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Concentration inequalities for order statistics
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Abstract

This note describes non-asymptotic variance and tail bounds for order statistics of
samples of independent identically distributed random variables. When the sampling
distribution belongs to a maximum domain of attraction, these bounds are checked
to be asymptotically tight. When the sampling distribution has a non-decreasing haz-
ard rate, we derive an exponential Efron-Stein inequality for order statistics, that is
an inequality connecting the logarithmic moment generating function of order statis-
tics with exponential moments of Efron-Stein (jackknife) estimates of variance. This
connection is used to derive variance and tail bounds for order statistics of Gaus-
sian samples that are not within the scope of the Gaussian concentration inequality.
Proofs are elementary and combine Rényi’s representation of order statistics with
the entropy approach to concentration of measure popularized by M. Ledoux.
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1 Introduction

The purpose of this note is to develop non-asymptotic variance and tail bounds for or-
der statistics. In the sequel, Xi,..., X, are independent random variables, distributed
according to a certain probability distribution F, and X () > X3, > ... > X,) denote
the corresponding order statistics (the non-increasing rearrangement of X;,..., X,,). In
Extreme Value Theory (EVT), the Fisher-Tippett-Gnedenko Theorem characterizes the
asymptotic behavior of the maximum X,y [3] while asymptotics of the median X|,/2))
and other central order statistics are well documented [12]. Although the distribution
function of order statistics is explicitly known, simple variance or tail bounds for order
statistics do not seem to be well documented when sample size is kept fixed.

The search for variance and tail bounds for order statistics is driven by the de-
sire to understand some aspects of the concentration of measure phenomenon [5, 8].
Concentration of measure theory tells us that a function of many independent random
variables that does not depend too much on any of them is almost constant. The best
known results in that field are the Poincaré and Gross logarithmic Sobolev inequalities
and the Tsirelson-Ibragimov-Sudakov tail bounds for functions of Gaussian vectors. If
X1,...,X, are independent standard Gaussian random variables, and f: R" — R is L-
Lipschitz, then Z = f(Xy,...,X,,) satisfies Var(Z) < L?, log Elexp(A(Z —EZ))] < A\2L?/2
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Concentration inequalities for order statistics

and P{Z — EZ > t} < exp(—t*/(2L?)). If we apply these bounds to Z = X(;), the Lip-
schitz constant is (almost surely) L = 1, so Poincaré inequality allows us to establish
Var(X()) < 1. This upper bound is far from being satisfactory: it is well-known that
Var(X (1)) = O(1/logn) and Var(X(|,,/2))) = O(1/n) [3, 12]. Naive use of off-the-shelf
concentration bounds does not work when handling order statistics. This situation is
not uncommon: the analysis of the largest eigenvalue of random matrices from the
Gaussian Unitary Ensemble (GUE) [6] provides a setting where the derivation of sharp
concentration inequalities requires an ingenious combination of concentration inequal-
ities and special representations.

Even so, our purpose is to show that the tools and methods of concentration of
measure theory are relevant to the analysis of order statistics. To address this, the
Efron-Stein inequalities are our main tools. They assert that, on average, the jack-
knife estimate(s) of the variance of functions of independent random variables are up-
per bounds. Extensions allow us to derive exponential bounds (see Theorem 2.1). We
refer to [9, 10] and references therein for an account of the early interplay between
jackknife estimates, order statistics, EVT and statistical inference. When properly com-
bined with Rényi’s representation for order statistics (see Theorem 2.5), the so-called
entropy method [5] allows us to recover sharp variance and tail bounds. Proofs are
elementary and parallel the approach followed by Ledoux [6] in a much more sophisti-
cated setting. Ledoux builds on the determinantal structure of the joint density of the
eigenvalues of random matrices from the GUE to upper bound tail bounds by sums of
Gaussian integrals that can be handled by concentration arguments. In the sequel, we
build on Rényi’s representation of order statistics: X(y),..., X(,) can be represented
as the monotone image of the order statistics of a sample of the standard exponential
distribution which turn out to be distributed as partial sums of independent random
variables.

