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Abstract

We consider sparse random intersection graphs with the property that the clustering
coefficient does not vanish as the number of nodes tends to infinity. We find explicit
asymptotic expressions for the correlation coefficient of degrees of adjacent nodes
(called the assortativity coefficient), the expected number of common neighbours of
adjacent nodes, and the expected degree of a neighbour of a node of a given de-
gree k. These expressions are written in terms of the asymptotic degree distribution
and, alternatively, in terms of the parameters defining the underlying random graph
model.
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1 Introduction

Assortativity and clustering coefficients are commonly used characteristics describ-
ing statistical dependency of adjacency relations in real networks ([18], [2], [20]). The
assortativity coefficient of a simple graph is the Pearson correlation coefficient between
degrees of the endpoints of a randomly chosen edge. The clustering coefficient is the
conditional probability that three randomly chosen vertices make up a triangle, given
that the first two are neighbours of the third one.

It is known that many real networks have non-negligible assortativity and cluster-
ing coefficients, and a social network typically has a positive assortativity coefficient
([18], [21]). Furthermore, Newman et al. [21] remark that the clustering property (the
property that the clustering coefficient attains a non-negligible value) of some social
networks could be explained by the presence of a bipartite graph structure. For ex-
ample, in the actor network two actors are adjacent whenever they have acted in the
same film. Similarly, in the collaboration network authors are declared adjacent when-
ever they have coauthored a paper. These networks exploit the underlying bipartite
graph structure: actors are linked to films, and authors to papers. Such networks are
sometimes called affiliation networks.
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Assortativity and clustering of sparse random intersection graphs

In this paper we study assortativity coefficient and its relation to the clustering coef-
ficient in a theoretical model of an affiliation network, the so called random intersection
graph. In a random intersection graph nodes are prescribed attributes and two nodes
are declared adjacent whenever they share a certain number of attributes ([11], [15],
see also [1], [13]). An attractive property of random intersection graphs is that they
include power law degree distributions and have tunable clustering coefficient see [5],
[6], [8], [12]. In the present paper we show that the assortativity coefficient of a random
intersection graph is non-negative. It is positive in the case where the vertex degree
distribution has a finite third moment and the clustering coefficient is positive. In this
case we show explicit asymptotic expressions for the assortativity coefficient in terms
of moments of the degree distribution as well as in terms of the parameters defining the
random graph. Furthermore, we evaluate the average degree of a neighbour of a vertex
of degree k, k = 1, 2, . . . , (called neighbour connectivity, see [16], [23]), and express it
in terms of a related clustering characteristic, see (1.3) below.

Let us rigorously define the network characteristics studied in this paper. Let G =

(V, E) be a finite graph on the vertex set V and with the edge set E . The number of
neighbours of a vertex v is denoted d(v). The number of common neighbours of vertices
vi and vj is denoted d(vi, vj). We are interested in the correlation between degrees d(vi)

and d(vj) and the average value of d(vi, vj) for adjacent pairs vi ∼ vj (here and below
’∼’ denotes the adjacency relation of G). We are also interested in the average values of
d(vi) and d(vi, vj) under the additional condition that the vertex vj has degree d(vj) = k.

In order to rigorously define the averaging operation we introduce the random pair
of vertices (v∗1 , v

∗
2) drawn uniformly at random from the set of ordered pairs of dis-

tinct vertices. By Ef(v∗1 , v
∗
2) = 1

N(N−1)

∑
i 6=j f(vi, vj) we denote the average value of

measurements f(vi, vj) evaluated at each ordered pair (vi, vj), i 6= j. Here N = |V| de-
notes the total number of vertices. By E∗f(v∗1 , v

∗
2) = p−1

e∗ E
(
f(v∗1 , v

∗
2)I{v∗1∼v∗2}

)
we denote

the average value over ordered pairs of adjacent vertices. Here pe∗ = P(v∗1 ∼ v∗2)

denotes the edge probability and I{vi∼vj} = 1, for vi ∼ vj , and 0 otherwise. Fur-
thermore, E∗kf(v∗1 , v

∗
2) = p−1

k∗E
(
f(v∗1 , v

∗
2)I{v∗1∼v∗2}I{d(v∗2 )=k}

)
, denotes the average value

over ordered pairs of adjacent vertices, where the second vertex is of degree k. Here
pk∗ = P(v∗1 ∼ v∗2 , d(v∗2) = k).

The average values of d(vi)d(vj) and d(vi, vj) on adjacent pairs vi ∼ vj are now
defined as follows

g(G) = E∗d(v∗1)d(v∗2), h(G) = E∗d(v∗1 , v
∗
2), hk(G) = E∗kd(v∗1 , v

∗
2).

We also define the average values

b(G) = E∗d(v∗1), b′(G) = E∗d2(v∗1), bk(G) = E∗kd(v∗1)

and the correlation coefficient

r(G) =
g(G)− b2(G)

b′(G)− b2(G)
,

called the assortativity coefficient of G, see [18], [19].
In the present paper we assume that our graph is an instance of a random graph. We

consider two random intersection graph models: active intersection graph and passive
intersection graph introduced in [10] (we refer to Sections 2 and 3 below for a detailed
description). Let G denote an instance of a random intersection graph on N vertices.
Here and below the number of vertices is non random. An argument bearing on the
law of large numbers suggests that, for large N , we may approximate the character-
istics b(G), b′(G), bk(G), g(G), h(G) and hk(G) defined for a given instance G, by the
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corresponding conditional expectations

b = E∗d(v∗1), b′ = E∗d2(v∗1), bk = E∗kd(v∗1), (1.1)

g = E∗d(v∗1)d(v∗2), h = E∗d(v∗1 , v
∗
2), hk = E∗kd(v∗1 , v

∗
2),

where now the expected values are taken with respect to the random instance G and
the random pair (v∗1 , v

∗
2). We assume that (v∗1 , v

∗
2) is independent of G. Similarly, we may

approximate r(G) by r = g−b2
b′−b2 .

The main results of this paper are explicit asymptotic expressions as N → +∞
for the correlation coefficient r, the neighbour connectivity bk, and expected number
of common neighbours hk defined in (1.1). As a corollary we obtain that the random
intersection graphs have tunable assortativity coefficient r ≥ 0. Another interesting
property is expressed by the identity

bk − hk = b− h+ o(1) as N → +∞ (1.2)

saying that the average value of the difference d(vi)− d(vi, vj) of adjacent vertices vi ∼
vj is not sensitive to the conditioning on the neighbour degree d(vj) = k. That is, a
neigbour vj of vi may affect the average degree d(vi) only by increasing/decreasing
the average number of common neighbours d(vi, vj). It is relevant to mention that
hk = (k − 1)α[k], where α[k] = P(v∗1 ∼ v∗2 |v∗1 ∼ v∗3 , v

∗
2 ∼ v∗3 , d(v∗3) = k) measures the

probability of an edge between two neighbours of a vertex of degree k. In particular,
we have

bk = (k − 1)α[k] + b− h+ o(1) as N → +∞. (1.3)

The remaining part of the paper is organized as follows. In Section 2 we introduce
the active random graph and present results for this model. The passive model is con-
sidered in Section 3. Section 4 contains proofs.

2 Active intersection graph

Let s > 0. Vertices v1, . . . , vn of an active intersection graph are represented by
subsets D1, . . . , Dn of a given ground set W = {w1, . . . , wm}. Elements of W are called
attributes or keys. Vertices vi and vj are declared adjacent if they share at least s
common attributes, i.e., we have |Di ∩Dj | ≥ s.

In the active random intersection graphGs(n,m,P ) every vertex vi ∈ V = {v1, . . . , vn}
selects its attribute set Di independently at random ([11]) and all attributes have equal
chances to belong to Di, for each i = 1, . . . , n. We assume, in addition, that independent
random sets D1, . . . , Dn have the same probability distribution such that

P(Di = A) =
(
m
|A|
)−1

P (|A|), (2.1)

for each A ⊂ W , where P is the common probability distribution of the sizes Xi = |Di|,
1 ≤ i ≤ n of selected sets. We remark that Xi, 1 ≤ i ≤ n are independent random
variables.

We are interested in the asymptotics of the assortativity coefficient r and moments
(1.1) in the case where Gs(n,m,P ) is sparse and n, m are large. We address this
question by considering a sequence of random graphs {Gs(n,m,P )}n, where the integer
s is fixed and where m = mn and P = Pn depend on n. We remark that subsets of W of
size s plays a special role, we call them joints: two vertices are adjacent if their attribute
sets share at least one joint. Our conditions on P are formulated in terms of the number

of joints
(
Xi

s

)
available to the typical vertex vi. We denote ak = E

(
X1

s

)k
. It is convenient

to assume that as n→∞ the rescaled number of joints Z1 =
(
m
s

)−1/2
n1/2

(
X1

s

)
converges

in distribution. We also introduce the k-th moment condition
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(i) Z1 converges in distribution to some random variable Z;
(ii-k) 0 < EZk <∞ and limn→∞EZk1 = EZk.
We remark that the distribution of Z, denoted PZ , determines the asymptotic degree

distribution of the sequence {Gs(n,m,P )}n (see [5], [6], [8], [25]). We have, under
conditions (i), (ii-1) that

lim
m→∞

P (d(v1) = k) = pk, pk = (k!)−1E
(
(z1Z)ke−z1Z

)
, k = 0, 1, . . . . (2.2)

Here we denote zk = EZk. Let d∗ be a random variable with the probability distribution
P(d∗ = k) = pk, k = 0, 1, . . . . We call d∗ the asymptotic degree. It follows from (2.2)
that the asymptotic degree distribution is a Poisson mixture, i.e., the Poisson distribu-
tion with a random (intensity) parameter z1Z. For example, in the case where PZ is
degenerate, i.e., P(Z = z1) = 1, we obtain the Poisson asymptotic degree distribution.
Furthermore, the asymptotic degree has a power law when PZ does. We denote

δi = Edi∗, δi = E(d∗)i, where (x)i = x(x− 1) · · · (x− i+ 1). (2.3)

Another important characteristic of the sequence {Gs(n,m,P )}n is the asymptotic
ratio β = limm→∞

(
m
s

)
/n. Together with PZ it determines the first order asymptotics of

the clustering coefficient α = P(v1 ∼ v2|v1 ∼ v3, v2 ∼ v3), see [6], [8]. Under conditions
(i), (ii-2), and (

m
s

)
n−1 → β ∈ (0,+∞) (2.4)

we have

α =
a1

a2
+ o(1) =

1

β1/2

δ
3/2
1

δ2 − δ1
+ o(1). (2.5)

Furthermore, we have α = o(1) in the case where
(
m
s

)
n−1 → +∞. We remark that

α = o(1) also in the case where the second moment condition (ii-2) fails and we have
EZ2 = +∞, see [6].

