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Abstract

We prove an almost sure central limit theorem (CLT) for spatial extension of stretched
(meaning subject to a non-zero pulling force) polymers at very weak disorder in all
dimensions d+ 1 ≥ 4.
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1 Introduction and Results

Directed polymers in random media were introduced in [7] as an effective model of
Ising interfaces in systems with random impurities. The precise mathematical formula-
tion appeared in the seminal paper [9], which triggered a wave of subsequent investi-
gations. The model of directed polymers can be described as follows. Let η = (ηk)0≤k≤n
be a nearest-neighbour path on Zd starting at 0, and let γ = (γk)0≤k≤n with γk = (k, ηk)

be the corresponding directed path in Zd+1. Let also {V (x)}x∈Zd+1 be a collection of
i.i.d. random variables with finite exponential moments, whose joint law is denoted by
P. One is then interested in the behaviour of the path γ under the random probability
measure

µωn(γ) = (Zωn;β)−1 exp
(
−β

n∑
k=1

V (γk)
)

(2d)−n,

where β ≥ 0 is the inverse temperature. The behaviour of the path γ is closely related
to the behaviour of the partition function Zωn;β . Namely, one distinguishes between two
regimes: the weak disorder regime, in which limn→∞ Zωn;β/E(Zωn;β) > 0, P-a.s., and the
strong disorder regime, in which this limit is zero. It is known [2] that there is a sharp
transition between these two regimes at an inverse temperature βc which is non-trivial
when d ≥ 3. In the weak disorder regime (β < βc), the path γ behaves diffusively, in
that γn satisfies a CLT. Diffusivity at sufficiently small values of β was first established
in [9]; this was extended to an almost-sure CLT in [1]; a CLT (in probability) valid in the
whole weak disorder regime was then obtained in [2].
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An almost sure CLT for stretched polymers

In dimensions d ≥ 3 the sequence Zωn;β/E(Zωn;β) is bounded in L2 for all sufficiently
small values of β. In such a situation local limit versions of the CLT, which hold in
probability, were established in [16, 18].

In the case of directed polymers the disorder is always strong in dimensions d =

1, 2 [3, 14] and at sufficiently low temperatures. Concerning the (nondiffusive) be-
haviour in the strong disorder regime, we refer the reader to [4] and references therein.

In this work, we consider diffusive behaviour in dimensions d+ 1 ≥ 4 for the related
models of stretched polymers. The choice of notation d+1 indicates that stretched poly-
mers on Zd+1 should be compared with directed polymers in d dimensions. However,
a stretched path γ can be any nearest-neighbour path on Zd+1, which is permitted to
bend and to return to particular vertices an arbitrary number of times. The disorder
is modelled by a collection {V (x)}x∈Zd+1 of i.i.d. non-negative random variables. Each
visit of the path to a vertex x exerts the price e−βV (x). The stretch is introduced in one
of the following two natural ways:

• The path γ starts at 0 and ends at a hyperplane at distance n from 0 and has
arbitrary length. This is a model of crossing random walks in random potentials.
In dimension d + 1 = 2, it presumably provides a better approximation to Ising
interfaces in the presence of random impurities.

• The path γ has a fixed length n, but it is subject to a drift, which can be interpreted
physically as the effect of a force acting on the polymer’s free end.

The precise model is described below. At this stage let us remark that models of
stretched polymers have a richer morphology than models of directed polymers. Even
the issue of ballistic behaviour for annealed models is non-trivial [10, 8, 13]. The issue
of ballistic behaviour in the quenched case is still not resolved completely, and, in or-
der to ensure ballisticity one needs to assume that the random potential V is strictly
positive in the crossing case, and that the applied drift is sufficiently large in the fixed
length case. Both conditions are designed to ensure a somewhat massive nature of the
model.

As in the directed case, the disorder is always strong [21] in low dimensions d+ 1 =

2, 3 or at sufficiently low temperatures.

In the case of higher dimensions d+1 ≥ 4, the existence of weak disorder on the level
of equality between quenched and annealed free energies was established in [6, 20].
The case of high temperature discrete Wiener sausage with drift was addressed in [17].

In the crossing case, a CLT in probability was established in [11] in all dimensions
d+ 1 ≥ 4 at sufficiently high temperatures.

The aim of the present paper is to establish an almost-sure CLT for the endpoint of
the fixed-length version of the model of stretched polymers with non-zero drifts, also at
sufficiently high temperatures and in all dimensions d+ 1 ≥ 4.

1.1 Class of Models

Polymers. For the purpose of this paper, a polymer γ = (γ0, . . . , γn) is a nearest-
neighbour trajectory on the integer lattice Zd+1. Unless stressed otherwise, γ0 is al-

ways placed at the origin. The length of the polymer is |γ| ∆
= n and its spatial extension

is X(γ)
∆
= γn−γ0. In the most general case, neither the length nor the spatial extension

are fixed.

Random Environment. The random environment is a collection {V (x)}x∈Zd+1 of non-
degenerate non-negative i.i.d. random variables which are normalised by 0 ∈ supp(V ).

There is no moment assumptions on V . The case of traps, p∞
∆
= P (V =∞) > 0, is not
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excluded, but then we shall assume that p∞ is small enough. In particular, we shall as-
sume that P-a.s. there is an infinite connected cluster Cl∞(V ) of the set {x : V (x) <∞}
in Zd+1. In fact, we shall assume more: Given Rd+1 3 h 6= 0 and a number δ ∈ (0, 1√

d+1
),

define the positive cone

Yhδ
∆
=
{
x ∈ Rd+1 : x · h ≥ δ |x| |h|

}
. (1.1)

By construction, the cones Yhδ always contain at least one lattice direction ±ei, i =

1, . . . , d+1. We assume that it is possible to choose δ in such a fashion that, for any h, the

intersection Clh,δ∞ (V )
∆
= Cl∞(V )∩Yhδ contains (P-a.s.) an infinite connected component.

For the rest of the paper, we fix such a δ ∈ (0, 1√
d+1

) and use the reduced notation Yh

and Clh∞(V ) for the corresponding cones (1.1) and percolation clusters.

Weights and Path Measures. The reference measure p(γ)
∆
= (2(d + 1))−|γ| is given

by simple random walk weights. The polymer weights we are going to consider are
quantified by two parameters: the inverse temperature β ≥ 0 and the external pulling
force h ∈ Rd+1.
The random quenched weights are given by

qωh,β(γ)
∆
= exp

{
h ·X(γ)− β

|γ|∑
1

V (γi)
}
p(γ). (1.2)

The corresponding deterministic annealed weights are given by

qh,β(γ)
∆
= Eqωh,β(γ) = exp {h ·X(γ)− Φβ(γ)} p(γ), (1.3)

where Φβ(γ)
∆
=
∑
x φβ

(
`γ(x)

)
, with `γ(x) denoting the local time (number of visits) of γ

at x, and

φβ(`)
∆
= − logEe−β`V . (1.4)

Note that the annealed potential is positive, non-decreasing and attractive, in the sense
that

0 < φβ(`) ≤ φβ(`+m) ≤ φβ(`) + φβ(m), ∀ `,m ∈ N. (1.5)

In the sequel, we shall drop the index β from the notation, and we shall drop the index

h whenever it equals zero. With this convention, the quenched partition functions are
defined by

Qωn(x)
∆
=

∑
X(γ)=x
|γ|=n

qω(γ), Qωn(h)
∆
=
∑
|γ|=n

qωh (γ) =
∑
x

eh·xQωn(x), (1.6)

and we use Qn(x)
∆
= EQωn(x) and Qn(h)

∆
= EQωn(h) to denote their annealed counter-

parts.
Finally, we define the corresponding quenched and annealed path measures by

Qωn,h(γ)
∆
= 1{|γ|=n}

qωh (γ)

Qωn(h)
and Qn,h(γ)

∆
= 1{|γ|=n}

qh(γ)

Qn(h)
. (1.7)

Very Weak Disorder. The notion of very weak disorder is technical and it depends on
the strength |h| of the pulling force , dimension d ≥ 3 and the distribution of V . By
Lemma 2.1 below, there exists a function ζd on (0,∞) such that a certain L2-estimate
(2.4) holds if φβ(1) < ζd(|h|).

