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Abstract

We prove well-posedness of the martingale problem for an infinite-dimensional degenerate

elliptic operator under appropriate Hölder continuity conditions on the coefficients. These

martingale problems include large population limits of branching particle systems on a

countable state space in which the particle dynamics and branching rates may depend on

the entire population in a Hölder fashion. This extends an approach originally used by the

authors in finite dimensions.
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1. Introduction.

We prove existence and uniqueness of the martingale problem for the infinite-dimen-

sional degenerate operator

Lf(x) =
∑

i∈S
[xiγi(x)fii(x) + bi(x)fi(x)]

under suitable Hölder continuity assumptions on the coefficients γi and bi. Here S is a

countably infinite discrete set, we write x = (xi)i∈S with xi ≥ 0 for each i, L operates

on the class of finite-dimensional cylindrical functions, and fi and fii denote the first and

second partials of f in the direction xi.

In the last ten years there has been considerable interest in infinite-dimensional

operators whose coefficients are only Hölder continuous rather than Lipschitz continuous.

See [CD96], [D96], [L96], [Z00], and [DZ02], for example, which consider operators that

are perturbations of either the infinite-dimensional Laplacian or of the infinite-dimensional

Ornstein-Uhlenbeck operator. The operator L given above is not only infinite-dimensional,

but also degenerate, due to the xi factor in the second order term. This degeneracy also

means that the diffusion coefficient will not have a Lipschitz square root even for smooth

γi, invalidating the standard fixed point approaches.

The principal motivation for this work is the question of uniqueness for measure-

valued diffusions which behave locally like a superprocess. In general assume S is a Polish

space and let MF (S) denote the space of finite measures on S with the weak topology.

Write m(f) =
∫
f dm for m ∈ MF (S) and an appropriate R-valued f on S. Assume

{Ax : x ∈MF (S)} is a collection of generators, all defined on an appropriate domain D0 of

bounded continuous functions on S, and γ : S ×MF (S)→ R+. Let Ω be C(R+,MF (S)),

equipped with the topology of uniform convergence on bounded intervals, its Borel σ-field

F , canonical right-continuous filtration Ft, and coordinate maps Xt(ω) = ωt.

For each law µ on MF (S), a probability P on (Ω,F) is a solution of the martingale

problem associated with A, γ and initial law µ, written MP (A, γ, µ), if for each f ∈ D0,

Xt(f) = X0(f) +Mf
t +

∫ t

0

Xs(AXsf) ds,

where Mf is a continuous Ft-martingale such that

〈Mf 〉t =
∫ t

0

Xs(2γ(·, Xs)f
2) ds.

Under appropriate continuity conditions on (Ax, γ) one can usually construct solu-

tions to MP (A, γ, µ) as the weak limit points of large population (N), small mass (N−1)

systems of branching particle systems. In these approximating systems a particle at x
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in population Xt branches into a mean 1 number of offspring with rate Nγ(x,Xt), and

between branch times particles evolve like a Markov process with generator AXt (see e.g.

[MR92]). The main difficulty lies in questions of uniqueness of solutions to MP (A, γ, µ).

A case of particular interest is S = Rd and

AXf(y) =
∑

i,j≤d

aij(y,X)fij(y) +
∑

i≤d

bi(y,X)fi(y),

in which particles evolve according to a state dependent Itô equation between branch

times. For γ = γ0 constant, uniqueness is proved in [DK98] under appropriate Lipschitz

conditions on a, b, using methods in [P95]. The latter also effectively handles the case

γ(y,X) = γ(y) (and some other special cases of X-dependence) by proving uniqueness for

an associated strong equation and historical martingale problem.

Even in the case where S is finite, the problem of handling general γ was only

recently solved in [ABBP02] and [BP03]. If S = {1, . . . , d}, then MF (S) = Rd
+ and

Axf(i) =
∑d

j=1 qij(x)f(j), where for each x ∈ Rd
+, (qij(x)) is a Q-matrix of a Markov

chain on S, that is, qij ≥ 0 for i 6= j and qii = −
∑

j 6=i qij . Then X solves MP (A, γ, µ) if

and only if Xt ∈ Rd
+ solves the degenerate stochastic differential equation

Xi
t = Xi

0 +

∫ t

0

d∑

j=1

Xj
sqji(Xs) ds+

∫ t

0

(2γi(Xs)X
i
s)
1/2 dBi

s, i = 1 . . . d. (1.1)

Here γi : Rd
+ → [0,∞), i = 1, . . . , d, B1, . . . , Bd are independent one-dimensional Brownian

motions, and X0 has law µ for a given probability measure µ on Rd
+. More generally,

consider the generator

Lf(x) =
d∑

i=1

[xiγi(x)fii(x) + bi(x)fi(x)]

for f ∈ C2
b (Rd

+), the space of bounded continuous functions on Rd
+ whose first and second

partials are also bounded and continuous; bi(x) =
∑

j xjqji(x) would correspond to (1.1).

If µ is a law on Rd
+, a probability P on C(R+,Rd

+) solves MP (L, µ) if and only if for all

f ∈ C2
b (Rd

+),

Mf
t = f(Xt)− f(X0)−

∫ t

0

Lf(Xs) ds

is an Ft-martingale under P and X0 has law µ.

Theorem A (Corollary 1.3 of [BP03]). Assume γi : Rd
+ → (0,∞), bi : Rd

+ → R are

α-Hölder continuous on compact sets and satisfy

bi(x) ≥ 0 on {xi = 0}, (1.2)
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|bi(x)| ≤ c(1 + |x|). (1.3)

Then there is a unique solution to MP (L, µ) for each law µ on Rd
+.

A similar existence and uniqueness theorem was proved in [ABBP02] (see Theorem

A of [BP03]) assuming only continuity of γi and bi but with (1.2) strengthened to

bi(x) > 0 on {xi = 0}. (1.4)

A simple one-dimensional example shows these results are sharp in the sense that unique-

ness fails if only continuity and (1.2) are assumed (see Section 8 of [ABBP03]). Clearly

(1.2) is needed to ensure solutions remain in the positive orthant.

In this work we extend the method of [BP03] to the case where S is a countably

infinite discrete set and hence take a step towards resolving the general uniqueness problem

described above. Both [ABBP02] and [BP03] adapt the perturbation approach of [SV79]

to this setting by considering L as a perturbation of L0f =
∑

i xiγ
0
i fii + b0i fi for some

constants γ0i > 0 and b0i ≥ 0. If Rλ is the resolvent associated with L0, the key step is to

show that on a suitable Banach space (B, ‖ · ‖), one has

‖(Rλf)i‖+ ‖xi(Rλf)ii‖ ≤ C‖f‖ for all i. (1.5)

In [ABBP02] the space B is L2(Rd
+,
∏d

1 x
b0i /γ

0
i−1

i dxi) (here b0i > 0), while in [BP] the space

B is a weighted Hölder space ((4.9) below gives the precise norm). In both cases the con-

stant C in (1.5) is independent of d. The L2 setting in [ABBP02], however, does not appear

to extend readily to infinite dimensions. There is the question of an appropriate measure

on R∞+ , there are problems extending the Krylov-Safonov type theorems on regularity of

the resolvents which are required to handle all starting points as opposed to almost all

starting points, and, as in the finite-dimensional setting, (1.4) will not hold for the most

natural Q-matrices such as nearest random walk on the discrete circle. We therefore will

extend the weighted Hölder approach in [BP03]. This approach has also been effective in

other (non-singular) infinite-dimensional settings ([ABP04]).

Our main result (Theorem 2.7) states that the natural infinite dimensional analogue

of MP (L, ν) has a unique solution when S is a discrete countably infinite set and X

takes on values in an appropriate space of measures. To understand the nature of the

assumptions made on the coefficients bi and γi, consider the Corollaries 2.10–2.12 when

S = Zd. Basically, we require bi and γi to be Hölder continuous in the jth variable, where

the Hölder constant approaches 0 at a certain polynomial rate as |i − j| approaches ∞.

The state space of X will be measures x(·) satisfying
∑

i |i|qx(i) < ∞ where q > 0 may

approach zero for α close to 1 but becomes large as α gets small. There are cases where

infinite measures are allowed but they require stronger Hölder conditions on the coefficients

as the mass gets large (see Remark 2.13).
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The main result and a number of corollaries are stated in Section 2. In Section 3 we

prove a more general existence theorem (Theorem 2.4) by truncating to a finite-dimensional

system and taking weak limits. Although these type of arguments are well-known (see

[SS80]), we could not find the particular result we needed in the literature and have included

the proof for completeness: in addition, there is an unexpected mild condition needed; see

Theorem 2.4 and Remark 2.5. The weighted Hölder spaces are introduced in Section 4

where the infinite dimensional analogues of (1.5) are derived. Since the constants in [BP03]

are independent of dimension this should be easy, but some complications arise in infinite

dimensions since boundedness of the weighted Hölder norms does not imply continuity, in

contrast to the case of finite dimensions. We must establish uniform convergence of the

appropriate derivatives of the resolvent by the corresponding quantities for a sequence of

approximating finite-dimensional functions to carry over the finite-dimensional estimates

from [BP03] and obtain continuity (Proposition 4.8). The key bounds on the weighted

Hölder norm then follow from the finite-dimensional result in [BP] (Corollary 4.10). This

approximation is also used to derive the perturbation equation for the resolvent of strong

Markov solutions of MP (L, µ) in terms of Rλ = (λ− L0)−1 (Proposition 5.4).

In Section 5 local uniqueness is established (Theorem 5.5), i.e., if γi and bi are

sufficiently close to constant functions, uniqueness is shown. In this setting our state space

may include counting measure, but as the coefficients become asymptotically constant this

is not surprising. In Section 6 we use the local uniqueness and a localization argument

to prove Theorem 2.7. Localization in infinite dimensions still seems to be an awkward

process and our arguments here are surely not optimal–we believe some of the additional

continuity conditions in Assumption 2.6 may be weakened. Still it is important to note that

the weighted Hölder spaces at least allow for localization. In their ground-breaking paper

[DM95], Dawson and March establish a quite general uniqueness result in the Fleming-

Viot setting but were unable to carry out the localization step. Nonetheless [DM95] still

represents the best available uniqueness result in general infinite dimensional settings albeit

in the Fleming-Viot setting and for close to constant coefficients. Finally in Section 7 we

prove the various corollaries to Theorem 2.7.

2. Notation and statement of results.

We will use the letter c with or without subscripts to denote positive finite constants

whose exact value does not matter and which may change from line to line. We use κ with

subscripts to denote positive finite constants whose value does matter.

Let S be a countable set equipped with a map | · | : S → [0,∞) such that Sn = {i ∈
S : |i| < n} is finite for all n ∈ Z+. (S0 = ∅). Our prototype is of course S = Zd with | · |
equal to the usual Euclidean length of i. Let ν : S → (0,∞) and for x ∈ RS let

|x|ν =
∑

i∈S
|xi|νi ∈ [0,∞].
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ν will be called a weight functon. We will use both νi and ν(i) for the ith coordinate of ν

and similarly for other maps defined on S.

We let

Mν(S) = {x ∈ RS
+ : |x|ν <∞}.

and consider elements of Mν(S) as measures on S with

〈x, ϕ〉 =
∑

i∈S
xiϕ(i) when ϕ : S → R,

∑

i∈S
xi|ϕ(i)| <∞.

It is easy to see that Mν(S) is a Polish space when equipped with the distance |x − x′|ν .
If νi ≡ 1, it is easy to check that Mν(S) = MF (S) is the usual space of finite measures on

S equipped with the topology of weak convergence for the discrete topology on S.

R+ = [0,∞) and C2
b (R

Sn
+ ) is the set of bounded continuous functions f : RSn

+ → R
whose first and second partial derivatives fi, fij are bounded and continuous. If xi = 0,

then the partials fi, fij are interpreted as right-hand derivatives.

Define the projection operator πn : RS
+ → RSn

+ by

πnx(i) = x(i), i ∈ Sn, (2.1)

and define the lift operator Πn : RSn
+ → RS

+ by

Πnx(i) = 1(i∈Sn)x(i). (2.2)

Let

C2
b,F (Mν(S)) = {f : Mν(S)→ R : ∃n, fn ∈ C2

b (R
Sn
+ ) such that f(x) = fn(πnx)}.

