0 be
EN−valued random variables, independent of one another and of the Poisson processes.
Let (XN

t ), (Y Nt ) be Markov processes with state space EN , initial conditions XN
0 , Y

N
0 ,

constructed using the mechanisms fk and gk, respectively driven by the Poisson pro-
cesses. Then there exists a process (Ŷ Nt ) such that

Ŷ Nt
d
= Y Nt and q|XT∧Ŷ0| = q|Xt∧ŶT−t| = q|X0∧ŶT | a.s. ∀ 0 ≤ t ≤ T. (1.4)

Proof. Since we assume λkij = µkji, we can construct Ŷ Nt from the graphical represen-
tation of (XN

t ), using the same realization of the Poisson processes, reversing time and

the directions of all the arrows. It is clear from the construction that then Ŷ Nt
d
= Y Nt .
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Graphical representation of moment dualities

Assume there is an arrow from i to j at time t in the graphical representation, and let
x := (XN

t−(i), XN
t−(j)), y := (Ŷ N(T−t)−(i), Ŷ N(T−t)−(j)). Then we have |XN

t− ∧ Ŷ N(T−t)+| − |x ∧
(gk(y†))†| = |XN

t+ ∧ Ŷ N(T−t)−| − |f
k(x) ∧ y|, and therefore q|X

N
t−∧Ŷ

N
(T−t)+| = q|X

N
t+∧Ŷ

N
(T−t)−|

holds (see Figure 1). For some more details, in the case of coalescing mechanisms,
compare the proof of Proposition 2.3 of [1].

Taking expectations, the following is then obvious.

Corollary 1.3. In the situation of Lemma 1.2, the processes (XN
t ) and (Y Nt ) are q−dual.

Remark 1.4. We note that Lemma 1.2 tells us that (XN
t ) and (Y Nt ) are dual in a very

strong sense, namely, for fixed T > 0, the equation H(XN
t , Ŷ

N
0 ) = H(XN

0 , Ŷ
N
t ) holds

almost surely for all 0 ≤ t ≤ T instead of just in expectation. We call such processes
strongly pathwise dual. We have just seen that a construction via graphical represen-
tation and q-dual basic mechanisms automatically leads to a strong pathwise duality.
Another example for strong pathwise duality obtained from a graphical representation
is given in [5], where stochastically monotone processes on totally ordered spaces were
shown to be dual with respect to the duality function 1{x≤y} in a pathwise sense.

We are now ready to state and prove the main result of this article. Here, we
are interested in one-dimensional processes which may be obtained by rescalings of
|XN

t |, |Y Nt | where XN
t and Y Nt are q−dual finite interacting particle systems. Therefore,

we require the particle processes to be exchangeable at all times, which means that
given |XN

t |, all configurations XN
t with |XN

t | ones are equally likely.

Theorem 1.5. Let (XN
t ), (Y Nt ) be Markov processes with state space EN that are

qN−dual for some qN ∈ [−1, 1). Choose exchangeable initial conditions XN
0 , Y

N
0 ∈ EN

independent of one another, fixing |XN
0 | = kN , |Y N0 | = nN , and suppose that XN

t and Y Nt
stay exchangeable for all t > 0. Assume that nN/N → 0 and E[|Y NtN |/N ]→ 0 as N →∞,
for some time scale tN ≥ 0. Then

lim
N→∞

E

[(
1 + (qN − 1)

|XN
0 |
N

)|Y N
tN
|]

= lim
N→∞

E

(1 + (qN − 1)
|XN

tN |
N

)|Y N
0 |
 ,

provided that the limits exist.

Theorem 1.5 applies, for example, to processes constructed from basic mechanisms
with rates λkij that do not depend on i and j, in that case, exchangeability of the initial
conditions implies that the processes stay exchangeable at all times. All our later ex-
amples fall into this class. This condition is however not necessary, as can be seen by
considering the lookdown construction [7].

Depending on the scaling, Theorem 1.5 may lead to a moment duality, if |X
N
t |
N → Xt,

and |Y Nt | → Yt, as we then get E[(1 + (q− 1)X0)Yt ] = E[(1 + (q− 1)Xt)
Y0 ]. If XN and Y N

have the same scaling, we may get a Laplace duality, that is H(x, y) = e−λxy for some
λ ∈ R, see Theorem 4.3 of [1] for an example.