To summarize, the clustering coefficient α does not vanish as n,m → ∞ whenever
the asymptotic degree distribution (equivalently PZ) has finite second moment and 0 <

β <∞.
Our Theorem 2.1, see also Remark 1, establishes similar properties of the assorta-

tivity coefficient r: it remains bounded away from zero whenever the asymptotic degree
distribution (equivalently PZ) has finite third moment and 0 < β <∞.

Theorem 2.1. Let s > 0 be an integer. Let m,n → ∞. Assume that (i) and (2.4) are
satisfied. In the case where (ii-3) holds we have

r =
a1

β−1(a1a3 − a2
2) + a2

+ o(1) (2.6)

=
1√
β

δ
5/2

1

δ3δ1 − δ
2

2 + δ2δ1

+ o(1). (2.7)

In the case where (ii-2) holds and EZ3 =∞ we have r = o(1).

We note that the inequality a1a3 ≥ a2
2, which follows from Hölder’s inequality, implies

that the ratio in the right hand side of (2.6) is positive.
Remark 1. In the case where (i), (ii-2) hold and

(
m
s

)
n−1 → +∞ we have r = o(1).

Our next result Theorem 2.2 shows a first order asymptotics of the neighbour con-
nectivity bk and the expected number of common neighbours hk.
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Theorem 2.2. Let s ≥ 1 and k ≥ 0 be integers. Let m,n → ∞. Assume that (i), (ii-2)
and (2.4) hold. We have

b = 1 + β−1a2 + o(1), h = β−1a1 + o(1) (2.8)

and

hk+1 =
a1

β

k

k + 1

pk
pk+1

+ o(1), (2.9)

bk+1 = 1 + β−1(a2 − a1) + hk+1 + o(1). (2.10)

Here a1 = (βδ1)1/2 + o(1) and a2 = βδ2/δ1 + o(1).

We remark that the distribution of the random graph Gs(n,m,P ) is invariant under
permutation of its vertices (we refer to this property as the symmetry property in what
follows). Therefore, we have b = E(d(v1)|v1 ∼ v2) and bk+1 = E(d(v1)|v1 ∼ v2, d(v2) = k+

1). In particular, the increment bk+1 − b shows how the degree of v2 affects the average

degree of its neighbour v1. By (2.8), (2.10), we have bk+1 − b = a1
β

(
k
k+1

pk
pk+1

− 1
)

+ o(1).

In Examples 1 and 2 below we evaluate this quantity for a power law asymptotic degree
distribution and the Poisson asymptotic degree distribution.

Example 1. Assume that the asymptotic degree distribution has a power law, i.e., for
some c > 0 and γ > 3 we have pk = (c+ o(1))k−γ as k → +∞. Then

k

k + 1

pk
pk+1

− 1 =
γ − 1

k
+ o(k−1).

Hence, for large k, we obtain as n,m→ +∞ that bk+1 − b ≈ k−1(γ − 1)(δ1/β)1/2.

Example 2. Assume that the asymptotic degree distribution is Poisson with mean
λ > 0, i.e., pk = e−λλk/k!. Then

k

k + 1

pk
pk+1

− 1 =
k

λ
− 1

and, for large k, we obtain as n,m→ +∞ that

bk+1 − b ≈ (λβ)−1/2k. (2.11)

Our interpretation of (2.11) is as follows. We assume, for simplicity, that s = 1. We say
that an attribute w ∈W realises the link vi ∼ vj , whenever w ∈ Di ∩Dj . We note that in
a sparse intersection graph G1(n,m,P ) each link is realised by a single attribute with
a high probability. We also remark that in the case of the Poisson asymptotic degree
distribution, the sizes of the random sets, defining intersection graph, are strongly
concentrated about their mean value a1. Now, by the symmetry property, every element
of the attribute setD2 of vertex v2 realises about k/|D2| ≈ k/a1 links to some neighbours
of v2 other than v1. In particular, the attribute responsible for the link v1 ∼ v2 attracts
to v1 some k/a1 neighbours of v2. Hence, bk+1 − b ≈ a−1

1 k ≈ (βλ)−1/2k.
Finally, we remark that (2.8), (2.9), and (2.10) imply (1.2).

3 Passive intersection graph

A collection D1, . . . , Dn of subsets of a finite set W = {w1, . . . , wm} defines the pas-
sive adjacency relation between elements of W : wi and wj are declared adjacent if
wi, wj ∈ Dk for some Dk. In this way we obtain a graph on the vertex set W , which
we call the passive intersection graph, see [11]. We assume that D1, D2, . . . , Dn are
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independent random subsets of W having the same probability distribution (2.1). In
particular, their sizes Xi = |Di|, 1 ≤ i ≤ n are independent random variables with the
common distribution P . The passive random intersection graph defined by the collec-
tion D1, . . . , Dn is denoted G∗1(n,m,P ).

We shall consider a sequence of passive graphs {G∗1(n,m,P )}n, where P = Pn and
m = mn depend on n = 1, 2, . . . . We remark that, in the case where βn = mn−1 is
bounded and it is bounded away from zero as n,m→ +∞, the vertex degree distribution
can be approximated by a compound Poisson distribution ([6], [14]). More precisely,
assuming that βn → β ∈ (0,+∞);

(iii) X1 converges in distribution to a random variable Z;
(iv) EZ4/3 <∞ and limm→∞EX

4/3
1 = EZ4/3

it is shown in [6] that d(w1) converges in distribution to the compound Poisson ran-
dom variable d∗∗ :=

∑Λ
j=1 Z̃j . Here Z̃1, Z̃2,. . . are independent random variables with

the distribution

P(Z̃1 = j) = (j + 1)P(Z = j + 1)/EZ, j = 0, 1, . . . ,

in the case where EZ > 0. In the case where EZ = 0 we put P(Z̃1 = 0) = 1. The random
variable Λ is independent of the sequence Z̃1, Z̃2,. . . and has Poisson distribution with
mean EΛ = β−1EZ.

We note that the asymptotic degree d∗∗ has a power law whenever Z has a power
law. Furthermore, we have Edi∗∗ <∞⇔ EZi+1 <∞, i = 1, 2, . . . .

In Theorems 3.1, 3.2 below we express the moments b, h, bk, hk and the assortativity

coefficient r = g−b2
b′−b2 of the random graph G∗1(n,m,P ) in terms of the moments

yi = E(X1)i and δ∗i = Edi∗∗ i = 1, 2, . . . .

Theorem 3.1. Let n,m→∞. Assume that (iii) holds and
(v) P(Z ≥ 2) > 0, EZ4 <∞ and limm→∞EX4

1 = EZ4.
In the case where βn → β ∈ (0,+∞) we have

r =
y2y4 + y2y3 − y2

3

y2y4 + y2y3 − y2
3 + β−1

n y2
2(y2 + y3)

+ o(1) (3.1)

= 1− δ∗2δ
2
∗1 − δ4

∗1
δ∗1δ∗3 − δ2

∗2
+ o(1). (3.2)

In the case where βn → +∞ we have r = 1 − o(1). In the case where βn → 0 and
nβ3

n → +∞ we have r = o(1).

Remark 2. We note that y∗ := y2y4 + y2y3 − y2
3 is always non-negative. Hence, for

large n,m we have r ≥ 0. To show that y∗ ≥ 0 we combine the identity 2y∗ = Ey(X1, X2),
where

y(i, j) = y′(i, j) + y′(j, i), y′(i, j) = (i)2(j)4 + (i)2(j)3 − (i)3(j)3,

with the simple inequality

y(i, j) = (i)2(j)2

(
(i− 2)2 + (j − 2)2 − 2(i− 2)(j − 2)

)
≥ 0.

Remark 3. Assuming that y2 > 0 and y2 = o(mβn) as m,n → +∞, Godehardt et al.
[12] showed the following expression for the clustering coefficient of G∗1(n,m,P )

α =
β−2
n m−1y3

2 + y3

β−1
n y2

2 + y3

+ o(1). (3.3)

EJP 18 (2013), paper 38.
Page 6/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2277
http://ejp.ejpecp.org/


Assortativity and clustering of sparse random intersection graphs

Now, assuming that conditions (iii) and (v) hold we compare α and r using (3.1) and
(3.3). For βn → β ∈ (0,+∞) we have r < 1 and α =

(
1 + y2

2/(βy3)
)−1

+ o(1) < 1. In the
case where βn → +∞ we have r = 1− o(1) and α = 1− o(1). In the case where βn → 0

and nβ3
n → +∞ we have r = o(1) and α = o(1).

Our last result Theorem 3.2 shows a first order asymptotics of the neighbour con-
nectivity bk and the expected number of common neighbours hk in the passive random
intersection graph.

Theorem 3.2. Let m,n→∞. Assume that βn → β ∈ (0,+∞) and (iii), (v) hold. Then

b = 1 + β−1
n y2 + y−1

2 y3 +O(n−1) = δ∗2δ
−1
∗1 + o(1), (3.4)

h = y−1
2 y3 +O(n−1) = δ∗2δ

−1
∗1 − 1− δ∗1 + o(1). (3.5)

Assuming, in addition, that P(d∗∗ = k) > 0, where k > 0 is an integer, we have

hk = k−1E(d2∗|d∗∗ = k) + o(1), (3.6)

bk = 1 + β−1y2 + hk + o(1) = 1 + δ∗1 + hk + o(1). (3.7)

Here d2∗ =
∑

1≤i≤Λ(Z̃i)2.

We remark that (3.4), (3.5), (3.6), (3.7) imply (1.2).