Definition 1.1. The model of stretched polymers is in the regime of very weak disorder
if d ≥ 3 and

φβ(1) < ζd(|h|). (1.8)
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1.2 The Result

Fix h 6= 0. Then [19, 5, 10]

λ = λ(β, h)
∆
= lim
n→∞

1

n
logQn(h) ∈ (0,∞), (1.9)

for all sufficiently small β. The following two quantities play a central role in our limit
theorems:

v = v(h, β)
∆
= ∇λ(h), Σ

∆
= Hess[λ](h).

If β is sufficiently small then v 6= 0 and the matrix Σ is positive definite and, moreover, v
and Σ are the limiting spatial extension and, respectively, the diffusivity matrix for the
annealed model. (Sections 4.1,4.2 in [10]). In Subsection 2.1 we recall further relevant
facts about the annealed model.

Theorem A. Fix h 6= 0. Then, in the regime of very weak disorder, the following holds
P-a.s. on the event {0 ∈ Cl∞(V )}:

• The limit

lim
n→∞

Qωn(h)

Qn(h)
(1.10)

exists and is a strictly positive, square-integrable random variable.

• There exists a sequence {εn} with lim εn = 0, such that∑
n

Qωn,h

(∣∣X(γ)

n
− v
∣∣ > εn

)
<∞. (1.11)

• For every α ∈ Rd+1,

lim
n→∞

Qωn,h

(
exp
{ iα√

n
(X(γ)− nv)

})
= exp

{
− 1

2Σα · α
}
. (1.12)

We would like to stress that, in contrast to the case of directed polymers [2], our
CLT does not pertain to the whole of the weak disorder region. The procedure of first
fixing h 6= 0 and then going to β > 0 sufficiently small is essential. Furthermore, even
in the regime we are working with, (1.12) falls short of the local CLT form of results as
developed for directed polymers in [18]. These and related issues remain open in the
context of stretched polymers.

Few remarks on the history of the problem: Flury [6] had established that under the
conditions of Theorem A (and some additional moment assumptions of the potential V )

lim
n→∞

1

n
log

Qωn(h)

Qn(h)
= 0 (1.13)

for on-axis exterior forces h. (1.13) was then extended to arbitrary directions h ∈ Rd+1

by Zygouras [20]. In [6], the analysis was carried out directly in the canonical ensemble
of polymers with fixed length n. In [20], the author derives results for the conjugate
ensemble of the so-called crossing random walks.

Large deviations (LD) under both Qn,h and Qωn,h were investigated in [19, 5]. The re-
sults therein imply that, under the conditions of Theorem A, the model is ballistic in the
sense that the value of the quenched rate function at zero is strictly positive. However,
[19, 5] do not imply a law of large numbers (LLN) even in the annealed case. In particu-
lar, these works do not contain information on the strict convexity of the corresponding
rate functions. The issue of strict convexity for the annealed rate functions was set-
tled in [10]. Therefore, (1.11) is a direct consequence of (1.13) and of the analysis of
annealed canonical measures in [10].
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The main new results of this work are (1.10) and (1.12). A version of Theorem A
for the ensemble of crossing random walks appears in [11]. The length of crossing
random walks is not fixed (only suppressed by an additional positive mass), and they
are required to have their second endpoint on a distant hyperplane. In this way, cross-
ing random walks in random potential are much more “martingale”-like than canonical
random walks. Moreover, the canonical constraint of fixed length does not facilitate
computations, to say the least. Finally, the CLT of [11] was only established in proba-
bility and not P-a.s. Thus, although the techniques developed in [11] are useful here,
they certainly do not imply the claims of Theorem A, and an alternative approach was
required.

1.3 Irreducible Decomposition, Basic Ensembles and Basic Partition Func-
tions

A polymer γ = (γ0, . . . , γn) is said to be cone-confined if

γ ⊂
(
γ0 + Yh

)
∩
(
γn − Yh

)
. (1.14)

A cone-confined polymer which cannot be represented as the concatenation of two (non-
singleton) cone-confined polymers is said to be irreducible. We denote by T (x) the
collection of all cone-confined paths leading from 0 to x, and by F(x) ⊂ T (x) the set
of irreducible cone-confined paths. In the sequel we shall refer to F(x) and T (x) as to
basic ensembles. The basic partition functions are defined by

tωx,n
∆
= e−λn

∑
γ∈T (x)

1{|γ|=n}q
ω
h (γ) and fωx,n

∆
= e−λn

∑
γ∈F(x)

1{|γ|=n}q
ω
h (γ). (1.15)

We also set, accordingly, tωn
∆
=
∑
x t
ω
x,n and fωn

∆
=
∑
x f

ω
x,n. The annealed counterparts of

all these quantities are denoted by tx,n
∆
= Etωx,n, fx,n

∆
= Efωx,n, tn

∆
= Etωn and fn

∆
= Efωn .

As shown in Section 3.6 of [10], the collection {fx,n} forms a probability distribution,∑
n

∑
x

fx,n =
∑
n

fn = 1,

with exponentially decaying tails:∑
m≥n

fm
∆
=
∑
m≥n

∑
x

fx,m ≤ e−νn, (1.16)

where ν = ν(β, h)→∞ as β becomes large, and infβ≥0 ν(β, h) > 0, for all h 6= 0.

Remark 1.2. Since by definition polymers are nearest neighbour paths, it always holds
that tx,n = tx,n1{|x|≤n}.

As in [11, Subsections 2.7 and 3.5], the following statement about basic ensembles
implies the claims (1.10) and (1.12) of Theorem A:

Theorem B. Fix h 6= 0. Then, in the regime of very weak disorder, the following holds

P-a.s. on the event
{

0 ∈ Clh∞(V )
}

:

• The limit

sω
∆
= lim
n→∞

tωn
tn

(1.17)

exists and is a strictly positive, square-integrable random variable.
• For every α ∈ Rd+1,

lim
n→∞

1

tωn

∑
x

exp
{ iα√

n
· (x− nv)

}
tωx,n = exp

{
− 1

2Σα · α
}
. (1.18)

For the rest of the paper, we shall focus on the proof of Theorem B.
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2 Proof of Theorem B

To facilitate the exposition, we shall consider the case of on-axis external force
h = he1. The proof, however, readily applies for any non-zero h ∈ Rd+1. By lattice
symmetries, the mean displacement v = ∇λ(h) lies along the direction e1; v = ve1. As
it was already mentioned in the beginning of Subsection 1.2, v 6= 0 whenever β is small
enough. We proceed assuming that both the drift and the speed are positive h, v > 0.

2.1 Three Main Inputs

The reduction to basic ensembles constitutes the central step of the Ornstein-Zernike
theory. We rely on three facts: The first is the refined description of the annealed phase
in the ballistic regime (which, in our regime, will always correspond to first fixing h 6= 0

and then choosing β > 0 small enough). Below, we shall summarize the required results
from [10, 12]. The second is an L2-type estimate on overlaps which holds for all β suf-
ficiently small, and which could be understood as quantifying the notion of very weak
disorder we employ here. The third is a maximal inequality for the so-called mixin-
gales, due to McLeish. Unlike directed polymers, stretched polymers do not possess
natural martingale structures, and McLeish’s result happens to provide a convenient
alternative framework.