Proof. The proof relies on the simple fact that, by independence and exchangeability,
the distribution of |X ∧ Y | given |X| and |Y | is approximately binomial with parameters
|Y | and |X|

N , provided that |Y | is small with respect to N. Indeed, |X ∧ Y | follows a
hypergeometric distribution, since it is obtained by distributing the |Y | 1’s of the Y -
configuration onto the |X| 1’s of the X-configuration, without hitting the same 1 twice.
Approximating the hypergeometric distribution by a binomial distribution will give us
the result. Let ZN ∼ Bin

(
nN ,

xN

N

)
with xN ∈ {0, ..., N} and nN/N → 0. By Theorem 4
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Graphical representation of moment dualities

of [6], we can bound the total variation distance between the hypergeometric and the
binomial distribution as

‖Hyp(N, xN , nN )− Bin(nN ,
xN
N

)‖TV ≤
4nN
N

.

Since we assumed qN ∈ [−1, 1), we obtain

E

[
q
|XN

tN
∧Y0|

N

∣∣|XN
tN | = xN , |Y N0 | = nN

]
=

nN∑
k=0

qkNP(|XN
t ∧ Y0| = k | |XN

t | = xN , |Y N0 | = nN )

=E
[
qZ

N

N

]
+ o(1),

where E[qZ
N

N ] is just the probability generating function of the binomial variable ZN .

This is well known to be

E
[
qZ

N

N

]
=
(
qN

xN
N

+
(

1− xN
N

))nN

=
(

1 + (qN − 1)
xN
N

)nN

.

Averaging over the initial conditions XN
0 with |XN

0 | = kN , we obtain

E
[
q
|XN

t ∧Y
N
0 |

N

]
= E

(1 + (qN − 1)
|XN

tN |
N

)|Y N
0 |
+ o(1).

In the same way, using E[|Y Nt |]/N → 0, we get

E

[
q
|XN

0 ∧Y
N
tN
|

N

]
= E

[(
1 + (qN − 1)

|XN
0 |
N

)|Y N
tN
|]

+ o(1).

By duality,

E

(1 + (qN − 1))
|XN

tN |
N

)|Y N
0 |
 = E

[(
1 + (qN − 1)

|XN
0 |
N

)|Y N
tN
|]

+ o(1).

Letting N →∞ gives the desired result.

For the binomial approximation, it was necessary to assume that Y N/N → 0.We now
give a result for the case that both XN

t and Y Nt scale with N. This leads to a Laplace
duality in a situation that was not covered in 1.5.

Proposition 1.6. Let (XN
t ), (Y Nt ) be Markov processes with state space EN that are

qN -dual for some qN such that limN→∞N(qN − 1) = −λ ∈ (−∞, 0]. Choose exchange-
able initial conditions XN

0 , Y
N
0 ∈ EN independent of each other and suppose that both

processes stay exchangeable at t > 0. Assume that the process |Y
N
t |
N converges weakly

to some process Ỹt, that |X
N
t |
N converges weakly to X̃t. Then (X̃t) and (Ỹt) are dual with

respect to
H(x, y) = e−λxy.

Proof. We have

E
[
q
|XN

t ∧Y
N
0 |

N

]
= E

[
q
∑N

i=1X
N
t (i)Y N

0 (i)
N

]
= E

[(
1 +

N(qN − 1)

N

)N · 1N ∑N
i=1X

N
t (i)Y N

0 (i)
]
→ E

[
e−λX̃tỸ0

]
,

since by exchangeability and independence, 1
N

∑N
i=1X

N
t (i)Y N0 (i) → X̃tỸ0 in distribu-

tion.
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Graphical representation of moment dualities

Remark 1.7. Note that for these results we only assume duality of the processes, and
not necessarily strong pathwise duality in the sense of (1.4). An example of a q−self-
duality, which is not obtained form q−dual basic mechanisms, but from q−self-dual
randomized mechanisms is given in the last section of this paper.
If all the approximating processes are constructed from a graphical representation us-
ing q−dual mechanisms, these are strongly pathwise dual. However, our construction
is not consistent, and therefore we do not directly give a pathwise construction of the
limiting processes as is obtained from the lookdown construction [7].

In the remainder of the paper, we discuss in some detail the case of annihilating du-
als and possible dual mechanisms. We restate Theorem 1.5 in this particular case, and
discuss several examples where this result can be applied to rederive certain dualities,
mostly known in the literature. The examples illuminate in particular the connection
between annihilating duals and population models with balancing selection, as studied
for example in [4]. In the last section we consider different values of q. The last example
answers an open question of [1] concerning a self-duality derived in [3].

2 Annihilating duality

2.1 Annihilating dual mechanisms

In this section, we discuss the special case of a q-duality with q = −1, which is an
annihilating duality. Since (−1)|x∧y| = 1− 2× 1{|x∧y| is odd}, this duality relation can be
written as

Px(|XN
t ∧ Y N0 | is odd) = Py(|XN

0 ∧ Y Nt | is odd) (2.1)

for all x, y ∈ EN . In order to apply our rescaling result, we identify some basic mech-
anisms which lead to annihilating dualities. It is interesting to compare them to some
of the coalescing mechanisms. In the following table, we give a list of the mechanisms
that we are interested in, and afterwards discuss their duality relations.

f(0, 0) f(0, 1) f(1, 0) f(1, 1)

fR (0,0) (0,0) (1,1) (1,1) resampling
fC (0,0) (0,1) (0,1) (0,1) walk-coalescence
fA (0,0) (0,1) (0,1) (0,0) walk-annihilation
fD (0,0) (0,0) (0,1) (0,1) death-walk
fBC (0,0) (0,1) (1,1) (1,1) branching-coalescence
fBA (0,0) (0,1) (1,1) (1,0) branching-annihilation

The names given to the mechanisms are chosen to suggest an interpretation. In the
resampling mechanism, the first position gives its type (0 or 1) to the second one. In the
death-walk mechanism, a particle in the second position dies, after which a particle in
the first position walks to the second position. Walk mechanisms suggest that a particle
in the first position jumps to the second position, and either coalesces or annihilates
if there is a particle present. In branching mechanisms, a particle in the first position
produces a new particle in the second position, which either coalesces or annihilates
with a particle already present.

Remark 2.1 (Coalescing duals). In [1], the coalescing dual mechanisms were classified
(for a proof see the list of dual mechanisms [2] that can be found on the homepage of
M. Hutzenthaler). Concerning the dualities given in the above table, the following
coalescing dualities were established: (i) fR and fC are coalescing duals, (ii) fD is a
coalescing self-dual, and (iii) fBC is a coalescing self-dual. They also show that the
identity mechanism, the mechanism which maps all configurations to (0, 0) and the
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mechanism that maps (0, 0)→ (0, 0) and all other configurations to (1, 1) are coalescing
duals.

Lemma 2.2. (a) Two basic mechanisms f, g are annihilating dual mechanisms if and
only if

|x ∧ (g(y†))†| is odd ⇔ |f(x) ∧ y| is odd.

(b) With the notation of the above table, we have the following:

(i) fR and fA are annihilating duals
(ii) fD is an annihilating self-dual

(iii) fBA is an annihilating self-dual.

Proof. (a) is obvious. We verify (b) using the table of basic mechanisms. (i) We have
that fR(x) ∧ y is odd if and only if x = (1, 0) or x = (1, 1), and y = (0, 1) or (1, 0).

In both cases, (fA(y†))† = (1, 0), and (1, 0) ∧ x is odd if and only if x ∈ {(1, 0), (1, 1)}.
By (a) this proves the duality of fR and fA. For (ii) note that fD(x) ∧ y is odd if and
only if x ∈ {(1, 0), (1, 1)} and y ∈ {(0, 1), (1, 1)}. But then (fD(y†))† = (1, 0), and the
claim follows. (iii) For fBA(x) ∧ y to be odd we need x = (0, 1) and y ∈ {(0, 1), (1, 1)},
or x = (1, 0) and y ∈ {(0, 1), (1, 0)}, or x = (1, 1) and y ∈ {(1, 0), (1, 1)}. In all cases
(fBA(y†))† ∧ x is odd, and there are no other possibilities.

Remark 2.3. The list of duals is not complete. For a full classification of coalescing
duals see [2]. Note that fR and fD have both a coalescing and an annihilating dual
mechanism. The death-walk-mechanism fD is q-self-dual for any q ∈ R : From the table
of dual mechanisms one can check that |x∧ (fD(y†))†| = |fD(x)∧ y| for all x, y ∈ {0, 1}2.
The same is true for the identity and the mechanism that maps all configurations to
(0, 0).

Remark 2.4. It is easy to see that q-dual mechanisms, q 6= 1, always satisfy f(0, 0) =

(0, 0). However, unlike the case of coalescing duality, a mechanism need not be mono-
tone in order to have an annihilating dual, as can be seen from the self-duality of the
branching-annihilating mechanism.

We can now restate our Theorem 1.5 in the special case of annihilating duals. This
special case is motivated by the observation, made in [4], that a particular model of pop-
ulations with balancing selection, after a transformation of the form x 7→ 1− 2x, is dual
to a double-branching annihilating process. Our result shows why this transformation
occurs in annihilating processes. A non-spatial version of this model will be discussed
as an example in the following section.

Corollary 2.5. Let (XN
t ), (Y Nt ) be Markov processes with state space EN such that

Px(|XN
t ∧ y| is odd) = Py(|x ∧ Y Nt | is odd) holds for all x, y ∈ EN . Let kN , nN ∈ N, and

choose exchangeable initial conditions xN , yN ∈ EN , independent of each other such
that |xN | = kN , |yN | = nN . Suppose that both processes stay exchangeable at t > 0, and
assume that nN/N → 0 and E[|Y NtN |/N ]→ 0 as N →∞. Then

lim
N→∞

E

[(
1− 2|XN

0 |
N

)|Y N
tN
|]

= lim
N→∞

E

(1−
2|XN

tN |
N

)|Y N
0 |
 ,

provided that the limits exist.