In Section 2, we derive simple relations between the variance or the entropy of order
statistics X(;) and moments of spacings Ay = X () — X(x41). When the sampling distri-
bution has a non-decreasing hazard rate (a condition that is satisfied by Gaussian, ex-
ponential, Gumbel, logistic distributions, ...) we are able to build on these connections,
obtaining Theorem 2.9 that may be considered as an exponential Efron-Stein inequality
for order statistics. In Section 3, using the framework of EVT, these connections are
checked to be asymptotically tight.

In Section 4, using explicit bounds on the Gaussian hazard rate, we derive Bernstein-
like inequalities for the maximum and the median of a sample of independent standard
Gaussian random variables with a correct variance and scale factors (Proposition 4.6).
We provide non-asymptotic variance bounds for order statistics of Gaussian samples
with the right order of magnitude in Propositions 4.2, and 4.4.

2 Order statistics and spacings

Efron-Stein inequalities [4] allow us to derive upper bounds on the variance of func-
tions of independent random variables. The next version can be found in [1, p. 221]

Theorem 2.1. (Efron-Stein inequalities.) Let f: R™ — R be measurable, and let Z =
f(X17 . ,Xn) Let Z; = fi(X]_, - 7Xi71; Xi+1, - 7Xn) where fl R"~! — R is an arbi-
trary measurable function. Suppose Z is square-integrable. Then

Var[Z] < Xn: E [(Z . Zq;)Q}

The quantity Y. ,(Z — Z;)? is called a jackknife estimate of variance. Efron-Stein
inequalities form a special case of a more general collection of inequalities that encom-
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passes the so-called modified logarithmic Sobolev inequalities [5, 7] or [8, p. 157].
Henceforth, the entropy of a non-negative random variable X is defined by Ent[X] =
E[Xlog X] — EX logEX.

Theorem 2.2. (Modified logarithmic Sobolev inequality.) Let 7(x) = e* —x — 1. Then for
any A € R,

Ent [*?] = AE [Ze*] — B [*] log E [e*] <Y E [ 7 (=2 - Z)))]
=1
Theorems 2.1 and 2.2 provide a transparent connection between moments of order

statistics and moments of spacings.
Henceforth, let ¢: R — R4 be defined by ¢(z) = e"7(—x) =1+ (x — 1)e”.

Proposition 2.3. (Order statistics and spacings.) Forall1 < k <n/2,
Var[X] < kE [(X() — X(k+1))”]
and for all A € R,
Ent [e*¥®] < kB [e*M 0N X k) — X(rt1)))]
Foralln/2 <k <mn,
Var[X ] < (n =k + DE [(X(k-1) — X(1))?]

and for all A € R,

Ent [eAX“”] <(n-k+1E [e’\X“")T()\(X(k,l) — X(k)))]

Proof of Proposition 2.3. Let Z = X(;, and for k < n/2 define Z; as the rank k statistic
from subsample Xi,...,X; 1, Xs11,..., Xy, thatis, Z; = X11) if X; > Xpyand Z; = Z
otherwise. Apply Theorem 2.1.
For k > n/2, define Z; as the rank k — 1 statistic from X,..., X;_1, X;11,...,X,,, that
is Z; = X(—1) if X; < X(3) and Z; = Z otherwise. Apply Theorem 2.1 again.
For k < n/2, define Z and Z; as before, apply Theorem 2.2:
Ent [ ®] < KE [e*M®7 (=N X ) — Xtn))]

— LE {e/\X(k-H)e)‘(X(k)_X(k+1))7— (_A(X(k) _ X(k+1)))]
= KE [MX00 (N Xy — X(e11)))]
The proof of the last statement proceeds by the same argument. O

In the sequel, we focus on the setting 1 < k < n/2 : the setting £ > n/2 can be
treated in a similar way.

Proposition 2.3 can be fruitfully complemented by Rényi’s representation of order
statistics [3, and references therein].

In the sequel, if f is a monotone function from (a,b) (where a and b may be infinite)
to (¢, d), its generalized inverse f* : (¢,d) — (a,b) is defined by f< (y) =inf{z:a <z <
b, f(x) >y} [3, for properties of this transformation].

Definition 2.4. The U- transform of a distribution function F is defined as a non-
decreasing function on (1,00) by U = (1/(1 — F))*, U(t) = inf{z : F(z) >1-1/t} =
F(1-1/t) .
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Rényi’s representation asserts that the order statistics of a sample of independent
standard exponentially distributed random variables are distributed as partials sums of
independent rescaled exponentially distributed random variables.

Theorem 2.5. (Rényi’s representation) Let X(l) > ... > X(n) be the order statistics of
a sample from distribution F, let U = (1/(1 — F)), let Y3y > Y(3) > ... > Y{;,) be the
order statistics of an independent sample of the standard exponential distribution, then

n

Vi oo: ¥ Ye) o (B 30 B 30 )

k=i k=1

where F1, ..., E, are independent and identically distributed standard exponential ran-
dom variables, and (X(n), cen 7X(1)) ~ (U o exp(Y(n)), ...,Uo exp(Y(l))) .

We may readily test the tightness of Proposition 2.3. By Theorem 2.5, Y(;) = % +
. % and Var[Y(;)] = S %2 . Hence, for any sequence (k,), with lim, &k, = oo,
and limsup k,/n < 1, lim, o k, Var[Y{;, )] = 1, while by Proposition 2.3, Var[Y(;)] <

2
FB[(Ee/K)’] = 2.
The next condition makes combining Proposition 2.3 and Theorem 2.5 easy.

Definition 2.6. (Hazard rate.) The hazard rate of an absolutely continuous probability
distribution with distribution function F is: h = f/F where f and F = 1 — F are
respectively the density and the survival function associated with F'.

From elementary calculus, letting U = (1/(1—F))*, we get (Uocexp)’ = 1/h(U oexp).

Proposition 2.7. Let F' be an absolutely continuous distribution function with hazard
rate h, letU = (1/(1 — F))* . Then, h is non-decreasing if and only if U o exp is concave.

Observe that if the hazard rate h is non-decreasing, then for all ¢ > 0 and = > 0,
U (exp(t + x)) — U (exp(t)) < a/h(U(exp(t))) . Moreover, assuming that the hazard rate
is non-decreasing warrants negative association between spacings and related order
statistics.

Proposition 2.8 (Negative association). If F' has non-decreasing hazard rate, then the
k™ spacing A, = Xy — X+1) and X(41) are negatively associated: for any pair of
non-decreasing functions g, and g,

Elg1 (X (k41))92(A%)] < E[g1 (X (x+41))]E[g2(A%)] -

Proof of Proposition 2.8. Let Y, ..., Y(1) be the order statistics of a standard exponen-
tial sample. Let F, = k(Y(k) — Y{(x41)) be the rescaled k™ spacing of the exponential
sample. By Theorem 2.5, Fj, is standard exponentially distributed and independent of
Y(x+1)- Let g1 and g2 be two non-decreasing functions.

E[gl(U(eY(k+1)))gz(U(eEk/k‘+Y(k+1)) _ U(eY("H)))}
= E [E [gl(U(eY(k+1)))QQ(U(eEk/k+Y(k+l)) _ U(eY<k+1))) | Y(k—&-l)”

E[g1 (X (k41))92(Ak)]

= E [u(U(00)E [go(U(/000) U (e00)) | Vg

The function g, oU oexp is non-decreasing. Almost surely, as the conditional distribution
of kEj, with respect to Y(;41) is the exponential distribution with scale parameter %

E 92(U(€Ek/k+y(k+l)) — U(eY(k+1))) | }/(k+1)} = / e_xgz(U(e%H’(kH)) _ U(eY(kJrl)))dw )
0
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As F has a non-decreasing hazard rate, U(exp(x/k + y))—U(exp(y)) = fg/k(erxp)’(y—i—

z)dz is non-increasing with respect to y.
Hence, E [g2 (U (eP+/¥+Yw+1) — U(e¥:+1)) | Y{;,11)] is a non-increasing function of Y, 1.
Hence, by Chebyshev’s association inequality,

E[g1 (X (k+1))92(Ak)]
< B[ )] E [ [gaU(eB/H0m) ~ U(#0) | Yoy
= E g1 (Xps1)] Elg2(Ar)] -
O

Negative association between order statistics and spacings allows us to establish
our main result.

Theorem 2.9 (Exponential Efron-Stein inequality). Let Xi,...,X,, be independently
distributed according to F, let X(;) > ... > X(,) be the order statistics and let A}, =
X&) — X(k+1) be the k' spacing. LetV;, = kA2 denote the Efron-Stein estimate of the
variance of Xy, (fork =1,...,n/2).

If F has a non-decreasing hazard rate h, then for 1 < k <n/2,

2 2
Var [X )] <EVj, < I [(‘h(x(lkw)) } :

\/?(& Vk/’“—1)]. 2.1)

Inequality (2.1) may be considered as an exponential Efron-Stein inequality for order-
statistics: it connects the logarithmic moment generating function of the (™ order
statistic with the exponential moments of the square root of the Efron-Stein estimate
of variance k:Ai. This connection provides correct bounds for the standard exponential
distribution whereas the exponential Efron-Stein inequality described in [2] does not.
This comes from the fact that negative association between spacing and order statistics
dispenses us from the general decoupling argument used in [2]. It is then possible to
carry out the Herbst’s argument in an effortless way.

ForA>0,and1 <k <n/2,

log XX~ BXw) < \X [, (4 —1)] = AL

Proof of Theorem 2.9. Let Y(;),Y ;1) denote the k™ and & + 1™ order statistics of a
standard exponential sample of size n. By Proposition 2.3, using Rényi’s representation
(Theorem 2.5), and Proposition 2.7, for k < n/2,

Y, Yy —Y, Y, 2 2 1 2
Var[Xy] < K [(U (X040 eX0~Ysn ) - @7 (eXo0))*) < ~E (=) | -

as by Theorem 2.5, Y(;y — Y(;11) is independent of Y/, ) and exponentially distributed
with scale parameter 1/k.
By Propositions 2.3 and 2.7, as %, defined by (z) =1 + (z — 1)e” is non-decreasing

Ent [ ®] < KE [eM+0p(AAL)]

KE [e*¥e+0] x E [h(AAg)]
KE [eMX®] x E[(AA)] -

INIA

Multiplying both sides by exp(—AEX;)),

Ent [ XX EXw) | < g [ XX BXw)]| X B [p(AAy)] -
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Let G(\) = Ee***. Obviously, G(0) = 1, and as Ay > 0, G and its derivatives are
increasing on [0, ),
2

A A
E[p(AAL)] =1 -G\ +AG'(\) = /0 sG"(s)ds < G”()\)? .

Hence, for A > 0,

Ent [X0~BX0)]  dllog EAXwBXw)  kdqr
— < —

AR [e)‘(X(M_EX(k))] dA —2d)
Integrating both sides, using the fact that limy_,o 3 log Ee*Xt ~EXw) = 0,
1 k k
1 log B X mBXm) < 2(G/(3) = G'(0) = 5B [Ag (M~ 1)]

3 Asymptotic assessment

Assessing the quality of the variance bounds from Proposition 2.3 in full generality
is not easy. However, Extreme Value Theory (EVT) provides us with a framework where
the Efron-Stein estimates of variance for maxima are asymptotically of the right order
of magnitude.

Definition 3.1 (Maximum domain of attraction). The distribution function F' belongs to
a maximum domain of attraction with tail index v € R (F' € MDA(v)), if and only if there
exists a non-negative auxiliary function a on [1,00) such that for x € [0,00) (if v > 0),
z€0,-1/7) (ify<0),ze€R (ify=0)
max(Xy,...,X,) — F(1—-1/n)
a(n)
Ify = 0, (14 ~va)~'/7 should read as exp(—z).

lim P

n

< x} = exp(—(1 4 yz)~1/7).

If ' € MDA(~) and has a finite variance (y < 1/2), the variance of (max(Xy, ..., X,)—
F< (1 —1/n))/a(n) converges to the variance of the limiting extreme value distribu-
tion [3].

