
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 17 (2012), no. 98, 1–15.
ISSN: 1083-6489 DOI: 10.1214/EJP.v17-2284

Numerical schemes for G–Expectations

Yan Dolinsky∗

Abstract

We consider a discrete time analog of G–expectations and we prove that in the case
where the time step goes to zero the corresponding values converge to the original G–
expectation. Furthermore we provide error estimates for the convergence rate. This
paper is continuation of Dolinsky, Nutz, and Soner (2012). Our main tool is a strong
approximation theorem which we derive for general discrete time martingales.
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1 Introduction

In this paper we study numerical schemes for G–expectations, which were intro-
duced recently by Peng (see [7] and [8]). A G–expectation is a sublinear function which
maps random variables on the canonical space Ω := C([0, T ];Rd) to the real numbers.
The motivation to study G–expectations comes from mathematical finance, and in par-
ticular from risk measures (see [6] and [9]) and pricing under volatility uncertainty (see
[2] ,[6] and [12]).

Our starting point is the dual view on G–expectation via volatility uncertainty (see
[1]), which yields the representation ξ → supP∈P EP [ξ] where P is the set of probabili-
ties on C([0, T ];Rd) such that under any P ∈ P, the canonical process B is a martingale
with volatility d〈B〉/dt taking values in a compact convex subset D ⊂ Sd+ of positive def-
inite matrices. Thus the set D can be understood as the domain of (Knightian) volatility
uncertainty and the functional above represents the European option (with reward ξ)
super–hedging price. For details see [2] and [6].

In the current work we assume that ξ is of the form F (B, 〈B〉) where F is a path–
dependent functional which satisfies some regularity conditions. In particular, ξ can
represent an award of a path dependent European contingent claim. In this case the
reward is a functional of the stock price, which is equal to the Doolean exponential of
the canonical process, and so quadratic variation appears naturally.

In [4] the authors introduced a volatility uncertainty in discrete time and an ana-
log of the Peng G–expectation. They proved that the discrete time values converge to
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the continuous time G–expectation. The main tools that were used there are the weak
convergence machinery together with a randomization technique. The main disadvan-
tage of the weak convergence approach is that it cannot provide error estimates. In
order to obtain error estimates we should consider all the market models on the same
probability space, and so methods based on strong approximation theorems come into
picture.

In this paper we consider a different (from the one in [4]) discrete time analog of G–
expectation and prove that in a case where the time step goes to zero the corresponding
values converge to the original G–expectation. In the current scheme, the discrete time
martingales that we consider have an explicit representation, and so we can write a
dynamical programming for the discrete time analog of the G–expectation and for the
corresponding optimal control. For the scheme that was introduced in [4] dynamical
programming is not available. Furthermore, by deriving a strong invariance principle
for general discrete time martingales, we are able to provide error estimates for the
convergence rate of the current scheme.

The paper is organized as following. In the next section we introduce the setup and
formulate the main results. In Section 3 we present the main machinery which we use,
namely we obtain a strong approximation theorem for general martingales. In Section
4 we derive auxiliary lemmas that are used in the proof of the main results. In Section
5 we complete the proof of Theorems 2.3 and 2.5, and remark why our estimates are
also valid for the approximations which were considered in [4].

2 Preliminaries and main results

We fix the dimension d ∈ N and denote by || · || the sup norm on Rd. Moreover, we de-
note by Sd the space of d×d symmetric matrices and by Sd+ its subset of nonnegative def-
inite matrices. Consider the space Sd with the operator norm ||A|| := sup||v||=1 ||A(v)||.
We fix a nonempty, convex and compact set D ⊂ Sd+; the elements of D will be the pos-
sible values of our volatility process. Denote by Ω = C([0, T ];Rd) and Γ = C([0, T ];Sd),
the spaces of continuous functions with values in Rd and Sd, respectively. We consider
these spaces with the sup norm ||x|| := sup0≤t≤T ||xt||. Let F : Ω× Γ → R be a function
which satisfies the following assumption. There exist constants H1, H2 > 0 such that

|F (u1, v1)− F (u2, v2)| ≤ H1 exp (H2(||u1||+ ||u2||+ ||v1||+ ||v2||))× (2.1)

(||u1 − u2||+ ||v1 − v2||), u1, u2 ∈ Ω, v1, v2 ∈ Γ.

Without loss of generality we assume that the maturity date T = 1. We denote by
B = (Bt)0≤t≤1 the canonical process (on the space Ω) Bt(ω) := ωt, ω ∈ Ω and by
Ft := σ(Bs, 0 ≤ s ≤ t) the canonical filtration. A probability measure P on Ω is called
a martingale law if B is a P -martingale (with respect to the filtration F) and B0 = 0

P -a.s. (all our martingales start at the origin). We set

PD := {P martingale law on Ω : d〈B〉/dt ∈ D, P × dt a.s.}, (2.2)

observe that under any measure P ∈ PD the stochastic processes B and 〈B〉, are ran-
dom elements in Ω and Γ, respectively. Consider the G–expectation

V := sup
P∈PD

EPF (B, 〈B〉) (2.3)

where EP denotes the expectation with respect to P . A measure P ∈ PD will be called
ε–optimal if

V < ε+ EPF (B, 〈B〉). (2.4)
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Our goal is to find discrete time approximations for V . The advantage of discrete time
approximations is that the corresponding values can be calculated by dynamical pro-
gramming. Furthermore, we will apply these approximations in order to find ε–optimal
measures in the continuous time setting.

Remark 2.1. Let S = {(S1
t , ..., S

d
t )}1t=0 be the Doolean’s exponential E(B) of the canon-

ical process B, namely Sit := Si0 exp
(
Bit − 〈Bi〉t

)
, i ≤ d, t ∈ [0, 1]. The stochastic process

S represents the stock prices in a financial model with volatility uncertainty. Clearly any
random variable of the from g(S) where g : C([0, T ];Rd)→ R+ is a Lipschitz continuous
function, can be written in the form g(S) = F (B, 〈B〉) for a suitable F which satisfies
(2.1). Thus we see that our setup includes payoffs which correspond to path dependent
European options.