4 Proofs

Proofs for active and passive graphs are given in Section 4.1 and Section 4.2 re-
spectively. We note that the probability distributions of Gs(n,m,P ) and G∗1(n,m,P ) are
invariant under permutations of the vertex sets. Therefore, for either of these models
we have

b = E12d(ω1), h = E12d(ω1, ω2), (4.1)

bk = E12(d(ω2)|d(ω1) = k), hk = E12(d(ω1, ω2)|d(ω1) = k).

Here ω1 6= ω2 are arbitrary fixed vertices and E12 denotes the conditional expectation
given the event ω1 ∼ ω2. In the proof P̃ and Ẽ (respectively, P̃∗ and Ẽ∗) denote the con-
ditional probability and expectation given X1, . . . , Xn (respectively, D1, D2, X1, . . . , Xn).
Limits are taken as n and m = mn tend to infinity. We use the shorthand notation
fk(λ) = e−λλk/k! for the Poisson probability.

4.1 Active graph

Before the proof we introduce some more notation. Then we state and prove auxil-
iary lemmas. Afterwards we prove Theorem 2.1, Remark 1 and Theorem 2.2.

The conditional expectation given D1, D2 is denoted E∗. The conditional expectation
given the event v1 ∼ v2 is denoted E12. We denote

Yi =
(
Xi

s

)
, di = d(vi), d′i = di − 1, dij = d(vi, vj),

Ii = I{Xi<m1/4}, Ii = 1− Ii, ηij = 1− Ii − Ij − (m1/2 − 1)−1 (4.2)

and introduce events

E ′ij = {|Di ∩Dj | = s}, E ′′ij = {|Di ∩Dj | ≥ s+ 1}, Eij = {|Di ∩Dj | ≥ s}.

Observe that Eij is the event that vi and vj are adjacent in Gs(n,m,P ). We denote

pe = P(Eij), ai = EY i1 , xi = EXi
1, zi = EZi, m̃ =

(
m
s

)
, βn =

m̃

n
. (4.3)
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We remark that the distributions of Xi = Xni, Yi = Yni and Zi = Zni = (n/m̃)1/2Yni
depend on n.

The following inequality is referred to as LeCam’s lemma, see e.g., [26].

Lemma 4.1. Let S = I1 +I2 +· · ·+In be the sum of independent random indicators with
probabilities P(Ii = 1) = pi. Let Λ be Poisson random variable with mean p1 + · · ·+ pn.
The total variation distance between the distributions PS and PΛ of S and Λ

sup
A⊂{0,1,2... }

|P(S ∈ A)−P(Λ ∈ A)| ≤ 2
∑
i

p2
i . (4.4)

Lemma 4.2. ([6]) Given integers 1 ≤ s ≤ k1 ≤ k2 ≤ m, let D1, D2 be independent
random subsets of the set W = {1, . . . ,m} such that D1 (respectively D2) is uniformly
distributed in the class of subsets of W of size k1 (respectively k2). The probabilities
p′ := P(|D1 ∩D2| = s) and p′′ := P(|D1 ∩D2| ≥ s) satisfy(

1− (k1 − s)(k2 − s)
m+ 1− k1

)
p∗k1,k2,s ≤ p′ ≤ p′′ ≤ p∗k1,k2,s, (4.5)

Here we denote p∗k1,k2,s =
(
k1
s

)(
k2
s

)(
m
s

)−1
.

Lemma 4.3. Let s > 0 be an integer. Let m,n → ∞. Assume that conditions (i) and
(ii-3) hold. Denote X̃n1 = m−1/2n1/(2s)Xn1I{Xn1≥s}. We have

lim
A→+∞

sup
n

EZ3
n1I{Zn1>A} = 0, (4.6)

sup
n

EX̃3s
n1 <∞, lim

A→+∞
sup
n

EX̃3s
n1I{X̃n1>A} = 0. (4.7)

For any 0 ≤ u ≤ 3 and any sequence An → +∞ as n→∞ we have

EZun1I{Zn1>An} = o(1), EX̃us
n1I{X̃n1>An} = o(1). (4.8)

Proof of Lemma 4.3. The uniform integrability property (4.6) of the sequence {Z3
n1}n is

a simple consequence of (i) and (ii-3), see, e.g., Remark 1 in [5]. The first and second
identity of (4.7) follows from (ii-3) and (4.6) respectively. Finally, (4.8) follows from (4.6)
and (4.7).

Lemma 4.4. In Gs(n,m,P ) the probabilities of events Eij = {vi ∼ vj}, E ′12, E ′′12, see
(4.2), and Bt = {|Dt ∩ (D1 ∪D2)| ≥ s+ 1} satisfy the inequalities

Y1Y2m̃
−1η12 ≤ P̃(E ′12) ≤ P̃(E12) ≤ Y1Y2m̃

−1, (4.9)

YiYjm̃
−1ηij ≤ P̃∗(Eij) = P̃(Eij) ≤ YiYjm̃−1, for {i, j} 6= {1, 2}, (4.10)

P̃(E ′′12) ≤ Y1Y2X1X2(m̃m)−1, (4.11)

P̃∗(Bt) ≤ 2s ((s+ 1)!m̃m)
−1
YtXt(X

s+1
1 +Xs+1

2 ). (4.12)

We recall that Yi and ηij are defined in (4.2).

Proof of Lemma 4.4. The right hand side of (4.9), (4.10) and inequality (4.11) are im-
mediate consequences of (4.5). In order to show the left hand side inequality of (4.9)
and (4.10) we apply the left hand side inequality of (4.5). We only prove (4.9). We have,
see (4.2),

P̃(E ′12) = ẼIE′12 ≥ ẼIE′12I1I2 ≥ m̃−1Y1Y2I1I2

(
1−X1X2(m−X1)−1

)
≥ m̃−1Y1Y2η12. (4.13)
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In order to show (4.12) we apply the right-hand side inequality of (4.5) and write

P̃∗(Bt) ≤
(|D1∪D2|

s+1

)(|Dt|
s+1

)(
m
s+1

)−1 ≤
(
X1+X2

s+1

)(
Xt

s+1

)(
m
s+1

)−1
. (4.14)

Invoking the inequalities
(
Xt

s+1

)(
m
s+1

)−1
= Yt(Xt−s)

m̃(m−s) ≤
YtXt

m̃m and

(X1 +X2)s+1 ≤ (X1 +X2)s+1 ≤ 2s(Xs+1
1 +Xs+1

2 )

we obtain (4.12).

Lemma 4.5. Assume that conditions of Theorem 2.2 are satisfied. Let k ≥ 0 be an
integer. For d∗1 =

∑
4≤t≤n IE1t and ∆ = P̃∗(d

∗
1 = k)− fk(β−1a1Y1) we have

E∗|∆| ≤ R∗1 +R∗2 +R∗3 +R∗4, (4.15)

where R∗1 = nm̃−1E∗Y1Y4|1− η14| and

R∗2 = n1/2m̃−1a
1/2
2 Y1, R∗3 = a1Y1|(n− 3)m̃−1 − β−1|, R∗4 = 2nm̃−2a2Y

2
1 .

We recall that fk(λ) = e−λλk/k!.

Proof of Lemma 4.5. We denote S̃ = Ẽ∗d
∗
1 =

∑
4≤t≤n P̃∗(E1t) and S̃1 = m̃−1

∑
4≤t≤n Yt

and write

∆ = ∆1 + ∆2, ∆1 = P̃∗(d
∗
1 = k)− fk(S̃), ∆2 = fk(S̃)− fk(β−1a1Y1).

We have, by Lemma 4.1, |∆1| ≤ 2
∑

4≤t≤n P̃
2
∗(E1t). Invoking (4.10) we obtain E∗|∆1| ≤

R∗4. Next, we apply the mean value theorem |fk(λ′)− fk(λ′′)| ≤ |λ′ − λ′′| and write

|∆2| ≤ |S̃ − β−1a1Y1| ≤ r∗1 + r∗2 +R∗3, (4.16)

where r∗1 = |S̃ − Y1S̃1| and r∗2 = Y1|S̃1 − (n− 3)m̃−1a1|. Note that by (4.10),

r∗1 ≤
∑

4≤t≤n

|P̃∗(E1t)− m̃−1Y1Yt| ≤
∑

4≤t≤n

m̃−1Y1Yt|1− η1t|

and, by symmetry, E∗r∗1 ≤ R∗1. Finally, we have

E∗r
∗
2 = Y1E∗|S̃1 −E∗S̃1| ≤ Y1

(
E∗(S̃1 −E∗S̃1)2

)1/2

≤ R∗2.

Lemma 4.6. Let m,n→∞. Assume (i), (ii-3) and (2.4) hold. Then

E12d
′
1d
′
2 = nm̃−1a1 + n2m̃−2a2

2 + o(1), (4.17)

E12d
′
1 = nm̃−1a2 + o(1), (4.18)

E12(d′1)2 = E12d
′
1 + n2m̃−2a1a3 + o(1), (4.19)

E12d12 = nm̃−1a1 + o(1). (4.20)

Proof of Lemma 4.6. Proof of (4.17). In order to prove (4.17) we write

E12 d
′
1d
′
2 = p−1

e Eκ, κ := IE12d
′
1d
′
2, pe := P(E12) (4.21)

and invoke the identities

Eκ = nm̃−2a3
1 + n2m̃−3a2

1a
2
2 + o(m̃−1), (4.22)

pe = m̃−1a2
1(1 + o(1)). (4.23)
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Note that (4.23) follows from (4.10) and (4.8). Let us prove (4.22). To this aim we write

Eκ = E
(
IE12Ẽ∗(d

′
1d
′
2)
)

= E(κ̃1 + κ̃2),

where κ̃1 = IE′12Ẽ∗d
′
1d
′
2 and κ̃2 = IE′′12Ẽ∗d

′
1d
′
2, and show that

Eκ̃1 = nm̃−2a3
1 + n2m̃−3a2

1a
2
2 + o(m̃−1), Eκ̃2 = o(m̃−1). (4.24)

Let us prove (4.24). Assuming that E12 holds we can write d′i =
∑n
t=3 IEit , i = 1, 2, and