Membership in a maximum domain of attraction is characterized by the extended
regular variation property of U = (1/(1 — F))*: F € MDA(v) with auxiliary function a
iff forallz > 0

lim Ul(tx) — U(t) _ a1 7
tmee () g

where the right-hand-side should read as log x when v = 0 [3].

Using Theorem 2.1.1 and Theorem 5.3.1 from [3], and performing simple calculus,
we readily obtain that the asymptotic ratio between the Efron-Stein upper bound and
the variance of X(;) converges toward a limit that depends only on « (for v = 0 this limit
is 12/72 ~ 1.21).

Proposition 3.2. Assume X(;) > ... > X(,) are the order statistics of an indepen-
dent sample distributed according to F, where F' € MDA(~),y < 1/2, with auxiliary
function a. Then

g B0 =X@))*] _ area—y)

— Var(X(1>)
n a(n)? (1-v)(1-27)

R 1
while 1171111 T = 2 (F(l —2y)-I(1- ’7)2) :

For ~y = 0, the last expression should read as 72 /6.

When the tail index ~ is negative, the asymptotic ratio degrades as v — —o0, it scales
as —4v.

ECP 17 (2012), paper 51. ecp.ejpecp.org
Page 6/12


http://dx.doi.org/10.1214/ECP.v17-2210
http://ecp.ejpecp.org/

Concentration inequalities for order statistics

4 Order statistics of Gaussian samples

We now turn to the Gaussian setting and establish Bernstein inequalities for order
statistics of absolute values of independent standard Gaussian random variables.

A real-valued random variable X is said to be sub-gamma on the right tail with
variance factor v and scale parameter c if

2y

T 2(l-e))
Such a random variable satisfies a so-called Bernstein inequality: for ¢ > 0,

P{X > EX + V2ut + ct} < exp (—t). Areal-valued random variable X is said to be sub-
gamma on the left tail with variance factor v and scale parameter c, if — X is sub-gamma
on the right tail with variance factor v and scale parameter c. A Gamma random variable
with shape parameter p and scale parameter ¢ (expectation pc and variance pc?) is sub-
gamma on the right tail with variance factor pc? and scale factor ¢ while it is sub-gamma
on the left-tail with variance factor p02 and scale factor 0. The Gumbel distribution (with
distribution function exp(— exp(—=x)) is sub-gamma on the right-tail with variance factor
72/6 and scale factor 1, and sub-gamma on the left-tail with scale factor 0 (note that
this statement is not sharp, see Lemma 4.3 below).

Order statistics of Gaussian samples provide an interesting playground for assess-
ing Theorem 2.9. Let ® and ¢ denote respectively the standard Gaussian distribution
function and density. Throughout this section, let U: ]1,00) — [0,00) be defined by
U(t) = (1 —1/(2t)), U(t) is the 1 — 1/t quantile of the distribution of the absolute
value of a standard Gaussian random variable, or the 1 —1/(2¢) quantile of the standard
Gaussian distribution.

log EeMX—EX) for every A suchthat 0 <A< 1/c.

Proposition 4.1. Absolute values of Gaussian random variables have a non-decreasing
hazard rate :
i) U o exp is concave;

ii) Fory > 0, ¢(U(exp(y)))/®(U(exp(y))) > /#1(y + log 2) where x; > 1/2.

iii) Fort > 3,
V/2log(2t) — loglog(2t) — log(4m) < U(t) < \/2log(2t) — loglog(2t) — log .

Proof of Proposition 4.1. i) As (U o exp)’(t) = ®(U(e"))/¢(U(e!)) it suffices to check that
the standard Gaussian distribution has a non-decreasing hazard rate on [0, ). Let h =
¢/®, by elementary calculus, for z > 0, #'(z) = (¢(z) — 2®(x)) é(2)/® (zr) > 0 where
the last inequality is a well known fact.

ii) For k1 = 1/2, for p € (0,1/2], the fact that p\/k1log1l/p < ¢ o & (p) follows from
¢(x) — 2®(z) > 0 for z > 0. Hence,

B(D(1— e v/2)) e /2 1

P(@(1—e¥/2))  ¢(®(e7v/2)) = \/ri(log2 +y)
iii) The first inequality can be deduced from ¢ o & (p) < py/2log1/p, for p € (0,1/2)
[11], the second from py/k1log1l/p < ¢ o @ (p) . O

The next proposition shows that when used in a proper way, Efron-Stein inequalities
may provide seamless bounds on extreme, intermediate and central order statistics of
Gaussian samples.