Remark 2.2. In general it can be shown (see [1]) that there is no loss of generality in
assuming that D is convex. Namely, any G–expectation can be represented by the right–
hand side of (2.3) for a compact convex set D. The proof in [1] relied on PDE technique,
however let us briefly explain the probabilistic intuition behind the result. Assume that
we start with a compact (not necessarily convex) set D. Let D̂ be the convex hull of D.
Clearly, D̂ is a compact convex set. It can be shown that the set of probability measures
PD̂ is the closure (with respect to weak convergence) of the convex hull of PD. This
together with the regularity of F (B, 〈B〉) yields

sup
P∈PD

EPF (B, 〈B〉) = sup
P∈PD̂

EPF (B, 〈B〉).

Let us emphasis that in the proof of our main results we will use the fact that the set D
is convex and compact.

Next, we formulate the main approximation results. Let ν be a distribution on Rd

which satisfies the following∫
Rd
xdν(x) = 0 and

∫
Rd
xixjdν(x) = δij , 1 ≤ i, j ≤ d (2.5)

where δij is the Kronecker–Delta. Furthermore, we assume that the moment generating

function ψν(y) :=
∫
x∈Rd exp(

∑d
i=1 x

iyi)dν(x) < ∞ exists for any y ∈ Rd, and for any
compact set K ⊂ Rd

sup
n∈N

sup
y∈K

ψnν

(
y√
n

)
<∞. (2.6)

Observe that the standard d–dimensional normal distribution ν = N(0, I) is satisfying
the assumptions (2.5)–(2.6).

Let n ∈ N and Y1, ..., Yn be a sequence of i.i.d. random vectors with L(Y1) = ν, i.e.,
the distribution of the random vectors is ν. We denote by Aνn the set of all d–dimensional
stochastic process M = (M0, ...,Mn) of the form, M0 := 0 and

Mi :=

i∑
j=1

1√
n
φj(Y1, ..., Yj−1)Yj , 1 ≤ i ≤ n (2.7)

where φj : (Rd)j−1 →
√

D := {
√
A : A ∈ D} are measurable functions (which can be

chosen arbitrary) and Y1, ..., Yn are column vectors. As usual for a matrix A ∈ Sd+ we
denote by

√
A the unique square root in Sd+. Observe that M is a martingale under

the filtration which is generated by Y1, ..., Yn. Let 〈M〉 be the (Sd+ valued) predictable
variation of M . In view of (2.5) we get

〈M〉k =
1

n

k∑
j=1

φ2
j (Y1, ..., Yj−1), 1 ≤ k ≤ n (2.8)
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and we set 〈M〉0 = 0. Let Wn : (Rd)n+1 × (Sd)n+1 → Ω × Γ be the linear interpolation
operator given by

Wn(u, v)(t) := ([nt] + 1− nt) (u[nt], v[nt]) + (nt− [nt]) (u[nt]+1, v[nt]+1), t ∈ [0, 1]

where u = (u0, u1, ..., un), v = (v0, v1, ..., vn) and [z] denotes the integer part of z. Namely,
we consider a continuous time polygonal curve which is defined by the vectors u, v.
This operator gives a natural way to map discrete time processes such as M and 〈M〉,
to continuous time processes, and this is essential since the function F is defined on
Ω× Γ. Set

V νn := sup
M∈Aνn

EF (Wn(M, 〈M〉)) , (2.9)

we denote by E the expectation with respect to the underlying probability measure.
The following theorem which will be proved in Section 5 is the main result of the

paper.

Theorem 2.3. For any ε > 0 there exists a constant Cε = Cε(ν) which depends only on
the distribution ν such that

|V νn − V | ≤ Cεnε−1/8, ∀n ∈ N. (2.10)

Furthermore, if the function F is bounded, then there exists a constant C = C(ν) for
which

|V νn − V | ≤ Cn−1/8, ∀n ∈ N. (2.11)

Next, we describe a dynamical programming algorithm for V νn and for the corre-
sponding optimal control, which in general should not be unique. For the later we will
need the following definition.

Definition 2.4. Let (X ,B) be a measurable space, m ∈ N and let K ⊂ Rm be a compact
set. Consider a measurable map H : X × K → R such that H(x, ·) : K → R is a
continuous function for any x ∈ X . Define argmaxy∈K H(x, y) : X → K by

argmax
y∈K

H(x, y) := max{z ∈ K|H(x, z) = Ĥ(x)}

where Ĥ(x) := supu∈K H(x, u) and the maximum in the above right–hand side is taken
with respect to the lexicographical order � on Rm. Namely, for any u, v ∈ Rm we
define u � v if there exists k > 0 such that ui = vi for i < k and uk > vk. From the
continuity of H in the second variable we get that Ĥ : X → R is a measurable function
and the set {z ∈ K|H(x, z) = Ĥ(x)} is a non empty compact set. Thus, the above map
is well defined. Next, let us briefly verify that the defined map is measurable. Let
argmaxy∈K H(x, y) := (H̃1(x), ..., H̃m(x)). By applying the continuity of H in the second
variable it follows that

{x ∈ X |H̃1(x) ≥ a} =

{
x ∈ X | max

z∈K∩[a,∞)×Rm−1
H(x, z) = Ĥ(x)

}
,

since a ∈ R was arbitrary, we conclude that H̃1 is a measurable function. Finally, to
complete the argument, we assume by induction that H̃1, ..., H̃k are measurable func-
tions, and we show that H̃k+1 is measurable. Let J ⊂ K be a countable set that is
dense in K. Choose a ∈ R. For any n ∈ N and u = (u1, ..., um) ∈ J define the function
Hu,n : X → R by

Hu,n(x) := H(x, u)I∑k
i=1 |ui−H̃i(x)|+max(0,a−ui+1)<1/n +

(Ĥ(x)− 1)I∑k
i=1 |ui−H̃i(x)|+max(0,a−ui+1)≥1/n, x ∈ X
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where for any event A we set IA = 1 if an event A occurs and IA = 0 if not. From the
induction assumption it follows that for any n ∈ N and u ∈ J , the function Hu,n : X → R

is measurable. From the continuity of H in the second variable we get

{x ∈ X |H̃k+1(x) ≥ a} = {x ∈ X | inf
n∈N

sup
u∈J

Hu,n(x) = Ĥ(x)}.