As before, assuming that a limiting process (pt) of 1 − 2|XN
tN
|

N and nt of |Y NtN | exists,
these processes satisfy the moment duality

En[pnt
0 ] = Ep[p

n0
t ].
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Proof. Corollary 2.5 is a consequence of Theorem 1.5, by setting q = −1. It can also be
understood from the fact that the probability that a binomial random variable with pa-
rameters n, p takes an odd value is given by 1

2 (1− (1− 2p)n) . Then we have, by binomial
approximation,

P(|XN
t ∧ Y N0 | is odd | |XN

t | = xN , |Y N0 | = nN ) =
1

2

(
1−

(
1− 2xN

N

)nN
)

+ o(1),

as in the proof of Theorem 1.5; again duality, averaging over the exchangeable initial
conditions, and taking limits, gives the result.

2.2 Examples

In this section we derive some (mostly well-known) dualities by rescaling dualities
of interacting particle systems. We will assume that the following mechanisms occur in
the process (XN

t ) : fR occurs with rate rN
N for each ordered pair (i, j), i, j ∈ {1, ..., N},

fC with rate cN
N , fA with rate aN

N , fD with rate dN
N , fBA with rate baN

N , and fBC with rate
bcN
N . Moreover, set bN := baN + bcN .

Consider the process |XN
t | taking values in {0, ..., N}. Note that if |XN

t | = k, then the
number of ordered pairs of certain types is easily computed: The number of (0, 1)-pairs
(or equivalently of (1, 0)-pairs) is equal to k(N − k), the number of (1, 1)−pairs is equal
to k(k − 1). Hence, the process |XN

t |, t ≥ 0, makes the following transitions:

k → k + 1 at rate
rN + bN

N
k(N − k), (2.2)

k → k − 1 at rate
rN + dN

N
k(N − k) +

cN + dN + baN
N

k(k − 1), (2.3)

k → k − 2 at rate
aN
N
k(k − 1). (2.4)

Note that obviously we could do with fewer mechanisms in order to define the process
|XN

t |.However, playing with the rates of the different mechansims, we can find different
duals to processes constructed in this manner. In the next sections, we will consider
processes of this type and their duals for various values and scalings of the rates.

2.2.1 Branching annihilating process

Let aN = dN = bcN = cN = 0, and assume rN
N → α ≥ 0 and bN = baN → β ≥ 0, as

N → ∞. The different scaling of the mechanism is interpreted in the sense that in the
limit, the resampling affects pairs of particles, while branching happens at a fixed rate

per single particle. The rescaled discrete process |X
N
t |
N has, according to (2.2) and (2.3),

the discrete generator

G̃Nf
( k
N

)
=
rN
N
k(N − k)

[
f
(k + 1

N

)
+ f

(k − 1

N

)
− 2f

( k
N

)]
+
bN
N
k(k − 1)

[
f
(k − 1

N

)
− f

( k
N

)]
+
bN
N
k(N − k)

[
f
(k + 1

N

)
− f

( k
N

)]
.

Assume now k
N → x as N → ∞ and assume that f is twice differentiable. Then, noting

limN→∞N
(
f
(
k+1
N

)
− f

(
k
N

))
= f ′(x) and limN→∞N2

(
f
(
k+1
N

)
+ f

(
k−1
N

)
− 2f

(
k
N

))
=

f ′′(x), we see that G̃Nf(k/N) converges to

G̃f(x) = βx(1− 2x)f ′(x) + αx(1− x)f ′′(x),

which is the generator of the one-dimensional diffusion given by the SDE

dXt = βXt(1− 2Xt)dt+
√

2αXt(1−Xt)dBt.
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Graphical representation of moment dualities

This is a Wright-Fisher diffusion with local drift βx(1 − 2x). The drift has the effect
of pushing Xt towards the values 0 and 1/2 and may be interpreted as a selection
promoting heterozygosity – this interpretation will become more evident in the next
example. Note that it is not difficult to incorporate death as well: If dN → δ > 0, the
resulting diffusion reads

dXt = βXt(1−Xt)dt− δXtdt+
√
αXt(1−Xt)dBt.

Consider now the dual process. According to Lemma 2.2, (Y Nt ) where fA happens at
rate rN

N , fBA at bN
N is an annihilating dual of (XN

t ). The generator of |Y Nt | is

GNf(k) =
bN
N
k(N − k) (f(k + 1)− f(k)) +

bN
N
k(k − 1) (f(k − 1)− f(k))

+
rN
N
k(k − 1) (f(k − 2)− f(k)) .

