Large deviation exponential inequalities for supermartingales

Xiequan Fan* Ion Grama* Quansheng Liu*

Abstract

Let $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ be a sequence of supermartingale differences and let $S_{k}=\sum_{i=1}^{k} X_{i}$. We give an exponential moment condition under which $\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n\right)=$ $O\left(\exp \left\{-C_{1} n^{\alpha}\right\}\right), n \rightarrow \infty$, where $\alpha \in(0,1)$ is given and $C_{1}>0$ is a constant. We also show that the power α is optimal under the given moment condition.

Keywords: Large deviation; martingales; exponential inequality; Bernstein type inequality. AMS MSC 2010: 60F10; 60G42; 60E15. Submitted to ECP on September 17, 2012, final version accepted on December 9, 2012.

1 Introduction

Let $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ be a sequence of martingale differences and let $S_{k}=\sum_{i=1}^{k} X_{i}, k \geq 1$. Under the Cramér condition $\sup _{i} \mathbb{E} e^{\left|X_{i}\right|}<\infty$, Lesigne and Volný [9] proved that

$$
\begin{equation*}
\mathbb{P}\left(S_{n} \geq n\right)=O\left(\exp \left\{-C_{1} n^{\frac{1}{3}}\right\}\right), \quad n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

for some constant $C_{1}>0$. