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1 Introduction

The Beurling projection theorem (see, e.g., [1, Theorem V.4.1]) states that if K is a closed
subset of the closed unit disk in C, then the probability that a Brownian motion starting
at −ε avoids K before reaching the unit circle is less than or equal to the same probability
for the angular projection

K ′ = {|z| : z ∈ K}.
If K ′ = [0, 1], a simple conformal mapping argument shows that the latter probability is
comparable to ε1/2 as ε → 0+. In particular, if K is a connected set of diameter one at
distance ε from the origin the probability that a Brownian motion from the origin to the
unit circle avoids K is bounded above by cε1/2.

This estimate, which we will call the Beurling estimate, is very useful in analysis of
boundary behavior of conformal maps especially for connected but rough boundaries. A
similar estimate for random walks is useful, especially when considering convergence of
random walk to Brownian motion near (possibly nonsmooth) boundaries. For simple
random walk such an estimate was first established in [5] to derive a discrete harmonic
measure estimate for application to diffusion limited aggregation. It has been used since
in a number of places, e.g., in deriving “Makarov’s Theorem” for random walk [7] or
establishing facts about intersections of random walks (see, e.g., [8]). Recently it has been
used by the first author and collaborators to analyze the rate of convergence of random
walk to Brownian motion in domains with very rough boundaries. Because of its utility,
we wish to extend this estimate to walks other than just simple random walk. In this note
we extend it to a larger class of random walks.

We state the precise result in the next section, but we will summarize briefly here.
As in [5], we start with the estimate for a half-line. We follow the argument in [6]; see
[2, 3] for extensions. The argument in [6] strongly uses the time reversibility of simple
random walk. In fact, as was noted in [3], the argument really only needs symmetry in x
component. We give a proof of this estimate, because we need the result not just for Z+

but also for κZ+ where κ is a positive integer. The reason is that we establish the Beurling
estimate here for “(1/κ)-dense” sets. One example of such a set that is not connected is
the path of a non-nearest neighbor random walk whose increments have finite range; a
possible application of our result would be to extend the results of [8] to finite range walks.
While our argument is essentially complete for random walks that are symmetric in the x
component, for the nonsymmetric case we use a result of Fukai [3] that does the estimate
for κ = 1. Since κZ+ ⊂ Z+ this gives a lower bound for our case, and our bound for the
full line then gives the upper bound.

The final section derives the general result from that for a half-line; this argument
closely follows that in [5]. We assume a (3 + δ)-moment for the increments of the random
walk in order to ensure that the asymptotics for the potential kernel are sufficiently sharp
(see (5)). (We also use the bound for some “overshoot” estimates, but in these cases
weaker bounds would suffice.) If one would have in (5) a weaker bound, c/|z|b for some
b > 1/2, an analogue of (33) would hold and this would suffice to carry out the argument
in section 5. So the method presented here should require only (2.5 + δ) moment.
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2 Preliminaries

Denote by Z,R,C the integers, the real numbers and the complex numbers, respectively.
We consider Z and R as subsets of C. Let Z+ = {k ∈ Z : k > 0};N = {k ∈ Z : k ≥
0},Z− = Z \ N. Let L denote a discrete two-dimensional lattice (additive subgroup)
of C. Let X1, X2, . . . be i.i.d. random variables taking values in L and let Sn be the
corresponding random walk. We say that X1, X2, . . . generates L if for each z ∈ L there
is an n with P(X1 + · · ·+Xn = z) > 0. Let

TB := inf{l ≥ 1 : Sl ∈ B}, T 0
B := inf{l ≥ 0 : Sl ∈ B},

be the first entrance time of B after time 0, and the first entrance time of B including
time 0, respectively. We abbreviate T{b}, T

0
{b} by Tb, T

0
b respectively. Denote by Cn = {z ∈

L : |z| < n} the discrete open disk of radius n, and let τn := T 0
Ccn be the first time the

random walk is not in Cn.
Suppose κ is a positive integer and A is a subset of the lattice L. We call A (1/κ)-dense

(about the origin) if for every j ∈ N, A ∩ {jκ ≤ |z| < (j + 1)κ} 6= ∅. A set of the form
A = {wj : j ∈ κN} with j ≤ |wj | < j + κ for each j will be called a minimal (1/κ)-dense
set. Any (1/κ)-dense set contains a minimal (1/κ)-dense set. If 0 < j1 < j2 < ∞, we let
A[j1, j2] = A ∩ (Cj2 \ Cj1). If −∞ < j1 < j2 <∞, we write [j1, j2]κ = κN ∩ [j1, j2).

The purpose of this paper is the prove the following result.