Thus {x ∈ X |H̃k+1(x) ≥ a} is a measurable set, and the argument is completed.

Now we are ready to introduce the dynamical programming for V νn and for the
corresponding optimal control. Fix n ∈ N and define a sequence of functions Jν,nk :

(Rd)k+1 × (Sd)k+1 → R, k = 0, 1, ..., n by the backward recursion

Jν,nn (u0, u1, ..., un, v0, v1, ..., vn) := F (Wn(u, v)) and (2.12)

Jν,nk (u0, u1, ..., uk, v0, v1, ..., vk) :=

supγ∈
√

DE
(
Jν,nk+1

(
u0, u1, ..., uk, uk + γYk+1√

n
, v0, v1, ..., vk, vk + γ2

n

))
=

supγ∈
√

D

∫
Rd
Jν,nk+1

(
u0, u1, ..., uk, uk + γx√

n
, v0, v1, ..., vk, vk + γ2

n

)
dν(x)

for k = 0, 1, ..., n− 1.

From (2.1) and (2.6) it follows that there exists a constant Ĥ such that

Jν,nk (u0, ..., uk, v0, ..., vk) ≤ Ĥ exp
(
(H2 + 1)

k∑
i=0

(||ui||+ ||vi||)
)
, ∀k, u0, ..., uk, v0, ..., vk.

Fix k. By applying (2.6) again we conclude that for any compact sets K1 ⊂ Rd and
K2 ⊂ Sd+, the family of random variables

Jν,nk+1

(
u0, ..., uk, uk + γYk+1√

n
, v0, ..., vk, vk + γ2

n

)
,

γ ∈
√

D, u0, ..., uk ∈ K1, v0, ..., vk ∈ K2

is uniformly integrable. This together with the fact that the set D is compact gives (by
backward induction) that for any k, the function Jν,nk is continuous. Thus (following Def-
inition 2.4) we introduce the measurable functions hν,nk : (Rd)k+1 × (Sd)k+1 →

√
D, k =

0, 1, ..., n− 1 by

hν,nk (u0, ..., uk, v0, ..., vk) := (2.13)

argmaxγ∈
√

D

∫
Rd
Jν,nk+1

(
u0, u1, ..., uk, uk + γx√

n
, v0, v1, ..., vk, vk + γ2

n

)
dν(x).

Finally, define by induction the stochastic processes {Mν,n
k }

n

k=0
and {Nν,n

k }
n

k=0
, with

values in Rd and Sd, respectively by Mν,n
0 := 0, Nν,n

0 := 0 and for k < n

Nν,n
k+1 := Nν,n

k + 1
n (hν,nk (Mν,n

0 , ...,Mν,n
k , Nν,n

0 , ..., Nν,n
k ))

2
(2.14)

and Mν,n
k+1 := Mν,n

k + 1√
n
hν,nk (Mν,n

0 , ...,Mν,n
k , Nν,n

0 , ..., Nν,n
k )Yk+1.

Observe that Mν,n ∈ Aνn and Nν,n = 〈Mν,n〉. From the dynamical programming princi-
ple it follows that

V νn = Jν,n0 (0, 0) = EF (Wn(Mν,n, 〈Mν,n〉)) . (2.15)

In the following theorem (which will be proved in Section 5) we provide an explicit
construction of ε–optimal measures for the G–expectation which is defined in (2.3).
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Theorem 2.5. Let (ΩW ,FW ,PW ) be a complete probability space together with a
standard d-dimensional Brownian motion {Wt}t∈[0,1] and its natural filtration FWt :=

σ{W (s)|s ≤ t}. Consider the standard normal distribution νg = N (0, I). For any n ∈ N,
let fn : (Rd)n → R be a function which is satisfying fn(Y g1 , ..., Y

g
n ) = M

νg,n
n , where

Y g1 , ..., Y
g
n are i.i.d. and L(Y g1 ) = νg. Observe that fn can be calculated from (2.12)–

(2.14). Define the stochastic process {Mn
t }

1
t=0 by

Mn
t := EW

(
fn

(√
nW 1

n
,
√
n(W 2

n
−W 1

n
), ...,

√
n(W1 −Wn−1

n
)
)
|FWt

)
, t ∈ [0, 1] (2.16)

where EW denotes the expectation with respect to PW . Notice that since Mn is a mar-
tingale with respect to Brownian filtration, its a continuous stochastic process. Thus,
let Pn be the distribution of Mn on the canonical space Ω. Then Pn ∈ PD, and for any
ε > 0 there exists a constant C̃ε such that

V < EnF (B, 〈B〉) + C̃εnε−1/8, ∀n (2.17)

where En denotes the expectation with respect to Pn. If the function F is bounded then
there exists a constant C̃ for which

V < EnF (B, 〈B〉) + C̃n−1/8, ∀n. (2.18)

Remark 2.6. One question which remains open is whether the estimates of Theorem
2.3 are sharp. Another unanswered question is which distribution ν provides the best
estimates in Theorem 2.3. In this paper we do not study the dependence of the con-
stants which appear in (2.10)–(2.11), as functions of the distribution ν. The Gaussian
distribution νg = N (0, I) is the most natural for establishing Theorem 2.5. In fact, we
will use the Gaussian distribution and the martingale representation theorem on the
Wiener space in order to establish Theorem 2.5 and one side of the estimates in (2.10)–
(2.11). Another interesting choice of the distribution ν is a purely atomic distribution
which is supported by d+1 points (for the exact construction see Remark 5.1). It seems
that the later choice of ν is the most efficient for the implementation of the dynamical
programming which is give by (2.12). Another application of this choice is explained in
Remark 5.1.