These are the functions which only depend (in a C2 way) on the coordinates xi with i ∈ Sn.

Clearly C2
b,F (Mν(S)) ⊂ Cb(Mν(S)), the space of bounded continuous maps from Mν(S)

to R.

For i ∈ S assume γi : Mν(S) → [0,∞), bi : Mν(S) → R, and for f : Mν(S) → R
define

Lf(x) =
∑

i∈S

[
xiγi(x)fii(x) + bi(x)fi(x)

]
, x ∈Mν(S), (2.3)

provided these partial derivatives exist and the above series is absolutely convergent. Note

that this is the case if f ∈ C2
b,F (Mν(S)). Let Ων equal C(R+,Mν(S)), equipped with the

topology of uniform convergence on bounded intervals. Let Xt(ω) = ω(t) for ω ∈ Ων , let

F0
u be the universal completion of σ(Xs : s ≤ u), and set Ft = ∩u>tF0

u, F = ∪t≥0F0
t .
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Definition 2.1. Let µ be a probability on Mν(S). A probability P on (Ων ,F) solves

MP(L, µ), the martingale problem for L in Mν(S) started at µ, if P(X0 ∈ ·) = µ(·) and

for any f ∈ C2
b,F (Mν(S))

Mf
t = f(Xt)− f(X0)−

∫ t

0

Lf(Xs)ds

is an (Ft)-local martingale under P. MP(L) is well-posed in Mν(S) if and only if there is

a unique solution to MP(L, µ) in Mν(S) for every initial law µ on Mν(S).

Note that s → Lf(Xs) and t → f(Xt) and hence t → Mf
t are all necessarily

continuous functions.

Remark 2.2 (a) As in Remark 1.1(d) of [BP03] one could also consider test functions

f(x) = fn(πnx) for some fn ∈ C2
b (RSn), (i.e., those which extend in a C2 manner to all of

RSn instead of RSn
+ ).

(b) Changing the class of test functions changes the martingale problem. The

smaller the class of test functions for which one establish uniqueness, the stronger the

theorem. C2
b,F (Mν(S)) is a reasonably small class.

(c) Let {Bi : i ∈ S} be a sequence of independent one-dimensional adapted Brown-

ian motions on a filtered probability space (Ω,F , F t,P) and consider the stochastic differ-

ential equation

Yi(t) = Yi(0) +

∫ t

0

(2Yi(s))γi(Ys))
1/2dBi

s +

∫ t

0

bi(Ys)ds, i ∈ S, t ≥ 0. (2.4)

Here Y (0) is an F0-measurable random vector in Mν(S). If Y is a continuous Mν(S)-

valued solution to (2.4), a simple application of Itô’s formula shows that the law PY of Y

is a solution to MP(L, µ) where µ is the law of Y (0). Conversely, given a solution P of

MP(L, µ), a standard construction allows one to build Brownian motions {B i : i ∈ S}
and a solution Y to (2.4) on some Ω such that P is the law of Y .

We introduce conditions on bi, the first of which we assume throughout this work:

Assumption 2.3. (a) There exists a constant κ2.3a(b) such that

∑

i∈S
|bi(x)|νi ≤ κ2.3a(b)(|x|ν + 1), x ∈Mν(S), (2.5)

(b) There exists a constant κ2.3b(b) such that

bi(x) ≥ −κ2.3b(b)xi, i ∈ S, x ∈Mν(S). (2.6)
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Assumption 2.3(a) will avoid explosions in finite time while a condition such as

Assumption 2.3(b) is needed to ensure that our solutions have non-negative components

(although a weaker condition bi(x) ≥ 0 if xi = 0 sufficed in finite dimensions – see [BP03].)

Note that no analogue of (2.3) is needed for the diffusion coefficients.

Our focus is on uniqueness in law of solutions to MP(L, δx0), but as our setting is

slightly different from that considered in the literature (e.g., Shiga and Shimizu [SS80]),

we state a general existence result. The proof is given in Section 3.

Theorem 2.4. Assume there exists β : S → (0,∞) such that lim|i|→∞ β(i) = 0 and

for all i ∈ S, bi, γi have (necessarily unique) continuous extensions bi : Mβν(S) → R,

γi : Mβν(S)→ [0,∞). In addition to (2.5) and (2.6) assume there exists a constant κ2.4(γ)

such that

sup
i
‖γi‖∞ = κ2.4(γ) <∞. (2.7)

Then for any x0 ∈Mν(S) there is a solution to MP(L, δx0).

Remark 2.5. Note the above continuity condition is trivially satisfied if γi, bi are given as

continuous functions on RS
+ with the product topology (as in Shiga and Shimizu [SS80]).

This condition is only needed to obtain a compact containment condition in the usual

tightness proof and will be easy to verify in the examples of interest. If γi, bi on Mν(S)

are uniformly continuous with respect to | · |βν , the above extensions exist.

Here is our key Hölder continuity hypothesis on γi and bi:

Assumption 2.6. For some β : S → (0,∞) satisfying lim|i|→∞ β(i) = 0 and

β(i) ≤ κ2.6aν(i)
−α/2, for each i ∈ S, bi and γi have (necessarily unique) continuous

extensions bi : Mβν(S) → R, γi : Mβν(S) → (0,∞). For any x0 ∈ Mν(S), η > 0, there

exists δ0 > 0 and a κ2.6b > 0 such that if x ∈ Mν(S) and |x − x0|βν < δ0, then (a) holds

and either (b) or (c) holds, where

(a)
∑

i∈S

|γi(x)− γi(x0)|
γi(x0)

+
|bi(x)− bi(x0)|

γi(x0)
< η (2.8)

and

(b) for any j ∈ S, h > 0,

∑

i

|γi(x+ hej)− γi(x)|
γi(x0)

+
|bi(x+ hej)− bi(x)|

γi(x0)
≤ κ2.6bγj(x0)

−α/2x
−α/2
j hα

or

(c) lim|i|→∞ ν(i) =∞ and for any j ∈ S, h ∈ (0, 1],

∑

i

|γi(x+ hej)− γi(x)|
γi(x0)

+
|bi(x+ hej)− bi(x)|

γi(x0)
≤ κ2.6bγj(x0)

−α/2(1 + x
−α/2
j )hα.

Our main result is the following.
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Theorem 2.7. Suppose Assumptions 2.3(a) and 2.6 hold, (2.7) holds, and either

bi(x) ≥ 0 for all i ∈ S and x ∈Mν(S), (2.9)

or

lim
|i|→∞

ν(i) =∞ and bi(x) ≥ −κ2.7xiγi(x), for all i ∈ S and x ∈Mν(S). (2.10)

Then MP(L) is well-posed in Mν(S).

We state some corollaries to Theorem 2.7, the proofs of which are given in Section 7.

Corollary 2.8. Assume bi : Mν(S) → R, γi : Mν(S) → R+ are continuous maps for all

i ∈ S, where ν : S → (0,∞) satisfies lim|i|→∞ ν(i) = ∞. Assume Assumption 2.3(a)-(b),

(2.7),

inf
i,x

γi(x) = ε0 > 0, (2.11)

there exists non-negative constants {C(i, j) : i, j ∈ S} such that

|γi(x+ hej)− γi(x)|+ |bi(x+ hej)− bi(x)| ≤ C(i, j)hα, h > 0, x ∈Mν(S), (2.12)

and if C(j) =
∑

i C(i, j), then

[
sup
j

C(j)
]
+ 1(α<1)

∑

j

C(j)1/(1−α)ν(j)−α(1−α
2 )/(1−α) <∞. (2.13)

Then the hypotheses of Theorem 2.7 are valid and so MP(L) is well-posed in Mν(S).

Recall that Q = (qij)i,j∈S is a Q-matrix on S if qij ≥ 0 for all i 6= j and
∑

j 6=i qij =

−qii for all i ∈ S.

Corollary 2.9. Let (qij) be a Q-matrix satisfying

q = sup
i
|qii| <∞ (2.14)

∑

i

1(i 6= j)qjiνi ≤ κ2.9ν(j), j ∈ S, (2.15)

where ν : S → (0,∞) satisfies lim|i|→∞ ν(i) = ∞. Suppose (b̂i, γi)i∈S satisfies the hy-

potheses of Corollary 2.8 (or more generally of Theorem 2.7 and (2.11) holds). If

bi(x) = b̂i(x) +
∑

j

xjqji,

then (bi, γi) satisfies the hypotheses of Theorem 2.7 and soMP(L) is well posed in Mν(S).

Consider now the case when S = Zd and |i| is the usual Euclidean norm.
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Corollary 2.10. Let ν(i) = (|i|+ 1)q for some q > d(1− α)(α(1− α
2 ))

−1, and, for some

c0 > 0, p > d, set C(i, j) = c0(|i − j| + 1)−p for i, j ∈ Zd. Let bi : Mν(Zd) → R and

γi : Mν(Zd)→ (0,∞) be continuous maps satisfying (2.5), (2.6), (2.7), (2.11), and (2.12).

Then MP(L) is well-posed in Mν(Zd).

Corollary 2.11. Let p : Zd − {0} → [0, 1] be a probability on Zd − {0} such that mq =∑
i |i|qp(i) <∞, where q is as in Corollary 2.10. Let qij = λp(j−i) (i 6= j) be the Q-matrix

of a random walk which takes steps distributed as p with rate λ > 0. Let ν, (b̂i), and (γi)

satisfy the hypotheses of Corollary 2.10, and let bi(x) = b̂i(x) +
∑

j xjqji. Then MP(L)
is well-posed in Mν(Zd).

Corollary 2.12. Let R > 0, N = {i ∈ Zd : |i| ≤ R} and γ : RN
+ → [ε, ε−1] be Hölder

continuous of index α ∈ (0, 1]. Assume q > d(1−α)(α(1− α
2 ))

−1 and set ν(i) = (|i|+1)q,

i ∈ Zd. Let qij = λp(j − i), (i 6= j) where p is a probability on Zd − {0} with finite qth

moment. If bi(x) =
∑

j xjqji and γi(x) = γ((xi+j : j ∈ N)), then MP(L) is well-posed in

Mν(Zd).

Corollary 2.8 is a version of Theorem 2.7 where the hypotheses are given in terms

of the Hölder constants of the γi and bi; Corollary 2.9 applies Corollary 2.8 to the case of

super-Markov chains. Corollaries 2.10–2.12 are the application of Corollaries 2.8 and 2.9

to the case where S = Zd and an explicit bound is given for the Hölder constants of the

γi and bi.

Remark 2.13. If we assume Assumptions 2.6 (a),(b) and (2.9) we may take νi → 0 so

that Mν(S) will contain some infinite measures, that is, points x such that
∑

i∈S xi =∞.

In this case the Hölder condition Assumption 2.6 (b) becomes rather strong if xj gets large.

3. Existence.

If ε = {εn} is a sequence in (0,∞) decreasing to 0 and S ′ = {S′n} is a sequence of

finite subsets of S which increases to S with S ′0 = ∅, let

Kε,S′ = {x ∈Mν(S) :
∑

i/∈S′n

xiνi ≤ εn for all n ∈ Z+}.

Write Kε for the above in the case when S ′n = Sn for all n ∈ Z+.

Lemma 3.1. (a) For any ε, S ′ as above, Kε,S′ is a compact subset of Mν(S).

(b) If K is a compact subset of Mν(S), there is a sequence εn decreasing to 0 such that

K ⊂ Kε.

Proof. The standard proof is left for the reader.
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Remark 3.2. If σN : Mν(S)→Mν(S) is defined by σN (x)(i) = 1(i∈SN )x(i), then for any

sequence εn decreasing to 0, it is easy to check that σN (Kε) ⊂ Kε.