Ornstein-Zernike theory of annealed models. Annealed asymptotics of tn in the
ballistic regime are not related to the strength of disorder and hold for all values of
β ≥ 0 and appropriately large drifts h . In particular, for each h 6= 0 fixed, the annealed
model is ballistic for all sufficiently small β. We refer to [10, Sections 4.1 and 4.2] and
to [12, Section 4.2] for the proof of the following: Fix h 6= 0; then, for all β > 0 small
enough, λ(h) > 0, ∇λ(h) 6= 0 and Hess[λ](h) is positive definite. Furthermore, there
exist a small complex neighbourhood U ⊂ Cd+1 of the origin, an analytic function µ

(with µ(0) = 0) on U and a non-vanishing analytic function κ 6= 0 on U such that:

lim
n→∞

e−nµ(z)tn(z)
∆
= lim
n→∞

e−nµ(z)
∑
x

tx,nez·x =
1

κ(z)
, (2.1)

uniformly exponentially fast on U . Note [12] (Section 4.2) that λ(h+ z) = λ(h) +µ(z) for
real z, and thus v = ∇λ(h) = ∇µ(0) and Σ = Hess[λ](h) = Hess[µ](0).

The annealed model satisfies a local LD upper bound: There exists c = c(β, h) > 0

such that, for all x ∈ Yh,

tx,n ≤
1

c
√
nd+1

exp
{
−c |x− nv|

2

n

}
. (2.2)

In view of Remark 1.2 the above bound is trivial whenever |x| > n.
Finally, it is a straightforward consequence of (2.1) that the following annealed CLT
holds:

Sn
( α√

n

) ∆
=
∑
x

tx,n exp
{
i
α√
n
· (x− nv)

}
=

1

κ(0)
exp
{
− 1

2Σα · α
}(

1 +O(n−1/2)
)
, (2.3)

with the second asymptotic equality holding uniformly in α on compact subsets of Rd+1.

An L2-estimate. Fix an external force h 6= 0. We continue to employ notation v =

v(h, β). For a subset A ⊆ Zd+1, let A be the σ-algebra generated by {V (x)}x∈A. We
shall call such σ-algebras cylindrical.
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Lemma 2.1. For any dimension d ≥ 3 there exist a positive non-decreasing function ζd
on (0,∞) and a number ρ < 1/12 such that the following holds: If φβ(1) < ζd(|h|), then
there exist constants c1, c2 <∞ such that the random weights (1.15) satisfy:∣∣∣E[tωx,`tωx′,`E(fθxωy,m − fy,m | A)E(f

θx′ω
y′,m′ − fy′,m′ | A)

]∣∣∣
≤ c1e−c2(m+m′)

`d+1−ρ exp
{
−c2

(
|x− x′|+ |x− `v|

2

`
+
|x′ − `v|2

`

)}
,

(2.4)

for all x, x′,m,m′, y, y′, ` and all cylindrical σ-algebras A such that both tωx,` and tωx′,` are
A-measurable.

Remark 2.2. The above bound is non-trivial only if both |x| , |x′| ≤ ` (Remark 1.2). Also,
there is nothing sacred about the condition ρ < 1/12. We just need ρ to be sufficiently
small. In fact, (2.4) holds with ρ = 0, although a proof of such statement would be a bit
more involved.

In spite of its technical appearance, (2.4) has a transparent intuitive meaning: For
ρ = 0, the expressions on the right-hand side are just local limit bounds for a couple
of independent annealed polymers with exponential penalty for disagreement at their
end-points. The irreducible terms have exponential decay. In the very weak disorder
regime, the interaction between polymers does not destroy these asymptotics. The
proof of Lemma 2.1 is relegated to the concluding Section 4.

McLeish’s Maximal Inequality. Let Z1, Z2, . . . be a sequence of zero-mean, square-
integrable random variables. Let also {Ak}∞−∞ be a filtration of σ-algebras. Suppose
that we have chosen ε > 0 and numbers ψ1, ψ2, . . . in such a way that

E
[
E(Z` | A`−k)2

]
≤ ψ2

`

(1 + k)1+ε
and E

[(
Z` − E(Z` | A`+k)

)2] ≤ ψ2
`

(1 + k)1+ε
(2.5)

for all ` = 1, 2, . . . and k ≥ 0. Then [15] there exists K = K(ε) < ∞ such that, for all
n1 ≤ n2,

E
[

max
n1≤r≤n2

( r∑
n1

Z`

)2 ]
≤ K

n2∑
n1

ψ2
` . (2.6)

Remark 2.3. In particular, if
∑
` ψ

2
` <∞, then

∑
` Z` converges P-a.s. and in L2.

In the sequel, we shall always work with the following filtration {Am}. Recall that
we are discussing on-axis positive drifts h = he1 which, for small β, give rise to on-axis
limiting spatial extension v = ve1 with v > 0. At this stage, define the hyperplanes H−m
and the corresponding σ-algebras Am as

H−m =
{
x ∈ Zd+1 : x · e1 ≤ m|v|

}
and Am = σ

{
V (x) : x ∈ H−m

}
. (2.7)

Notation for asymptotic relations. The following notation is convenient, and we
shall use it throughout the text: Given a (countable) set of indices I and two positive
sequences {aα, bα}α∈I , we say that aα . bα if there exists a constant c > 0 such that
aα ≤ cbα for all α ∈ I . We shall use aα ∼= bα if both aα . bα and aα & bα hold. For
instance, for any ε > 0 fixed,

e−c3k
2/`

`(1+ε)/2
.

1

(1 + k)1+ε
, (2.8)

where the index set I is the set of pairs of integers (k, `) with k ≥ 0 and ` > 0.
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Structure of upper bounds. Our upper bounds are based on (2.8), (2.4) (applied
with ρ = ε/2) and on (2.6). Recall that ρ < 1/12, and hence ε < 1/6.
In the sequel, we shall repeatedly derive variance bounds on quantities of the type∑
`≤n Z

(n)
` . The most general form of Z(n)

` we shall consider is

Z
(n)
` =

∑
x

tωx,`
∑
y,m

a
(n)
x,` (y,m)

(
fθxωy,m − fy,m

)
, (2.9)

where
{
a

(n)
x,` (y,m)

}
are arrays of real or complex numbers. Assume that there exists

another family of (non-negative) arrays
{
â

(n)
x,`

}
and a number ν > 0 such that

e−c2m
∑
|y|≤m

∣∣a(n)
x,` (y,m)

∣∣ . e−νmâ
(n)
x,` , (2.10)

where the constant c2 is inherited from (2.4).

Lemma 2.4. Set ε = ρ
2 , where ρ is the power which shows up in (2.4). Under assump-

tion (2.10)

E
[(
E(Z

(n)
` | A`−k)

)2]
.

1

`d+1−ε/2

∑
x∈H−`−k

e−c2
|x−`v|2

`

(
â

(n)
x,`

)2
, (2.11)

and

E
[(
Z

(n)
` − E(Z

(n)
` | A`+k)

)2]
.

1

`d+1−ε/2

∑
x

e−c2
|x−`v|2

` −νd`+k(x)
(
â

(n)
x,`

)2
. (2.12)

Above we introduced a provisional notation dr(x)
∆
= (r |v| − e1 · x) ∨ 0 for the distance

from x to H+
r = Zd+1 \ H−r .