3 The main tool

In this section we derive a strong approximation theorem (Lemma 3.2) which is the
main tool in the proof of Theorems 2.3 and 2.5. This theorem is an extension of the
main result in [11].

For any two distributions ν1, ν2 on the same measurable space (X ,B) we define the
distance in variation

ρ(ν1, ν2) := sup
B∈B
|ν1(B)− ν2(B)|. (3.1)

First we state some results (without a proof) from [11] (Lemmas 4.5 and 7.2 in [11])
that will be used in the proof of Lemma 3.2.

Lemma 3.1.
i. There exists a distribution µ on Rd which is supported on the set (−1/2, 1/2)d and has
the following property. There exists a constant C1 > 0 such that for any distributions
ν1, ν2 on Rd which satisfy∫

Rd
xdν1(x) =

∫
Rd
xdν2(x) and for 1 ≤ i, j ≤ d (3.2)∫

Rd
xixjdν1(x) =

∫
Rd
xixjdν2(x)
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we have

ρ(ν1 ∗ µ, ν2 ∗ µ) ≤ C1
(∫

Rd
||x||3dν1(x) +

∫
Rd
||x||3dν2(x)

)
(3.3)

where ν ∗ µ denotes the convolution of the measures ν and µ.
ii. Let (Ω̃, F̃ , P̃ ) be a probability space together with a d–dimensional random vector Y ,
a m–dimensional random vector Z (m is some natural number), and a random variable
α which is distributed uniformly on the interval [0, 1] and independent of Y and Z. Let
ν be a distribution on Rd and let ν̂ be a distribution on Rm ×Rd such that ν̂(A×Rd) =

P̃ (Z ∈ A) for any A ∈ B(Rm), i.e. the marginal distribution of ν̂ on Rm equals to L(Z).
There exists a measurable function Ψ = Ψν,ν̂,L(Z,Y ) : Rm × Rd × [0, 1] → Rd × Rd such
that for the vector

(U,X) := Ψ(Z, Y, α) (3.4)

we have the following: L(U) = ν, L(Z,X) = ν̂, U is independent of X,Z and

P̃ (U +X 6= Y |Z) = ρ(L(U) ∗ L(X|Z),L(Y |Z)). (3.5)

Now we are ready to prove the main result of this section. For any stochastic process
Z = {Zk}nk=0 we denote ∆Zk := Zk − Zk−1 for k ≥ 0, where we set Z−1 = 0. Fix
n ∈ N and consider a d–dimensional martingale {Mk}nk=0 with respect to its natural
filtration, which satisfies M0 = 0. For any 1 ≤ k ≤ n, there exists a measurable function
φ̂k : (Rd)k → Sd such that√

∆〈M〉k =
√
E
(
∆Mk∆M

′
k

∣∣σ{M0,M1, ...,Mk−1}
)

:= (3.6)

φ̂k(∆M0,∆M1, ...,∆Mk−1),

where {〈M〉k}nk=0 is the predictable variation (Sd+ valued) ofM and the symbol ·′ denotes
transposition. We assume that there exists a constant H for which

E
(
||∆Mk||3

∣∣σ{M0, ...,Mk−1}
)

+ ||
√

∆〈M〉k||3 ≤ H, a.s. ∀k. (3.7)

Lemma 3.2. Let ν a distribution on Rd such that∫
Rd
xdν(x) = 0,

∫
Rd
xixjdν(x) = δij ∀i, j ≤ d (3.8)

and
∫
Rd
||x||3dν(x) <∞.

For any Θ > 0 its possible to reconstruct the martingale {Mk}nk=0 on some probability
space (Ω̃, F̃ , P̃ ) (namely we construct a martingale which has the same distribution as
the original martingale M , and for simplicity we denote the new martingale also by M )
together with a sequence of i.i.d. random vectors Y1, ..., Yn with the following properties:
i. L(Y1) = ν.
ii. For any k, the random vectors M1, ...,Mk−1 are independent of Yk.
iii. There exists a constant C2 = C2(ν) which depends only on the distribution ν such
that

P̃

 max
1≤k≤n

||Mk −
k∑
j=1

√
∆〈M〉jYj || > Θ

 ≤ C2Hn
Θ3

. (3.9)

Proof. Fix Θ > 0. For any k let νk be the distribution of the random vector 1
Θ (∆M0, ...,∆Mk).

Let (Ω̃, F̃ , P̃ ) be a probability space which contains a sequence of i.i.d. random vectors
Y1, ..., Yn such that L(Y1) = ν, a sequence of i.i.d. random variables α1, ..., αn which are
distributed uniformly on the interval [0, 1] and independent of Y1, ..., Yn, and a random
vector U0 which is independent of Y1, ..., Yn, α1, ..., αn and satisfies L(U0) = µ, where the
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distribution µ is defined in the first part of Lemma 3.1. Define the sequences {Xi}ni=0

and {Ui}ni=1 by the following recursive relations, X0 = 0 and

(Uk, Xk) := Ψµ,νk,ν̂k(X0, ..., Xk−1, Uk−1+
1

Θ
φ̂k(ΘX0, ...,ΘXk−1)Yk, αk), 1 ≤ k ≤ n (3.10)

where ν̂k is the distribution of (X0, ..., Xk−1, Uk−1 + 1
Θ φ̂k(ΘX0, ...,ΘXk−1)Yk). Recall,

that the function Ψ was introduced before (3.4) and the functions φ̂k, k < n were
introduced before (3.6). From the definition of the map Ψ it follows (by induction)
that L(ΘX0, ...,ΘXn) = L(∆M0, ...,∆Mn). We conclude that the stochastic process
Θ
∑k
i=0Xi, 0 ≤ k ≤ n is distributed as {Mk}nk=0, and so we set (on the current probabil-

ity space (Ω̃, F̃ , P̃ )),

Mk := Θ

k∑
i=0

Xi, 0 ≤ k ≤ n. (3.11)