Theorem 1 Suppose L is a discrete two-dimensional lattice in C and X1, X2, . . . are i.i.d.
random variables that generate L such that E[X1] = 0 and for some δ > 0, E[|X1|3+δ] <∞.
Then for each positive integer κ, there exists a c <∞ (depending on κ and the distribution
of X1) such that for every (1/κ)-dense set A and every 0 < k < n <∞,

P(τ2n < TA[k,n]) ≤ c
√

k/n.

We start by making some reductions. Since B ⊂ A clearly implies P(τm < T 0
A) ≤

P(τm < T 0
B), it suffices to prove the theorem for minimal (1/κ)-dense sets A = {wj : j ∈

κN} and, without loss of generality, we assume that A is of this form. By taking a linear
transformation of the lattice if necessary, we may assume that L is of the form

L = {j + kz∗ : j, k ∈ Z},

where z∗ ∈ C\R and that the covariance matrix of X1 is a multiple of the identity. (When
dealing with mean zero, finite variance lattice random walks, one can always choose the
lattice to be the integer lattice in which case one may have a non-diagonal covariance
matrix, or one can choose a more general lattice but require the covariance matrix to be
a multiple of the identity. We are choosing the latter.) Let p be the (discrete) probability
mass function of X1. Then our assumptions are {z : p(z) > 0} generates L and for some
δ, σ2 > 0,

∑

z

zp(z) = 0, (1)

∑

z

Re(z)2p(z) =
∑

z

Im(z)2p(z) = σ2 > 0, (2)
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∑

z

|z|3+δp(z) <∞, (3)

Let p∗(z) = p(z) be step probability mass function of the time-reversed walk; and note that
p∗ also satisfies (1)-(3). We denote by P∗(A) the probability of A under steps according
to p∗. We call a function f p-harmonic at w if

∆pf(w) :=
∑

z

p(z) [f(z + w)− f(w)] = 0. (4)

Let X1, X2, . . . be independent L-valued random variables with probability mass function
p, and let Sn = S0 +

∑n
i=1 Xi, n ≥ 0 be the corresponding random walk. Denote by Px

(resp., Ex) the law (resp., expectation) of (Sn, n ≥ 0) when S0 = x, and we will write
P,E, for P0,E0.

Let a(z) denote the potential kernel for p,

a(z) = lim
n→∞

n
∑

j=0

[P(Sj = 0)−P(Sj = z)] ,

and let a∗(z) denote the potential kernel using p∗. Note that a is p∗-harmonic and a∗

is p-harmonic for z 6= 0 and ∆p∗a(0) = ∆pa
∗(0) = 1. In [4] it is shown that under the

assumptions (1) - (3) there exist constants k̄, c (these constants, like all constants in this
paper, may depend on p), such that for all z,

∣

∣

∣

∣

a(z)− log |z|
π σ2

− k̄

∣

∣

∣

∣

≤ c

|z| . (5)

Since a∗(z) = a(−z), this also holds for a∗.
As mentioned above, Cn = {z ∈ L : |z| < n} is the discrete open disk of radius n and

τn := T 0
Ccn . Denote by Ln the discrete open strip {x + iy ∈ L : |y| < n} of width 2n and

let ρn := T 0
Lcn , i.e., τn, ρn are the exit times from the disk and the strip, respectively.

For any proper subset B of L, let GB(w, z) denote the Green’s function of B defined
by

GB(w, z) =

T 0
Bc−1
∑

j=0

Pw(Sj = z). (6)

This equals zero unless w, z ∈ B. We will write Gn for GCn . If w, z ∈ B, and G(w) :=
GB(w, z), then ∆pG(w) = −δ(w−z) where ∆p is as in (4), and where δ(·) is the Kronecker
symbol δ(x) = 1, x = 0 and δ(x) = 0, x 6= 0. Let G∗B(w, z) denote the Green’s function
for p∗ and note that GB(z, w) = G∗B(w, z). A useful formula for finite B is

GB(w, z) = Ew[a∗(ST − z)]− a∗(w − z) = Ew[a(z − ST )]− a(z − w), (7)

where T = T 0
Bc . This is easily verified by noting that for fixed z ∈ B, each of the three ex-

pressions describes the function (w) satisfying: f(w) = 0, w 6∈ B;∆pf(z) = −1;∆pf(w) =
0, w ∈ B \ {z}. The following “last-exit decomposition” relates the Green’s function and
escape probabilities:

Pz{T 0
B′ < T 0

Bc} =
∑

w∈B′

GB(z, w)Pw(TB′ > TBc). (8)
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It is easily derived by focusing on the last visit to B ′ strictly less than T 0
Bc .