As N →∞, when f(n)→ 0 fast enough as n→∞, this converges to

Gf(k) := βk (f(k + 1)− f(k)) + αk(k − 1) (f(k − 2)− f(k)) ,

which is the generator of a branching annihilating process on N0. Including death, we
get

Gf(k) := βk (f(k + 1)− f(k)) + αk(k − 1) (f(k − 2)− f(k)) + δk (f(k − 1)− f(k)) .

By corollary 4.8.9 of [8] one obtains weak convergence of (Y Nt ) to a process (Yt) with
generator G (noting that the compact containment condition follows from the fact that
the annihilation rate is quadratic as opposed to the linear rate of branching). It should
be possible to prove by standard methods in a similar way as in [1] that (XN

t /N) con-
verges weakly to the one-dimensional diffusion (Xt) with generator G̃. By Corollary 2.5
we obtain for the limiting processes (Xt), (Yt) the duality

Ex
[
(1− 2Xt)

Y0
]

= Ey
[
(1− 2X0)Yt

]
.

Remark 2.6. Note that this is not a new duality. It can also be obtained from Propo-
sition 6(b) in [14], where a similar approach is used, but relying on a slightly different
type of graphical representation instead of the one we use here in terms of basic mech-
anisms. It can also be obtained in the following way: Write pt := 1− 2Xt. Itô’s formula
yields dpt = β(p2

t − pt)dt−
√
α(1− p2

t )dBt, from which – at least heuristically – it is easy
to read off the moment duality of the process (pt)t≥0 and the branching annihilating
process by looking at the exponents of pt, or by a generator calculation: The generator
of (pt) acts on f(x) = xn as

Gf(x) = β(x2 − x)nxn−1 +
α

2
(1− x2)n(n− 1)xn−2 = βn(xn+1 − xn) + α

(
n

2

)
(xn−2 − xn)

where the right-hand side, acting on xn as a function of n, is the generator of the dual
process. Our method establishes this duality in a straightforward manner, and also
shows why the transformation pt = 1− 2Xt has to be applied.

2.2.2 Double-branching annihilating process and populations with balancing
selection

One of our motivations was to understand the transformation x 7→ 1−2x applied in [4] in
order to obtain the duality between the competing species model and double-branching
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Graphical representation of moment dualities

annihilating random walk, which is parity preserving. Note that [4] deals with spatial
models, while our result is one-dimensional, but the connection between annihilating
duality and this linear transformation is not a spatial effect. The situation considered
here is substantially different from our last example, as a branching event produces
two new particles and not one, which is not taken care of by our basic mechanisms.
However, it is easily implemented if we allow for multiple arrows in the graphical rep-
resentation, or, equivalently, for basic mechanisms f : {0, 1}3 → {0, 1}3.

Assume that for each ordered pair (i, j) the fA−mechanism happens at rate aN
N ,

and construct an additional mechanism f in the following way: For each ordered triple
(i, j, k), i, j, k = 1, ..., N , draw, at rate bN

N2 , an arrow from i to j and from i to k. Then,
if an arrow is encountered, a transition fBA occurs for the two pairs (i, j) and (i, k).

This means that at such a double transition, the state of the triple (xi, xj , xk) is changed
according to the following table:

x (000) (001) (010) (100) (101) (110) (011) (111)
f(x) (000) (001) (010) (111) (110) (101) (011) (100)

Note that the two fBA−transitions commute, hence it does not matter which one is
applied first. The dual mechanism f̃ is given by inverting the arrows and applying the
dual mechanism fBA to each of the two arrows, that is, to the pairs (xj , xi) and (xk, xi)

with the additional rule that two 1’s at the same place annihilate each other, that is,
given by the table

x (000) (001) (010) (100) (101) (110) (011) (111)

f̃(x) (000) (101) (110) (100) (001) (010) (011) (111)

It is easy to check that these two mechanisms are annihilating dual mechanisms, either
by direct verification, or by noting that the double-branching transition is the result of
two fBA−transitions happening one right after the other, cf. Figure 2 for a graphical
representation where we see fA−transitions at time t2 between sites 5 and 4 and at
time t4 between 3 and 2, and f−transitions at time t1 between 2, 1 and 3 and at t3
between 2, 4 and 5.