Let 1 ≤ k ≤ n. From (3.10)–(3.11) and the fact that Yk is independent of Y1, ..., Yk−1,

α1, ..., αk−1 it follows that Yk is independent of M0, ...,Mk−1. Thus in order to complete
the proof, it remains to establish (3.9). Set

δk := Uk +Xk − Uk−1 − 1
Θ φ̂k(ΘX0, ...,ΘXk−1)Yk, and ρk(x0, ..., xk−1) (3.12)

:= P̃ (δk 6= 0|X0 = x0, ..., Xk−1 = xk−1), x0, ..., xk−1 ∈ Rd 1 ≤ k ≤ n.

From the properties of the map Ψ it follows that for any k, Uk is independent ofX0, ..., Xk

and L(Uk) = µ. This together with (3.5) and (3.10) gives

ρk(x0, ..., xk−1) = ρ
(
L(Xk|X0 = x0, ..., Xk−1 = xk−1) ∗ µ, (3.13)

L( 1
Θφ(Θx0, ...,Θxk−1)Yk) ∗ µ

)
x0, ..., xk−1 ∈ Rd, 1 ≤ k ≤ n.

From (3.3), (3.6)–(3.7), (3.11) and (3.13)

ρk(x0, ..., xk−1) ≤ C2H
Θ3

, x0, ..., xk−1 ∈ Rd, 1 ≤ k ≤ n (3.14)

for some constant C2 = C2(ν) which depends only on the distribution ν. From (3.11)–
(3.12), (3.14) and the fact that max0≤k≤n ||Uk|| < 1

2 a.s. we obtain

P̃
(

max1≤k≤n ||Mk −
∑k
j=1

√
∆〈M〉jYj || > Θ

)
=

P̃
(

max1≤k≤n ||Mk −
∑k−1
j=0 φ̂j(∆M0, ...,∆Mj)Yj+1|| > Θ

)
=

P̃
(

max1≤k≤n Θ||
∑k
i=1 δi + U0 − Uk|| > Θ

)
≤
∑n
i=1 P̃ (δi 6= 0) ≤ C2HnΘ3

and we conclude the proof.

4 Auxiliary lemmas

In this section we derive several estimates which are essential for the proof of The-
orem 2.3 and 2.5. We start with the following general result.

Lemma 4.1. Let {Mt}1t=0 be a one dimensional continuous martingale which satisfies
d〈M〉t
dt ≤ H a.s. for some constant H. Consider the discrete time martingale Nk := Mk/n,

0 ≤ k ≤ n together with its predictable variation process {〈N〉k}nk=0 which is given by
〈N〉0 := 0 and

〈N〉k :=

k∑
i=1

E((∆Ni)
2|σ{N0, ..., Ni−1}), 1 ≤ k ≤ n.
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There exists constants C3, C4 (which depend only on H) such that

E

(
max

0≤k≤n−1
max

k/n≤t≤(k+1)/n
|Mt −Nk|4

)
≤ C3

n
(4.1)

and

E

(
max

0≤k≤n−1
max

k/n≤t≤(k+1)/n
|〈M〉t − 〈N〉k|2

)
≤ C4√

n
. (4.2)

Proof. From the Burkholder–Davis–Gundy inequality it follows that there exists a con-
stant c1 such that

E
(
max0≤k≤n−1 maxk/n≤t≤(k+1)/n |Mt −Nk|4

)
≤ (4.3)∑n−1

k=0 E
(
maxk/n≤t≤(k+1)/n |Mt −Mk/n|4

)
≤

c1
∑n−1
k=0 E

(
|〈M〉(k+1)/n − 〈M〉k/n|2

)
≤ c1nH

2

n2 = c1H2

n

this completes the proof of (4.1). Next, we prove (4.2). Define the optional variation of
the martingale {Nk}nk=0 by [N ]0 := 0 and

[N ]k :=

k∑
i=1

(∆Ni)
2, 1 ≤ k ≤ n. (4.4)

From the relation E(∆[N ]k|σ{N0, ..., Nk−1}) = ∆〈N〉k and the Doob–Kolmogorov in-
equality we obtain

E
(
max0≤k≤n |[N ]k − 〈N〉k|2

)
≤ 4E

(
|[N ]n − 〈N〉n|2

)
= (4.5)

4E
(
|
∑n
i=1 ∆[N ]i −∆〈N〉i|2

)
= 4

∑n
i=1E

(
|∆[N ]i −∆〈N〉i|2

)
≤

4
∑n
i=1E((∆[N ]i)

2) = 4
∑n
i=1E

(
|Mi/n −M(i−1)/n|4

)
≤ 4c1H2

n

where the last inequality follows from the Burkholder–Davis–Gundy inequality. Next,
observe that

[N ]k = N2
k − 2

k−1∑
i=1

Ni(Ni+1 −Ni) = N2
k − 2

∫ k/n

0

N[nt]dMt, 1 ≤ k ≤ n. (4.6)

From the Doob–Kolmogorov inequality and Ito’s Isometry we get

E
(

sup0≤u≤1

∣∣∫ u
0

(Mt −N[nt])dMt

∣∣2) ≤ (4.7)

4E
(
|
∫ 1

0
(Mt −N[nt])dMt|2

)
= 4E

(∫ 1

0
(Mt −N[nt])

2d〈M〉t
)
≤

4HE
(
max0≤k≤n−1 maxk/n≤t≤(k+1)/n |Mt −Nk|2

)
≤ 4H

√
C3√
n

,

the last inequality follows from (4.1) and Jensen’s inequality. From (4.6)–(4.7) and the

equality 2
∫ k/n

0
MtdMt = N2

k − 〈M〉k/n it follows that

E

(
max

1≤k≤n
|[N ]k − 〈M〉k/n|2

)
≤ 16H

√
C3√

n
.