For the remainder of this paper we fix p, κ and allow constants to depend on p, κ.
We assume k ≤ n/2, for otherwise the inequality is immediate. The values of universal
constant may change from line to line without further notice. In the next two sections
will prove that

P(τn4 < T[k,n]) ≤
1

log n

√

k

n
.

(Here, and throughout this paper, we use ³ to mean that both sides are bounded by
constants times the other side where the constants may depend on p, κ.) In the final
section we establish the uniform upper bound for all minimal (1/κ)-dense sets.

3 Green’s function estimates

We start with an “overshoot” estimate.

Lemma 2 There is a c such that for all n and all z with |z| < n,

Ez[|Sτn |] ≤ n+ c n2/3, Ez[log |Sτn | − log n] ≤ c n−1/3.

Proof. If a > 0, since {|Sτn | − n ≥ a} ⊂ {|Xτn | ≥ a} we have

Pz(|Sτn | − n ≥ a) ≤
∞
∑

j=1

Pz(τn = j, |Xj | ≥ a) ≤
∞
∑

j=1

Pz(τn > j − 1, |Xj | ≥ a)

≤
∞
∑

j=1

Pz(τn > j − 1)P(|X1| ≥ a) ≤ Ez(τn)P(|X1| ≥ a).

From the central limit theorem, we know that Pz{τn > r + n2 | τn > r} < α < 1.
Therefore, τn/n

2 is stochastically bounded by a geometric random variable with success
probability 1− α, and hence Ez[τn] ≤ cn2. Since E[|X1|3] <∞,

P(|X1| ≥ b) = P(|X1|3 ≥ b3) ≤ c b−3. (9)

Therefore,
Pz(|Sτn | − n ≥ an2/3) ≤ c a−3, (10)

and

E[|Sτn | − n] ≤ n2/3 +

∫ ∞

n2/3
Pz(|Sτn | − n ≥ y) dy ≤ c n2/3.

The second inequality follows immediately from applying log(1+x) ≤ x to x = (|Sn|−n)/n.
2

Remark. With a finer argument, we could show, in fact, that Ez[|Sτn |] ≤ n + c. By
doing the more refined estimate we could improve some of the propositions below, e.g.,
the O(n−1/3) error term in the next proposition is actually O(n−1). However, since the
error terms we have proved here suffices for this paper, we will not prove the sharper
estimates.
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Lemma 3

π σ2 Gn(0, 0) = logn+O(1).

If |z| < n,

π σ2Gn(0, z) = log n− log |z|+O

(

1

|z|

)

+O(n−1/3),

π σ2Gn(z, 0) = log n− log |z|+O

(

1

|z|

)

+O(n−1/3).

Also, for every b < 1, there exist c > 0 and N such that for all n ≥ N ,

Gn(z, w) ≥ c, z, w ∈ Cbn. (11)

Proof. The first expression follows from (5), (7) and Lemma 2 since a(0) = 0. The next
two expressions again use (7), Lemma 2, and (5). For the final expression, first note it
is true for b = 1/4, since for 0 ≤ |z|, |w| < n/4, Gn(z, w) ≥ G3n/4(0, w − z). For b < 1,
the invariance principle implies that there is a q = qb > 0 such that for all n sufficiently
large, with probability at least q the random walk (and reversed random walk) starting
at |z| < bn reaches Cn/4 before leaving Cn. Hence, by the strong Markov property, if
|z| < bn, |w| < bn, Gn(z, w) ≥ q inf |z′|<n/4 Gn(z

′, w). Similarly, using the reversed random
walk, if |w| < bn, |z′| < n/4, Gn(z

′, w) ≥ q inf |w′|<n/4 Gn(z
′, w′). 2

Lemma 4 If m ≥ n4 and |z|, |w| ≤ n,

π σ2 Gm(z, w) = logm− log |z − w|+O

(

1

|z − w|

)

+O(n−4/3).

Proof. Since Gm−n(0, w−z) ≤ Gm(z, w) ≤ Gm+n(0, w−z), this follows from the previous
lemma.

Lemma 5 There is a c < ∞ such that for every z ∈ Cn and every minimal (1/κ)-dense
set A,

∑

w∈A
Gn(z, w) ≤ c n. (12)

Proof. By Lemma 3,

π σ2 Gn(z, w) ≤ π σ2 G2n(0, w − z) ≤ logn− log |w − z|+O(1).

If A is a minimal (1/κ)-dense set, then #{w ∈ A : |z−w| ≤ r} ≤ cr, for some c independent
of z. Hence,

∑

w∈A
Gn(z, w) ≤ c

2n
∑

j=1

[log n− log j +O(1)] = O(n).