-�t1

�t2

�t4

- -t3

1 2 3 4 5
Figure 2

Let now (Y Nt ) be the process constructed from the graphical representation, where
fA happens at rate aN

N , and f at rate bN
N2 . Then |Y Nt | has the transitions

k → k + 2 at rate
bN
N2

k(N − k)(N − k − 1),

k → k − 2 at rate
bN
N2

k(k − 1)(k − 2) +
aN
N
k(k − 1),
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Graphical representation of moment dualities

since k(N − k)(N − k − 1) is the number of (100)−triples if there are k 1’s, etc. Assume
aN
N → α and bN → β as N →∞. Then the generator of |Y Nt | converges to

Gf(k) = βk(f(k + 2)− f(k)) + αk(k − 1)(f(k − 2)− f(k)),

which is the generator of a double-branching annihilating process. For the dual process
(XN

t ), with mechanisms fR and f̃ , we obtain the transitions

k → k + 1 at rate
bN
N2

2k(N − k)(N − k − 1) +
aN
N
k(N − k),

k → k − 1 at rate
bN
N2

2k(k − 1)(N − k) +
aN
N
k(N − k),

which yield for N →∞, if k
N → x,

G̃f(x) =2βx(1− x)(1− 2x)f ′(x) + αx(1− x)f ′′(x).

G̃ is exactly the generator of the non-spatial version of the competing species model of
[4], given by the SDE

dXt = 2βXt(1−Xt)(1− 2Xt)dt+
√

2αXt(1−Xt)dBt.

For a motivation of this model as well as results on the long-term behaviour of its spatial
version, see [4].

3 Other values of q and self-duality of the resampling-selection
process

At the end of [1], Alkemper and Hutzenthaler ask whether the self-duality derived in
[3] for the so-called resampling-selection process

dXt = βXt(1−Xt)dt− δXtdt+
√
αXt(1−Xt)dBt (3.1)

could be constructed using the approach of dual basic mechanisms (note that in section
2.2.1 we constructed a dual, but not self-dual process). There are several related ques-
tions. First, is it possible to construct (Xt) as the scaling limit of self-dual processes
(XN

t ) for interacting particle systems in such a way that the self-duality of (Xt) is in-
herited from the self-duality of (XN

t ) (compare [14], Prop. 6(a))? Second, is it possible
to explain the self-duality of the discrete process (XN

t ) using a pathwise construction?
Third, can we choose to construct the discrete processes with q-dual basic mechanisms,
thus obtaining interacting particle systems that are strongly pathwise dual? An addi-
tional fourth question would be to determine whether the limiting self-duality of (Xt) is
still pathwise in a suitable sense, a question which is not addressed in [1], and which
we do not address in the present paper either.

As we shall see, the answer to the first two questions is yes: There is a pathwise
construction, using the basic mechanisms from Section 2, yielding q-dual processes
(XN

t ) and (Y Nt ) that rescale to resampling-selection processes. The answer to the third
question, however, is no, unless we consider randomized basic mechanisms as we will
explain below. We start by investigating q−dual mechanisms.

Lemma 3.1. Assume that f and g are q−dual mechanisms for some q /∈ {−1, 0, 1}. Then
they are q−dual for all q ∈ R.

Proof. If f and g are q−dual for q /∈ {−1, 0, 1}, then we have |x∧ (g(y†))†| = |f(x)∧ y| for
all x, y ∈ {0, 1}2, since for these q the equality qa = qb implies a = b. Hence f and g are
q−dual for all q.
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We also note the following:

Lemma 3.2. Let f and g be q−dual mechanisms for q /∈ {−1, 0, 1}. Then |f(x)| ≤ |x| and
|g(x)| ≤ |x| for all x ∈ {0, 1}2.

Proof. We know that f(0, 0) = (0, 0). Assume f(x) = (1, 1). Then |f(x) ∧ (1, 1)| = 2, and
by Lemma 3.1, |x∧ (g(1, 1))†| = 2. But this implies x = (1, 1), which proves the claim.

Remark 3.3. Using these two lemmas and the results of [2], we can give a complete
classification of q−dual mechanisms for q /∈ {−1, 0, 1}. By lemma 3.1 we need to consider
only the coalescing dual mechanisms of the table on p. 212 of [1]. Lemma 3.2 rules out
mechanisms i), ii) and vi) in that table, leaving, in our notation, fD, the identity and
the mechanism that maps all configurations to 0. Following the arguments of Alkemper
and Hutzenthaler, these are the only q−dual mechanisms, q /∈ {−1, 0, 1}, modulo the
transformations described in Lemma 0.3 of [2].

Going back to our problem, Lemma 3.2 implies that any process |XN
t | where XN

t

is constructed from q−dual basic mechanisms for q /∈ {−1, 0, 1} is decreasing almost
surely. Since this is not the case for the resem-process, the answer to the third question
above is no. However, the positive answer to the first two questions above still allows
us to derive this self-duality from Theorem 1.5, using an extension of the notion of dual
mechanism to randomized mechanisms, leading to natural couplings of discrete q-dual
processes.