This together with (4.5) and the inequality (a+ b+ c)2 ≤ 4(a2 + b2 + c2) yields

E
(
max0≤k≤n−1 maxk/n≤t≤(k+1)/n |〈M〉t − 〈N〉k|2

)
≤ (4.8)

4H2

n2 + 4E
(
max1≤k≤n |[N ]k − 〈M〉k/n|2

)
+ 4E

(
max1≤k≤n |[N ]k − 〈N〉k|2

)
≤ 4H2

n2 + 64H
√
C3√

n
+ 16c1H2

n

and the proof is completed.
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Next, we apply the above lemma in order to derive some estimates in our setup.

Lemma 4.2. Let n ∈ N and P ∈ PD. Consider the d–dimensional martingale Nk :=

Bk/n, 0 ≤ k ≤ n together with its predictable variation {〈N〉k}nk=0, under the measure
P . There exists a constant C5 (which is independent of n and P ) such that

EP
(
||Wn(N)−B||2

)
≤ C5√

n
(4.9)

and

EP
(
||Wn(〈N〉)− 〈B〉||2

)
≤ C5√

n
. (4.10)

In the equations (4.9) and (4.10), Wn is the linear interpolation operator which is de-
fined on the spaces (Rd)n+1 and (Sd)n+1, respectively.

Proof. Inequality (4.9) follows immediately from (4.1) and the relation

||Wn(N)−B|| ≤ 2

d∑
i=1

max
1≤k≤n

max
k/n≤t≤(k+1)/n

|N i
k −Bit|.

Next, we prove (4.10). For any 1 ≤ i, j ≤ d denote by 〈N〉i,jk and 〈B〉i,jt , the i−th row
and the j−th column of the matrices 〈N〉k and 〈B〉t, respectively. Notice that 〈B〉i,jt =
1
2 (〈Bi + Bj〉t − 〈Bi〉t − 〈Bj〉t) and 〈N〉i,jk = 1

2 (〈N i + N j〉k − 〈N i〉k − 〈N j〉k). Thus (4.10)
follows from (4.2) and the inequality

||Wn(〈N〉)− 〈B〉|| ≤ 2

d∑
i=1

d∑
j=1

max
0≤k≤n−1

max
k/n≤t≤(k+1)/n

|〈N〉i,jk − 〈B〉
i,j
t |.

We conclude this section with the following technical lemma.

Lemma 4.3. Let A > 0. Then we have:
i.

sup
P∈PD

EP exp(A sup
0≤t≤1

||Bt||) <∞. (4.11)

ii. Let n ∈ N and ν be a distribution which satisfies (2.5)–(2.6). Consider a filtered
probability space (Ω̃, F̃ , {F̃k}nk=0, P̃ ) together with a sequence of i.i.d. random vectors
Y1, ..., Yn which satisfy L(Y1) = ν. Assume that for any i, Yi is F̃i measurable and inde-
pendent of F̃i−1. Let {Mk}nk=0 be a d–dimensional stochastic process of the following
form: M0 := 0 and

Mk :=

√
1

n

k∑
i=1

γiYi, 1 ≤ k ≤ n (4.12)

where for any i, γi is F̃i−1 measurable random matrix, which takes values in
√
D. There

exists a constant C6 (which may depend on A and ν) such that

exp

(
A max

0≤k≤n
||Mk||

)
< C6. (4.13)

Proof. i. Let P ∈ PD. From the Novikov condition it follows that for any 1 ≤ i ≤ d and

a ∈ R, EP exp
(
aBi1 − a2

2 〈B
i〉1
)

= 1. Thus

EP
(
exp(a|Bi1|)

)
≤ EP (exp(aBi1)) + EP (exp(−aBi1)) ≤ 2 exp

(
a2

2
||D||

)
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where ||D|| = supD∈D ||D||. This together with the CauchyŰ-Schwarz inequality and the
Doob–Kolomogorov inequality for the sub–martingale exp(A||Bt||/2), t ∈ [0, 1] completes
the proof of (4.11).
ii. Consider the compact set K := {x ∈ Rd : ||x|| ≤ ||

√
D||}. Clearly, the rows of the

matrices γj , 1 ≤ j ≤ n are in K. Fix 1 ≤ i ≤ d and consider the i−th component of the
process M , namely we consider the process (M i

0, ...,M
i
n). From (4.12) we get that for

any a ∈ R

E
(

exp(a(M i
k −M i

k−1))|F̃k−1

)
≤ sup
y∈K

ψν

(
ay√
n

)
where ψν is the function which is defined below (2.5). This together with (2.6) gives

E
(
exp(aM i

n)
)
≤ sup
n∈N

sup
y∈K

ψnν

(
ay√
n

)
<∞. (4.14)

From the inequality E exp(|aM i
n|) ≤ E

(
exp(aM i

n)
)

+ E
(
exp(−aM i

n)
)

and the Cauchy–
Schwartz inequality it follows that there exists a constant c2 (which may depend on A

and ν) such that

E(exp(A||Mn||)) < c2. (4.15)

Finally, since for any i the process M i
k, k ≤ n is a martingale with respect to the fil-

tration {F̃k}nk=0 we conclude that the stochastic process {exp(A||Mk||/2)}nk=0 is a sub–
martingale and so, from (4.15) and the Doob–Kolomogorv inequalityE exp(Amax0≤k≤n ||Mk||) ≤
4c2 and the proof is completed.