Proof. Since E
(
tωx,`

(
fθxωy,m − fy,m

)
| A`−k

)
= 0 whever x 6∈ H−`−k,

E(Z
(n)
` | A`−k) =

∑
x∈H−`−k

tωx,`
∑
y,m

a
(n)
x,` (y,m)E(fθxωy,m − fy,m | A`−k). (2.13)

Taking the expectation of the square of the latter expression and, for each x, x′, fac-
torizing replicas using |ab| ≤ a2+b2

2 , one derives the first inequality (2.11) directly from
(2.4) and (2.10).
Next,

Z
(n)
` − E(Z

(n)
` | A`+k) =

∑
x∈H+

`+k

tωx,`
∑
y,m

a
(n)
x,` (y,m)

(
fθxωy,m − fy,m

)
+

∑
x∈H−`+k

tωx,`
∑

z∈H+
`+k

∑
m

a
(n)
x,` (z − x,m)

(
fθxωz−x,m − E(fθxωz−x,m | A`+k)

)
. (2.14)

For any x ∈ H+
`+k, d`+k(x) = 0, and the first term in (2.14) has exactly the same structure

as the right-hand side of (2.13). On the other hand, if x ∈ H−`+k and z ∈ H+
`+k, then, in

view of Remark 1.2, fθxωz−x,m can be different from zero only if m ≥ d`+k(x) and |z − x| ≤
m. Therefore, (2.12) is also a direct consequence of (2.4) and (2.10).

The following is a useful corollary:

Lemma 2.5. If â(n)
x,` . â

(n)
` , then the bounds (2.11) and (2.12) reduce to

E
[(
E(Z

(n)
` | A`−k)

)2]
, E
[(
Z

(n)
` − E(Z

(n)
` | A`+k)

)2]
.
(
â

(n)
`

)2 1

`d/2−ε(1 + k)1+ε
. (2.15)
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Proof. Consider first the right-hand side of (2.11). Since
∑
x∈H−`−k

e−c2
|x−`v|2

` . `
d+1
2 ,

the non-trivial part is to check (2.15) for large values of k. In the latter case, we may
assume that |x− v`| > k|v|

2 for all x ∈ H−`−k. Consequently, the sum on the right-hand
side of (2.11) is bounded above by∑

x∈H−`−k

e−c2|x−v`|
2/` .

∫
|y|> k|v|

2

e−c2|y|
2/`dy

∼
=

∫ ∞
k|v|
2

rde−c2r
2/`dr . `(d+1)/2e−c3k

2/` .
`d/2+1+ε/2

(1 + k)1+ε
,

(2.16)

the last inequality being an application of (2.8). (2.15) follows.
Turning to the right-hand side of (2.12), we see that it remains to derive an upper bound
on ∑

x∈H−`+k

e−c2
|x−`v|2

` −νd`+k(x) .
∑
|y|> k|v|

2

e−c2
|y|2
` +

∑
|y|≤ k|v|2

e−νdk(y). (2.17)

The first sum above is treated as in (2.16). On the other hand, the second sum is
bounded above as . e−ν

′k, uniformly in all k sufficiently large. Since e−ν
′k . (1+k)−1−ε,

the bound (2.15) for E
[(
Z

(n)
` − E(Z

(n)
` | A`+k)

)2]
follows as well.

As an application of (2.15) we derive the following convergence result:

Lemma 2.6. Assume that, for some ν′ > 0, the asymptotic bound (2.15) is, uniformly
in n and ` ≤ n, satisfied with â(n)

` . e−ν
′(n−`). Then

lim
n→∞

∑
`≤n

Z
(n)
` = 0, (2.18)

P-a.s. and in L2. In particular, assume that the asymptotic bound (2.10) is satisfied for
an array

{
b
(n)
x,` (y,m)

}
with some ν > 0 and b̂(n)

x,` . 1. Then

lim
n→∞

∑
`≤n

∑
x

tωx,`
∑

m>n−`

∑
y

b
(n)
x,` (y,m)

(
fθxωy,m − fy,m

) ∆
= lim
n→∞

∑
`≤n

Z
(n)
` = 0, (2.19)

P-a.s. and in L2.

Proof. By (2.15),

E
[(
E(Z

(n)
` | A`−k)

)2]
, E
[(
Z

(n)
` − E(Z

(n)
` | A`+k)

)2]
.

e−2ν′(n−`)

`d/2−ε(1 + k)1+ε
(2.20)

Applying (2.6) for each n = 1, 2, . . . (with ψ2
` =

(
ψ

(n)
`

)2
= e−2ν′(n−`)

`d/2−ε
), we infer that

E
[(∑
`≤n

Z
(n)
`

)2]
.

n∑
`=1

e−2ν′(n−`)

`d/2−ε
.

Since d ≥ 3 and ε < 1/2, this implies that
∑
nE
[(∑

`≤n Z
(n)
`

)2]
<∞.

Consider now the left-hand side of (2.19). For each ` ≤ n, the Z(n)
` -sum on the right-hand

side of (2.19) can be rewritten in the form (2.9) with a(n)
x,` (y,m) = b

(n)
x,` (y,m)1{m>n−`}. In

this case, the inequality (2.10) is satisfied for the array
{
a

(n)
x,` (y,m)

}
with any ν′ < ν/2

and â(n)
x,` . e−ν(n−`)/2 ∆

= â
(n)
` .
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2.2 Multi-Dimensional Renewal and Asymptotics of tωn

Let us turn to the quenched asymptotics of tωn. By construction,

tωz,n =

n−1∑
m=0

∑
x

tωx,mf
θxω
z−x,n−m and tωn =

∑
z

tωz,n. (2.21)

The claim (1.17) of Theorem B follows from:

Theorem 2.7. Assume that (2.4) holds. Then,

lim
n→∞

tωn =
1

κ

(
1 +

∑
x,y

tωx
(
fθxωy−x − fy−x

)} ∆
=

1

κ
sω ∈ (0,∞), (2.22)

P-a.s. and in L2 on the event
{

0 ∈ Clh∞(V )
}

.

Proof. Part of the proof appeared in Subsection 5.3 of the review paper [12]. We rely
on an expansion similar to the one employed by Sinai [16] and rewrite (2.21) as (see the
beginning of Section 5.3 of [12] for details)

tωz,n = tz,n +

n−1∑
`=0

n−∑̀
m=1

n−`−m∑
r=0

∑
x,y

tωx,`

(
fθxωy−x,m − fy−x,m

)
tz−y,r. (2.23)

In this way, tωn ((56) in Section 5.3 of [12]) can be represented as

tωn =
1

κ
sωn + εωn +

(
tn −

1

κ

)
(2.24)

where
sωn = 1 +

∑
`≤n

∑
x

tωx,`
(
fθxω − 1

)
, (2.25)

and the correction term εωn = −εωn,1 + εωn,2 is given by

εωn = − 1

κ

∑
`≤n

m>n−`

∑
x

tωx,`
(
fθxωm − fm

)
+

∑
`+m+r=n

∑
x

tωx,`
(
fθxωm − fm

) (
tr −

1

κ

)
. (2.26)

By (2.1) tn − 1
κ tends to zero. We claim that, P-a.s.,

lim
n→∞

sωn = sω and
∑
n

E[(εωn)2] <∞. (2.27)

Convergence of sωn. Following the discussion in Subsection 4.5 of [11], one readily

verifies that sω > 0 on the event
{

0 ∈ Clh∞(V )
}

. It remains to check (2.27).