Proposition 4.2. Letn > 3, let X1y > ... > X(,) be the order statistics of absolute
values of a standard Gaussian sample,

1 8
Forl <k<mn/2, VarlX < .
orlsksn/ arX ) < klog2log 2% — log(1 + £ loglog 2)
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By [3, Theorem 5.3.1], lim,, 2logn Var[X ;)] = 72 /6, while the above described upper
bound on Var[X (] is equivalent to (8/log2)/logn. If lim, k, = oo and lim, k,/n = 0,
by Smirnov’s lemma [3], lim,, k(U (n/k))? Var[X ;)] = 1. For the asymptotically normal
median of absolute values, lim, (4¢(U(2))%n) Var[X(,/2)] = 1 [12]. Again, the bound in
Proposition 4.2 has the correct order of magnitude.

Lemma 4.3. Let Y(; be the k™ order statistics of a sample of n independent standard
exponential random variables, let log2 < z < log(n/k), then

P {Y(1) < log(n/k) — z} < exp (_@)

Proof of Lemma 4.3.

it =5 ()Y () 2on( 51

=0\

since the right-hand-side of the first line is the probability that a binomial random vari-
able with parameters n and % is less than k, which is sub-gamma on the left-tail with
variance factor less than ke* and scale factor 0. O

Proof of Proposition 4.2. By Propositions 2.9 and 4.1, letting x; = 1/2

2 2
Var (X . < -E|l———
ar (Xw) - < k [log 2+ Y(k+1):|

1 4 4 1
< f]P{Y <1 k) — } -
S pgarl U S og(n/k) — = +klog%fz+log2
4 1 4 1
< 2n + 2n 4 2n\?
klog2log 5* = klog = —log(1 +  loglog <)
where we used Lemma 4.3 with z = log(1 + 7 loglog 2%). O

Our next goal is to establish that the order statistics of absolute values of indepen-
dent standard Gaussian random variables are sub-gamma on the right-tail with variance
factor close to the Efron-Stein estimates of variance derived in Proposition 4.1 and scale
factor not larger than the square root of the Efron-Stein estimate of variance.

Before describing the consequences of Theorem 2.9, it is interesting to look at what
can be obtained from Rényi’s representation and exponential inequalities for sums of
Gamma distributed random variables.

Proposition 4.4. Let X ;) be the maximum of the absolute values of n independent
standard Gaussian random variables, and let U(s) = ®* (1 —1/(2s)) for s > 1. Fort > 0,

P { Xy — EXory 2 /(T (0) + Vi/T(n) + 5, } < exp (1),

-~ 2

where 6, > 0 and lim,, (U(n))36, =I5 .

This inequality looks like what we are looking for: U(n)(X ) — EX(1)) converges in
distribution, but also in quadratic mean, or even according to the Orlicz norm defined
by z — exp(|z|) — 1, toward a centered Gumbel distribution. As the Gumbel distribution
is sub-gamma on the right tail with variance factor 7%/6 and scale factor 1, we expect
X (1) to satisfy a Bernstein inequality with variance factor of order 1/ ﬁ(n)2 and scale fac-
tor 1/ U (n). Up to the shift §,,, this is the content of the proposition. Note that the shift
is asymptotically negligible with respect to typical fluctuations. The next proposition
shows that Theorem 2.9 captures the correct order of growth for the right-tail of Gaus-
sian maxima even though the constants are not sharp enough to make it competitive
with Proposition 4.4
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Proposition 4.5. For n such that the solution v,, of the equation 16/x + log(1 + 2/x +

4log(4/x)) = log(2n) is smaller than 1, for all0 < X\ < \/1)7

=21 — o)

2
log EMX 0 ~EXw) < UnA
Forallt > 0,

]P{Xu) —EX(q) > Vot + x/ﬂ)} <et.