Proof of Theorem 2.4. First, let Xn
t be the solution to

Xn,i
t = xi

0 + 1(i∈Sn)
[ ∫ t

0

bi((X
n
s )

+)ds+

∫ t

0

(
γi((X

n
s )

+)|Xn,i
s |
)1/2

dBi
s

]
. (3.2)

Here (Xn
s )

+ = ((Xn,i
s )+ : i ∈ S) and {Bi} is a sequence of independent one-dimensional

Brownian motions on some filtered probability space. Note that

b̂i((xj)j∈Sn) = bi((x
+
j )j∈Sn , (x

j
0)j∈Scn)

is a continuous function on RSn with linear growth (by (2.5) and the continuity assumptions

on bi). The same is true of

σ̂i((xj)j∈Sn) =
(
γi((x

+
j )j∈Sn , (x

j
0)j∈Scn)|xi|

)

and so the existence of Xn follows from Skorokhod’s existence theorem for finite-dimension-

al SDEs. Using L0
t (X

n,i) = 0 and bi(x) ≥ 0 if xi = 0 (by (2.6)), one can use Tanaka’s

formula to see that Xn,i
t ≥ 0 for all t ≥ 0 and for all i almost surely, and one may therefore

remove the superscript +’s in (3.2). Let Tn
k = inf{t : |Xn

t |ν ≥ k}. For each n, Tn
k ↑ ∞ as

k → ∞, since x0 ∈ Mν(S). Define Mn
t =

∑
i∈Sn νi

∫ t

0
(γi(X

n
s )X

n,i
s )1/2dBi

s, and note that

if νn = maxi∈Sn νi, then

〈Mn
t 〉 =

∫ t

0

∑

i∈Sn
ν2i γi(X

n
s )X

n,i
s ds

≤ κ2.4νn

∫ t

0

|Xn
s |νds

≤ κ2.4νnkt (3.3)

for t ≤ Tn
k . Let

X
n

t = |Xn
t |ν + κ2.3b

∫ t

0

|Xn
s |νds

= |x0|ν +

∫ t

0

∑

i∈Sn
νibi(X

n
s ) + κ2.3b|Xn

s |νds+Mn
t . (3.4)

Mn
t∧Tn

k
is a martingale by (3.3) and so (2.5) implies

EX
n

t∧Tn
k
≤ |x0|ν +

∫ t

0

E (κ2.3a(|Xn
s∧Tn

k
|ν + 1) + κ2.3b|Xn

s∧Tn
k
|ν)ds

≤ |x0|ν + κ2.3at+ c1

∫ t

0

E (|Xn

s∧Tn
k
|ν)ds.
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The left hand side is clearly finite by the definition of T n
k , Gronwall’s lemma implies

E (X
n

t∧Tn
k
) ≤ [|x0|ν + κ2.3at]e

c1t, t ≥ 0,

and so Fatou’s lemma gives

E (X
n

t ) ≤ [|x0|ν + κ2.3at]e
c1t, t ≥ 0. (3.5)

Therefore, using (2.6) in (3.4), we see that X
n

t is a submartingale. The weak L1 inequality

and (3.5) imply

P(sup
t≤T

|Xn
t |ν ≥ k) ≤ P(sup

t≤T
X

n

t ≥ k) ≤ k−1[|x0|ν + κ2.3aT ]e
c1T , (3.6)

which implies

lim
k→∞

sup
n

P(Tn
k ≤ T ) = 0, T > 0. (3.7)

Define Xn
t (ϕ) =

∑
i∈S Xn,i

t ϕ(i) for ϕ : S → R+ and βm = supi∈Scm β(i) ↓ 0. Then

(recall Sc
0 = S)

P(sup
t≤T

Xn
t (1Scmνβ) > ε0) ≤ P(sup

t≤T

∑

i∈Scm

ν(i)Xn,i
t > ε0/βm)

≤ βm

ε0
[|x0|ν + κ2.3aT ]e

c1T . (3.8)

Let ε, T > 0. Choose mk ↑ ∞ and K0 > 0 such that

∞∑

k=1

(
βmk

)1/2
[|x0|ν + κ2.3aT ]e

c1T +K−1
0 [|x0|ν + κ2.3aT ]e

c1T < ε, (3.9)

and define

K = {x ∈Mνβ(S) :
∑

i∈Scmk

xiνiβi ≤ (βmk
)1/2 for all k ∈ N, |x|ν ≤ K0}.

Then K is compact in Mνβ(S) by Lemma 3.1. By (3.8) with ε0 =
(
βmk

)1/2
and m = mk

and (3.6) with k = K0 we get that for each n

P(Xn
t ∈ K for all t ≤ T ) (3.10)

≥ 1−
[ ∞∑

k=1

(βmk
)1/2[|x0|ν + κ2.3aT ]e

c1T +K−1
0 [|x0|ν + κ2.3aT ]e

c1T
]

≥ 1− ε,
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by (3.9). This will give us the compact containment required for the tightness of

{P(Xn
· ∈ ·) : n ∈ N}.
We claim next that if i ∈ S is fixed, then

{Xn,i : n ∈ N} is a tight sequence of processes in C([0,∞),R). (3.11)

By (3.7) it suffices to show

{Xn,i(· ∧ Tn
k ) : n ∈ N} is tight in C([0,∞),R) for each k ∈ N. (3.12)

Let Mn,i
t denote the stochastic integral on the right hand side of (3.2). Then for s ≤ t,

E
((∫ t

s

1(r≤Tn
k
)dM

n,i
r

)4)
≤ c2E

((∫ t

s

1(r≤Tn
k
)X

n,i
r γi(X

n
r )dr

)2)

≤ c3(κ2.4)
2(k/νi)

2(t− s)2. (3.13)

In addition by (2.5),

∫ t

s

1(r≤Tn
k
)|bi(Xn

r )|dr ≤
κ2.3a
νi

∫ t

s

1(r≤Tn
k
)(|Xn

r |ν + 1)dr

≤ κ2.3a
νi

(k + 1)(t− s).

This, (3.13), (3.2), and standard arguments now imply (3.12).

(3.10) and (3.11) imply {Xn
· : n ∈ N} is a tight sequence in C([0,∞),Mνβ(S)). If

νβ(i) ≡ 1, this is standard, as then Mνβ(S) = MF (S) (see, e.g., Theorem II.4.1 in [Pe02]).

In general, define Φ : Mνβ(S)→MF (S) by

Φ(x)(i) = x(i)νiβi.

Then Φ is an isometry and the above result for MF (S) gives the required implication.

By Skorokhod’s theorem we may first extract a weakly convergent subsequence

{Xnm} and then assume Xnm → X a.s. in C([0,∞),Mνβ(S)). It is easy to use the

continuity of bi, γi on Mνβ(S) to let n = nm →∞ in (3.2) and conclude

Xi
t = xi

0 +

∫ t

0

bi(Xs)ds+

∫ t

0

√
γi(Xs)Xi

sdB
i
s (3.14)

for all t ≥ 0 and all i ∈ S, a.s. Fatou’s lemma implies for any t > 0

|Xt|ν =
∑

i∈S
lim inf
m→∞

Xnm,i
t νi ≤ lim inf

m→∞
|Xnm

t |ν ,
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and so an elementary argument implies

P(sup
t≤T

|Xt|ν > k) ≤ P(lim inf
m→∞

sup
t≤T

|Xnm
t |ν > k)

≤ lim inf
m→∞

P(sup
t≤T

|Xnm
t |ν > k)

≤ k−1[|x0|ν + κ2.3aT ]e
c1T ,

the last by (3.6). This proves

sup
t≤T

|Xt|ν <∞, T > 0, a.s., (3.15)

and so X· has Mν(S) valued paths a.s.

To show that X· has continuous Mν(S)-valued paths a.s. we use the following

lemma, whose elementary proof is left to the reader.

Lemma 3.3. Suppose x : [0,∞) → Mν(S) is such that xt(i), i ∈ S, and |xt|ν are all

continuous. Then x is continuous.

Clearly Xt(i) is continuous for all i ∈ S a.s. since it is continuous in Mνβ(S). From

(3.14) we see that if Mn(t) =
∑

i∈Sn νi
∫ t

0

√
γi(Xs)Xi

sdB
i
s, then

∑

i∈Sn
Xt(i)νi =

∑

i∈Sn
x0(i)νi +

∫ t

0

∑

i∈Sn
νibi(Xs)ds+Mn(t). (3.16)

(3.15) and (2.5) show that

∑

i∈Sn
νi|bi(Xs)| →

∑

i∈S
νi|bi(Xs)|,

which is bounded uniformly on compact time intervals a.s. as n→∞, and so

sup
t≤T

∣∣∣
∫ t

0

∑

i∈Sn
νibi(Xs)ds−

∫ t

0

∑

i∈S
νibi(Xs)ds

∣∣∣

≤
∫ T

0

∑

i∈S−Sn

νi|bi(Xs)|ds

→ 0 (3.17)

as n→∞ by dominated convergence. By (3.16) and (2.5),

sup
t≤T

|Mn(t)| ≤ sup
t≤T

|Xt|ν + |x0|ν +

∫ T

0

κ2.3a(|Xs|ν + 1)ds.
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By (3.15) and the Dubins-Schwartz theorem, this means {〈Mn〉T } remains bounded in

probability as n→∞. Therefore

∫ T

0

∑

i∈S
ν2i γi(Xs)Xs(i)ds = lim

n→∞
〈Mn〉T <∞, a.s., T > 0.

A standard square function inequality now implies

sup
t≤T

|Mn(t)−Mm(t)| → 0

in probability as m,n → 0 for all T > 0, and so we may take a subsequence such that

Mnk converges uniformly on compact time intervals a.s. Let n = nk → ∞ in (3.16). The

above and (3.17) show that the right hand side of (3.16) converges uniformly on compact

time intervals a.s. to a necessarily continuous process. As the left hand side converges to

|Xt|ν for all t ≥ 0, a.s., it follows that t→ |Xt|ν is continuous. Lemma 3.3 therefore shows

t→ Xt is a continuous Mν(S)-valued process. By (3.14) and Remark 2.2(c), the law of X

is a solution of the martingale problem for L starting at x0.

4. Estimates.

We first obtain some key analytic estimates for the special case when γi = γ0i and

bi = b0i are constants. Assume

0 < γ0i ≤ sup
i′

γ0i′ = κ4.1(γ
0) <∞, i ∈ S, (4.1)

0 ≤ b0i , i ∈ S, and |b0|ν =
∑

i∈S
b0i ν(i) <∞. (4.2)

Let

L0f(x) =
∑

i∈S
γ0i xifii(x) + b0i fi(x)

for functions f for which the partial derivatives exist and the sum is absolutely convergent.

By Theorem 2.4 there is a solution P0x0
to MP(L, δx0) in Mν(S) for each x0 ∈Mν(S). In

fact it is easy to see that under P0x0
, the processes {Xi : i ∈ S} are independent diffusions

and each Xi is a suitably scaled squared Bessel process whose law is that of the pathwise

unique solution to

Xi(t) = x0(i) +

∫ t

0

(Xi(s)γ0i )
1/2dBi

s + bi0t, (4.3)

where the Bi
s are independent one dimensional Brownian motions. (Theorem 2.4 is only

needed here to ensure X has paths in Ων .) An explicit formula for the transition kernel

of pit(xi, dyi) of Xi is given in (2.2) and (2.4) of [BP03]. Let (Pt)t≥0 and (Rλ)λ≥0 be the

semigroup and resolvent, respectively, of the Mν(S)-valued diffusion Xt = (Xi
t)i∈S .
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Lemma 4.1. For any compact set K ∈ Mν(S), T > 0, and ε > 0, there is a sequence

η = {ηn} decreasing to zero such that

sup
x0∈K

P0x0
(Xt ∈ Kη for t ≤ T ) ≥ 1− ε.