Let us rewrite sωn as

sωn − 1 =
∑
`≤n

∑
x

tωx,`
(
fθxω − 1

) ∆
=

n∑
`=0

Z`. (2.28)

The representation complies with (2.9) and (2.10) with â(n)
x,` . 1 and any positive ν < c2.

Hence, by (2.15),

E
[(
E(Z` | A`−k)

)2]
, E
[(
Z` − E(Z` | A`+k)

)2]
.

1

`d/2−ε
· 1

(1 + k)1+ε
. (2.29)

Since d ≥ 3 and ε < 1/2, Remark 2.3 applies and limn→∞ sωn = 1 +
∑∞

0 Z` converges
P-a.s. and in L2 .
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The εωn term. Let us turn now to the correction term εωn in (2.26). The first summand
to estimate is

εωn,1 =
∑
`≤n

∑
x

tωx,`
∑

m>n−`

(
fθxωm − fm

)
(2.30)

It tends to zero by Lemma 2.6. The second summand is

εωn,2 =
∑

`+m+r=n

∑
x

tωx,`
(
fθxωm − fm

) (
tr −

1

κ

)
Since tr − 1/κ is exponentially decaying in r, it is easy to see that (2.10) still holds with

a
(n)
x,` . â

(n)
`

∆
= e−c4(n−`), for any positive ν < c2 and some c4 = c4(β) > 0, and Lemma 2.6

applies.

2.3 Quenched CLT

To facilitate notation set αn = α/
√
n. For r = 1, 2, . . . define

Sωr (α)
∆
=
∑
z

tωz,re
iα·(z−rv)

We are studying Sωn (αn). The asymptotics of Sn(αn) = ESωn (αn) is given in (2.3). Us-
ing (2.23),

Sωn (αn) = Sn(αn) +
∑

`+m+r=n

∑
x,y,z

tωx,`
(
fαxωy−x,m − fy−x,m

)
tz−y,re

i(z−nv)·αn . (2.31)

Define
gωm(α) =

∑
y

ei(y−mv)·α (fωy,m − fy,m
)
. (2.32)

Note that gωm(0) = fωm − fm and that gωm(α) − gωm(0) =
∑
y

(
ei(y−mv)·α − 1

) (
fωy,m − fy,m

)
.

We can rewrite (2.31) as

Sωn (αn) = Sn(αn) +
∑

`+m+r=n

Sr(αn)
∑
x

tωx,`e
i(x−`v)·αngθxωm (αn) . (2.33)

Expanding terms in the products Sr(αn)ei(x−`v)·αngθxωm (αn) as

Sr(αn) = Sn(αn) + (Sr(αn)− Sn(αn))

and, accordingly,

ei(x−`v)·αn = 1 +
(

ei(x−`v)·αn − 1
)
, gωm (αn) = gωm (0) + (gωm (αn)− gωm (0)) ,

we rewrite (2.33) as:

Sωn (αn) = Sn(αn)
(

1 +
∑

`+m≤n

∑
x

tωx,`
(
fθxωm − fm

))
+ Sn(αn)

∑
`+m≤n

∑
x

tωx,`
(
gθxωm (αn)− gθxωm (0)

)
+

∑
`+m+r=n

(Sr(αn)− Sn(αn))
∑
x

tωx,`
(
fθxωm − fm

)
+ Sn(αn)

∑
`+m≤n

∑
x

tωx,`

(
ei(x−`v)·αn − 1

) (
fθxωm − fm

)
+ cross-terms

∆
= Sn(αn)

(
1 +

∑
`+m≤n

∑
x

tωx,`
(
fθxωm − fm

))
+

3∑
i=1

ηωn,i + cross-terms.

(2.34)
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By Theorem 2.7 the sequence of random factors of Sn(α) tend to sω. The cross terms
are of lower order and we shall briefly discuss them at the end of the present section.
The crux of the matter is to prove:

Theorem 2.8. For every α ∈ Rd the correction terms ηωn,i in (2.34) satisfy :

For i = 1, 2, 3 lim
n→∞

ηωn,i = 0 P-a.s. and in L2(Ω). (2.35)

Once (2.35) is established, we readily infer from (2.1), (2.3) and (1.17) that

lim
n→∞

Sωn (α/
√
n)

tωn
= exp

{
− 1

2Σα · α
}
, (2.36)

P-a.s. on the event
{

0 ∈ Clh∞(V )
}

for every α ∈ Rd+1 fixed. This is precisely (1.18) of

Theorem B.

3 Correction Terms

In this Section, we prove (2.35). The correction terms ηωn,i; i = 1, 2, 3, will be treated
separately. Recall that we are working with ε < 1/6 such that (2.4) holds with ρ = ε/2.

The ηωn,1 term . Consider

ηωn,1
Sn(αn)

=
∑
`≤n

∑
x

tωx,`
∑

m≤n−`

∑
y

(
ei(y−mv)·αn − 1

) (
fθxωy,m − fy,m

)
By Lemma 2.6, the constraint m ≤ n − ` might be removed, and we need to prove the
convergence to zero of

η̂ωn,1
∆
=
∑
`≤n

∑
x

tωx,`
∑
m,y

a
(n)
x,` (y,m)

(
fθxωy,m − fy,m

) ∆
=
∑
`≤n

Z
(n)
` . (3.1)

with a(n)
x,` (y,m) =

(
ei(y−mv)·αn − 1

)
.

Lemma 3.1. In the very weak disorder regime,

lim
n→∞

η̂ωn,1 = 0, (3.2)

P-a.s. and in L2 for each α ∈ Rd fixed.

Proof of Lemma 3.1. For a(n)
x,` (y,m) as above, (2.10) is satisfied with â

(n)
x,` . â

(n)
`

∆
= 1/

√
n

and any ν < c2. By (2.15) of Lemma 2.5,

E
[(
E(Z

(n)
` | A`−k)

)2]
, E
[(
Z

(n)
` − E(Z

(n)
` | A`+k)

)2]
.

1

n`d/2−ε
· 1

(1 + k)1+ε
. (3.3)

By (2.6), Var
(
η̂ωn,1

)
. 1/n. Consequently, the lacunary sequence

{
η̂ωn1+δ,1

}
converges to

zero P-a.s. and in L2 for any δ > 0.
It remains to choose δ > 0 appropriately and to control fluctuations of η̂ω·,1 on the

intervals of the form [N, . . . , N +R] with

N ∼= n1+δ and R ∼= (1 + n)1+δ − n1+δ ∼= nδ. (3.4)

Now,

η̂ωN+r,1 − η̂ωN,1 =
∑
`≤N

(
Z

(N+r)
` − Z(N)

`

)
+

N+r∑
`=N+1

Z
(N+r)
` . (3.5)
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We should not worry about the second term above: (2.6) can still be applied to bound
Var

(∑N+r
`=N+1 Z

(N+r)
`

)
for each r fixed. By (3.3) and the union bound,

E
[
max
r≤R

( N+r∑
`=N+1

Z
(N+r)
`

)2] ≤ R∑
r=1

E
[( N+r∑
`=N+1

Z
(N+r)
`

)2]
.

R

Nd/2−ε
∼=

1

n(1+δ)( d2−ε−
δ

1+δ )
.

The right-hand side above is summable (in n) by our choice (3.4) whenever d
2−ε−

δ
1+δ >

1. Since d ≥ 3 and ε < 1/2, there are feasible choices of δ > 0 to ensure the latter.
As for the first term in (3.5), note that for ` ≤ N ,

a
(N+r)
x,` (y,m)− a(N)

x,` (y,m) =
(

ei(y−mv)·αN+r − ei(y−mv)·αN
)

∆
= b

(N,r)
x,` (y,m). (3.6)

The array
{
b
(N,r)
x,` (y,m)

}
satisfies (2.10) with b̂

(N,r)
x,` . b̂

(N,r)
`

∆
= r/N3/2 and any ν < c2.