2
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4 Escape probability estimates for [j, k]κ

The main purpose of this section is to obtain estimates in Proposition 12 and Lemmas 13
and 14 which will be used in the proof of Theorem 1 in section 5.

Lemma 6

P(τn < T[−n,n]κ) ³
1

n
. (13)

Proof. Let q(n) = P(τn ≤ T[−n,n]κ) and note that if k ∈ [−n/2, n/2]κ, then

q(4n) ≤ Pk(τn ≤ T[−n,n]κ) ≤ q(n/4).

The last-exit decomposition (8) tells us

∑

k∈[−n/2,n/2]κ

Gn(0, k)P
k(τn < T[−n,n]κ) ≤

∑

k∈[−n,n]κ

Gn(0, k)P
k(τn < T[−n,n]κ) = 1.

But (11) and (12) imply that

∑

k∈[−n/2,n/2]κ

Gn(0, k) ³ n,

which gives q(4n) = O(1/n). The lower bound can be obtained by noting P(ρn < TZ) ≤
P(τn < T[−n,n]κ) which reduces the estimate to a one-dimensional “gambler’s ruin” es-
timate in the y-component. This can be established in a number of ways, e.g., using a
martingale argument. 2

Lemma 7 There exist c > 0 and N <∞ such that if n ≥ N and z ∈ C3n/4,

Pz(T 0
A[n/4,n] < τn) ≥ Pz(T 0

A[n/4,n/2] < τn) ≥ c.

Proof. Let

V =

τn−1
∑

j=0

1{Sj ∈ A[n/4, n/2]},

be the number of visits to A[n/4, n/2] before leaving Cn. Then (11) and (12) show that
there exist c1, c2 such that for n sufficiently large,

c1 n ≤ Ew[V ] ≤ c2 n, w ∈ C7n/8.

In particular, if z ∈ C3n/4,

c1 n ≤ Ez[V ] = Pz(V ≥ 1) Ez[V | V ≥ 1] ≤ c2 nP
z(V ≥ 1). 2

Lemma 8 There exist 0 < c1 < c2 <∞ and N <∞ such that if n ≥ N ,

c1

log n
≤ Pz(T0 < τn) ≤

c2

logn
, z ∈ C9n/10 \ Cn/10.
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Proof. This follows immediately from Lemma 3 and Gn(z, 0) = Pz(T0 < τn)Gn(0, 0). 2

Let T+ = TκZ+ , T− = TκZ\Z+ . Define

E+
n = {ρn < T+}, E−n = {ρn < T−}, Ẽ−n = {ρn < TκZ−}

and
En = E+

n ∩ E−n = {ρn < TκZ}.
Recall that P∗ stands for the probability under step distribution p∗.

Lemma 9 P(En) = P∗(Ẽ−n )P(E−n ).

Proof. Consider E−n ∩ (E+
n )

c = V1 ∪ V2 ∪ . . ., where

Vm = {ρn < T{...,−κ,0,κ,...,κ(m−1)}} ∩ {ρn > Tκm},

is the event that integer κm is the smallest integer in κZ visited by the walk before time
ρn. Clearly V1, V2, . . . are disjoint events. Write

Vm =
∞
⋃

j=1

Vm,j ,

where Vm,j := Vm ∩ {Sj = κm} ∩ {Sl 6= κm, l = j + 1, . . . , ρn} is the intersection of Vm

with the event that κm is visited for the last time (before time ρn) at time j. Again, Vm,j

are mutually disjoint events. Therefore,

P(E−n ∩ (E+
n )

c) =
∞
∑

m=1

∞
∑

j=1

P(Vm,j). (14)

Note that due to the strong Markov property, and homogeneity of the line and the lattice,
we have

P(Vm,j) = P(Sj = κm, j < ρn ∧ Tκ{...,−1,0,1,...,m−1})P
κm(ρn < Tκ{...,−1,0,1,...,m})

= P(Sj = κm, j − 1 < ρn ∧ Tκ{...,−1,0,1,...,m−1})P(E−n ). (15)

By reversing the path we can see that

P(Sj = κm, j − 1 < ρn ∧ Tκ{...,−1,0,1,...,m−1})

= Pκm
∗ (Sj = 0, j − 1 < ρn ∧ Tκ{...,−1,0,1,...,m−1}). (16)

Also note that

Pκm
∗ (Sj = 0, j − 1 < ρn ∧ Tκ{...,−1,0,1,...,m−1}) =

P∗(Sj = −κm, j − 1 < ρn ∧ Tκ{...,−2,−1}) (17)

by translation invariance. Now,

{Sj = −κm, j − 1 < ρn ∧ Tκ{...,−2,−1}} = {ρn ∧ TκZ− = T−κm = j}
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and since

∞
∑

m=1

∞
∑

j=1

P∗(ρn ∧ TκZ− = T−κm = j) =
∞
∑

m=1

P∗(ρn ∧ TκZ− = T−κm) = P∗(ρn > TκZ−)

relations (15)-(17) imply

∑

m≥1

∑

j≥1

P(Vm,j) = P∗(ρn > TκZ−)P(E−n ) = P∗((Ẽ
−
n )

c)P(E−n ).