Proof. By Lemma 3.1(b) we may assume K = Kδ for some sequence δn decreasing to

zero. Set B(N) =
∑

i/∈SN ν(i)b0i . If

Zn,N (t) =
∑

i∈Sn−SN

ν(i)Xi(t)

for n > N ≥ 0 and

ZN (t) =
∑

i/∈SN

ν(i)Xi(t),

then for x0 ∈ Kδ

E 0
x0
[ZN (t)] =

∑

i/∈SN

x0(i)ν(i) + b0i ν(i)t ≤ δ(N) +B(N)t,

where δ(N), B(N) ↓ 0 by (4.2). Since Zn,N (t) is a submartingale, the weak L1 inequality

implies that for any x0 ∈ Kδ

P0x0
(sup
t≤T

ZN (t) > A) = lim
n→∞

P0x0
(sup
t≤T

Zn,N (t) > A)

≤ lim
n→∞

A−1E 0
x0
[Zn,N (t)]

≤ A−1(δ(N) +B(N)T ). (4.4)

Choose Nk ↑ ∞ such that

sup
x0∈Kδ

P0x0
(sup
t≤T

ZNk
(t) > 2−k) ≤ 2−k−1ε (4.5)

and then η > 1 sufficiently large so that

sup
x0∈Kδ

P0x0
(sup
t≤T

|Xt|ν > η) ≤ ε/2. (4.6)

The latter is possible by (4.4) with N = 0 since Z0(t) = |Xt|ν . Now define

ηn =

{
η, n ≤ N
2−k, Nk ≤ n < Nk+1.
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Then for any x0 ∈ Kδ

P0x0
(Xt ∈ Kc

η for some t ≤ T ) ≤ P0x0
(sup
t≤T

|Xt|ν > η) +

∞∑

k=1

P0x0
(sup
t≤T

ZNk
(t) > 2−k) < ε

by (4.5) and (4.6).

Define ei ∈ Mν(S) by ei(j) = 1(i=j). Let α ∈ (0, 1] and for f : Mν(S) → R and

i ∈ S define

|f |α,i = sup{|f(x+ hei)− f(x)|x(i)α2 h−α : x ∈Mν(S), h > 0}. (4.7)

Set

|f |α = sup
i
(γ0i )

α
2 |f |α,i, ‖f‖α = ‖f‖∞ + |f |α. (4.8)

If

Cα = {f : Mν(S)→ R : f continuous , ‖f‖α <∞},
then it is easy to check that (Cα, ‖ · ‖α) is a Banach space.

Remark 4.2. One difference between our infinite dimensional setting and the finite di-

mensional setting in [BP03] is that supi |f |α,i < ∞ does not imply that f is uniformly

continuous on I = {x ∈ Mν(S) : x(i) > 0 for all i ∈ S} and hence has a continuous

extension to Mν(S). This is true on Rd
+ (see Lemma 2.2 of [BP03]). Suppose we define

f(x) to be 1 if infinitely many of the x(i) 6= 2−i/ν(i) and 0 otherwise. Then |f |α,i = 0

but f is discontinuous on I. This complicates things a bit when checking whether various

operators preserve Cα.
Remark 4.3. A key fact in our argument is that the estimates on (Rλf)i and xi(Rλf)ii

from [BP03] are independent of the dimension of the space. Recall that the way we ob-

tained the estimates in [BP03] was to first consider the one-dimensional case. If P i
t denotes

the semigroup corresponding to the operator xγ0i f
′′(x)+b0i f

′(x), then we obtained bounds

on |(P i
t f)

′(x)| and on |(P i
t f)

′(x+∆)− (P i
t f)

′(x)| in terms of constants depending only on

γ0i and b0i ; see Lemmas 4.3, 4.4, 4.6, and 4.7 of [BP03]. If Pt denotes the semigroup corre-

sponding to L0f(x) = ∑d
i=1[xiγ

0
i fii(x) + b0i fi(x)], we then derived bounds on |(Ptf)i(x)|

and on |(Ptf)i(x+∆ej)− (Ptf)i(x)| with the same constants (Propositions 5.1 and 5.2 of

[BP03]); hence the constants did not depend on the dimension d of the underlying space.

We then deduced estimates on (Rλf)i. The same reasoning was applied for xi(Rλf)ii.

Lemma 4.4. Let f ∈ Cα, λ > 0, and i ∈ S. There is a κ4.4 = κ4.4(α) independent of

f, i, λ such that the following hold:

(a) The partial derivative (Rλf)i(x) exists for every x ∈Mν(S) and satisfies

‖(Rλf)i‖∞ ≤ κ4.4(γ
0
i )

α
2−1λ−

α
2 |f |α,i. (4.9)
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(b) The second order derivative (Rλf)ii(x) exists on {x ∈Mν(S) : xi > 0} and satisfies

|xi(Rλf)ii(x)| ≤ κ4.4(γ
0
i )
−1|f |α,i

[(γ0i
λ

)α
2 ∧ x

α
2
i

]
. (4.10)

In particular, limxi→0 xi(Rλf)ii(x) = 0 uniformly on Mν(S) and if xi(Rλf)ii(x) is set to

be this limit on {x ∈Mν(S) : xi = 0}, then

‖xi(Rλf)ii(x)‖∞ ≤ κ4.4(γ
0
i )

α
2−1λ−

α
2 |f |α,i. (4.11)

Proof. We only prove (b) as (a) is similar but easier. Let t > 0. Then argue as in the

finite-dimensional argument (Proposition 5.1 of [BP03]), noting the constants there are

independent of dimension, to see that (Ptf)ii exists on Mν(S) (in fact on RS
+) and satisfies

|xi(Ptf)ii(x)| ≤ c1|f |α,i(γ0i t)
α
2−1

( xi

γ0i t
∧ 1
)
. (4.12)

If xi > 0, this allows one to differentiate through the time integral (by the dominated

convergence and the mean value theorem) and conclude for xi > 0 that (Rλf)ii exists and

satisfies

xi(Rλf)ii(x) =

∫ ∞

0

e−λtxi(Ptf)ii(x)dt.

A simple calculation using (4.12) leads to (4.10) for xi > 0. The fact that xi(Rλf)ii

approaches 0 uniformly as xi ↓ 0 is then immediate, as is (4.11).

Lemma 4.5. If f ∈ Cb(Mν(S)) and fn = f ◦πn, then for any compact subset K of Mν(S)

lim
n→∞

sup
x∈K

|f(x)− fn(x)| = 0.

Proof. By Lemma 3.1(b) we may assume K = Kη for some sequence η = {ηn} decreasing
to 0. Then

sup
x∈Kη

|x− πnx|ν = sup
x∈Kη

∑

i∈Scn

xiνi ≤ ηn → 0.

Since πn(Kη) ⊂ Kη (recall Remark 3.2) and f is uniformly continuous on Kη, the result

follows.

Corollary 4.6. If f ∈ Cb(Mν(S)) and fn = f ◦ πn, then for any λ > 0, Rλfn → Rλf

uniformly on compact subsets of Mν(S).

Proof. Let K be a compact subset of Mν(S) and ε > 0. Lemma 4.1 shows there is a

compact Kη such that

sup
x∈K

(Rλ1Kc
η
)(x) < ε.
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Lemma 4.5 implies that ‖Rλf1Kη −Rλfn1Kη‖∞ → 0 as n→∞ and so

lim sup
n→∞

sup
x∈K

|Rλfn(x)−Rλf(x)| ≤ lim sup
n→∞

sup
x∈K

|Rλfn1Kc
η
(x)−Rλf1Kc

η
(x)|

≤ 2ε‖f‖∞.

Let Rn
λ denote the resolvent of the finite-dimensional diffusion (Xi)i∈Sn under {Px0}.

Then Rn
λ is a Feller resolvent (i.e., it maps Cb(RSn

+ ) to itself) and so if f̃n((xi)i∈Sn) =

f(Πn(x)) for f ∈ Cb(Mν(S)), then f̃n ∈ Cb(RSn
+ ) and Rλfn(x) = Rn

λ f̃n((xi)i∈Sn) is con-

tinuous on Mν(S). (Πn is defined in (2.2).) The convergence in Corollary 4.6 therefore

shows

Rλ : Cb(Mν(S))→ Cb(Mν(S)). (4.13)

Our immediate goal is to extend the continuity on Mν(S) to (Rλf)i and xi(Rλf)ii for

f ∈ Cα. As explained earlier, this is more delicate in our infinite-dimensional setting.

Lemma 4.7. There is a κ4.7 ≥ 1 such that

(a) if 0 < r ≤ R/2, then

∫ ∞

R

e−z z
r−1

Γ(r)

|z − r|
r

dz ≤ κ4.7
R+ 1

;

(b) for any r > 0 ∫ ∞

0

e−z z
r−1

Γ(r)

|z − r|
r

dz ≤ κ4.7(r + 1)−1/2.

Proof. (a) In view of (b) we may assume R ≥ 1. The integral in (a) is bounded by

∫ ∞

R

e−z z
r−1

Γ(r)

(z − r)2

rR/2
dz,

which is bounded by cR−1r−1(r + 1); see, e.g., Lemma 3.2(a) of [BP03]. This gives the

required bound if r ≥ 1 (recall R ≥ 1). Assume now that 0 < r < 1. The integral in (a) is

at most
∫ ∞

R

e−z zr

Γ(r + 1)
dz ≤

∫ ∞

0

e−z zr+1

Γ(r + 1)R
dz

= R−1
[Γ(r + 2)

Γ(r + 1)

]
= R−1(r + 1) ≤ 2R−1 ≤ 4(R+ 1)−1.

(b) If r ≥ 1 this is immediate from Lemma 3.2(a) of [BP03]. If 0 < r < 1, then the

required integral is at most
∫ ∞

0

e−z zr

Γ(r + 1)
dz +

∫ ∞

0

e−z z
r−1

Γ(r)
dz = 2.
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Proposition 4.8. Let f ∈ Cα and fn = f ◦ πn. If i ∈ S and λ > 0, then for any compact

set K ⊂Mν(S)

lim
n→∞

sup
x∈K

[
|Rλfn(x)−Rλf(x)|+ |(Rλfn)i(x)− (Rλf)i(x)|

+ |xi(Rλfn)ii(x)− xi(Rλf)ii(x)|
]
= 0.

Proof. Note first that f ∈ Cα implies fn ∈ Cα and so the existence of the above partial

derivatives follows from Lemma 4.4. We focus on the convergence of the second order

derivatives as the first order derivatives are handled in a similar and slightly simpler way,

while the resolvents themselves were handled in Corollary 4.6. Fix f ∈ Cα.
If y ∈Mν(S), write ŷi = y|S−{i} and define Y (v, i) ∈Mν(S) by setting Y (v, i)(j) =

y(j) if j 6= i and Y (v, i)(i) = v; in other words, Y (v, i) is the point which has the same

coordinates as y except that the ith coordinate is equal to v instead of yi. We may then

define dn(v; ŷi) = f(πnY (v, i))− f(Y (v, i)) and

hn(ŷi; t, xi) = xi
∂2

∂x2i

∫
dn(yi; ŷi)p

i
t(xi, dyi).

If |dn(·; ŷi)|α denotes the | · |α,i norm of dn(·; ŷi) with S = {i}, then |dn(·; ŷi)|α ≤ 2|f |α,i,
and so the above derivative exists and satisfies (see Lemmas 4.1, 4.3, 4.5, and 4.6 of [BP03])

‖hn(·; t, xi)‖∞ ≤ cα|f |α,i(γ0i t)
α
2−1

( xi

γ0i t
∧ 1
)
. (4.14)

Note that

xi(Ptfn)ii(x)− xi(Ptf)ii(x) =

∫
hn(ŷi; t, xi)

∏

j 6=i

pjt (xj , dyj), (4.15)

where differentiation through the integrals is justified by the above bound and dominated

convergence.