Proof of Proposition 4.5. By Proposition 2.9,
log Ee*X ) —EXw) < %E [A (QAA _ 1)]

where A = X(1) — X(9) ~ U(2e"@TF1) — U(2¢¥®), with E; a standard exponentially
distributed random variable and independent of Y(,) which is distributed like the ond
largest order statistics of a standard exponential sample.

On the one hand, the conditional expectation

E |:<U(2€E1+Y(2)) _ U(2@Y<2>)) <6A(U(2eE1+Y(2))—U(2eY(2))) B 1) \Y(g)}

is a non-increasing function of Y(5y. The maximum is achieved for Y(5) = 0, and is equal
to:

2
© - /2

—_—x
0 V2T

On the other hand, by Proposition 4.1,

2
2 (M —1)dx < 2XeT |

U(26E1+Y(2)) - U(2€Y(2>) < \/§E1

= (log2+Y(y))

For 0 < pu < 1/2,
2

o 2(2 — 2
/ px(e’® —1)e "da = 1 'L;) < B
0 (1—p) 1 =2p

Hence,

\E |:(U(2€E1+Y(2)) _ U(26Y(2))) (eA(U(25E1+Y(2))—U(QeY(z))) B 1) | Y(g)}

< 4)\2 1
- 10g2+}/(2) 1— 2v/2) ’
\/log 2+Y(2)
Letting 7 = logn — log(1 + 2A? + 4log(4/vy,)),
2
AMX1y—EX (1)) 2 A%/2 4A 1
logE[e 1 ) < Me IP{Y(Q)ST}—FlogZ—FTl_ o
— Viog2+7
:=ii

By Lemma 4.3, (i) < ”"4>‘2 .
As A < 1/,/v, and by assumption on v, log2 + 7 > 16/v,, and (ii) < 4(13”7\?;/\) . O

We may also use Theorem 2.9 to provide a Bernstein inequality for the median of
absolute values of a standard Gaussian sample. We assume n/2 is an integer.
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Proposition 4.6. Let v, = 8/(nlog?2).
Forall0 < X\ < n/(2y/vy),

2
log Ee*MX /2 ~EBXm/2) < UnA

T 2(1—2\/vu/n)
P {X<n/2> — EX(n/2) > vV20nl + 2tm} <et .

Proof of Proposition 4.6. By Proposition 2.9,

Forallt > 0,

log]EeA(X(n/z)flEX(n/z)) < %/\E [An/2 (eAAn,/z _ 1)]

where A, /o = X, /2) — X(nj241) ~ U (26E7l/z/(n/2)+Y(n/2+1>) —-U (eY(n/2+1)) where FE, /; is
standard exponentially distributed and independent of Y, /2 1).
By Proposition 4.1,
\/§AEn/2 < \/§En/2 _ UlE Py
(n/2)\/log2 + Y 211) ~ (n/2)y/log?2 n "

Reasoning as in the proof of Proposition 4.5,

An/2 <

/\2
log FeMXm/2)—EXm/2)) < Un )
. = 51— 2 /on/n)

O

As the hazard rate ¢(x)/®(x) of the Gaussian distribution tends to 0 as x tends
to —oo, the preceding approach does not work when dealing with order statistics of
Gaussian samples. Nevertheless, Proposition 4.2 paves the way to simple bounds on
the variance of maxima of Gaussian samples.

Proposition 4.7. Let X;,...,X,, be n independent and identically distributed standard
Gaussian random variables, let X(l) > ... > X(n) be the order statistics.

Foralln > 11,

8/log2 4

9—n n e
log(n/2) —log(1 + 4loglog(n/2)) * +exp(—g) + "

Var[X(l)]

Proof of Proposition 4.7. We may generate n independent standard Gaussian random
variables in two steps: first generate n independent random signs (e, ..., €,: P{e =
1} = 1—P{e; = —1} = 1/2), then generate absolute values of independent standard
Gaussian random variables (V7,...,V,,), the resulting sample (X1,...,X,,) is obtained
as X; = ¢;V;. Let N be the number of positive random signs.

Var(X(l)) = [Var (X(l) | O’(N))] + Var (IE [X(l) | O’(N)}) .