This together with (14) implies the lemma. 2

Remark. The above result implies the following remarkable claim: if the step distribution
of the walk is symmetric with respect to y-axis then, under P, the events E+

n and E−n are
independent.

Remark. Versions of this lemma have appeared in a number of places. See [6, 2, 3].

Lemma 10

P(ρn ≤ TκN) ³ P(ρn ≤ TκZ−) ³
1√
n
. (18)

Proof. In the case κ = 1, this was essentially proved by Fukai [3]. Theorem 1.1 in [3]
states that

P(n2 < TN) ³
1

n1/2
. (19)

for any zero-mean aperiodic random walk on lattice Z2 with 2 + δ finite moment. Note
that we can linearly map L onto Z2, and by this cause only multiplicative constant change
(depending on L) in the conditions (1)-(3), which imply the assumptions needed for (19)
to hold. The conversion from n2 to ρn is not difficult and his argument can be extended
to give this. Note that this gives a lower bound for other κ,

P(τn < TκN) ≥
c

n1/2
, (20)

where c depends on L and transition probability p only. Hence, the two terms in the
product in Lemma 9 are bounded below by c/

√
n but the product is bounded above by

c1/n. Hence, each of the terms is also bounded above by c̃/
√
n, and this proves the

statement. 2

Lemma 11 There exists c ∈ (0,∞) such that
(a) P−n(T−n < TκN) ≤ 1− c

log n ,
(b) If |z| ≥ n then P z(Tz < TκZ) ≤ 1− c

log n .

Proof. We prove (a), and note that (b) can be done similarly. It is equivalent to show

P(TκN+n < T0) ≥
c

logn
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Note that since τn ≤ TκN+n, Lemma 3 yields the upper bound on the above probability of
the same order. For the lower bound note that invariance principle implies

P(τn < T0,Re(Sτn) ≥ 4n/5) ≥ P(τn < T0)

100
≥ c

logn
, (21)

by Lemma 3. Use Markov property and Lemma 7 applied to disk centered at n = (n, 0)
of radius 9n/10 to get

P(TκN+n < T0|τn < T0,Re(Sτn) ≥ 4n/5, |Sτn | − n ≤ n/5) ≥ c,

uniformly in n. An easy overshoot argument yields P(τn < T0,Re(Sτn) ≥ 4n/5, |Sτn |−n ≤
n/5) ³ P(τn < T0,Re(Sτn) ≥ 4n/5), which implies the lemma. 2

Proposition 12 If j, n ∈ Z+,

(a) P(τn ≤ TκN) ³ P(τn ≤ TκZ+) ³ 1√
n
,

(b) P−n(STκN
= 0) = O

(

1√
n

)

,

(c) Pn(STκN
= 0) = O

(

1

n3/2

)

.

(d) P(τn < Tκ(j+N)) = O

(

√

j

n

)

,

(e) P(τn < Tκ(−j+N)) = O

(

1√
jn

)

,

Proof. (a) A simple Markov argument gives

P(τn ≤ TκN) ≤ P(τn ≤ TκZ+
) ≤ P(STκN

6= 0)−1 P(τn ≤ TκN),

and hence the first two quantities are comparable. Since τn ≤ ρn, (18) gives P(τn ≤
TκN) ≥ c/

√
n. For the upper bound, let A− = A−n be the event that Re(Sτn) ≤ 0. By the

invariance principle, P(A−) ≥ 1/4. However, we claim that P(A− | τn ≤ TκN) ≥ P(A−).
Indeed, by translation invariance, we can see for every j > 0, Pjκ(A−) ≤ P(A−), and
hence by the Strong Markov property, P(A− | τn > TκN) ≤ P(A−). Therefore,

P(τn ≤ TκN,Re(Sτn) ≤ 0) ≥ (1/4)P(τn ≤ TκN).

The invariance principle can now be used to see that for some c,

P(ρn ≤ TκN | τn ≤ TκN,Re(Sτn) ≤ 0) ≥ c,

and hence P(ρn ≤ TκN) ≥ (c/4)P(τn ≤ TκN).
(b) Let T = T−n ∧ TκN. Since P−n(ST 6= −n) ≥ c/ log n by Lemma 11(a), it suffices

by the strong Markov property to show that

P−n(ST = 0) ≤ c

(log n)
√
n
.
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By considering reversed paths, we see that

P−n(ST = 0) = P∗(ST = −n).