We construct a graphical representation of two types of arrows: One type occurring
at rate d, and the second type at rate r + b, where b = bc. The first type is associated
with the mechanism fD. The second type is associated with a random mechanism fR,Bq :

{0, 1}2 → {0, 1}2: the duality parameter q = r/(b + r) is taken as the (conditional)
probability that the arrow is of the resampling type. With probability 1 − q, the arrow
is of the branching-coalescence type. In other words, let ζ be a Bernoulli variable with
parameter q, then

fR,Bq = ζfR + (1− ζ)fBC .

This mechanism is not self-dual to itself in the sense of definition 1.1. However, it is
self-dual in a weaker sense, namely if we average over exchangeable initial conditions
and over ζ : Let X and Y be {0, 1}2-valued random variables that are exchangeable
(P(X = (a, b)) = P(X = (b, a))) and independent of each other and of ζ. We have

E
[
q|f

R,B
q (X)∧Y |

]
= E

[
q|X∧f

R,B
q (Y †)†|

]
. (3.2)

To see this, note that if X = (0, 0) or Y = (0, 0) or if X = Y = (1, 1), the equality is
trivially true. If |X| = 1 and |Y | = 1 the equality is true by exchangeability, since all
combinations of (0, 1) and (1, 0) for X and Y are equally likely. Assume X = (1, 1). The
cases Y = (0, 1) and Y = (1, 0) are equally likely, and since fR,Bq ((0, 1)) = ζ(0, 0) + (1 −
ζ)(0, 1), and fR,Bq ((1, 0)) = (1, 1), we obtain

E
[
q|X∧f

R,B
q (Y †)†|

]
=

1

2
(q · 1 + (1− q)q + q2) = q = E

[
q|f

R,B
q (X)∧Y |

]
.

A similar identity holds, of course, if the mechanism applied to Y uses a Bernoulli
variable ζ2 independent of ζ = ζ1.

Fix a time horizon T > 0, and N ∈ N. For simplicity, we drop the N -dependence in
the notation. We couple EN -valued processes (Xt)0≤t≤T , (Yt)0≤t≤T as follows: we start
as in the usual graphical representation with Poisson arrows of two types and rates d
and r + b for each pair of sites as explained above, and X0 and Y0 exchangeable EN -
valued random variables, independent of each other and of the Poisson variables. We
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add two independent sequences (ζ1
k)k∈N, (ζ2

k)k∈N of i.i.d. Bernoulli random variables
with parameter q, independent from X0, Y0 and (ζk). Almost surely, there are only
finitely many arrows of the second type, occurring at moments t1 < t2 < · · · . We attach
the variable ζ1

k to the arrow at time tk, and construct (Xt) by applying the corresponding
mechanisms. (Yt) is constructed in a similar way, except that the arrows are used from
right to left (time T down to 0) and the randomized mechanisms use the variables ζ2

k .
The resulting processes have the property that for all t ∈ (0, T ), an analogue of Eq. (3.2)
holds for X = Xt− and Y = Y(T−t)−, with E the usual expectation or an expectation
conditioned on having an arrow of the second type at time t.

It seems natural to call a basic mechanism which satisfies (3.2) a randomized q−self
dual mechanism. Clearly, (3.2) implies q−duality, though not strong q−duality, of (Xt)

and (Yt), provided Xt and Yt are exchangeable for all t.

Fix now α, β, δ > 0, set aN = cN = baN = 0, and choose rates bcN → β > 0, dN →
δ > 0, and rN/N → α/2 > 0 as N → ∞. Fix T > 0 and let (XN

t )0≤t≤T , (Y Nt )0≤t≤T be
processes constructed as above with randomized mechanisms and rates bcN , dN and rN .
The discrete rescaled processes (|XN

t |/N)0≤t≤T and (|Y Nt |/N)0≤t≤T both have formal
generator

GNf

(
k

N

)
=
rN
N
k(N − k)

(
f

(
k + 1

N

)
+ f

(
k − 1

N

)
− 2f

(
k

N

))
+
bcN
N
k(N − k)

(
f

(
k + 1

N

)
− f

(
k

N

))
+
dN
N

(
k(N − k) + k(k − 1)

)(
f

(
k − 1

N

)
− f

(
k

N

))
.

(3.3)

For N →∞ and k/N → x, this converges to

Gf(x) =
α

2
x(1− x)f ′′(x) + βx(1− x)f ′(x)− δxf ′(x),

which is the generator of the diffusion (3.1), and one can show that the rescaled pro-
cesses converge to two resampling-selection processes (Xt) and (Yt). Now, by (3.2) (or
by Corollary 3.4 below), (XN

t ) and (Y Nt ) are dual with respect to qN = rN/(b
c
N + rN ),

and by our assumptions on the rates, we have N(qN − 1) → −2β/α. Proposition 1.6
therefore yields

Ex

[
e−(2β/α)Xty

]
= Ey

[
e−(2β/α)xYt

]
,

which is the self-duality of the resampling-selection process proven in [3]. Thus we
have provided a pathwise construction of the self-duality of the discrete approximating
processes, and we have shown that the limiting self-duality can be obtained by rescaling
dual interacting particle systems.

We should note that the latter fact was shown by Swart [14]. His argument, how-
ever, starts from independent discrete processes (XN

t ) and (Y Nt ), and applies a duality
criterion by Sudbury and Lloyd, see the proof of Proposition 6 in [14]. In contrast, our
pathwise construction using randomized mechanisms provides a non-trivial coupling of
underlying discrete processes, which might be of interest in some contexts. To con-
clude, we mention that instead of using randomized mechanisms, we could also apply
criterion derived in [12], used by [14], which easily translates into the setting of q−dual
mechanisms. Sudbury and Lloyd consider Markov processes on {0, 1}Λ, for some graph
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Λ, whose generator is of the form

Gf(x) =
∑
i 6=j

q(i, j)
(a

2
x(i)x(j)

(
f(x− δi − δj)− f(x)

)
+ bx(i)(1− x(j))

(
f(x+ δj)− f(x)

)
+ cx(i)x(j)

(
f(x− δi)− f(x)

)
+ dx(i)(1− x(j))

(
f(x− δi)− f(x)

)
+ ex(i)(1− x(j))

(
f(x− δi + δj)− f(x)

))
, x ∈ {0, 1}Λ

(3.4)

with non-negative parameters a, . . . , e, and q(i, j) defined as follows. When i and j

are neighbors in Λ (meaning that they are connected by an edge in the graph), then
q(i, j) = 1/Ni, with Ni the number of neighbors of i; when i and j are not neighbors,
q(i, j) = 0. Thus when Λ is the complete graph on {0, 1, . . . , N}, q(i, j) = 1/N for all
i 6= j. The letters a, b, c, d and e refer to annihilation, branching, coalescence, death and
exclusion. Given the process, these rates are unique.

We are interested in Markov processes with state space {0, 1}N constructed from
the basic mechanisms of Section 2 and rates chosen as follows: For every pair (i, j), the
mechanisms fA, fBA, fBC , fC , fD and fR happen at rates a/N , ba/N , bc/N , c/N , d/N
and r/N . The infinitesimal generator of this process is of the Sudbury-Lloyd form (3.4)
with

a = 2a, b = ba + bc + r, c = ba + c+ d, d = d+ r, e = a+ c+ d (3.5)

and q(i, j) = 1/N for all i 6= j. We shall refer to this process as the process obtained from
the basic mechanisms via the rate parameters a, ba, bc, d and r. Note that not every
Sudbury-Lloyd process can be constructed with our basic mechanisms: for example,
if 2e < a, any solution of Eq. (3.5) has negative rate parameters c < 0 or d < 0.
Furthermore, the construction is not unique – note that (3.5) fixes a = a/2 and ba =

c− e+ a/2, but leaves one degree of freedom in the choice of bc, c, d and r.
Sudbury and Lloyd give several conditions for q-duality of their models. A concise

formula is [13, Eq. (9)], which in our notation reads

a′ = a+ 2qγ, b
′

= b+ γ, c′ = c− (1 + q)γ, d
′

= d+ γ, e′ = e− γ (3.6)

where γ = (a + c − d + bq)/(1 − q). Eq. (3.6) is easily translated into a criterion for
processes obtained from our basic mechanisms. This gives a necessary and sufficient
condition for duality of Sudbury-Lloyd processes, see [13]. Plugging (3.5) into (3.6) then
easily leads to the following criterion for q−duality of processes constructed from basic
mechanisms:

Corollary 3.4. Let (Xt), (Yt) be the Sudbury-Lloyd processes obtained from our basic
mechanisms with respective rate parameters a, ba, bc, c, d, r and a′, ba′, bc′, c′, d′, r′. Then

(a) (Xt) and (Yt) are dual with parameter q ∈ R \ {1} if and only if

a′ = a+qγ, ba′ = ba, bc′+r′ = bc+r+γ, c′+d′ = c+d−(1+q)γ, d′+r′ = d+r+γ,

where γ = (2a+ (1 + q)ba + qbc + c− (1− q)r)/(1− q).

(b) (Xt) is self-dual with parameter q if and only if q = (r − 2a− ba − c)/(ba + bc + r).
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