Conditionally on N =m, if m > 1, X (1) is distributed as the maximum of a sample of m
independent absolute values of standard Gaussian random variables. If m = 0, X(y) is
negative, its conditional variance is equal to the variance of the minimum of a sample
of size n. Hence, letting V(’,?) denote the k™ order statistic of a sample of m independent
absolute values of standard Gaussian random variables. Let w,, denote the upper bound
on the variance of V(’{S from Proposition 4.2. Note that w,, is non-increasing, and that,
by Poincaré’s inequality, Var(V(’,z)) <1

ECP 17 (2012), paper 51. ecp.ejpecp.org
Page 10/12


http://dx.doi.org/10.1214/ECP.v17-2210
http://ecp.ejpecp.org/

Concentration inequalities for order statistics

(i) < (i), as

I
(1

n —n m n —n n
1 (m>2 Var (V(l)) + (O>2 Var (V(n))

(”) 9", + 277"
1 m

n —-n -n
< Z(m>2 + W ya + 2

m=1

m

I
M:

3 3
~
=

< exp(—n/8) +wp a +27" .

Let Hy be the random harmonic number Hy = ZZV: 11/,

[ 2
(i) = Enn (E[X(DIN]—E[X(UN’])J

= B (B0 (e (2 %)) - 0(ew (2 2))]).)

- B , )
< Ewae [ (10T (exp (S 5))) (Hy - HN,))J
7r L
S §EN,N’ |:(HN - HNI)3’1|
= I Var(Hy) .
2
o n ) . o o N—(1+€;)/2 . .
Now, as N = 21" (1 +¢;)/2, letting Z = Hy and Z; = >, 1/4, by Efron-Stein
inequality, Var Z < E[0 A 1/N]. Finally, using Hoeffding’s inequality [1] in a crude way
leads to E[0 A 1/N] < exp(—n/8) + 4/n < 8/n. We may conclude by ii < (47)/n. O

Remark 4.8. Trading simplicity for tightness, sharper bounds on ii could be derived
and show that ii = O(1/(nlogn)).
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A Proof of Proposition 4.4

Let Y(;) denote the maximum of a sample of absolute values of independent standard
exponentially distributed random variables, so that X ) ~ U (e¥w).

Thanks to the concavity of U o exp, and the fact that ®(z)/¢(z) < 1/x for z > 0,
Ulexp(Yay)) — Ulexp(Hy)) < (Yoy — Hy)/(U(exp(H,)). Now, Y{;) satisfies a Bernstein
inequality with variance factor not larger than Var(Y{;)) < 72/6 < 2 and scale factor not
larger than 1, so

752U£exp(Hn))2 )
2(2 + tU(exp(Hr))/3)

P{Y(r) — Ha = 0 (exp(Hy))} < exp ( -

Agreeing on 8, = U(ef») — EU(e¥™), using the monotonicity of 22/(2+ z/3) and logn <
H,,, we obtain the first part of the proposition.
The second-order extended regular variation condition satisfied by the standard

Gaussian distribution [3, Exercise 2.9, p. 61] allows us to assert ﬁ(n)g(ﬁ(e“’n) —U(n)—
X 12
lj(n) ) T2

x . This suggests that

~ ~ . EY,,) — H, 2
O exp))? (D (01l ~ et - S0 E ) Ly T
Ul(exp(H,)) 12

or that the order of magnitude of U(e/") — EX(yy is O(1/U(n)?) which is small with
respect to 1/U(n).

Use Theorem B.3.10 from [3], to ensure that for all j,e > 0, for n,x such that
min(n, nexp(z)) > to(e,d), |U(n)? (ﬁ(eTn) —U(n) — ﬁfm) + %2 + x| < eexp(d|z|). The
probability that Y{;) < H,,/2 is less than exp(—H,,/3). When for Y{;) — H,, <0, the supre-

~ ~ ~ 2
mum of [T (exp(H,))? (T (€Y~ Hnetn) — T(et) — ey 4 QWold pyyy) |
is achieved when Y{;) — H,, = —H,,, it is less than 4(log n)?. The dominated convergence

theorem allows us to conclude.
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