By (2.15), (2.6) and the union bound,

E
[
max
r≤R

(∑
`≤N

(
Z

(N+r)
` − Z(N)

`

))2 ]
.
R3

N3
.

By our choice (3.4), R3

N3

∼
= n−3 for any choice of δ > 0, and, consequently, the right-hand

side above is summable.

The ηωn,2 term. By (2.1),

Sr(αn)

Sn(αn)
=

tr(iαn)e−irv·αn

tn(iαn)e−inv·αn
= e(r−n)(µ(iαn)−iv·αn)

(
1 + o(e−c4r)

)
. (3.7)

Set φ(α) = iv ·α−µ(iα). The function φ is defined in a neighbourhood of the origin and
it is of quadratic growth there. By Lemma 2.6, the residual term o (e−c4r) is negligible.
Next, for ` ≤ n the coefficients

a
(n)
x,` (y,m) = e(m+`)φ(αn) − 1 (3.8)

satisfy (2.10) with â(n)
x,` . â

(n)
`

∆
= `/n and any ν < c2. Consequently, (2.19) enables to lift

the restriction m ≤ n− `. Therefore, we need to prove convergence to zero of

η̂ωn,2 =
∑
`≤n

∑
x

tωx,`
∑
m

(
e(m+`)φ(αn) − 1

) (
fθxωm − fm

) ∆
=
∑
`≤n

Z
(n)
` . (3.9)

Lemma 3.2. In the very weak disorder regime

lim
n→∞

η̂ωn,2 = 0, (3.10)

P-a.s. and in L2 for each α ∈ Rd fixed.

Proof of Lemma 3.2. Recall that for in a
(n)
x,` (y,m) defined in (3.8) the asymptotic bound

(2.10) is satisfied with â(n)
x,` . `/n uniformly in n, ` ≤ n and x. By (2.15) and (2.6),

Var
(
η̂ωn,2

)
.

1

n2

∑
`≤n

1

`d/2−2−ε
∼
=

1

n
d
2−1−ε ∧ n2

, (3.11)

which already implies the claim of Lemma 3.2 in dimensions d ≥ 5. We shall continue
discussion for the most difficult case of d = 3. (3.11) implies that

E
[∑
n

(
η̂ωn2+δ,2

)2]
<∞⇒ lim

n→∞
η̂ωn2+δ,2 = 0 P− a.s. and in L2, (3.12)
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whenever

(2 + δ)
(

1
2 − ε

)
> 1 , that is, δ >

4ε

1− 2ε
. (3.13)

Since ε < 1/6, there are choices of δ ∈ (0, 1) which comply with (3.13). We need to
control fluctuations of η̂ωN+r,2 − η̂ωN,2 on the intervals of the form [N, . . . , N +R], where

N ∼= n2+δ and R ∼= (n+ 1)2+δ − n2+δ ∼= n1+δ. (3.14)

Consider the following decomposition:

η̂ωN+r,2 − η̂ωN,2 =
∑
`≤N

∑
x

tωx,`
∑
m

(
e(m+`)φ(αN+r) − e(m+`)φ(αN )

) (
fθxωm − fm

)
+

N+r∑
`=N+1

Z
(N+r)
`

=
∑

`≤N+r

∑
x

tωx,`
∑
m

(
e(m+`)φ(αN+r) − e(m+`)φ(αN )

) (
fθxωm − fm

)
+

N+r∑
`=N+1

Z
(N)
` .

(3.15)

The terms Z(N)
` in the second sum above were defined in (3.9) and they do not depend

on r. By (2.6), we are entitled to control its maximum on the interval [N, . . . , N +R]:

E
[
max
r≤R

( N+r∑
`=N+1

Z
(N)
`

)2]
.

1

N2

N+R∑
`=N+1

`2

`3/2−ε
∼=

1

N2

{
(N +R)3/2+ε −N3/2+ε

}
∼=

R

N3/2−ε
∼=

n1+δ

n3(1+δ/2)−ε(2+δ)
∼=

1

n2+ δ
2−ε(2+δ)

∆
= an,

(3.16)

by our choice of parameters (3.14).

For each r ≤ R the first term in (3.15) corresponds to the following choice of coef-
ficients in the representation (2.9): a(N+r)

x,` (y,m) =
(
e(m+`)φ(αN+r) − e(m+`)φ(αN )

)
. Thus,

(2.10) is satisfied with â(N+r)
x,` . â

(N+r)
`

∆
= `r/N2 and any ν < c2. By the very same (2.15)

and (2.6), we infer that, for any r ≤ R,

Var
(N+r∑
`=1

∑
x

tωx,`
∑
m

(
e(m+`)φ(αN+r) − e(m+`)φ(αN )

))
.

r2

N4

N+r∑
`=1

`
1
2 +ε .

R2

N5/2−ε . (3.17)

Hence, by the union bound and our choice of parameters (3.14),

E
[
max
r≤R

(N+r∑
`=1

∑
x

tωx,`
∑
m

(
e(m+`)φ(αN+r) − e(m+`)φ(αN )

))2 ]
.

R3

N5/2−ε
∼=

1

n2− δ2−ε(2+δ)

∆
= bn.

(3.18)

Since ε < 1/6, the inequality δ
2 + (2 + δ)ε < 1 holds for any choice of δ ≤ 1. Therefore,

any such choice ensures that
∑
n(an + bn) <∞, which implies that

lim
n→∞

max
n2+δ≤r<(n+1)2+δ

∣∣∣η̂ωr,1 − η̂ωn2+δ,1

∣∣∣ = 0,

P-a.s and in L2. The proof of Lemma 3.2 is completed.
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The ηωn,3 term. This is the most difficult term, and, at this stage, we need to rely on
Lemma 2.4 rather than on Lemma 2.5. Recall that

ηωn,3
Sn(αn)

=
∑
`≤n

∑
x

tωx,`

(
ei(x−`v)·αn − 1

) ∑
m≤n−`

(
fθxωm − fm

)
.

By Lemma 2.6, we may remove the constraint m ≤ n− `. Define, therefore,

Z
(n)
` =

∑
x

tωx,`

(
ei(x−`v)·αn − 1

) (
fθxω − 1

)
and η̂ωn,3 =

∑
`≤n

Z
(n)
` . (3.19)

We need to prove:

Lemma 3.3. In the very weak disorder regime,

lim
n→∞

η̂ωn,3 = 0, (3.20)

P-a.s. and in L2 for each α ∈ Rd fixed.

Proof of Lemma 3.3. For Z(n)
` defined in (3.19), the bound (2.10) is satisfied with

â
(n)
x,` =

∣∣∣ei(x−`v)·αn − 1
∣∣∣ ∼= |x− `v|√

n
∧ 1, (3.21)

for any ν < c2. Applying (2.11), we infer that

E
[(
E(Z

(n)
` | A`−k)

)2 ]
.

1

`d+1−ε/2

∑
x∈H−`−k

e−c2|x−`v|
2/`
( |x− `v|2

n
∧ 1
)
. (3.22)

As in the derivation of (2.15), we may assume that k is sufficiently large, so that, in
particular, |x− `v| ≥ k|v|

2 for all x ∈ H−`−k. In the latter case, the sum on the right-hand
side of (3.22) is bounded above by

.
∫
|y|> k|v|

2

e−c2|y|
2/`
( |y|2
n
∧ 1
)

dy =

∫ ∞
k|v|
2

rde−c2r
2/`
(r2

n
∧ 1
)

dr

∼= `(d+1)/2

∫ ∞
k|v|
2
√
`

tde−c2t
2
( t2`
n
∧ 1
)

dt
∆
= `(d+1)/2In(`, k).