Ẽ∗d
′
1d
′
2 = S1 + S2, S1 =

∑
3≤t≤n

P̃∗(E1t ∩ E2t), S2 = 2
∑

3≤t<u≤n

P̃∗(E1t ∩ E2u). (4.25)

To show the first identity of (4.24) we write Eκ̃1 = EIE′12S1 + EIE′12S2 =: I1 + I2 and
evaluate

I1 = nm̃−2a3
1 + o(nm̃−2), I2 = n2m̃−3a2

1a
2
2 + o(n2m̃−3). (4.26)

We first evaluate I1. Given t ≥ 3, consider events

At = {|(D1 ∩D2) ∩Dt| = s} and Bt = {|Dt ∩ (D1 ∪D2)| ≥ s+ 1}. (4.27)

Assuming that E ′12 holds we have that At implies E1t ∩ E2t and E1t ∩ E2t implies At ∪ Bt.
Hence, P̃∗(At) ≤ P̃∗(E1t ∩ E2t) ≤ P̃∗(At ∪ Bt). Now, we invoke the identity P̃∗(At) =

m̃−1Yt and write

IE′12m̃
−1Yt = IE′12P̃∗(At) ≤ IE′12P̃∗(E1t ∩ E2t) ≤ IE′12

(
P̃∗(At) + P̃∗(Bt)

)
. (4.28)

From (4.28) and (4.12) we obtain, by the symmetry property,

n− 2

m̃
P(E ′12)EY3 ≤ I1 ≤

n− 2

m̃
P(E ′12)EY3 +

n− 2

m̃m
EP̃(E ′12)R1, (4.29)

where R1 = Y3X3(Xs+1
1 +Xs+1

2 ). Next, we evaluate P̃(E ′12) and P(E ′12) = EP̃(E ′12) using
(4.9):

m̃P(E ′12)EY3 = a3
1 + o(1), m̃EP̃(E ′12)R1 = O(1).

Combining these relations with (4.29) we obtain the first relation of (4.26).
Let us we evaluate I2. We write

ẼIE′12P̃∗(E1t ∩ E2u) = ẼIE′12P̃∗(E1t) P̃∗(E2u) = P̃(E ′12)P̃(E1t) P̃(E2u) (4.30)

and apply (4.9) to each probability in the right-hand side. We obtain

m̃−3(Y 2
1 Y

2
2 YtYu −Rtu) ≤ P̃(E ′12)P̃(E1t) P̃(E2u) ≤ m̃−3Y 2

1 Y
2
2 YtYu, (4.31)

where Rtu = Y 2
1 Y

2
2 YtYu(1 − η12η1tη2u) satisfies ERtu = o(1), see (4.8). Now, by the

symmetry property, we obtain from (4.31) the second relation of (4.26)

I2 = (n− 2)2EP̃(E ′12)P̃(E1t) P̃(E2u) = n2m̃−3a2
1a

2
2 + o(n2m̃−3).

To prove the second bound of (4.24) we write, see (4.25), κ̃2 = IE′′12(S1 + S2) and
show that

I3 := EIE′′12S1 ≤ x2s+1xs+1xsn/(m̃
2m), I4 := EIE′′12S2 ≤ x2

2s+1x
2
sn

2/(m̃3m). (4.32)

Here x2s+1, xs+1, xs = O(1), by (4.7). Let us prove (4.32). We have, see (4.9),

S1 ≤
∑

3≤t≤n

P̃∗(E1t) ≤
∑

3≤t≤n

Y1Ytm̃
−1. (4.33)
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Furthermore, by the symmetry property and (4.11), we obtain

I3 = E(ẼIE′′12S1) = E(P̃(E ′′12)S1) ≤ (n− 2)(m̃2m)−1EY 2
1 Y2Y3X1X2.

Since the expected value in the right hand side does not exceed x2s+1xs+1xs, we obtain
the first bound of (4.32). In order to prove the second bound we write, cf. (4.30),

ẼIE′′12P̃∗(E1t ∩ E2u) = P̃(E ′′12)P̃(E1t) P̃(E2u) ≤ m̃−3m−1Y 2
1 Y

2
2 YtYuX1X2.

In the last step we used (4.9) and (4.11). Now, by the symmetry property, we obtain

I4 = E(ẼIE′′12S2) ≤ (n− 2)2m̃
−3m−1EY 2

1 Y
2
2 Y3Y4X1X2 ≤ n2m̃−3m−1x2

2s+1x
2
s.

Proof of (4.18). We write, by the symmetry property,

E12d
′
1 = p−1

e E
∑

3≤t≤n

IE1tIE12 = (n− 2)p−1
e EIE13IE12 (4.34)

and evaluate using (4.9), (4.10)

EIE12IE13 = EP̃(E12)P̃(E13) = m̃−2EY 2
1 Y2Y3 + o(m̃−2) = m̃−2a2

1a2 + o(m̃−2).

Invoking this relation and (4.23) in (4.34) we obtain (4.18).
Proof of (4.19). Assuming that the event E12 holds we write

(d′1)2 =
( ∑

3≤t≤n

IE1t
)2

= d′1 + 2
∑

3≤t<u≤n

IE1tIE1u

and evaluate the expected value

E12(d′1)2 = E12d
′
1 + p−1

e (n− 2)2κ∗. (4.35)

Here κ∗ = EIE12IE13IE14 . We have

κ∗ = EP̃(E12)P̃(E13)P̃(E14) = m̃−3EY 3
1 Y2Y3Y4 + o(m̃−3). (4.36)

In the last step we used (4.9), (4.10). Now (4.23), (4.35) and (4.36) imply (4.19).
Proof of (4.20). We note that d12 =

∑
3≤t≤n IE1tIE2t and EIE12d12 = EIE12S1, see

(4.25). Next, we write

E12d12 = p−1
e EIE12S1 = p−1

e (I1 + I3).

and evaluate the quantity in the right hand side using (4.23) and (4.26), (4.32).

Proof of Theorem 2.1. It is convenient to write r in the form

r = η/ξ, where η = E12d
′
1d
′
2 − (E12d

′
1)2, ξ = E12(d′1)2 − (E12d

′
1)2. (4.37)

In the case where (ii-3) holds we obtain (2.6) from (2.4), (4.17), (4.18), (4.19) and (4.37).
Then we derive (2.7) from (2.6) using the identities

ai = βi/2zi + o(1), δi = ziz
i
1, i = 1, 2, 3. (4.38)

We recall that ai and zi are defined in (4.3).
Now we consider the case where (ii-2) holds and EZ3 =∞. It suffices to show that

η = O(1) and lim inf ξ = +∞. (4.39)
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Before the proof of (4.39) we remark that (4.23) holds under condition (ii-2). In order
to prove the first bound of (4.39) we show that E12d

′
1d
′
2 = O(1) and E12d

′
1 = O(1). To

show the first bound we write E12d
′
1d
′
2 = p−1

e EIE12d
′
1d
′
2 and evaluate

EIE12d
′
1d
′
2 = EIE12

∑
3≤t≤n

IE1tIE2t + EIE12

∑
3≤t,u≤n, t6=u

IE1tIE2u (4.40)

= (n− 2)κ∗1 + (n− 2)2κ∗2 ,

where

κ∗1 = EIE12IE13IE23 ≤ EIE12IE13 ≤ m̃−2a2a
2
1 = O(n−2), (4.41)

κ∗2 = EIE12IE13IE24 ≤ m̃−3a2
2a

2
1 = O(n−3). (4.42)

In the last step we used (4.9) and (4.10). We note that (4.23), (4.40) and (4.41), (4.42)
imply E12d

′
1d
′
2 = O(1). Similarly, the bound E12d

′
1 = O(1) follows from (4.23) and the

simple bound, cf. (4.34),

E12d
′
1 = p−1

e (n− 2)EIE12IE13 ≤ p−1
e nm̃−2a2a

2
1. (4.43)

In order to prove the second relation of (4.39) we show that lim inf E12(d′1)2 = +∞.
In view of (4.23) and (4.35) it suffices to show that lim inf n3κ∗ = +∞. It follows from
the left-hand side inequality of (4.5) that

n3κ∗ ≥ n3EI1I2I3I4IE12IE13IE14 ≥ EI1I2I3I4Z
3
1Z2Z3Z4(1−O(m−1/2))3, (4.44)

where, by the independence of Z1, . . . , Z4, we have EI1I2I3I4Z
3
1Z2Z3Z4 =

(
EI1Z

3
1

)
(EI2Z2)

3.
Finally, (i) combined with (ii-2) imply EI2Z2 = z1 +o(1), and (i) combined with EZ3 =∞
imply lim inf EI1Z

3
1 = +∞.

Proof of Remark 1. Before the proof we introduce some notation and collect auxiliary
inequalities. We denote

h = hn = m1/2n−1/(4s), h̃ = h̃n =
(
h
s

)
β−1/2
n

and observe that, under the assumption of Remark 1, βn, hn, h̃n → +∞ and hn =

o(m1/2). We further denote

Iih = I{Xi<h}, Iih = 1− Iih, ηijh = 1− Iih − Ijh − εh,

where εh = h2(m− h)−1, and remark that Iih = I{Zi<h̃} and εh = o(1). We observe that
conditions (i), (ii-k) imply, for any given u ∈ (0, k], that

EZu1 = zu + o(1), EZu1 I1h = zu + o(1), EZu1 I1h = o(1). (4.45)

Now from (4.5) we derive the inequalities

EZ1Z2η12h ≤ EZ1Z2I1hI2h(1− εh) ≤ nEIE12I1hI2h ≤ nEIE12 ≤ EZ1Z2. (4.46)

Then invoking in (4.46) relations EZ1 = z1 + o(1) and EZ1Z2η12h = z2
1 + o(1), which

follow from (4.45) for u = 1, we obtain the relation

npe = nEIE12 = z2
1 + o(1). (4.47)

Similarly, under conditions (i), (ii-2), we obtain the relations

n2EIE12IE13 = z2
1z2 + o(1), (4.48)

n3EIE12IE13IE24 = z2
1z

2
2 + o(1), (4.49)
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and, under conditions (i), (ii-3), we obtain

n3EIE12IE13IE14 = z3
1z3 + o(1). (4.50)

Let us prove the bound r = o(1) in the case where (i), (ii-2) hold and EZ3 = +∞. In
order to prove r = o(1) we show (4.39). Proceeding as in (4.40), (4.41), (4.42), (4.43)
and using (4.47) we show the bounds E12d

′
1d
′
2 = O(1) and E12d

′
1 = O(1), which imply the

first bound of (4.39). Next we show the second relation of (4.39). In view of (4.35) and
(4.47) it suffices to prove that lim supn3κ∗ = +∞. In the proof we proceed similarly as
in (4.44) above, but now we use the product I1hI2hI3hI4h instead of I1I2I3I4. We obtain

n3κ∗ ≥
(
EI1hZ

3
1

)
(EI2hZ2)

3
(1− εh)3.

Here EI2hZ2 = z1 + o(1), see (4.45). Furthermore, under conditions (i) and EZ3 = +∞
we have EI1hZ

3
1 → +∞. Hence, n3κ∗ → +∞.

Now we prove the bound r = o(1) in the case where (i), (ii-3) hold. We shall show
that

η = o(1) and lim inf ξ > 0. (4.51)

Let us prove the second inequality of (4.51). Combining the first identity of (4.43) with
(4.47) and (4.48) we obtain

E12d
′
1 = z2 + o(1). (4.52)

Next, combining (4.35) with (4.47) and (4.50) we obtain

E12(d′1)2 = E12d
′
1 + z1z3 + o(1). (4.53)

It follows from (4.52), (4.53) and the inequality z1z3 ≥ z2
2 , which follows from Hoelder’s

inequality, that ξ = z2 +z1z3−z2
2 +o(1) ≥ z2 +o(1). We have proved the second inequality

of (4.51).
Let us prove the first bound of (4.51). In view of (4.40) and (4.52) it suffices to show

that
p−1
e n2κ∗2 = z2

2 + o(1), p−1
e nκ∗1 = o(1). (4.54)

We note that the first relation of (4.54) follows from (4.47), (4.49). To prove the second
bound of (4.54) we need to show that κ∗1 = o(n−2). We split

κ∗1 = EIE′12IE13IE23 + EIE′′12IE13IE23

and estimate, using (4.10) and (4.11),

EIE′′12IE13IE23 ≤ EIE′′12IE13 ≤ m̃
−2m−1EY 2

1 Y2X1X2Y3 = O(n−2−s−1

).

In the last step we combined the inequality Y ui ≤ Xu
i I{Xi≥s} and (4.7). Furthermore,

using the right-hand side inequality of (4.28) we write

EIE′12IE13IE23 ≤ EIE′12m̃
−1Y3 + EIE′12P̃∗(B3)

and estimate, by (4.9) and (4.12),

EIE′12m̃
−1Y3 ≤ m̃−2EY1Y2Y3 = O(n−2β−1/2

n ),

EIE′12P̃∗(B3) ≤ m̃−2m−1EY1Y2Y3X3(Xs+1
1 +Xs+1

2 ) = O(n−2−s−1

). (4.55)
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Proof of Theorem 2.2. Relations (2.8) follow from (4.1) and (4.18), (4.20).
Before the proof of (2.9) and (2.10) we introduce some notation. Given two se-

quences of real numbers {An} and {Bn} we write An ' Bn (respectively An ' 0)
to denote the fact that An − Bn = o(n−2) (respectively An = o(n−2)). We denote
p∗ = P(v1 ∼ v2, d

′
1 = k) and introduce random variables, see (4.2), I∗ = I1I2, I

∗
= 1−I∗,

and

τ1 = IE12τ, τ2 = IE′′12τ, τ3 = IE′12IE13IE23I{d∗1=k}, τ4 = IE′12τ
∗, τ5 = IE′′12τ

∗.

Here τ = IE23I{d′1=k} and τ∗ = IE13IE23I{d∗1=k−1}, and d∗1 =
∑

4≤t≤n IE1t . We remark that

the identity IE12 = IE′12 + IE′′12 in combination with 1 = IE13 + IE13 implies

τ1 = τ2 + τ3 + τ4. (4.56)

Proof of (2.9), (2.10). In view of (4.1) we can write

hk+1 = E12(d12|d′1 = k) = p−1
∗ EIE12I{d′1=k}d12, (4.57)

bk+1 − 1 = E12(d′2|d′1 = k) = p−1
∗ EIE12I{d′1=k}d

′
2.

Furthermore, by the symmetry property, we have

EIE12I{d′1=k}d12 = (n− 2)EIE12τ
∗, EIE12I{d′1=k}d

′
2 = (n− 2)Eτ1. (4.58)

We note that (4.57), (4.58) combined with the identities IE12τ
∗ = τ4 +τ5 and (4.56) imply

hk+1 = (n− 2)p−1
∗ E(τ4 + τ5), bk+1 − 1 = (n− 2)p−1

∗ E(τ2 + τ3 + τ4), (4.59)

and observe that (2.9), (2.10) follow from (4.59) and the relations

p∗ = n−1(k + 1)pk+1 + o(n−1), (4.60)

Eτ3 = n−2β−1(k + 1)(a2 − a1)pk+1 + o(n−2), (4.61)

Eτ4 = n−2β−1ka1pk + o(n−2), (4.62)

Eτi = o(n−2), i = 2, 5. (4.63)

It remains to prove (4.60), (4.61), (4.62), (4.63).
In order to show (4.63) we combine the inequalities

τi ≤ IE′′12IE23 = IE′′12IE23(I∗ + I
∗
) ≤ IE′′12IE23I

∗ + IE12IE23I
∗

with the inequalities, which follow from (4.10) and (4.11),

EIE′′12IE23I
∗ ≤ EP̃(E ′′12)P̃∗(E23)I∗ ≤ (m̃2m)−1EY1Y

2
2 Y3X1X2I

∗ = O(n−2m−1/2),(4.64)

EIE12IE23I
∗ ≤ EP̃(E12)P̃∗(E23)I

∗ ≤ m̃−2EY1Y
2
2 Y3I

∗
= o(n−2). (4.65)

In the last step of (4.64) we use the inequality X1X2I
∗ ≤ m1/2. In the last step of (4.65)

we use the bound EY1Y
2
2 Y3I

∗
= o(1), which holds under conditions (i), (ii-2). Indeed

Y1Y2Y3 is uniformly integrable as n→ +∞ and Y1Y
2
2 Y3I

∗
= o(1) almost surely.

Proof of (4.62). We have

Eτ4 = EIE′12P̃∗(E23 ∩ E13)P̃∗(d
∗
1 = k − 1). (4.66)

We first replace in (4.66) the probability P̃∗(E23 ∩ E13) by P̃∗(A3) = Y3/m̃ using (4.27),
(4.28). Then we replace P̃∗(d

∗
1 = k − 1) by fk−1(β−1a1Y1) using Lemma 4.5. Finally, we
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replace IE′12 by m̃−1Y1Y2 using (4.9). We obtain

Eτ4 ' m̃−1EIE′12Y3P̃∗(d
∗
1 = k − 1) (4.67)

' m̃−1EIE′12Y3fk−1(β−1a1Y1) (4.68)

' m̃−2EY1Y2Y3fk−1(β−1a1Y1) (4.69)

= n−2β−2
n a2

1EY1fk−1(β−1a1Y1). (4.70)

Here (4.67) follows from the bound EIE′12 P̃∗(B3) = o(n−2). We remark that this bound
follows from (4.55), but under stronger moment condition (ii-3). To show this bound
under moment condition (ii-2) of the present theorem we write

IE′12 P̃∗(B3) = IE′12 P̃∗(B3)(I∗ + I
∗
) ≤ IE′12 P̃∗(B3)I∗ + IE′12 P̃∗(B

′
3)I
∗
,

where B′3 = {D3 ∩ (D1 ∪D2)| ≥ s}, and estimate, see (4.9), (4.12), (4.14),

EIE′12 P̃∗(B3)I∗ ≤ m̃−2m−1EY1Y2Y3X3(Xs+1
1 +Xs+1

2 )I∗

≤ m̃−2m−3/4EY1Y2Y3X3(Xs
1 +Xs

2)

= O(n−2m−3/4),

EIE′12 P̃∗(B
′
3)I
∗ ≤ m̃−2EY1Y2Y3(Xs

1 +Xs
2)I
∗

≤ o(n−2).

Furthermore, (4.68) follows from the bounds EIE′12Y3R
∗
j = o(n−1), 1 ≤ j ≤ 4, see (4.15).

We show these bound using (4.9). For 1 ≤ j ≤ 3 the proof is obvious. For j = 4 we
need to show that EIE′12Y

2
1 Y3 = o(1). For this purpose we write (using the inequality

I1Y1 ≤ I1m
s/4)

IE′12Y
2
1 Y3 = IE′12Y

2
1 Y3(I1 + I1) ≤ ms/4IE′12Y1Y3I1 + Y 2

1 Y3I1

and note that the expected values of both summands in the right hand side tend to zero
as n→ +∞. Finally, (4.69) follows from (4.9) and implies directly (4.70).

Now we derive (4.62) from (4.70). We observe that

k−1β−1a1EY1fk−1(β−1a1Y1) = Efk(β−1a1Y1)→ Efk(z1Z)

(here we use the fact that the weak convergence of distributions (i) implies the con-
vergence of expectations of smooth functions). Furthermore, by (2.2), Efk(z1Z) = pk.
Hence, (4.70) implies

Eτ4 ' n−2β−1ka1Efk(z1Z) = n−2β−1ka1pk.

Proof of (4.61). Introduce the event C = {D3 ∩ (D1 \ D2) = ∅}, probability p̃ =

P̃∗(E ′23 ∩ C ∩ E13), and random variable H = m̃−1(Y2 − 1)Y3. We obtain (4.61) in several
steps. We show that

Eτ3 ' EIE′12 p̃I{d∗1=k} (4.71)

' EIE′12HI{d∗1=k} (4.72)

' EIE′12Hfk(β−1a1Y1) (4.73)

' m̃−1EY1Y2Hfk(β−1a1Y1) (4.74)

' m̃−2(a2 − a1)(k + 1)βpk+1. (4.75)

We note that (4.71) is obtained by replacing IE23 by the product IE′23IC in the formula
defining τ3. In order to bound the error of this replacement we apply the inequality

IE′23IC ≤ IE23 ≤ IE′23IC + IB3
. (4.76)
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and invoke the bound EIE′12IE13IB3
I{d′1=k} ≤ EIE′12P̃∗(B3) = o(n−2), see the proof of

(4.67) above. We remark that the left hand side inequality of (4.76) is obvious. The
right hand side inequality holds because the event E23 implies (E ′23 ∩ C) ∪ B3.

In (4.72) we replace p̃ by H. To prove (4.72) we show that

EIE′12 p̃I{d∗1=k} ' EIE′12 p̃I{d∗1=k}I1 ' EIE′12HI{d∗1=k}I1 ' EIE′12HI{d∗1=k}. (4.77)

We remark that the first and third relations follow from the simple bounds, see (4.9),
(4.10),

EIE′12 p̃I{d∗1=k}I1 ≤ EIE′12IE′23I1 ≤ m̃−2EY1Y
2
2 Y3I1 = o(n−2),

EIE′12 |H|I{d∗1=k}I1 ≤ m̃−1EY1Y2|H|I1 = o(n−2).

In order to show the second relation of (4.77) we split

p̃ = P̃∗(E13|E ′23 ∩ C) P̃∗(E ′23|C) P̃∗(C) =: p̃1p̃2p̃3 (4.78)

and observe that p̃1 is the probability that the random subset D3 ∩D2 (of size s) of D2

does not match the subset D1 ∩ D2 (we note that |D1 ∩ D2| = s, since the event E ′12

holds). Hence, p̃1 = 1− Y −1
2 . Furthermore, from (4.5) we obtain

p̃3 = 1− P̃∗(D3 ∩ (D1 \D2) 6= ∅) ≥ 1− P̃∗(D3 ∩D1 6= ∅) ≥ 1−m−1X1X3. (4.79)

Finally, p̃2 is the probability that the random subset D3 of W \ (D1 \ D2) intersects
with D2 in exactly s elements. Taking into account that the event E ′12 holds we obtain
(see (4.9), (4.13))

m̃−1
1 Y2Y3I2I3(1−m1/2/(m′ −X2)) ≤ p̃2 ≤ m̃−1

1 Y2Y3. (4.80)

Here we denote m̃1 :=
(
m′

s

)
and m′ = |W \ (D1 \D2)| = m− (X1− s). We remark that on

the event {X1 < m1/4} we have m′ = m−O(m1/4). Hence, for large m, (4.80) implies

m̃−1Y2Y3η23I1 ≤ p̃2I1 ≤ m̃−1Y2Y3I1(1 +m−3/4(s+ o(1))). (4.81)

Now, collecting (4.79), (4.81), and the identity p̃1 = 1 − Y −1
2 in (4.78) we obtain the

inequalities

IE′12I1η23H(1−m−1X1X3) ≤ IE′12I1p̃ ≤ IE′12I1H(1 +O(m−3/4)) (4.82)

that imply the second relation of (4.77).
In the proof of (4.73), (4.74), (4.75) we apply the same argument as in (4.68), (4.69),

(4.70) above.
Proof of (4.60). We write

p∗ = EIE12P̃∗(d
′
1 = k) = EP̃(E12)P̃∗(d

′
1 = k)

and in the integrand of the right hand side we replace P̃∗(d
′
1 = k) by fk(β−1a1Y1) and

P̃(E12) by m̃−1Y1Y2 using (4.15) and (4.9), respectively.

4.2 Passive graph

Before the proof we introduce some more notation. Then we present auxiliary lem-
mas. Afterwards we prove Theorems 3.1, 3.2.

By Eij we denote the conditional expectation given the event Eij = {wi ∼ wj}.
Furthermore, we denote

pe = P(Eij), Dij = Di ∩Dj , Xij = |Dij |, xi = EXi
1, yi = E(X1)i, ui = E(Z)i.
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For w ∈ W , we denote Ii(w) = I{w∈Di} and Ii(w) = 1 − Ii(w), and introduce random
variables

L(w) =
∑

1≤i≤n

li(w), li(w) = Ii(w)(Xi − 1),

Q(w) =
∑

1≤i<j≤n

qij(w), qij(w) = Ii(w)Ij(w)(Xij − 1),

S1 =
∑

1≤i≤n

si, S2 =
∑

1≤i<j≤n

sisj , si = Ii(w1)Ii(w2).

We say that two vertices wi, wj ∈ W are linked by Dk if wi, wj ∈ Dk. In particular, a set
Dk defines

(
Xk

2

)
links between its elements. We note that Lt = L(wt) counts the number

of links incident to wt. Similarly, Qt = Q(wt) counts the number of different parallel
links incident to wt (a parallel link between w′ and w′′ is realized by a pair of sets Di, Dj

such that w′, w′′ ∈ Di ∩Dj). Furthermore, S1 counts the number of links connecting w1

and w2 and S2 counts the number of different pairs of links connecting w1 and w2. We
denote the degree dt = d(wt) and introduce event Lt = {Lt = dt}.

Lemma 4.7. The factorial moments δ∗i = E(d∗∗)i and ui = E(Z)i satisfy the identities

δ∗1 = β−1u2, δ∗2 = β−2u2
2 + β−1u3, δ∗3 = β−3u3

2 + 3β−2u2u3 + β−1u4. (4.83)

Proof of Lemma 4.7. We only show the third identity of (4.83). The proof of the first and
second identities is similar, but simpler. We color z = z1 + · · ·+ zr distinct balls using r
different colors so that zi balls receive i-th color. The number of triples of balls(

z
3

)
=
∑
i∈[r]

(
zi
3

)
+
∑
i∈[r]

(
zi
2

) ∑
j∈[r]\{i}

zj +
∑

{i,j,k}⊂[r]

zizjzk. (4.84)

Here the first sum counts triples of the same color, the second sum counts triples having
two different colors, etc. We apply (4.84) to the random variable

(
d∗∗
3

)
, where d∗∗ =

Z̃1 + · · ·+ Z̃Λ. We obtain, by the symmetry property,

E
(
d∗∗
3

)
= EΛE

(
Z̃1

3

)
+ E(Λ)2E

(
Z̃1

2

)
EZ̃1 + E

(
Λ
3

)
(EZ̃1)3.

Now invoking the simple identities E(Λ)i = (EΛ)i = (u1β
−1)i and E(Z̃1)i = ui+1u

−1
1 we

obtain the third identity of (4.83).

Lemma 4.8. We have

ES1 = n−1β−2
n y2 +R′1, (4.85)

EL1S1 = n−1β−2
n (y2 + y3) + n−1β−3

n y2
2 +R′2, (4.86)

EL1L1S1 = n−1β−2
n (y2 + 3y3 + y4) + 3n−1β−3

n y2(y2 + y3) + n−1β−4
n y3

2 +R′3,(4.87)

EL1L2S1 = n−1β−2
n (y4 + 3y3 + y2) + 2n−1β−3

n y2(y3 + y2) + n−1β−4
n y3

2 +R′4.(4.88)

where, for some absolute constant c > 0, we have |R′1| ≤ cn−2β−3
n x2 and

|R′2| ≤ cn−2(β−3
n + β−4

n )x4,

|R′j | ≤ cn−2β−3
n (1 + β−1

n + x2 + β−2
n x2)x4, j = 3, 4.

Proof of Lemma 4.8. We only show (4.88). The proof of remaining identities is similar
or simpler. We write, for t = 1, 2, Lt = L(wt) = l1(wt) + L′t and denote τ j = Ẽsj =
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(m)−1
2 (Xj)2. We have, by the symmetry property,

EL1L2S1 = nEs1L1L2, (4.89)

Es1L1L2 = Es1l1(w1)l1(w2) + 2Es1l1(w1)L′2 + Es1L
′
1L
′
2,

Es1L
′
1L
′
2 = (n− 1)Es1l2(w1)l2(w2) + (n− 1)2Es1l2(w1)l3(w2),

Es1l1(w1)L′2 = (n− 1)Es1l1(w1)l2(w2).

A straightforward calculation shows that

Ẽs1l1(w1)l1(w2) = (X1 − 1)2τ1 = (m)−1
2 ((X1)4 + 3(X1)3 + (X1)2) ,

Ẽs1l1(w1)l2(w2) = m−1(X1 − 1)(X2 − 1)X2τ1 = m−1(m)−1
2 ((X1)3 + (X1)2) (X2)2,

Ẽs1l2(w1)l2(w2) = (X2 − 1)2τ1τ2 = (m)−2
2 (X1)2 ((X2)4 + 3(X2)3 + (X2)2) ,

Ẽs1l2(w1)l3(w2) = m−2(X2)2(X3)2τ1 = m−2(m)−1
2 (X1)2(X2)2(X3)2.

Invoking these expressions in the identity Es1li(wt)lj(wu) = EẼs1li(wt)lj(wu) we obtain
expressions for the moments Es1li(wt)lj(wu). Substituting them in (4.89) we obtain
(4.88).

Lemma 4.9. We have

ES2 ≤ 0.5n−2β−4
n x2

2, (4.90)

EL1S2 ≤ n−2β−4
n x2x3 + 0.5n−2β−5

n x3
2, (4.91)

EQ1S1 ≤ n−2β−4
n x2x3 + 0.5n−2β−5

n x3
2, (4.92)

EL1Q2S1 = EL2Q1S1 ≤ n−2β−4
n (2x2x4 + 1.5β−1

n x2
2x3 + 0.5β−2

n x4
2) + n−3β−6

n x2
2x4,(4.93)

EL1Q1S1 ≤ n−2β−4
n (x2

3 + x2x4) + 2.5n−2β−5
n x2

2x3 + 0.5n−2β−6
n x4

2, (4.94)

EL1L1S2 ≤ n−2β−4
n (x2

3 + x2x4) + 2.5n−2β−5
n x2

2x3 + 0.5n−2β−6
n x4

2, (4.95)

EL1L2S2 ≤ n−2β−4
n (x2x4 + x2

3 + 2β−1
n x2

2x3 + 0.5β−2
n x4

2) + n−30.5β−6
n x2

2x4, (4.96)

EQ1I1(w1)(X1 − 1)2 ≤ 4n−2β−3
n y2(y3 + y4 + β−1y2y3). (4.97)

Proof of Lemma 4.9. We only prove (4.93). The proof of remaining inequalities is similar
or simpler. In the proof we use the shorthand notation li = li(w1) and qij = qij(w2).

To prove (4.93) we write, by the symmetry property,

EQ2L1S1 =
(
n
2

)
Eq12L1S1

Eq12L1S1 = 2Eq12l1S1 + (n− 2)Eq12l3S1,

Eq12l1S1 = Eq12l1s1 + Eq12l1s2 + (n− 2)Eq12l1s3,

Eq12l3S1 = Eq12l3s1 + Eq12l3s2 + Eq12l3s3 + (n− 3)Eq12l3s4

and invoke the inequalities

Eq12l1sj ≤ m−4x2x4, Eq12l3sj ≤ m−5x2
2x3, j = 1, 2,

Eq12l1s3 ≤ m−6x2
2x4, Eq12l3s3 ≤ m−5x2

2x3, Eq12l3s4 ≤ m−6x4
2.

These inequalities follow from the identity Eq12lisj = EẼq12lisj and the upper bounds
for the conditional expectations Ẽq12lisj constructed below.

For i = 1 and j = 1, 2, we have

Ẽq12l1sj ≤ Ẽq12l1 = (X1 − 1)Ẽq12I1(w1) ≤ m−4X4
1X

2
2 . (4.98)

In the first inequality we use sj ≤ 1. In the second inequality we use the inequality

Ẽq12I1(w1) = ηξ ≤ m−4X3
1X

2
2 . (4.99)
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Here η = Ẽ
(
X12 − 1

∣∣I1(w1)I1(w2)I2(w2) = 1
)

and ξ = P̃ (I1(w1)I1(w2)I2(w2) = 1). We
note that given X1, X2, D1, the random variable η evaluates the expected number of
elements of D1 \ {w2} that belong to the random subset D2 \ {w2} (of size X2 − 1).
Hence, we have η = (m− 1)−1(X1 − 1)(X2 − 1). Furthermore, the probability

ξ = P̃(w1, w2 ∈ D1)× P̃(w2 ∈ D2) =

(
X1

2

)(
m
2

) × X2

m
.

Combining obtained expressions for η and ξ we easily obtain (4.99).
For i = 1 and j = 3, we write, by the independence of D1, D2 and D3,

Ẽq12l1s3 = (Ẽq12l1)(Ẽs3) ≤ m−6X4
1X

2
2X

2
3 .

In the last step we used Ẽs3 = (X3)2(m)−1
2 and Ẽq12l1 ≤ m−4X4

1X
2
2 , see (4.98).

For i = 3 and j = 1, 2, we write Ẽq12l3sj = (Ẽq12Ij(w1))(Ẽl3), by the independence
of D1, D2 and D3. Invoking the inequalities

Ẽl3 = (X3 − 1)P̃(w1 ∈ D3) ≤ m−1X2
3 , Ẽq12I1(w1) = ηξ ≤ m−4X3

1X
2
2 ,

see (4.99), we obtain Ẽq12l3s1 ≤ m−5X3
1X

2
2X

2
3 . Similarly, Ẽq12l3s2 ≤ m−5X2

1X
3
2X

2
3 .

For i, j = 3, we split Ẽ(q12l3s3) = (Ẽq12)(Ẽl3s3) and write Ẽq12 = η1ξ1. Here

η1 = Ẽ(X12 − 1|I1(w2)I2(w2) = 1), ξ1 = P̃(I1(w2)I2(w2) = 1).

Invoking the identities η1 = (m− 1)−1(X1 − 1)(X2 − 1) and ξ1 = m−2X1X2 we obtain

Ẽq12 = η1ξ1 ≤ m−3X2
1X

2
2 . (4.100)

Combining (4.100) with the identities Ẽl3s3 = (X3 − 1)Ẽs3 = (X3 − 1)(X3)2(m)−1
2 we

obtain the inequality Ẽq12l3s3 ≤ m−5X2
1X

2
2X

3
3 .

For i = 3 and j = 4 we write by the independence of D1, D2, D3, D4, and (4.100)

Ẽq12l3s4 =
(
Ẽq12

)(
Ẽl3

)(
Ẽs4

)
≤
(
m−3X2

1X
2
2

) (
m−1X2

3

) (
m−2X2

4

)
= m−6X2

1X
2
2X

2
3X

2
4 .

Proof of Theorem 3.1. In order to show (3.1) we write

r =
E12d1d2 − (E12d1)2

E12d2
1 − (E12d1)2

=
peEd1d2IE12 − (Ed1IE12)2

peEd2
1IE12 − (Ed1IE12)2

(4.101)

and invoke the expressions

pe = ES1 +O(n−2β−4
n ), (4.102)

Ed1IE12 = EL1S1 +O(n−2β−4
n (1 + β−1

n )),

Ed2
1IE12 = EL2

1S1 +O(n−2β−4
n (1 + β−2

n )),

Ed1d2IE12 = EL1L2S1 +O(n−2β−4
n (1 + β−2

n )).

Now the identities of Lemma 4.8 complete the proof of (3.1).
Let us prove (4.102). We first write, by the inclusion-exclusion,

S1 − S2 ≤ IE12 ≤ S1, (4.103)

Lt −Qt ≤ dt ≤ Lt. (4.104)

Then we derive from (4.104) the inequalities

0 ≤ L1L2 − d1d2 ≤ L1Q2 + L2Q1 and 0 ≤ L2
1 − d2

1 ≤ 2L1Q1, (4.105)
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which, in combination with (4.103) and (4.104), imply the inequalities

0 ≤ L1S1 − d1IE12 ≤ L1S2 +Q1S1, (4.106)

0 ≤ L2
1S1 − d2

1IE12 ≤ L2
1S2 + 2L1Q1S1,

0 ≤ L1L2S1 − d1d2IE12 ≤ L1L2S2 + L1Q2S1 + L2Q1S1.

Finally, invoking the upper bounds for the expected values of the quantities in the right
hand sides of (4.106) shown in Lemma 4.9, we obtain (4.102).

Now we derive (3.2) from (3.1). Firstly, using the fact that (iii), (v) imply the con-
vergence of moments E(X1)i → E(Z)i, for i = 2, 3, 4, we replace the moments yi by
ui = E(Z)i in (3.1). Secondly, we replace ui by their expressions via δ∗i. For this
purpose we solve for u2, u3, u4 from (4.83) and invoke the identities

δ∗1 = δ∗1, δ∗2 = δ∗2 − δ∗1, δ∗3 = δ∗3 − 3δ∗2 + 2δ∗1. (4.107)

For βn → +∞ relation (3.1) remains valid and it implies r = 1 + o(1).
For βn → 0 the condition nβ3

n → +∞ on the rate of decay of βn ensures that the
remainder terms of (4.102) and Lemma 4.8 are negligibly small. In particular, we derive
(3.1) using the same argument as above. Letting βn → 0 in (3.1) we obtain the bound
r = o(1).

Proof of Theorem 3.2. Before the proof we introduce some notation. We denote

H =
∑

1≤i≤n

Ii(w1)(Xi − 1)2, pke = P(w2 ∼ w1, d1 = k).

Given wi, wj ∈W we write dij = d(wi, wj). A common neighbour w of wi and wj is called
black if {w,wi, wj} ⊂ Dr for some 1 ≤ r ≤ n, otherwise it is called red. Let d′ij and
d′′ij denote the numbers of black and red common neighbours, so that d′ij + d′′ij = dij .
Let w∗ be a vertex drawn uniformly at random from the set W ′ = W \ {w1}. By d′1∗ we
denote the number of black common neighbours of w1 and w∗. By E1∗ we denote the
event {w1 ∼ w∗}. We assume that w∗ is independent of the collection of random sets
D1 . . . , Dn defining the adjacency relation of our graph.

In the proof we use the identity, which follows from (4.85), (4.102),

pe = n−1β−2
n y2 +O(n−2). (4.108)

We also use the identities, which follow from (4.83) and (4.107)

1 + β−1u2 + u−1
2 u3 = δ∗2δ

−1
∗1 , β−1u2 = δ∗1. (4.109)

We remark that (4.109) in combination with relations yi → ui as n,m → +∞, imply
the right hand side relations of (3.4), (3.5) and (3.7).

Now we prove the left hand side relations of (3.4), (3.5) and (3.7), and the relation
(3.6).

In order to show (3.4) we write b = p−1
e Ed1IE12 and invoke identities (4.102), (4.86)

and (4.108).
Proof of (3.5). We write h = p−1

e Ed12IE12 and evaluate

Ed12IE12 = n−1β−2
n y3 +O(n−2). (4.110)

Combining (4.108) with (4.110) we obtain (3.5). Let us show (4.110). Using the identity

d12 = d′12 + d′′12 = d′12IL1
+ d′12IL1

+ d′′12 (4.111)
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we write
Ed12IE12 = Ed′12IE12IL1

+R1 +R2, (4.112)

where R1 = Ed′′12IE12 and R2 = EIL1d
′
12IE12 . Next, we observe that EIL1d

′
12IE12 =

EIL1d
′
1jIE1j , for 2 ≤ j ≤ n, and write

EIL1
d′12IE12 = EIL1

d′1∗IE1∗ = EIL1
H(m− 1)−1. (4.113)

We explain the second identity of (4.113). We observe that H(m−1)−1 is the conditional
expectation of d′1∗IE1∗ given D1, . . . , Dn. Indeed, any pair of sets Di, Dj containing w1

intersects in the single point w1, since the event L1 holds. Consequently, each Di con-
taining w1 producesXi−2 black common neighbours provided that w∗ hitsDi. Since the
probability that w∗ hits Di equals (Xi − 1)/(m− 1), the set Di contributes (on average)
(m− 1)−1Ii(w1)(Xi − 1)2 black vertices to d′1∗.

Now, by the symmetry property, we write the right-hand side of (4.113) in the form

n

m− 1
EIL1I1(w1)(X1 − 1)2 =

n

m− 1
EI1(w1)(X1 − 1)2 −R3 =

n

(m)2
y3 −R3, (4.114)

where, R3 = n
m−1EIL1

I1(w1)(X1 − 1)2. Finally, we observe that (4.110) follows from
(4.112), (4.113), (4.114) and the bounds Ri = O(n−2), i = 1, 2, 3, which are proved
below.

In order to bound Ri, i = 1, 2, we use the inequalities

d′12 ≤ d1 ≤ L1, IE12 ≤ S1, IL1
= I{L1 6=d1} = I{Q1≥1} ≤ Q1 (4.115)

and write R2 ≤ EQ1L1S1 and R3 ≤ n(m − 1)−1EQ1I1(w1)(X1 − 1)2. Then we apply
(4.94) and (4.97). In order to bound R1 we observe, that the number of red common
neighbours of w1, w2 produced by the pair of sets Di, Dj is

aij =
(
Ii(w1)Ij(w2)Ij(w1)Ii(w2) + Ij(w1)Ii(w2)Ii(w1)Ij(w2)

)
Xij .

Hence, on the event w1, w2 ∈ D1 we have d′′12 ≤
∑

2≤i<j≤n aij , since elements of
D1 \ {w1, w2} are black common neighbours of w1, w2. >From this inequality and the
inequality IE12 ≤ S1 we obtain

R1 ≤ Ed′′12S1 = nEd′′12s1 ≤ n
(
n−1

2

)
Es1a23. (4.116)

Furthermore, invoking in (4.116) identities

E(s1a23) = EẼ(s1a23) = E
(
Ẽs1

)(
Ẽa23

)
, Ẽs1 = (X1)2/(m)2

and inequalities

Ẽa23 = 2EI2(w1)I3(w2)I3(w1)I2(w2)X23 ≤ 2
X2

m

X3

m

(X2 − 1)(X3 − 1)

m− 2

we obtain R1 = O(n−2).
Proof of (3.6). In the proof we use the fact that the random vector (H,L1) con-

verges in distribution to (d2∗, d∗∗) as n → +∞. We recall that H is described after
(4.113). The proof of this fact is similar to that of the convergence in distribution of
L1 =

∑
1≤i≤n Ii(w1)(Xi−1) to the random variable d∗∗, see Theorems 5 and 7 of [6]. We

note that the convergence in distribution of (H,L1) implies the convergence in distribu-
tion of HI{L1=k} to d2∗I{d∗∗=k}. Furthermore, since under condition (v) the first moment
EH is uniformly bounded as n→ +∞ and Ed2∗ <∞, we obtain the convergence of mo-
ments

EHI{L1=k} → Ed2∗I{d∗∗=k} as n→∞. (4.117)
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In order to prove (3.6) we write

hk = E(d12|w1 ∼ w2, d1 = k) = p−1
ke Ed12IE12I{d1=k}

and show that

pke = km−1P(d∗∗ = k) + o(n−1), (4.118)

Ed12IE12I{d1=k} = m−1EHI{L1=k} + o(n−1). (4.119)

We remark that (4.117) in combination with (4.118) and (4.119) implies (3.6).
Let us show (4.118). In view of the identities pke = P(wi ∼ w1, d1 = k), 2 ≤ i ≤ n, we

can write
pke = P(w∗ ∼ w1, d1 = k) = P(w∗ ∼ w1|d1 = k)P(d1 = k).

Now, from the simple identity P(w∗ ∼ w1|d1 = k) = k(m − 1)−1 and the approximation
P(d1 = k) = P(d∗∗ = k) + o(1), see [6], we obtain (4.118).

Let us show (4.119). Using (4.111) we obtain, cf. (4.112),

Ed12IE12I{d1=k} = Ed′12IE12I{d1=k}IL1
+O(n−2). (4.120)

Furthermore, proceeding as in (4.113), we obtain

Ed′12IE12I{d1=k}IL1 = Ed′1∗IE1∗I{d1=k}IL1 = (m− 1)−1EHI{d1=k}IL1 . (4.121)

Next, we invoke identity EHI{d1=k}IL1
= EHI{L1=k}IL1

and approximate, cf. (4.114),

(m− 1)−1EHI{L1=k}IL1
= (m− 1)−1EHI{L1=k} +O(n−2). (4.122)

Combining (4.120), (4.121) and (4.122) we obtain (4.119).
Proof of (3.7). Let d12 denote the number of neighbours of w1, which are not adjacent

to w2, and let hk = E(d12|w1 ∼ w2, d2 = k). We obtain (3.7) from the identity

bk = E(d1|w1 ∼ w2, d2 = k) = 1 + hk + hk

and the relation hk = β−1
n y2 + o(1). In order to prove this relation we write

hk = p−1
ke τ, where τ = Ed12IE12I{d2=k},

and combine (4.118) with the identity

τ = km−1β−1
n y2P(d∗∗ = k) + o(n−1). (4.123)

It remains to prove (4.123). In the proof we use the shorthand notation

ηi = Ii(w1)Ii(w2)(Xi − 1), η′i = ηiIE12I{d2=k}IL1
, η′′i = ηiIE12I{d2=k}.

Let us prove (4.123). Using the identity 1 = IL1
+ IL1

we write

τ = Ed12IE12I{d2=k}IL1
+R4, R4 = Ed12IE12I{d2=k}IL1

.

Next, assuming that the event L1 holds, we invoke the identity d12 =
∑

1≤i≤n ηi and
obtain

Ed12IE12I{d2=k}IL1
= E

∑
1≤i≤n

η′i = nEη′1.

In the last step we used the symmetry property. Furthermore, from the identity

Eη′1 = Eη′′1 −R5, R5 = Eη1IE12I{d2=k}IL1
,
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we obtain τ = nEη′′1 + R4 − nR5. We note that inequalities d12 ≤ d1 ≤ L1 and (4.115)
imply

R4 ≤ EL1S1Q1, R5 ≤ EI1(w1)(X1 − 1)S1Q1 = n−1EL1S1Q1.

Now, from (4.94) we obtain R4 = O(n−2) and R5 = O(n−3). Hence, we have τ =

nEη′′1 +O(n−2). Finally, invoking the relation

Eη′′1 = km−2y2P(d∗∗ = k) + o(n−2), (4.124)

we obtain (4.123). To show (4.124) we write

Eη′′1 = Eη1κ, κ = E
(
IE12I{d2=k}

∣∣D1

)
, (4.125)

and observe that on the event w2 /∈ D1 the quantity κ evaluates the probability of the
event {w1 ∼ w2, d2 = k} in the passive random intersection graph defined by the sets
D2, . . . , D3 (i.e., the random graph G∗1(n− 1,m, P )). We then apply (4.118) to the graph
G∗1(n−1,m, P ) and obtain κ = km−1P(d∗∗ = k) +o(n−1). Here the remainder term does
not depend on D1. Substitution of this identity in (4.125) gives

Eη′′1 =
(
km−1P(d∗∗ = k) + o(n−1)

)
Eη1.

The following identities complete the proof of (4.124)

Eη1 = EI1(w1)(X1 − 1)−EI1(w1)I1(w2)(X1 − 1)

= m−1y2 − (m)−1
2 (y3 + y2).

References

[1] Barbour, A. D. and Reinert, G.: The shortest distance in random multi-type intersection
graphs, Random Structures and Algorithms 39 (2011), 179–209. MR-2850268

[2] Barrat, A. and Weigt M.: On the properties of small-world networks, The European Physical
Journal B 13 (2000), 547–560.

[3] Behrisch, M.: Component evolution in random intersection graphs, The Electronical Journal
of Combinatorics 14(1) (2007). MR-2285821

[4] Blackburn, S. and Gerke, S.: Connectivity of the uniform random intersection graph, Dis-
crete Mathematics 309 (2009), 5130-5140. MR-2548914

[5] Bloznelis, M.: Degree distribution of a typical vertex in a general random intersection graph,
Lithuanian Mathematical Journal 48 (2008), 38-45. MR-2398169

[6] Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs, to
appear in Annals of Applied Probability.

[7] Britton, T., Deijfen, M., Lindholm, M. and Lagerås, N. A.: Epidemics on random graphs with
tunable clustering. Journal of Applied Probability 45 (2008), 743-756. MR-2455182

[8] Deijfen, M. and Kets, W.:, Random intersection graphs with tunable degree distribution and
clustering, Probab. Engrg. Inform. Sci. 23 (2009), 661–674. MR-2535025

[9] Eschenauer, L. and Gligor, V. D.: A key-management scheme for distributed sensor networks,
in: Proceedings of the 9th ACM Conference on Computer and Communications Security
(2002), 41–47.

[10] Godehardt, E. and Jaworski, J.: Two models of random intersection graphs and their appli-
cations, Electronic Notes in Discrete Mathematics 10 (2001), 129–132. MR-2154493

[11] Godehardt, E. and Jaworski, J.: Two models of random intersection graphs for classification,
in: Studies in Classification, Data Analysis and Knowledge Organization, Springer, Berlin–
Heidelberg–New York, 2003, pp. 67–81. MR-2074223

EJP 18 (2013), paper 38.
Page 23/24

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2850268
http://www.ams.org/mathscinet-getitem?mr=2285821
http://www.ams.org/mathscinet-getitem?mr=2548914
http://www.ams.org/mathscinet-getitem?mr=2398169
http://www.ams.org/mathscinet-getitem?mr=2455182
http://www.ams.org/mathscinet-getitem?mr=2535025
http://www.ams.org/mathscinet-getitem?mr=2154493
http://www.ams.org/mathscinet-getitem?mr=2074223
http://dx.doi.org/10.1214/EJP.v18-2277
http://ejp.ejpecp.org/


Assortativity and clustering of sparse random intersection graphs

[12] Godehardt, E., Jaworski, J. and Rybarczyk, K.: Clustering coefficients of random intersection
graphs, in: Studies in Classification, Data Analysis and Knowledge Organization, Springer,
Berlin–Heidelberg–New York, 2012, 243–253.

[13] Guillaume, J. L. and Latapy, M.: Bipartite structure of all complex networks, Inform. Process.
Lett. 90 (2004), 215–221. MR-2054656

[14] Jaworski, J. and Stark, D.: The vertex degree distribution of passive random intersection
graph models, Combinatorics, Probability and Computing 17 (2008), 549–558. MR-2433940
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