If g : R+ → R, let ‖g‖R = sup{|g(y)| : y ≤ R}. Assume first b0i > 0 and use (4.14)

in [BP03] to conclude that if w = xi/γ
0
i t and ri = b0i /γ

0
i , then

|hn(ŷi; t, xi)| ≤
∞∑

k=0

e−wwk

k!
|w−k|

∫ ∞

0

|dn(zγ0i t; ŷi)|e−z zk+ri−1

Γ(k + ri)

|z − (k + ri)|
k + ri

dz

γ0i t
. (4.16)

By Lemma 4.7, if R > 0,
∫ ∞

R/γ0
i
t

e−z zk+ri−1

Γ(k + ri)

|z − (k + ri)|
k + ri

dz

≤ 1(k+ri≤R/2γ0
i
t)

κ4.7
(R/γ0i t) + 1

+ 1(k+ri>R/2γ0
i
t)

κ4.7√
ri + k + 1

≤ κ4.7√
ri + k + 1

[
1(k+ri≤R/2γ0

i
t)

√
γ0i t√
R

+ 1(k+ri>R/2γ0
i
t)

]
.
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Use this and Lemma 4.7(b) in (4.16) to see that

|hn(ŷi; t, xi)|

≤ (γ0i t)
−1

∞∑

k=0

e−wwk

k!
|w − k|

[
‖dn(·; ŷi)‖R

∫ R/γ0
i t

0

e−z zk+ri−1

Γ(k + ri)

|z − (k + ri)|
k + ri

dz

+ 2‖f‖∞κ4.7(ri + k + 1)−1/2
[
1(k+ri≤R/2γ0

i
t)

√
γ0i t√
R

+ 1(k+r1>R/2γ0
i
t)

]]

≤ (γ0i t)
−1κ4.7

∞∑

k=0

e−wwk

k!

|w − k|
(ri + k + 1)1/2

[
‖dn(·; ŷi)‖R +

(γ0i t
R

)1/2
2‖f‖∞

]

+ 2‖f‖∞(γ0i t)
−1κ4.7

∞∑

k=0

1(k+ri>R/2γ0
i
t)e
−wwk

k!

|w − k|
(ri + k + 1)1/2

= I1 + I2. (4.17)

A simple calculation (see Lemma 3.3(b) of [BP03]) shows that

I ≤ c1(γ
0
i t)

−1
( xi

γ0i t
∧ 1
)[
‖dn(·; ŷi)‖R +

(γ0i t
R

)1/2
‖f‖∞

]
(4.18)

≤ c2((γ
0
i t)

−1 + 1)
[
‖dn(·; ŷi)‖R +R−1/2‖f‖∞

]
.

If N is a Poisson random variable with mean w, the series in I2 is

E
[
|N − w|(ri +N + 1)−1/21(N+ri>R/2γ0

i
t)

]
. (4.19)

Assume now
R

8
> max(1, x2i , γ

0
i t). (4.20)

If ri < R/(4γ0i t), recalling xi < R/8 by (4.20), the expectation in (4.19) is at most

E
[
|N − w|(ri +N + 1)−1/21

(N−w>
R−4xi
4γ0

i
t
)

]

≤ E
[
|N − w|(N + 1)−1/21(N−w>R/8γ0

i
t)

]

≤ E (N − w)2

(R/8γ0i t)
3/2

= c3
xi

R3/2
(γ0i t)

1/2 ≤ c4
R
(γ0i t)

1/2 ≤ c4R
−1/2.

If ri ≥ R/(4γ0i t), then (4.19) is bounded by

E |N − w|√
ri

≤ c5
√
w√

R/γ0i t
≤ c6

√
xi√
R

≤ c7R
−1/4,

654



the last by (4.20). Therefore under (4.20)

I2 ≤ ‖f‖∞c8((γ
0
i t)

−1 + 1)R−1/4.

Now use the above bounds in (4.17) to see that for R ≥ 8max(1, γ0i t),

sup
xi≤

√
R/4

|h(ŷi; t, xi)| ≤ c9((γ
0
i t)

−1 + 1)[‖dn(·; ŷi)‖R + ‖f‖∞R−1/4]. (4.21)

If b0i = 0, a slightly simpler argument starting with (4.6) in [BP03] will lead to the same

bound.

Now choose a compact set K in Mν(S), T > 1 and ε > 0. Assume R is large enough

so that R ≥ 8max(1, γ0i t),

if x ∈ K, then xi ≤
√
R/4, (4.22)

and ‖f‖∞R−1/4 < ε. Let ηn be such that Kη is a compact set satisfying the conclusion

of Lemma 4.1. Let π̂i(y) = (y(j), j ∈ S − {i}) be the projection of y ∈ Mν(S) onto

Mνi(S − {i}), νi = ν|S−{i}, and let

K̂η = {y ∈Mν(S) : π̂i(y) ∈ π̂i(Kη), y(i) ≤ R}.

Then it is easy to use Lemma 3.1 to check that K̂η is compact, and so by Lemma 4.5

lim
n→∞

sup
y∈K̂η

|fn(y)− f(y)| = 0.

This implies

lim
n→∞

sup
ŷi∈π̂i(Kη)

‖dn(·; ŷi)‖R = 0.

Choose N such that n ≥ N implies

sup
ŷi∈π̂i(Kη)

‖dn(·; ŷi)‖R < ε.

Use this with (4.14), (4.21), and (4.22) in (4.15) and conclude that for n ≥ N and t ∈ [0, T ]

sup
x∈K

|xi(Ptfn)ii(x)− xi(Ptf)ii(x)| (4.23)

≤ cα|f |α,i(γ0i t)
α
2−1 sup

x∈K
P0x(π̂i(Xt) /∈ π̂i(Kη))

+ c9((γ
0
i t)

−1 + 1)[ε+ ‖f‖∞R−1/4]

≤ cα|f |α,i(γ0i t)
α
2−1ε+ c9((γ

0
i t)

−1 + 1)2ε

≤ c10(|f |α,i + 1)((γ0i t)
−1 + 1)ε.
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Use the above for t ∈ [T−1, T ] and (4.14) for t ∈ [T−1, T ]c to see that for x ∈ K and n ∈ N

|xi(Rλfn)ii(x)−xi(Rλf)ii(x)| (4.24)

≤ cα|f |α,i(γ0i t)
α
2−1

[ ∫ 1/T

0

t
α
2−1dt+

∫ ∞

T

e−λtdt
]

+ c11(|f |α,i + 1)((γ0i )
−1T + 1)ε

∫ T

1/T

e−λtdt

≤ cα|f |α,i(γ0i t)
α
2−1[T−α/2 + e−λTλ−1]

+ c12(|f |α,i + 1)((γ0i )
−1T + 1)ελ−1.

As T > 1 and ε > 0 are arbitrary, this gives

lim
n→∞

sup
x∈K

|xi(Rλfn)ii(x)− xi(Rλf)ii(x)| = 0.

The differentiation through the time integral in (4.24) does require xi > 0 as in the proof

of Lemma 4.4, but that result shows the left-hand side is 0 if xi = 0.

Corollary 4.9. If f ∈ Cα, then for any i ∈ S and λ > 0, Rλf, (Rλf)i, and xi(Rλf)ii are

all continuous bounded functions on Mν(S).

Proof. Fix i and consider n large enough so that i ∈ Sn. Recall Rn
λ is the resolvent of

(Xi)i∈Sn and f̃n(x) = f◦Πn(x) on RSn
+ . Then Rλfn(x) = Rn

λ f̃n(πnx) and so by Proposition

5.3 of [BP03] (Rλfn)i(x) = (Rn
λ)if̃n(πnx) and xi(Rλfn)ii(x) = xi(R

n
λ f̃n)ii(πn(x)) are

bounded continuous functions on Mν(S). The uniform convergence in Proposition 4.8 and

the bound in Lemma 4.4 show that (Rλf)i and xi(Rλf)ii are in Cb(Mν(S)). (4.13) already

gave the result for Rλf .

Corollary 4.10. There is a κ4.10 > 0 depending only on α such that for all f ∈ Cα, λ > 0,

and i, j ∈ S,

|(Rλf)i|α,j + |xi(Rλf)ii|α,j ≤ κ4.10|f |1−α
α,i |f |αα,j(γ0i )−1(γ0i /γ0j )(1−α)α/2.

Proof. The proof is almost the same as that of Proposition 5.3 of [BP03] for the finite-

dimensional case – again the constants given there are independent of dimension; cf. Re-

mark 4.3. The only change is that once the bounds on the increments of xi(Rλf)ii are

established for xi > 0, they follow for xi = 0 by the continuity established in Corollary

4.9; this is in place of the use of Lemma 2.2 in [BP03].

5. Local uniqueness.

We make the following assumption.
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Assumption 5.1. Assume γi : Mν(S) → (0,∞), bi : Mν(S) → R are continuous and

(γ0i )i∈S , (b
0
i )i∈S satisfy (4.1) and (4.2). Assume also

(a)

sup
x∈Mν(S)

∑

i∈S

[ |γi(x)− γ0i |
γ0i

+
|bi(x)− b0i |

γ0i

]
≡ ρ <∞. (5.1)

(b) For all x ∈Mν(S)

lim
x′→x

∑

i∈S

[ |γi(x′)− γ0i |
γ0i

+
|bi(x′)− b0i |

γ0i

]
=
∑

i∈S

[ |γi(x)− γ0i |
γ0i

+
|bi(x)− b0i |

γ0i

]
. (5.2)

(c) For all j ∈ S, 0 < h, x ∈Mν(S)

∑

i∈S

[ |γi(x+ hej)− γi(x)|
γ0i

+
|bi(x+ hej)− bi(x)|

γ0i

]
≤ κ5.1h

αx
−α/2
j (γ0j )

−α/2. (5.3)

The following result uses only Assumption 5.1(a)-(b).

Lemma 5.2. For any λ > 0, (L−L0)Rλ : Cα → Cb(Mν(S)), and there is a κ5.2 = κ5.2(α)

such that

‖(L − L0)Rλf‖∞ ≤ κ5.2ρ|f |αλ−α/2, f ∈ Cα, λ > 0.

Note that L − L0 can be well-defined for a larger class of functions than the domain of L
and L0 thanks to Assumption 5.1 and the results of Section 4. In particular, this lemma

shows that (L − L0)Rλf is well-defined for f ∈ Cα.

Proof. Lemma 4.4 shows that for f ∈ Cα
∑

i∈S
|γi(x)− γ0i | |xi(Rλf)ii(x)|+ |bi(x)− b0i | |(Rλf)i(x)|

≤
∑

i∈S

[ |γi(x)− γ0i |
γ0i

+
|bi(x)− b0i |

γ0i

]
cα(γ

0
i )

α/2|f |α,iλ−α/2

≤ cαρ|f |αλ−α/2,

by Assumption 5.1(a). This gives the required bound on ‖(L − L0)Rλf‖∞.

Note that Lemma 4.4 implies

|γi(x)− γ0i | |x(i)(Rλf)ii(x)|+ |bi(x)− b0i | |(Rλf)i(x)| (5.4)

≤ cα

[ |γi(x)− γ0i |
γ0i

+
|bi(x)− b0i |

γ0i

]
|f |αλ−α/2.

Let xn → x in Mν(S). Assumptions 5.1(a),(b) imply that if

fn(i) =
|γi(xn)− γ0i |

γ0i
+
|bi(xn)− b0i |

γ0i
,
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then {fn} is uniformly integrable with respect to counting measure on S and hence by

(5.4) so is

gn(i) = |γi(xn)− γ0i | |xn(i)(Rλf)ii(xn)|+ |bi(xn)− b0i | |(Rλf)i(xn)|.

This allows us to take the limit as n → ∞ through the summation and conclude by the

continuity of

(γi(x)− γ0i ) (x(i)(Rλf)ii(x)) + (bi(x)− b0i ) ((Rλf)i(x))

(see Corollary 4.9) that

lim
n→∞

(L − L0)Rλf(xn) = (L − L0)Rλf(x).

This proves (L − L0)Rλf is continuous.

We let Bλ denote the operator

Bλ = (L − L0)Rλ =
∑

i

[
(γi − γ0i )x(i)(Rλ)ii + (bi − b0i )(Rλ)i

]
.

Proposition 5.3. Assume Assumption 5.1(a)-(c). For any λ > 0, Bλ : Cα → Cα is a

bounded operator. Moreover there exist λ0 = λ0(α) and ρ0 = ρ0(α) > 0 such that if

λ ≥ λ0 and ρ ≤ ρ0, then

‖Bλ‖Cα < 1/2.

Proof. Use Lemma 4.4 and Corollary 4.10 to see that for f ∈ Cα, j ∈ S, and h > 0,

|Bλf(x+ hej)− Bλf(x)|
≤
∑

i

|γi(x+ hej)− γi(x)| |(x+ hej)(i)(Rλf)ii(x+ hej)|

+ |bi(x+ hej)− bi(x)| |(Rλf)i(x+ hej)|
+
∑

i

|γi(x)− γ0i | |(x+ hej)(i)(Rλf)ii(x+ hej)− x(i)(Rλf)ii(x)|

+ |bi(x)− b0i | |(Rλf)i(x+ hej)− (Rλf)i(x)|
≤
∑

i

[|γi(x+ hej)− γi(x)|+ |bi(x+ hej)− bi(x)|](γ0i )−1λ−α/2κ4.4 sup
i′
|f |α,i′(γ0i′)α/2

+
∑

i

[|γi(x)− γ0i |+ |bi(x)− b0i |](γ0i )−1κ4.10|f |1−α
α,i |f |αα,j(γ0i /γ0j )(1−α)α/2hαx

−α/2
j .