(3.23)

We shall repeatedly rely on (2.8). There are two cases to consider:
CASE 1. If k|v|

2 ≤
√
n, then

In(`, k) =
`

n

∫ √n/`
k|v|
2
√
`

td+2e−c2t
2

dt+

∫ ∞
√
n/`

tde−c2t
2

dt .
`

n
e−c2

(k|v|)2
8` + e−c2

n
2`

.
`

n
e−c2

(k|v|)2
8` .

1

n
· `3/2+ε/2

(1 + k)1+ε
.

(3.24)

CASE 2. If k|v|
2 >

√
n, then

In(`, k) =

∫ ∞
k|v|
2
√
`

tde−c2t
2

dt . e−c2
(k|v|)2

8` .
`

n
e−c2

(k|v|)2
16` .

1

n
· `3/2+ε/2

(1 + k)1+ε
(3.25)

as well.
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As a result (again we restrict attention to the most difficult case d = 3):

E
[(
E(Z

(n)
` | A`−k)

)2]
.

1

(1 + k)1+ε
· 1

n
· 1

`1/2−ε
. (3.26)

Let us turn to the bound (2.12) on E
[(
Z

(n)
` − E(Z

(n)
` | A`+k)

)2]
. As before, we apply it

with â(n)
x,` = |x−`v|√

n
∧ 1. We need to estimate

1

`d+1−ε/2

∑
x∈H−`+k

e−c2|x−`v|
2/`−νd`+k(x)

( |x− `v|2
n

∧ 1
)
. (3.27)

Proceeding as in (2.17) and noting that k2

n e−ν
′k . 1

ne−ν
′k/2, we infer that the upper

bound (3.26) holds for E
[(
Z

(n)
` − E(Z

(n)
` | A`+k)

)2]
as well.

In particular, by (2.6), Var
(
η̂ωn,3

)
. n−1/2+ε and, as in the case of η̂ωn,2, we infer that there

is P-a.s. and L2 convergence to zero along lacunary subsequences
{
n2+δ

}
, whenever

δ satisfies (3.13). Hence, again as in the case of η̂ωn,2, we need to control the fluctua-
tions η̂ωN+r,3 − η̂ωN,3 over intervals of the form (3.14). As in (3.15), we make use of the
decomposition

η̂ωN+r,3 − η̂ωN,3 =

N+r∑
`=1

∑
x

tωx,`

(
ei(x−`v)·αN+r − ei(x−`v)·αN

) (
fθxω − 1

)
+

N+r∑
`=N+1

Z
(N)
`

∆
=

N+r∑
`=1

Z
(N,r)
` +

N+r∑
`=N+1

Z
(N)
`

(3.28)

We continue to work with d = 3. For each r = 1, . . . , R fixed the bound (2.10) is satisfied
with ∣∣∣ei(x−`v)·αN+r − ei(x−`v)·αN

∣∣∣ . R |x− `v|
N3/2

∧ 1
∆
= â

(N)
x,` . (3.29)

The expression for â(N)
x,` in (3.29) is similar to (3.21) with 1/

√
n being replaced by the

higher order term R/N3/2. Literally repeating the derivation of (3.26) we infer that for

each r = 1, . . . , R fixed random variables Z(N,r)
` in (3.28) satisfy:

E
[(
E(Z

(N,r)
` | A`−k)

)2]
,E
[(
Z

(N,r)
` −E(Z

(N,r)
` | A`+k)

)2]
.

1

(1 + k)1+ε
· R

2

N3
· 1

`1/2−ε
. (3.30)

Applying (2.6) we conclude: For N and R in the range (3.14), and for any r = 1, . . . , R

fixed, the variance of the first term on the right hand side of (3.28) is uniformly bounded
above (d = 3) by

.
R2

N3
·N1/2+ε =

R2

N5/2−ε .

As in the case of (3.18), the union bound suffices.
Finally, using (3.26) as an input for (2.6), we conclude that

E
[(

max
r≤R

N+r∑
`=N+1

Z
(N)
`

)2]
.

1

N

N+R∑
`=N+1

1

`1/2−ε
∼=

(N +R)
1/2+ε −N1/2+ε

N
∼=

R

N3/2−ε .

The right-most term above is summable in N for any choice of δ ∈ (0, 1) in (3.14). In
particular, it is summable if δ complies with (3.13). Consequently, for such choices of δ,

lim
n→∞

max
n2+δ≤r<(n+1)2+δ

∣∣∣η̂ωr,3 − η̂ωn2+δ,3

∣∣∣ = 0,

P-a.s. and in L2, and we are home.
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Cross-terms in (2.34). Since our treatment of the correction terms ηωn,i was based

either on the estimates (2.10) on the absolute value of the coefficients a(n)
x,` (y,m) which

appear in (3.1), (3.9) and (3.19), or on estimates on the absolute value of differences
a

(N+r)
x,` (y,m) − a(N)

x,` (y,m) between these coefficients, which show up in the decomposi-
tions (3.5), (3.15) and, respectively, (3.28), we readily infer that (2.35) of Theorem 2.8
carry over to cross-terms in (2.34). For instance, let us consider the (2-3) cross term

Sn(αn)
∑
`≤n

∑
x,m

tωx,`

(
e(m+`)φ(αn) − 1

)(
ei(x−`v)·αn − 1

) (
fθxωm − fm

) ∆
=
∑
`≤n

Z
(n)
` .

In terms of (2.9), we are working with coefficients

a
(n)
x,` (y,m) = a

(n)
x,` (m) =

(
e(m+`)φ(αn) − 1

)(
ei(x−`v)·αn − 1

)
.

In particular, (3.11) carries over, and we infer convergence to zero along the lacu-
nary sequence n2+δ. In order to study the fluctuations of

∑
`≤n Z

(n)
` on the intervals

[N, . . . , N +R], one, as was done in (3.15), employs the decomposition

N+r∑
1

Z
(N+r)
` −

N∑
1

Z
(N)
`

=
∑

`≤N+r

∑
x,m

tωx,`
(
a

(N+r)
x,` (m)− a(N)

x,` (m)
) (
fθxωm − fm

)
+

N+r∑
`=N+1

Z
(N)
`

(3.31)

Since (3.11) holds, the second term on the right-hand side of (3.31) is worked out exactly
as in (3.18). On the other hand,

a
(N+r)
x,` (m)− a(N)

x,` (m) =
(

e(m+`)φ(αN+r) − e(m+`)φ(αN )
)(

ei(x−`v)·αN+r − 1
)

+
(

1− e(m+`)φ(αN )
)(

ei(x−`v)·αN − ei(x−`v)·αN+r

) (3.32)

In view of Remark 1.2, we restrict attention to ` ≤ N+R, which implies that |`φ(αN )| . 1

uniformly in all the situations in question. Hence both terms above can be worked out
exactly as in the cases of, respectively, the corrections ηωn,2 and ηωn,3.

4 Proof of the L2 estimate (2.4)

A variant of our target estimate (2.4) was proved in [11, Proposition 3.1] and we
shall follow a similar line of reasoning and, eventually, rely on upper bounds derived in
the latter paper.

4.1 Preliminaries

For u, v ∈ Zd+1 and m ∈ N, we set

tωu,v,m
∆
= tθuωv−u,m, fωu,v,m

∆
= fθuωv−u,m, tu,v,m

∆
= E(tωu,v,m), fu,v,m

∆
= E(fωu,v,m),

and
D(u, v)

∆
= (u+ Yh) ∩ (v − Yh) ∩ Zd+1.