But

P∗(ST = −n) = P∗(τn/2 < TκN)P∗(ST = −n | τn/2 < TκN)

≤ P∗(τn/2 < TκN)P∗(ST = −n | τn/2 < TκN, |S(τn/2)| ≤ 3n/4)

+P∗(|S(τn/2)| ≥ 3n/4).

To bound the last line, note that by (18), P∗(τn/2 < TκN) ≤ c/
√
n and the conditional

probability is bounded by a term of order 1/ log n due to Lemmas 7 and 8. Inequality (10)
implies that P∗(|S(τn/2)| ≥ 3n/4) ≤ c/n.

(c) We will start with the estimate

Pz(STκZ
= w) ≤ c

n
if |z − w| ≥ n. (22)

Without loss of generality assume w = 0, |z| ≥ n. As in (b), it suffices to show that
Pz(STz∧TκZ

= 0) ≤ c/(n log n) due to Lemma 11(b). By using reversed paths, we see that
Pz(STz∧TκZ

= 0) = P∗(STz̄∧TκZ
= z̄). Hence it suffices to show that for all |z| ≥ n,

P∗(ST = z) ≤ c

n logn
,

where T = Tz ∧ TκZ. Similarly to (b), we have P∗(τn/2 < TκZ) ≤ n−1 and P∗(ST = z |
τn/2 < TκZ, |Sτn/2 | ≤ 3n/4) ≤ c/ logn . We have to be a little more careful with the second
term, but

P∗(|Sτn/2 | ≥ 3n/4, τn/2 < TκZ)

≤ P∗(|Sτ√n | ≥ n/2) +P∗(τ√n < τn/2 ∧ TκZ, |Sτn/2 | ≥ 3n/4}
≤ O(n−2) +O(n−1/2)O(n−1) = O(n−3/2). (23)

Using (b) and (22) and noting {STκN
= 0} = ∩∞k=0{STκZ

= −k} ∩ {STκN
◦ θTκZ

= 0}, we
conclude that

Pz(SκN = 0) ≤ c

|z|1/2 , |z| ≥ n. (24)

The remainder of the argument is done similarly to (b). Namely, use estimate (23) and
note that the probability that the random walk starting at n reaches a distance of n/2
from its starting point without hitting κN is O(n−1), and, given that |Sτn/2 | ≤ 3n/4, the

probability that it afterwards enters κN at the origin is O(n−1/2) due to (24).
(d) We may assume jκ ≤ n/4. By the Markov property, translation invariance, (a),

and (b), if lκ ≤ n/4,

P(τn < Tκ(l+1+N))−P(τn < Tκ(l+N))

= P(Tlκ < Tκ(l+1+N) ∧ τn)P
lκ(τn < Tκ(l+1+N))

≤ P(Tlκ = Tκ(l+N))P(τn/2 < TκZ+)

= P−lκ(SκN = 0)P(τn/2 < TκZ+)

≤ c/
√
ln
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If we sum this estimate over l = 0, . . . , j, we get the estimate.
(e) This is done similarly to (d), using (c) instead of (b). 2

Lemma 13 There exist 0 < c1 < c2 <∞ and N <∞, such that if n ≥ N,m = n4, and
(i) if w ∈ C4n \ C3n,

c1

logn
≤ Pw(τm < ηn) ≤

c2

logn
,

where ηn = inf{j : |Sj | ≤ 2n}.
(ii) if w ∈ C4n,

Pw(τm < TA[n/2,n]) ≤
c2

logn
.

Remark. When w ∈ C4n \ C3n (i) implies a lower bound of the same order in (ii).

Proof. (i) Let T = τm ∧ ηn. We will show that

Pw(T = τm) ³ 1/ log n. (25)

Consider the martingale Mj = π σ2 [a∗(Sj∧T )− k̄]− logn, and note that Mj = log |Sj∧T |−
log n+O(|Sj∧T |−1). Therefore,

log 3 +O(n−1) ≤M0 ≤ log 4 +O(n−1). (26)

The optional sampling theorem implies that

Ew[M0] = Ew[MT ] =

Ew[MT 1{|ST |≥m}] +Ew[MT 1{|ST |<n}] +Ew[MT 1{n≤|ST |≤2n}] (27)

(the estimate (10) can be used to show that the optional sampling theorem is valid). Note
that

(logm)Pw(T = τm) ≤ Ew[log |ST |1{T=τm}]

≤ (logm)Pw(T = τm) +Ew[log |Sτm | − logm]

≤ 4 (log n)Pw(T = τm) +O(n−4/3).