The first summation is bounded by (use Assumption 5.1(c))

κ4.4λ
−α/2|f |α(γ0j )−α/2κ5.1h

αx
−α/2
j .
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The second summation is bounded by (use Assumption 5.1(a))

κ4.10ρ sup
i
(|f |α,i(γ0i )α/2)1−α sup

j′
(|f |α,j′(γ0j′)α/2)α(γ0j )−α/2hαx(j)−α/2

≤ κ4.10ρ|f |α(γ0j )−α/2hαx
−α/2
j .

We may therefore conclude

|Bλf |α,j(γ0j )α/2 ≤ [κ4.4κ5.1λ
−α/2 + κ4.10ρ] |f |α

and so

|Bλf |α ≤ [κ4.4κ5.1λ
−α/2 + κ4.10ρ]|f |α.

Combine this with Lemma 5.2 to see that

‖Bλf‖α ≤ [κ4.4κ5.1λ
−α/2 + (κ4.10 + κ5.2λ

−α/2)ρ] |f |α.

This, together with Lemma 5.2, shows Bλ : Cα → Cα is a bounded operator with

‖Bλ‖ ≤ 1/2 for ρ ≤ ρ0(α), λ ≥ λ0(α).

Let Pµ be a solution of MP(L, µ) for some law µ on Mν(S) and for λ > 0, let

Sλf = E µ(
∫∞
0

e−λtf(Xt)dt).

The following result uses only (2.5), (2.7), and Assumption 5.1(a) (it only requires

the bound in Lemma 5.2 and so does not require Assumption 5.2(b)). Recall the constant

κ2.3a in (2.5). We use
bp−→ to denote bounded pointwise convergence.

Proposition 5.4. Assume (2.5), (2.7). If f ∈ Cα, then

Sλf =

∫
Rλf(x)µ(dx) + SλBλf, λ > κ2.3a.

Proof. Assume first that ∫
|x|νµ(dx) <∞. (5.5)

Let f(x) = f0(πnx) for some f0 : RSn
+ → R, f ∈ Cα. Write xn = πn(x) for x ∈Mν(S) and

define

gδ(y) =

∫ ∞

δ

e−λtPtf(y)dt =

∫ ∞

δ

e−λtPn
t f0(y

n)dt ≡ g̃δ(y
n).

Here Pn
t is the semigroup of {Xi : i ∈ Sn} under P0x. The finite dimensional analysis in

the proof of Lemma 6.1 of [BP03] shows that g̃δ ∈ C2
b (R

Sn
+ ).

Use (2.4), (5.5), (2.5), a stopping time argument, and a Gronwall argument (cf. the

proof of Theorem 2.4) to see that

E µ(|Xt|ν) ≤
(∫

|x|νdµ(x) + κ2.3at
)
eκ2.3at, t ≥ 0. (5.6)
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This and (2.7) shows that the stochastic integrals in (2.4) are square integrable martingales

and by Itô’s formula, the same is true of M gδ
t , the martingale entering inMP(L, µ). Take

expectations in MP(L, µ) to see that

E µ(gδ(Xt)) =

∫
gδdµ+

∫ t

0

E µ(Lgδ(Xs))ds.

Let λ > κ2.3a, multiply the above by λe−λt, and integrate over t ∈ [0,∞) to conclude

λSλgδ =

∫
gδdµ+ Sλ((L − L0)gδ) + Sλ(L0gδ). (5.7)

Note here that (5.6) and λ > κ2.3a are needed to apply Fubini’s theorem, since

E µ

( ∑

i∈Sn
Xs(i)γi(Xs)|(gδ)ii(Xs)|

)
≤ cδE

( ∑

i∈Sn
Xs(i)

)

≤ cn,δE (|Xs|ν)

≤ cn,δe
κ2.3as

[ ∫
|x|νdµ+ κ2.3as

]
.

Now let δ ↓ 0 in (5.7). As δ → 0, gδ
bp−→Rλf , and so λSλgδ → λSλRλf and∫

gδdµ →
∫
Rλf dµ by dominated convergence. The finite-dimensional arguments in

Lemma 6.1 of [BP03] show that as δ ↓ 0,

L0gδ = λgδ − e−λδPδf
bp−→λRλf − f and (L − L0)gδ bp−→(L − L0)Rλf. (5.8)

The latter implies that Sλ((L−L0)gδ) bp−→SλBλf and the former gives Sλ(L0gδ) bp−→λSλRλf

− Sλf . Therefore we may let δ → 0 in (5.7) to derive the required equality.

Now derive the result for a general f ∈ Cα by approximation. Recall fn(x) =

f ◦ πn(x), and so |fn|α.i ≤ |f |α,i implies fn ∈ Cα. By the above

Sλfn =

∫
Rλfndµ+ SλBλfn. (5.9)

Now

|Bλfn(x)− Bλf(x)| ≤
∑

i∈S
|γi(x)− γ0i | |x(i)(Rλfn)ii(x)− x(i)(Rλf)ii(x)|

+ |bi(x)− b0i | |(Rλfn)i(x)− (Rλf)i(x)|. (5.10)

Proposition 4.8 shows that each of the summands approaches 0 as n → ∞, while Lemma

4.4 and |fn|α,i ≤ |f |α,i show that the ith summand is at most

[|γi(x)− γ0i |+ |bi(x)− b0i |](γ0i )−1cα|f |αλ−α/2.
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This is summable by Assumption 5.1(a) and we may use dominated convergence in (5.10)

to see that |Bλfn(x)− Bλf(x)| → 0 as n→∞. The bound in Lemma 5.2 shows that the

convergence is also bounded and so SλBλfn → SλBλf . Since fn
bp−→f (Lemma 4.5), we

also have Sλfn → Sλf and
∫
Rλfndµ→

∫
Rλf dµ. Therefore we may let n→∞ in (5.9)

to complete the proof under (5.5).

To remove (5.5), let PN be the restriction of Pµ to {ω ∈ Ων : |X0(ω)|ν ≤ N}. Note

that PN solves MP(L, µN ), where µN = µ(· | |x|ν ≤ N). Here N is large enough so that

µ(|x|ν ≤ N) > 0. Let Hf,λ =
∫∞
0

e−λtf(Xt)dt. If f ∈ Cα, the previous case shows

∫
Hf,λdPN =

∫
RλfdµN +

∫
HBλf,λdPN .

Note Bλf and hence HBλf,λ are bounded by the upper bound in Lemma 5.2. Now let

N →∞ in the above to finish the proof.

Theorem 5.5. Assume (2.5), (2.7) and Assumption 5.1 holds with ρ ≤ ρ0 and ρ0 is as

in Proposition 5.3. For any probability µ on Mν(S), there is at most one solution to

MP(L, µ).

Proof. Let λ0 be as in Proposition 5.3 and assume λ > λ1 ≡ max(λ0, κ2.3a). Let Pµ satisfy

MP(L, µ). If f ∈ Cα, then Bλf ∈ Cα by Proposition 5.3, and so iterating Proposition 5.4

gives

Sλf =

∫ n∑

k=0

RλBk
λf dµ+ Sλ(Bn+1

λ f). (5.11)

By Proposition 5.3 ‖Bn+1
λ f‖∞ ≤ 2−(n+1)‖f‖α. This shows the last term in (5.11) converges

to 0 as n→∞ and
∑∞

k=0RλBk
λf converges uniformly on Mν(S) to a bounded continuous

function (recall (4.13)). Therefore letting n→∞ in (5.11) we arrive at

Sλf =

∫ ∞∑

k=0

RλBk
λf dµ, λ > λ1.

Inverting the Laplace transform (t → E µ(f(Xt)) is continuous) one sees that for any

t ≥ 0, E µ(f(Xt)) is uniquely defined for all f ∈ Cα. This shows Pµ(Xt ∈ ·) is unique (Cα
contains C1 functions of finitely many coordinates with compact support). A standard

result (see, e.g., Theorem 4.4.2 of Ethier-Kurtz [EK86]) now implies Pµ is unique. Strictly

speaking, the latter requires that Lf be bounded for our test functions f and M f
t should

be a martingale. However the only test functions we actually used were the functions

gδ =
∫∞
δ

e−λtPtf dt with f a function in Cα depending on finitely many coordinates. In

the proof of Lemma 5.4, the boundedness of Lgδ was made clear (see (5.8)), as was the fact
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that Mgδ
t is then a martingale (which is also then immediate as it is bounded on bounded

time intervals).

6. Uniqueness.

Proof of Theorem 2.7. A standard argument shows that it suffices to show that for

each z ∈ Mν(S) there is a unique solution to MP(L, δz) (see p. 136 of [Ba97].) Indeed,

once this is established, Ex. 6.7.4 in [SV79] shows the laws of Pz are Borel measurable in

z and then it is easy to see Pµ(·) =
∫

Pz(·)µ(dz) is the unique solution to MP(L, µ).
Assumption 2.6 implies the continuity of bi and γi on Mβν(S). It is therefore easy

to check that all the hypotheses of Theorem 2.4 are in force and hence existence holds.

Turning to uniqueness in MP(L, δz), let C be a compact set in Mν(S) containing

z. Assume the following:

For each x0 ∈ C there is a δ = δ(x0) > 0 and coefficients γ̃i, b̃i, i ∈ S, agreeing

with γi, bi, respectively, on B(x, δ) ∩ C = {x ∈ C : |x − x0|ν < δ} and such that

if L̃x0 =
∑

i x(i)γ̃ifii + b̃ifi, then MP(L̃x0 , δy) is well-posed (i.e., has a unique

solution) for all y ∈Mν(S). (6.1)

We first show that the theorem would then follow by a minor modification of the

localization argument in [SV79] (Theorem 6.6.1). Let P be a solution of MP(L, δz) and

let

TC = inf{t : Xt /∈ C}.

The tightness of P on Ων shows there are compact sets Cn in Mν(S) increasing in n such

that TCn ↑ ∞ P-a.s. It therefore suffices to show

P(X(· ∧ TC) ∈ ·) is unique. (6.2)

If δ(x0) is as in (6.1) we may choose a finite subcover {B(xi, δ(xi))}Ni=1 ≡ {Bi}Ni=1 of C.

Let λ > 0 be a Lebesgue number for this cover, that is, a number λ such that for each

x ∈ C there is an i with B(x, λ) ⊂ Bi. Set T0 = 0 and

Ti+1 = inf{t > Ti : |Xt −XTi |ν > λ or Xt ∈ Cc}.

Note Ti ↑ TC a.s. as i → ∞ by the continuity of X in Mν(S). Let {P̃x0
x : x ∈ Mν(S)}

be the unique solutions to MP(L̃x0 , δx) in (6.1). As noted above, x → P̃x0
x is Borel

measurable. If B(XTi , λ) ⊂ Bj (where we choose the minimal such j = j(XTi)) and

τ = inf{t : |Xt − X0| > λ or Xt ∈ Cc}, then the uniqueness of P̃
xj(XTi

)

X(Ti)
shows that

conditional on FTi , X((· + Ti) ∧ Ti+1) has law P̃
xj(XTi

)

X(Ti)
(X(· ∧ τ) ∈ ·). As in the proof of

Theorem 6.6.1 of [SV79], this easily gives (6.2).
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It remains to establish (6.1), so fix x0 ∈ C. Assume first bi ≥ 0 for all i ∈ S. For

r > 0 let ϕr : [0,∞) → [0, 1] be the map which is 1 on [0, r], 0 on [2r,∞), and linear on

[r, 2r]. Let ρ0 be as in Proposition 5.3 and choose δ0 = δ0(x0) > 0 as in Assumption 2.6

but with η = ρ0. By Lemma 3.1 we may assume C = Kε for some ε = {εn} decreasing to

0. If θ, x ∈ RS
+, define θ ∧ x ∈ RS

+ by (θ ∧ x)(i) = θ(i) ∧ x(i). Define ε : S → [0,∞) by

ε(i) = εn if i ∈ Sn+1 − Sn, n ≥ 0, and set θ(i) = ε(i)/ν(i). Let β be as in Assumption

2.6, where we may assume β ≤ 1 without loss of generality, and set δ = δ0/3, γ
0
i = γi(x0),

b0i = bi(x0). We define functions γ̃i, b̃i in (6.1) as follows:

γ̃i(x) = ϕδ(|(x ∧ θ)− x0|βν)γi(x ∧ θ) + (1− ϕδ(|(x ∧ θ)− x0|βν))γ0i ,
b̃i(x) = ϕδ(|(x ∧ θ)− x0|βν)bi(x ∧ θ) + (1− ϕδ(|(x ∧ θ)− x0|βν))b0i .