5 Proof of the main results

In this section we complete the proof of Theorems 2.3 and 2.5. Let ν be a distribution
which satisfies (2.5)–(2.6). Fix ε > 0. We start with proving the following statements

V νn > V − Cεnε−1/8, ∀n ∈ N (5.1)

and for a bounded F

V νn > V − Cn−1/8, ∀n ∈ N. (5.2)

Choose n ∈ N and δ > 0. There exists a measure Q ∈ PD for which

V < δ + EQF (B, 〈B〉). (5.3)

Consider the stochastic process Nk := Bk/n, 0 ≤ k ≤ n together with its predictable
variation {〈N〉k}nk=0. From (2.2) and the fact that D is a convex compact set (notice
that convexity is essential here) we obtain that there exists a sequence of measurable
functions φ̃j : (Rd)j →

√
D, 1 ≤ j ≤ n such that√

∆〈N〉k =
√
E
(
∆Nk∆N

′
k

∣∣σ{N0, N1, ..., Nk−1}
)

:= (5.4)

1√
n
φ̃k(N0, ..., Nk−1), ∀k a.s.

From the Burkholder–Davis–Gundy inequality it follows that there exists a constant c3
for which

EQ
(
||∆Nk||3

∣∣σ{N0, ..., Nk−1}
)
≤ c3n−3/2, ∀k a.s. (5.5)

By applying (2.1), Lemmas 4.2–4.3 and Cauchy–Schwartz inequality we get

EQ|F (B, 〈B〉)− F (Wn(N),Wn(〈N〉))| ≤ c4n−1/4 (5.6)
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for some constant c4 (which depends only on the distribution ν). From (5.5) and Lemma
3.2 we obtain that there exists a probability space (Ω̃, F̃ , P̃ ) which contains the martin-
gale N , a sequence of i.i.d. random vectors Y1, ..., Yn and satisfies, L(Y1) = ν, for any k
the random vectors N1, ..., Nk−1 are independent of Yk, and

P̃

 max
1≤k≤n

||Nk −
k∑
j=1

√
∆〈N〉jYj || > n−1/8

 <
c5n
−3/2n

n−3/8
= c5n

−1/8 (5.7)

for some constant c5 which depends only on the distribution ν. DenoteMk :=
∑k
j=1

√
∆〈N〉jYj ,

1 ≤ k ≤ n and A := {max1≤k≤n ||Nk − Mk|| > n−1/8}. From (2.5) and the fact that
N1, ..., Nk−1 are independent of Yk we obtain that M is a martingale, and 〈M〉 = 〈N〉.
Next, from Lemma 4.3, the Cauchy–Schwartz inequality and the simple inequality exp(Ax)xq <

exp((A+ q)x), A, q, x > 0 we get that for any A, q ≥ 0

Ẽ

(
exp

(
A( max

1≤k≤n
||M ||k + max

1≤k≤n
||N ||k)

)
(||Wn(N)||+ ||Wn(M)||)q

)
<∞

where Ẽ denotes the expectation with respect to P̃ . This together with (5.7), the Markov
inequality and the Holder inequality (for p = 1

1−8ε and q = 1
8ε ) yields that there exists

constants c6, c7 which depend on ε and ν such that

Ẽ|F (Wn(N),Wn(〈N〉))− F (Wn(M),Wn(〈M〉))| ≤ (5.8)

H1Ẽ

(
exp (H2(max1≤k≤n ||M ||k + max1≤k≤n ||N ||k + 2||D||))×

(
n−1/8 + IA(||Wn(N)||+ ||Wn(M)||)

))
≤

≤ c6(n−1/8 + P̃ (A)
1

1−8ε ) ≤ c7nε−1/8.

If the function F is bounded, say F ≤ R, then we have

Ẽ|F (Wn(N),Wn(〈N〉))− F (Wn(M),Wn(〈M〉))| ≤ RP̃ (A) +H1n
−1/8 (5.9)

×Ẽ (exp(H2(max1≤k≤n ||M ||k + max1≤k≤n ||N ||k + 2||D||))) ≤ c8n−1/8

for some constant c8 which depends only on ν. Since δ > 0 was arbitrary, then in view
of (5.3), (5.6) and (5.8)–(5.9) we conclude that in order to prove (5.1)–(5.2) it remains
to establish the following inequality

V νn ≥ ẼF (Wn(M),Wn(〈M〉)). (5.10)

Define a sequence of functions Lk : (Rd)k+1 × (Sd)k+1 → R, k = 0, 1, ..., n by the back-
ward recursion

Ln(u0, ..., un, v0, ..., vn) := F (Wn(u, v)) and (5.11)

Lk(u0, ..., uk, v0, ..., vk) :=

ẼLk+1

(
u0, ..., uk, uk + 1√

n
φ̃k+1(u0, ..., uk)Yk+1, v0, ..., vk,

vk + 1
n φ̃

2
k+1(u0, ..., uk)

)
for k = 0, 1, ..., n− 1.