The last inequality uses Lemma 2. Therefore,

Ew[MT 1{|ST |≥m}] = 3 (log n)Pw(T = τm) +O(n−4/3),

and hence it suffices to show that

Ew[MT 1{|ST |≥m}] ³ 1. (28)

Clearly,
O(n−1) ≤ Ew[MT 1{n≤|ST |≤2n}] ≤ log 2 +O(n−1).
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Also,

Pw(|ST | < n) =
∑

|z|<n

∑

w′∈Cm\C2n
GCm\C2n(w,w′)P(X1 = z − w′)

≤ c (log n)
∑

w′∈Cm\C2n

∑

|z|<n

P(X1 = w′ − z)

≤ c n2 (log n)
∑

|z′|≥n

P(X1 = z′1)

≤ c n−1 (log n)E[|X1|3] ≤ c n−1 log n,

and hence Ew[MT ; |ST | < n] = O(log2 n/n). Combining these estimates with (26) and
(27) gives (28) and therefore (25).

(ii) Let q = q(n,A) be the maximum of Pw(τm < TA[n/2,n]) where the maximum is
over all w ∈ C4n. Let w = wn be a point obtaining this maximum. Let η̄n be the first
time that a random walk enters Cn and let η∗n be the first time after this time that the
walk leaves C2n. Then by a Markovian argument and an easy overshoot argument we get

Pz(τm < TA[n/2,n]; η̄n < τm) ≤ α q +O(n−1), z ∈ C4n

where α = 1 − c < 1 for c the constant from Lemma 7. The O(n−1) error term comes
from considering the probability that |Sη∗n | ≥ 4n. By letting z = w we get

Pw(τm < TA[n/2,n]) ³ Pw(τm < TA[n/2,n], τm < η̄n) = Pw(τm < η̄n)

We now show that (i) implies

Pz(τm < η̄n) ≤
c

log n
, for z ∈ C4n. (29)

Namely, by the same argument as in (i), applied to n/2 instead of n and m = n4 still, one
gets

Pz(τm < η̄n) ³
1

log n
, for z ∈ C2n \ C3n/2.

The uniform upper bound can easily be extended to all z ∈ C2n using strong Markov
property and overshoot estimate (10). Now for z ∈ C4n \ C3n we have

Pz(τm < η̄n) = Pz(τm < ηn) +Pz(ηn < τm < η̄n),

so that the upper bound in (i) together with strong Markov imply (29) for z ∈ C4n \ C3n.
The remaining case z ∈ C3n \ C2n is implied again by strong Markov inequality and an
overshoot estimate. 2

Recall that we may assume k ≤ n/2.

Lemma 14 If 0 ≤ k ≤ n/2, and j ∈ [k, n]κ

Pj(τm < T[k,n]κ) ≤
c√

n logn

(

1

(j − k + 1)1/2
+

1

(n− j + 1)1/2

)

.
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Proof. Since S0 = j the probability of not visiting [k, n]κ during interval [1, τ2n] is
bounded above by a constant times

1√
n(j − k + 1)1/2

+
1√

n(n− j + 1)1/2
,

due to Proposition 12(d),(e).
Now consider the first time after τ2n that the random walk either leaves Cm or enters

the disk Cn. Estimate (29) says that the probability of random walk leaving Cm before
entering Cn is bounded above by c/ log n. Hence one expects (also using an easy overshoot
argument) O(logn) “excursions” from C4n \ C2n into Cn before leaving Cm, and for each
such excursion there is a positive probability, conditioned on the past of the walk, that
the random walk visits [k, n]κ during that excursion due to Lemma 7. This gives the extra
term c/ logn in the above probability. 2

5 Proof of Theorem 1

Without loss of generality we assume k, n ∈ κZ+ with k ≤ n/2. By Lemma 13(i), it
suffices to show that

P(τm < TA[k,n]) ≤
c
√
k√

n log n
,

where, as before, m = n4. The above inequality will then imply

P(τ2n < TA[k,n]) ≤
P(τm < TA[k,n])

P(τm < TA[k,n]|τ2n < TA[k,n])
=

c
√
k√
n

,

since by Lemma 13 (i)

P(τm < TA[k,n]|τ2n < TA[k,n]) ≥
c

logn
.

Let T = T[k,n]κ , T̂ = TA[k,n], T
0 = T 0

[k,n]κ
, T̂ 0 = T 0

A[k,n]. Proposition 12(d), Lemma

13(ii), and an easy overshoot estimate give

P(τm < T ) ≤ c
√
k√

n log n
.

Note that similarly we have

P(τm < T ) ≥ c
√
k√

n log n
,

with a different constant c > 0, since Lemma 13(i) is two-sided bound, and the proof of
Proposition 12 parts (b) and (d) can be slightly modified to obtain two-sided bound of
the same order as the upper bound.

We will show, in fact, that

P(τm < T̂ )−P(τm < T ) ≤ c√
n logn

.
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Note that P(τm < T̂ )−P(τm < T ) = P(T < τm)−P(T̂ < τm) which equals, by (8) (note
that under P, T 0 = T and T̂ 0 = T̂ ),

∑

j∈[k,n]κ

Gm(0, j)Pj(τm < T )−
∑

j∈[k,n]κ

Gm(0, wj)P
wj (τm < T̂ ) =

∑

j∈[k,n]κ

[Gm(0, j)−Gm(0, wj)]P
j(τm < T ) + (30)

∑

j∈[k,n]κ

Gm(0, wj)[P
j(τm < T )−Pwj (τm < T̂ )]. (31)

We will show that the sum in (30) is bounded above in absolute value by c/(
√
n log n) and

that the sum in (31) is bounded above by c/(
√
n log n). We will not bound the absolute

value in (31).
Lemma 4 gives

|Gm(0, j)−Gm(0, wj)| ≤
C

j
. (32)

Lemma 14 gives

Pj(τm < T ) = O

(

1√
n

(

1

(j − k + 1)1/2
+

1

(n− j + 1)1/2

)

1

logn

)

.

The term in (30) is therefore bounded in absolute value by

∑

j∈[k,n]κ

C

j

[

1√
n

(

1

(j − k + 1)1/2
+

1

(n− j + 1)1/2

)

1

log n

]

≤ c√
n log n

.

(Here and below we use the easy estimate:

∞
∑

j=−∞

1

|j − k|+ 1

1

(|j − l|+ 1)1/2
≤ 2

∞
∑

j=−∞

1

(|j|+ 1)3/2
<∞. ) (33)

To estimate the term (31) define the function f from L to R by

f(z) :=
∑

j∈[k,n]κ

Gm(z, wj) [P
j(τm < T )−Pwj (τm < T̂ )],

and note that (31) equals f(0). Since Gm(·, wj) is p-harmonic on {z : |z| < m} \ {wj},
f is p-harmonic on {z : |z| < m} \ A[k, n], and therefore it attains its maximum on
{z : |z| ≥ m} ∪A[k, n]. However, f(z) = 0 for z ≥ m, so it suffices to show

max
`∈[k,n]κ

f(w`) ≤
c√

n log n
. (34)

Fix ` ∈ [k, n]κ and note by (8)

∑

j∈[k,n]κ

Gm(w`, wj)P
wj (τm < T̂ ) = Pw`(T̂ 0 < τm) = 1,
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and
∑

j∈[k,n]κ

Gm(`, j)Pj(τm < T ) = P`(T 0 < τm) = 1.

Hence,
∑

j∈[k,n]κ

Gm(w`, wj) [P
j(τm < T )−Pwj (τm < T̂ )] =

∑

j∈[k,n]κ

[Gm(w`, wj)−Gm(`, j)] Pj(τm < T ). (35)

Since |w` − wj | ≥ |`− j| − κ, Lemma 4 gives

Gm(w`, wj)−Gm(`, j) ≤ c

|j − `|+ 1

(note that we are not bounding the absolute value).
Hence,

∑

j∈[k,n]κ

(Gm(w`, wj)−Gm(`, j))Pj(τm < T )

≤
∑

j∈[k,n]κ

1√
n

1

|j − `|+ 1

(

1

(j − k + 1)1/2
+

1

(n− j + 1)1/2

)

1

log n

≤ c√
n log n

. 2

Acknowledgment. We are grateful to Yasunari Fukai for useful conversations.

References

[1] R. Bass (1995), Probabilistic Techniques in Analysis, Springer-Verlag.

[2] M. Bousquet-Mélou (2001), Walks on the slit plane: other approaches, Adv. Appl.
Math 27, 242–288.

[3] Y. Fukai (2004), Hitting time of a half line by two-dimensional random walk. Probab.
Theo. Rel. Fields, 128, 323-346.

[4] Y. Fukai, K. Uchiyama (1996). Potential kernel for two-dimensional random walk,
Annals of Probab. 24, 1979–1992.

[5] H. Kesten (1987) Hitting probabilities of random walks on Zd, Stoc. Proc. and App;.
25, 165–184.

[6] G. Lawler (1991), Intersections of Random Walks, Birkhäuser.
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