If x ∈ C and i ∈ Sn+1−Sn, then x(i)ν(i) ≤ εn and so x(i) ≤ θ(i), and hence x∧ θ = x. It

follows easily that γ̃i = γi and b̃i = bi on B(x0, δ)∩C (in fact we only need |x−x0|βν ≤ δ).

We claim (γ̃i, b̃i) satisfies the hypotheses of Theorems 2.4 and 5.5 and so (6.1) will follow

from those results. (2.5) implies

∑

i

b0i ν(i) =
∑

i

bi(x0)ν(i) ≤ κ2.3a(|x0|ν + 1) <∞, (6.3)

and so (4.2) holds for b0. (4.1) is immediate from γi > 0 and (2.7). Clearly ‖γ̃i‖∞ ≤ ‖γi‖∞
and so (2.7) for γ implies (2.7) for γ̃. Use (2.5) and (6.3) to see that

∑

i

|̃bi(x)|ν(i)

≤ ϕδ(|(x ∧ θ)− x0|βν)
∑

i

|bi(x ∧ θ)|ν(i) + (1− ϕδ(|(x ∧ θ)− x0|βν))
∑

i

b0i ν(i)

≤ κ2.3a(|x ∧ θ|ν + 1) + κ2.3a(|x0|ν + 1)

≤ c1(|x|ν + 1),

and hence derive (2.5) for b̃. Note that

ϕδ(|(x ∧ θ)− x0|βν) = 0 if |(x ∧ θ)− x0|βν ≥ 2δ = 2δ0/3

and therefore

∑

i

|γ̃i(x)− γ0i |
γ0i

+
|̃bi(x)− b0i |

γ0i

≤ ϕδ(|x ∧ θ − x0|βν)
∑

i

[ |γi(x ∧ θ)− γi(x0)|
γi(x0)

+
|bi(x ∧ θ)− bi(x0)|

γi(x0)

]

< ρ0 (6.4)
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by our choice of δ0. Therefore (γ̃i, b̃i) satisfies Assumption 5.1(a) with ρ = ρ0.

To check Assumption 5.1(c) note that

γ̃i(x+ hej)− γ̃i(x) = (γ̃i(x+ hej)− γ0i )− (γ̃i(x)− γ0i )

= ϕδ(|((x+ hej) ∧ θ)− x0|βν)(γi((x+ hej) ∧ θ)− γ0i )

− ϕδ(|(x ∧ θ)− x0|βν)(γi(x ∧ θ)− γ0i ),

and similarly for b̃i. Therefore, if h > 0, j ∈ S, and x ∈Mν(S),

∑

i

|γ̃i(x+ hej)− γ̃i(x)|(γ0i )−1 + |̃bi(x+ hej)− b̃i(x)|(γ0i )−1

≤
∑

i

|ϕδ(|((x+ hej) ∧ θ)− x0)|βν)− ϕδ(|(x ∧ θ)− x0|βν)|

× [γi((x+ hej) ∧ θ)− γ0i |(γ0i )−1 + |bi((x+ hej) ∧ θ)− b0i |(γ0i )−1]
+
∑

i

ϕδ(|(x ∧ θ)− x0|βν)[|γi((x+ hej) ∧ θ)− γi(x ∧ θ)|(γ0i )−1

+ |bi((x+ hej) ∧ θ)− bi(x ∧ θ)|(γ0i )−1]
≡ R1 +R2.

Note that (x+ hej) ∧ θ = (x ∧ θ) + hjej , where hj = h ∧ (θj − xj)
+. Therefore

|ϕδ(|((x+ hej) ∧ θ)− x0|βν)− ϕδ(|(x ∧ θ)− x0|βν)| (6.5)

≤ cδ((h ∧ θj)β(j)ν(j)) ∧ 1)1(x(j)<θ(j)) ≡ cδδj(x).

If |((x+ hej) ∧ θ)− x0|βν ≤ δ0, this and Assumption 2.6(a) imply

R1 ≤ cδδj(x)ρ0. (6.6)

If |(x ∧ θ)− x0|βν ≤ δ0, then use Assumption 2.6(b) and Assumption 2.6(a) to see that

∑

i

|γi((x+ hej) ∧ θ)− γ0i |(γ0i )−1 + |bi((x+ hej) ∧ θ)− b0i |(γ0i )−1

≤
∑

i

|γi((x ∧ θ) + hjej)− γi(x ∧ θ)|(γ0i )−1 + |bi((x ∧ θ) + hjej)− bi(x ∧ θ)|(γ0i )−1

+
∑

i

|γi(x ∧ θ)− γ0i |(γ0i )−1 + |bi(x ∧ θ)− b0i |(γ0i )−1

≤ κ2.6b(γj(x0))
−α/2(θj ∧ xj)

−α/2hα
j ) + ρ0. (6.7)

This gives (recall xj < θj or else R1 = δj(x) = 0)

R1 ≤ c2δj(x)
[
(γ0j )

−α/2x
−α/2
j (h ∧ θj)

α + ρ0

]
. (6.8)
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If Assumption 2.6(c) holds, note first that θj → 0 as |j| → ∞, since ν(j)→∞ as |j| → ∞.

Hence supj hj < ∞ and at the cost of increasing κ2.6b we may apply Assumption 2.6(c)

with h = hj to get

R1 ≤ c3δj(x)(γ
0
j )
−α/2(h ∧ θj)

α(1 + (xj ∧ θj)
−α/2) + ρ0)

and so

R1 ≤ c3δj(x)
[
(γ0j )

−α/2(h ∧ θj)
αx
−α/2
j + ρ0

]
,

the last because supj θj < ∞ and xj < θj (or else R1 = 0). Hence we get (6.8) in either

case.

Next we claim

δj(x) ≤ c4h
αx
−α/2
j (γ0j )

−α/2. (6.9)

Assume this for the moment. Then we may use this and the trivial bound δj ≤ 1 in (6.8)

to derive

R1 ≤ c4h
αx
−α/2
j (γ0j )

−α/2. (6.10)

To prove (6.9) use the bound on β in Assumption 2.6 and xj < θ(j) ≤ c5ν(j)
−1 to

see
h−αx

α/2
j δj(x) ≤ c6(h ∧ (ν(j))−1)h−αθ(j)α/2ν(j)1−α/2

≤ c6(h ∧ (ν(j))−1)h−αν(j)1−α

= c6((hν(j))
1−α ∧ (hν(j))−α) ≤ c6.

As supj γ
0
j <∞, (6.9) follows and hence so does (6.10).

Next we show

R2 ≤ c7h
αx
−α/2
j (γ0j )

−α/2. (6.11)

If Assumption 2.6(b) holds this is immediate because hj ≤ h and R2 = 0 if xj ≥ θj .

Assume Assumption 2.6(c). Then as hj ≤ θj ≤ ‖θ‖∞ < ∞, we may apply Assumption

2.6(c) with h = hj and assume xj ≤ θj ≤ ‖θ‖∞ to conclude

R2 ≤ κ2.6b(γ
0
j )
−α/2(h ∧ θj)

α(1 + (xj ∧ θ(j))−α/2)

≤ c8(γ
0
j )
−α/2hαx

−α/2
j .

Finally (6.10) and (6.11) show Assumption 5.1(c) holds for (γ̃j , b̃j).

Next consider Assumption 5.1(b). Let x ∈ Mν(S) and η > 0. If |(x ∧ θ)− x0|βν >
2
3δ0, assume |x′ − x|βν < |(x ∧ θ)− x0|βν − 2

3δ0, so that

|(x′ ∧ θ)− x0|βν ≥ |(x ∧ θ)− x0|βν − |(x ∧ θ)− (x′ ∧ θ)|βν
≥ |(x ∧ θ)− x0|βν − |x− x′|βν
> 2

3δ0
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as well. Then γ̃i(x) = γ̃i(x
′) = γ0i and b̃i(x) = b̃i(x

′) = b0i and so Assumption 5.1(b) holds

as both sides are zero. (Here we are taking limits in the weaker norm | · |βν , as will be the

case below.) Assume therefore that |(x∧ θ)−x0|βν ≤ 2
3δ0 = 2δ. By Assumption 2.6(a) we

may choose δ1 < η so that

if |x′−x|βν < δ1, then
∑

i

[ |γi(x′)− γi(x)|
γi(x)

+
|bi(x′)− bi(x)|

γi(x)

]
< η. (6.12)

Suppose |x′ − x|βν < δ1. This implies |(x′ ∧ θ)− (x ∧ θ)|βν < δ1. Note that as

|(x ∧ θ)− x0|βν ≤ 2
3δ0 < δ0, ∣∣∣γi(x ∧ θ)

γi(x0)
− 1

∣∣∣ < ρ0,

and so
γi(x ∧ θ)

γi(x0)
< 1 + ρ0. (6.13)

Therefore

∣∣∣
∑

i

|γ̃i(x′)− γ0i |
γ0i

+
|̃bi(x′)− bi(0)|

γ0i
−
∑

i

|γ̃i(x)− γ0i |
γ0i

+
|̃bi(x)− b0i |

γ0i

∣∣∣

≤ ϕδ(|(x′ ∧ θ)− x0|βν)
(∑

i

|γi(x′ ∧ θ)− γi(x ∧ θ)|
γ0i

+
|bi(x′ ∧ θ)− bi(x ∧ θ)|

γ0i

)

+ |ϕδ(|(x′ ∧ θ)− x0|βν)− ϕδ(|(x ∧ θ)− x0|βν)|

×
(∑

i

|γi(x ∧ θ)− γ0i |
γ0i

+
|bi(x ∧ θ)− b0i |

γ0i

)

≡ S1 + S2.

Use (6.12) and (6.13) to see that

S1 < η(1 + ρ0).

Use Assumption 2.6(a) and our choice of δ0 to see that (recall |(x ∧ θ)− x0|βν < δ0)

S2 ≤ cδ|(x′ ∧ θ)− (x ∧ θ)|βνρ0 ≤ cδ|x′ − x|βνρ0 ≤ cδηρ0.

These bounds verify Assumption 5.1(b) for (γ̃i, b̃i) and complete the verification of the

hypotheses of Theorem 5.5.

Now consider the conditions in Theorem 2.4. The continuity of γ̃i and b̃i on Mβν(S)

is clear. (2.6) for b̃ is clear as b̃i ≥ 0, and the other conditions have already been checked.

This completes the proof of (6.1) and hence the theorem if bi ≥ 0.

666



Next assume (2.10), i.e., lim|i|→∞ ν(i) = ∞ and bi(x) ≥ −κ2.7xiγi(x). Let ν =

infi ν(i) > 0. As increasing β only weakens the hypotheses and multiplying β by a

constant will not change the conditions, we may assume β(i) = ν(i)−α/2. Let b̂i(x) =

bi(x) + κ2.7xiγi(x) ≥ 0. We claim (b̂i, γi) satisfy the hypotheses of the previous case.