Moreover, we write T (u, v;n) for the set of all cone-confined paths γ ⊆ D(u, v) of length
n leading from u to v, and F(u, v;n) for the corresponding subset of irreducible paths.

Observe first that, by definition, fωu,v,m is σ {V (x) : x ∈ D(u, v)}-measurable. In par-
ticular, if D(x, y) ∩D(x′, y′) = ∅, then

E
[
tωx,` t

ω
x′,`E(fωx,y,m − fx,y,m | A)E(fωx′,y′,m′ − fx′,y′,m′ | A)

]
= 0. (4.1)
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Indeed, in that case, either D(x, y) ∩ (x′ − Yh) = ∅, or D(x′, y′) ∩ (x − Yh) = ∅. For
definiteness, let us assume the latter. We can then conclude that the random variable
fωx′,y′,m′ is independent of tωx,` t

ω
x′,`E(fωx,y,m − fx,y,m | A). The same is thus also true of

E(fωx′,y′,m′ − fx′,y′,m′ | A), and the claim follows, since the latter has mean zero.

A second observation is that, for any A ⊆ Zd+1 and the corresponding cylindrical
σ-algebra A = σ {V (z) : z ∈ A},

E
[
tωx,` t

ω
x′,`E(fωx,y,m | A)E(fωx′,y′,m′ | A)

]
≤ E

[
tωx,` t

ω
x′,` f

ω
x,y,m f

ω
x′,y′,m′

]
. (4.2)

Indeed, define g = (λ+ log(2d+ 2))(2`+m+m′)− h · (y+ y′) and let Σ∗ be the sum over
all the paths γ ∈ T (0, x; `), η ∈ F(x, y;m), γ′ ∈ T (0, x′; `) and η′ ∈ F(x′, y′;m′). Then the
attractivity property (1.5) implies that

eg E
[
tωx,` t

ω
x′,`E(fωx,y,m | A)E(fωx′,y′,m′ | A)

]
=
∑∗ ∏

u∈A
e−φβ(`γ(u)+`γ′ (u)+`η(u)+`η′ (u))

∏
v 6∈A

e−φβ(`η(v))−φβ(`η′ (v))−φβ(`γ(v)+`γ′ (v))

≤
∑∗ ∏

u∈Zd+1

e−φβ(`γ(u)+`γ′ (u)+`η(u)+`η′ (u)) = eg E
[
tωx,` t

ω
x′,` f

ω
x,y,m f

ω
x′,y′,m′

]
.

Note that (4.2) implies, in particular, that∣∣E[tωx,` tωx′,`E(fωx,y,m − fx,y,m | A)E(fωx′,y′,m′ − fx′,y′,m′ | A)
]∣∣

≤ 2E
[
tωx,` t

ω
x′,` f

ω
x,y,m f

ω
x′,y′,m′

]
1{D(x,y)∩D(x′,y′)6=∅}. (4.3)

4.2 Getting rid of the last irreducible steps

For several paths γ1, . . . , γk, define

Φβ(γ1, . . . , γk) =
∑

u∈Zd+1

φβ

( k∑
1

`γi(u)
)
.

Applying (1.5) once more, we see that

{Φβ(γ, γ′, η, η′)− Φβ(γ, γ′)}+ {(m+m′)φβ(1)− Φβ(η)− Φβ(η′)} ≥ 0, (4.4)

uniformly in all paths γ ∈ T (0, x; `), γ′ ∈ T (0, x′; `), η ∈ F(x, y;m) and η′ ∈ F(x′, y′;m′).
This implies that∑

η∈F(x,y;m),
η′∈F(x′,y′;m′)

e−Φβ(γ,γ′,η,η′) ≤ eφβ(1)(m+m′) e−Φβ(γ,γ′)
∑

η∈F(x,y;m),
η′∈F(x′,y′;m′)

e−Φβ(η)−Φβ(η′).

Since limβ→0 φβ(1) = − log(1 − p∞), it follows from (4.3) and (1.16) that, in the very
weak disorder regime,∣∣E[tωx,` tωx′,`E(fωx,y,m − fx,y,m | A)E(fωx′,y′,m′ − fx′,y′,m′ | A)

]∣∣
≤ 2eφβ(1)(m+m′)E

[
tωx,` t

ω
x′,`

]
1{D(x,y)∩D(x′,y′)6=∅} fx,y,mfx′,y′,m′

≤ 2e−(ν−φβ(1))(m+m′)
1{D(x,y)∩D(x′,y′) 6=∅}E

[
tωx,` t

ω
x′,`

]
≤ 2e−(ν/4)(m+m′)−(ν/4)(|x−x′|)E

[
tωx,` t

ω
x′,`

]
.

Indeed, in order for the event D(x, y) ∩ D(x′, y′) 6= ∅ to occur, it is necessary that
|x− x′| ≤ m ∨m′ ≤ m+m′.

EJP 18 (2013), paper 97.
Page 18/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2231
http://ejp.ejpecp.org/


An almost sure CLT for stretched polymers

4.3 Weakly interacting random walks

There remains to prove that

E
[
tωx,`t

ω
x′,`

]
≤ c1
`d+1−ρ exp

{
−c2
|x− `v|2

`
− c2

|x′ − `v|2

`

}
. (4.5)

Let us denote by PRW the law of the random walk on Zd+1 ×N, whose increments have
law (fx,n)x∈Zd+1,n∈N. We shall denote its (random) trajectory by the couple (X,L), with
X = (X0 = 0, X1, X2, . . .) and L = (L0 = 0, L1, L2, . . .). With these notations, we can
write

E
[
tωx,`
]

= tx,` = PRW(∃k : (Xk, Lk) = (x, `)).

In general, the left-hand side of (4.5) does not allow for a similar expression. Notice,
however, that the attractivity property implies the lower bound

E
[
tωx,` t

ω
x′,`

]
≥ tx,`tx′,` = P⊗RW

(
∃k, k′ : (Xk, Lk) = (x, `), (X ′k′ , L

′
k′) = (x′, `)

)
,

where P⊗RW denotes the law of a couple of independent random walks (X,L) and (X′,L′)

as above. It is important to observe that (4.5) would be an immediate consequence of
the local limit theorem for random walks if its left-hand side was replaced by tx,`tx′,`.
To prove (4.5), we thus have to prove that, in the very weak disorder regime, this local
limit behaviour is not destroyed by the effective attractive interaction between the two
paths resulting from averaging tωx,`t

ω
x′,` over the disorder.

To facilitate the notation, define the eventsRx,` = {∃k : (Xk, Lk) = (x, `)} andRx′,` =

{k′ : (X ′k, Lk) = (x′, `)}. Then, by the very same attractivity property of the potential,

E
[
tωx,` t

ω
x′,`

]
≤ E⊗RW

[
e∆β(X,X′)

1Rx,`1Rx′,`

]
, (4.6)

where
∆β(X,X′) = log

{ ∑
γ∼X
γ′∼X′

eΦβ(γ)+Φβ(γ′)−Φβ(γ,γ′)
}
. (4.7)

Fix ρ < 1/12. Formula (4.13 ) in [11] implies that

E⊗RWe
d+1
ρ ∆β(X,X′) . 1

in the very weak disorder regime. Therefore, by Hölder inequality,

E
[
tωx,` t

ω
x′,`

]
. (tx,`tx′,`)

d+1−ρ
d+1 .

The target (4.5) follows now by (2.2).
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