From the fact that Yk+1 is independent of Y1, ..., Yk, N1, ..., Nk−1 it follows (by backward
induction) that for any k,

Ẽ (F (Wn(M),Wn(〈M〉))|σ{N1, ..., Nk−1, Y1, ..., Yk}) = (5.12)

Lk (M0, ...,Mk, 〈N〉0, ..., 〈N〉k) .
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Finally, from (2.12), (5.11)–(5.12) and the fact that φ̃k takes values in
√

D for any k, we
obtain (by backward induction) that Lk ≤ Jν,nk , k ≤ n, and in particular

V νn = Jν,n0 (0, 0) ≥ L0(0, 0) = ẼF (Wn(M),Wn(〈M〉)). (5.13)

This completes the proof of (5.1)–(5.2). Next, fix n ∈ N, a distribution ν which satisfies
(2.5)–(2.6) and consider the optimal control Mν,n which is given by (2.12)–(2.14). By
applying Lemma 3.2 for the standard normal distribution νg it follows that there exists
a probability space (Ω̃, F̃ , P̃ ) which contains the martingale Mν,n, a sequence of i.i.d.
standard Gaussian random vectors (d–dimensional) Y g1 , ..., Y

g
n such that for any k the

random vectors Mν,n
1 , ...,Mν,n

k−1 are independent of Y gk , and

P̃

 max
1≤k≤n

||Mν,n
k −

k∑
j=1

√
∆〈Mν,n〉jY gj || > n−1/8

 < c9n
−1/8 (5.14)

for some constant c9. Denote M̂k :=
∑k
j=1

√
∆〈Mν,n〉jY gj , 1 ≤ k ≤ n. Observe that

〈M̂〉 = 〈Mν,n〉. Thus by using similar argument to those as in (5.8)–(5.9) we obtain that
there exist constants c10, c11 such that

|ẼF (Wn(M̂),Wn(〈M̂〉))− V νn | ≤ (5.15)

Ẽ|F (Wn(M̂),Wn(〈M̂〉))− F (Wn(Mν,n),Wn(〈Mν,n〉))| ≤ c10n
ε−1/8

and if the function F is bounded,

|ẼF (Wn(M̂),Wn(〈M̂〉))− V νn | ≤ (5.16)

Ẽ|F (Wn(M̂),Wn(〈M̂〉))− F (Wn(Mν,n),Wn(〈Mν,n〉))| ≤ c11n
−1/8.

By applying similar arguments to those as in (5.11)–(5.13) we conclude that

V νgn = J
νg,n
0 (0, 0) ≥ ẼF (Wn(M̂),Wn(〈M̂〉)). (5.17)

Next, since the functions h
νg,n
k , 1 ≤ k ≤ n− 1 are measurable there exists a measur-

able functions zk : (Rd)k →
√

D, 1 ≤ k ≤ n− 1 such that for any 1 ≤ k ≤ n − 1,
zk(Y g1 , ..., Y

g
k ) = h

νg,n
k (M

νg,n
0 , ...,M

νg,n
k , N

νg,n
0 , ..., N

νg,n
k ), where the terms Mνg,n, Nνg,n

are given by (2.12)–(2.14). From the martingale representation theorem if follows that
the martingale Mn which is defined by (2.16) equals to

Mn
t = h

νg,n
0 (0, 0)Wt + It>1/n ×∫ t

1/n
z[nu](

√
nW1/n,

√
n(W2/n −W1/n), ...,

√
n(W[nu] −W[nu]−1))dWu, t ∈ [0, 1]

and so we obtain that Pn ∈ PD. As in (5.6) we have

En|F (B, 〈B〉)− F (Wn(N),Wn(〈N〉))| ≤ c4n−1/4 (5.18)

where, recall, Nk = Bk/n, 0 ≤ k ≤ n. Finally, observe that the distribution of N under
Pn equals to the distribution of the martingale Mνg,n. Thus from (2.15) and (5.18) we
conclude that

V ≥ EPnF (B, 〈B〉) ≥ V νgn − c4n−1/4.

This together with (5.1)–(5.2) and (5.15)–(5.17) completes the proof of Theorems 2.3–
2.5.
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Remark 5.1. In [4], the following analogue of the G–expectation was presented. Given
n ∈ N we consider (Rd)n+1 as the canonical space of d–dimensional paths in discrete
time k = 0, 1, ..., n. We denote by Zn = {Znk }

n
k=0 the canonical process defined by

Znk (z) := zk for z = (z0, z1, ..., zn) ∈ (Rd)n+1. Denote by PnD the set of all measures P on
the space (Rd)n+1 which satisfy the following:
i. The canonical process Z is a martingale under P and Z0 = 0 P a.s.
ii. For any k,

nE
(
(∆Znk )(∆Znk )′|σ{Zn1 , ..., Znk−1}

)
∈ D, P a.s.

and

d2 inf
Υ∈D
||Υ−1||−1 ≤ n|∆Znk |2 ≤ d2 sup

Υ∈D
||Υ||, P a.s.

where we set infΥ∈D ||Υ−1||−1 = 0 if D has an element which is not invertible. The
n–step discrete time version of the G–expectation is defined by

Vn := sup
P∈PnD

EPF (Wn(Z, 〈Z〉)) . (5.19)

We want to establish

|Vn − V | ≤ Cεnε−1/8 (5.20)

and if the function F is bounded

|Vn − V | ≤ Cn−1/8. (5.21)

By using Lemma 3.2 (in a similar way to above) we can prove that for any distribution
ν which satisfies (2.5)–(2.6),

V νn ≥ Vn − Cεnε−1/8,

and if the function F is bounded, then

V νn ≥ Vn − Cn−1/8.

Thus, in view of Theorem 2.3, in order to establish (5.20)–(5.21) it is sufficient to find
a distribution ν which is satisfying (2.5)–(2.6) and the inequality V νn ≤ Vn. Let A be an
orthogonal (d+1)×(d+1) matrix whose last raw is equals to ( 1√

d+1
, ..., 1√

d+1
) and let vi ∈

Rd be column vectors such that [v1, ..., vd+1] is the matrix obtained from A by deleting
the last row. Consider a random vector Y which values are

√
d+ 1v1, ...,

√
d+ 1vd+1, and

the probability of each value is equal to 1
d+1 . It is straightforward to check that the the

distribution ν := L(Y ) is satisfying (2.5)–(2.6) and for any M ∈ Aνn the distribution of M
(on the space (Rd)n+1) belongs to PnD, and so V νn ≤ Vn.
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