As Assumption 2.6(c) is now a weaker condition than 2.6(b), we assume (bi, γi) satisfies

Assumption 2.6(a),(c). By (2.7) and (2.5)

∑

i

|̂bi(x)|ν(i) ≤
∑

i

|bi(x)|ν(i) + κ2.7κ2.4
∑

i

x(i)ν(i) ≤ c9(|x|ν + 1),

and so (2.5) holds for b̂. The continuity of b̂i on Mβν(S) = M
ν1−α

2
(S) is clear. To check

Assumption 2.6(a), let x0 ∈Mν(S) and η > 0. Then

∑

i

|̂bi(x)− b̂i(x0)|
γ0i

≤
∑

i

|bi(x)− bi(x0)|
γ0i

+ κ2.7
∑

i

γi(x)

γ0i
|x(i)− x0(i)|

+ κ2.7
∑

i

|γi(x)− γi(x0)|
γi(x0)

x0(i)

≡ T1 + T2 + T3.

By Assumption 2.6(a) we may choose δ0 such that |x− x0|βν < δ0 implies T1 < η and

T3 < η‖x0‖∞ ≤ η|x0|ν/ν.

For |x− x0|βν < δ0 we may bound T2 by

κ2.7
∑

i

|γi(x)− γi(x0)|
γi(x0)

‖x− x0‖∞ + κ2.7
∑

i

|x(i)− x0(i)|

≤ c10[η|x− x0|βν + |x− x0|βν ].

In the last line we used β(i)ν(i) = ν(i)1−α/2 → ∞, and so βν is bounded below. This

shows (̂bi, γi) satisfies Assumption 2.6(a).

By Assumption 2.6(c) (for (bi, γi)), if h ∈ (0, 1], j ∈ S, and |x− x0|βν < δ0,

∑

i

|̂bi(x+ hej)− b̂i(x)|
γi(x0)

≤
∑

i

|bi(x+ hej)− bi(x)|
γi(x0)

+
∑

i

γi(x+ hej)hδij
γi(x0)

+
∑

i

|γi(x+ hej)− γi(x)|
γi(x0)

xi (6.14)

≤ κ2.6bγj(x0)
−α/2hα(1 + x

−α/2
j )(1 + ‖x‖∞) +

γj(x+ hej)

γj(x0)
h.
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The last term is bounded by
[ |γj(x+ hej)− γj(x)|

γj(x0)
+
|γj(x)− γj(x0)|

γj(x0)
+ 1

]
h

≤ [κ2.6bγj(x0)
−α/2hα(1 + x

−α/2
j ) + η + 1]h

≤ c11(γj(x0))
−α/2hα(1 + x

−α/2
j ),

where in the last line we use supj γj(x0) <∞ and h ≤ 1. In addition, ‖x‖∞ ≤ c12|x|βν ≤
c13[|x0|βν+δ0]. Put these bounds into (6.14) to see that (b̂i, γi) satisfies Assumption 2.6(c)

and hence all the hypotheses of the previous case.

We now check (6.1) for (bi, γi) by a Girsanov argument. Let (βi, γ̃i) denote the

coefficients constructed above for which (6.1) holds; that is βi = (̃̂bi). Let

{P̂x0
x : x ∈ Mν(S)} be the corresponding measurable (recall this is a consequence of

uniqueness) unique solutions of MP(L̂, δx) (L̂ has coefficients (βi, γ̃i)). Let b̃i(x) = βi −
κ2.7xiγ̃i(x). Let L̃ be the generator with coefficients (b̃i, γ̃i). Note that if |x− x0|ν < δ,

γ̃i(x) = γi(x) and b̃i(x) = b̂i(x)− κ2.7xiγi(x) = bi(x).

Let P be a solution to MP(L̃, δz), z ∈ Mν(S). Define M i
t = Xt(i) − x0(i) −

∫ t

0
b̃i(Xs)ds

and

Rt = exp
(∑

i

κ2.7
2

M i
t −

κ22.7
4

∫ t

0

Xs(i)γ̃i(Xs)ds
)
.

Under P, N i
t = κ2.7M

i
t/2 is a collection of orthogonal continuous local martingales such

that ∑

i

〈N i〉t =
κ22.7
2

∫ t

0

∑

i

Xs(i)γ̃i(Xs)ds

≤ κ22.7
2

sup
i
‖γ̃i‖∞

∫ t

0

|Xs|ν
ν

ds <∞, t > 0, a.s.

This shows that Rt is a well defined positive local martingale. Define

Tn = inf{t : |Xt|ν > n} ↑ ∞ P-a.s. It follows from the above that (Rt∧Tn : t ≥ 0) is

a uniformly integrable positive martingale starting at 1 and so dQn = RTndP defines a

probability on (Ων ,F). Under P,
(
M i

t∧Tn −
∫ t∧Tn

0

κ2.7Xs(i)γ̃i(Xs)ds
)
Rt∧Tn

differs by a continuous local martingale from

−κ2.7

∫ t∧Tn

0

Xs(i)γ̃i(Xs)Rsds+ 〈M i, R〉t∧Tn

= −κ2.7

∫ t∧Tn

0

Xs(i)γ̃i(Xs)Rsds+
κ2.7
2

∫ t∧Tn

0

Rs2γ̃i(Xs)Xs(i)ds

= 0.
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Therefore

Xi
t − x0(i)−

∫ t

0

b̃i(Xs) + κ2.7Xs(i)γ̃i(Xs)ds = Xi
t − x0(i)−

∫ t

0

βi(Xs)ds

is a local martingale under Qn. Let Q̂n be the unique law on (Ων ,F) such that Q̂n|FTn =

Qn|FTn and Q̂n(X(Tn + ·) ∈ ·) | FTn) = Px0

X(Tn)
(·). Then it is easy to see from the above

and Itô’s formula that Q̂n solves MP(L̂, δz) and so Q̂n = P̂x0
z . This implies

Qn(Tn < t) = P̂x0
z (Tn < t)→ 0

as n→∞. Therefore
P(Rt) ≥ P(Rt∧Tn1(Tn≥t))

= P(Rt∧Tn)−Qn(Tn < t)

→ 1

as n → ∞. This proves (Rt : t > 0) is a martingale under P and so dQ|Ft = RtdP|Ft
defines a probability on (Ων ,F). Now we repeat the above without the Tn’s to see that

Q = P̂x0
z . Therefore if M̂ i

t = M i
t − κ2.7

∫ t

0
Xs(i)γ̃i(Xs)ds, then

dP|Ft = R−1t dP̂x0
z |Ft

= exp
(
−
∑

i∈S

κ2.7
2

M i
t +

κ22.7
4

∫ t

0

Xs(i)γ̃i(Xs)ds
)
dP̂x0

z |Ft

= exp
(
−
∑

i∈S

κ2.7
2

M̂ i
t −

κ22.7
4

∫ t

0

Xs(i)γ̃i(Xs)ds
)
dP̂x0

z |Ft .

This shows P is unique. Existence of solutions toMP(L̃, δz) can be shown by either using

the above formula or directly applying Theorem 2.4. For the latter note by (2.7) for γ̃,

that b̃i ≥ −κ2.7κ2.4xi. This verifies (6.1) for (bi, γi) and so the proof is complete.

7. Proofs of corollaries.

Proof of Corollary 2.8. Fix x, y ∈Mν(S) and define zn ∈Mν(S) by

zn(i) =

{
x(i), i ∈ Sn

y(i), i /∈ Sn
. (7.1)

Then |zn − x|ν → 0 as n→∞ by dominated convergence. The continuity of γi implies

|γi(x)− γi(y)| = lim
n→∞

|γi(zn)− γi(z0)|

≤
∞∑

n=0

|γi(zn+1)− γi(zn)|

=
∞∑

n=0

∣∣∣γi
(
zn +

∑

j∈Sn+1−Sn

(xj − yj)ej

)
− γi(zn)

∣∣∣.
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A similar bound on |bi(x)− bi(y)| and an application of (2.12) leads to

∑

i∈S
|γi(x)− γi(y)|+ |bi(x)− bi(y)| ≤

∑

i∈S

∞∑

n=0

∑

j∈Sn+1−Sn

C(i, j)|xj − yj |α

=
∑

j∈S
C(j)|xj − yj |α (7.2)

If α = 1, thanks to (2.13), this leads to

∑

i∈S
|γi(x)− γi(y)|+ |bi(x)− bi(y)| ≤ c1|x− y|1. (7.3)

If α < 1, set τ = τ(α) = α(1− α
2 ). Then Hölder’s inequality and (2.13) bound (7.2)

by

∑

j

C(j)ν(j)−τν(j)τ |xj − yj |α

≤
[∑

j

C(j)1/(1−α)ν(j)−τ/(1−α)
]1−α[∑

j

ν(j)τ/α|x(j)− y(j)|
]α

= c2|x− y|α
ν1−α

2
. (7.4)

Assumption 2.6(a) with β = ν−α/2 follows from (2.11), and (7.3) if α = 1 or (7.4) if

α < 1. If α = 1, note that | · |βν is a stronger norm that | · |1. (7.3) and (7.4) also show

that bi and γi are uniformly continuous on Mν(S) with respect to | · |ν1−α/2 and so have

unique continuous extensions to Mν1−α/2(S). Assumption 2.6(c) is a simple consequence

of (7.2), supj C(j) < ∞ (by (2.13)), (2.11), and (2.7). (2.10) follows from (2.11) and

Assumption 2.3(b), and so Theorem 2.7 applies.

Proof of Corollary 2.9. We verify the hypotheses of Theorem 2.7. Let

b̃i(x) =
∑

j

xjqji.

Then ∑

i

|̃bi(x)|ν(i) =
∑

i

∣∣∣
∑

j

xjqji

∣∣∣ν(i) ≤
∑

j

xj [κ2.9ν(j) + qν(j)] ≤ c1|x|ν .

Hence (2.5) holds with b replaced by b̃; it follows that Assumption 2.3(a) holds for b. By

(2.14), (2.10) with b replaced by b̃, and (2.11),

bi(x) ≥ b̂i(x) + xiqii ≥ (−c2γi(x)− qii)xi ≥ −c3γi(x)xi.
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Hence (2.10) holds with b. Next consider Assumption 2.6 with β = ν−α/2. We may assume

without loss of generality that b̂i satisfies Assumption 2.6(a) and (c) with β = ν−α/2. Note

that if x, x0 ∈Mν(S), then

∑

i

|̃bi(x)− b̃i(x0)| ≤
∑

i

∑

j

|x(j)− x0(j)| |qji| ≤ 2q
∑

j

|x(j)− x0(j)|

≤ c4|x− x0|ν1−α/2 .

Assumption 2.6(a) follows for (bi)i∈S as does the fact that b̃i, and hence bi, has a continuous

extension to Mν1−α/2(S). If h ∈ (0, 1] and j ∈ S, then

∑

i

|̃bi(x+ hej)− b̃i(x)| =
∑

i

∣∣∣
∑

`

(x` + hδij)q`i −
∑

`

x`q`i

∣∣∣

≤
∑

i

h|qji| ≤ 2qhα.

In view of (2.7) and (2.11) this shows b̃i, and hence bi, satisfies Assumption 2.6(c). This

establishes the hypotheses of Theorem 2.7.

Proof of Corollary 2.10. Our choice of p implies supj C(j) <∞. The choice of q then

easily gives (2.13). The required result now follows from Corollary 2.8.

Proof of Corollary 2.11. By Corollary 2.10 (and its proof) (b̂i, γi)i∈S satisfies the

hypotheses of Corollary 2.9, and hence Theorem 2.7. Also (2.11) holds by hypothesis. The

required result will therefore follow from Corollary 2.9 if we can show (2.14) and (2.15)

hold. The former is trivial. For (2.15) note that

∑

i

1(i 6= j)qji(|i|+ 1)q = λ
∑

k

p(k)(|j + k|+ 1)q

≤ c1λ
∑

k

p(k)(|k|q + (|j|+ 1)q)

≤ c1λ[mq + (|j|+ 1)q] ≤ c3λ(|j|+ 1)q.

This gives (2.15) and completes the proof.

Proof of Corollary 2.12. We apply Corollary 2.11 with b̂i ≡ 0. We only need to check

that (γi) satisfies (2.12). Assume |γ(x)−γ(y)| ≤ c1|x−y|α, where | · | is the usual distance
on RN . Then for any fixed p > d,

|γi(x+ hej)− γi(x)| ≤ 1(|i−j|≤R)c1h
α ≤ c2(|i− j|+ 1)−phα.
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and so (2.12) is valid.
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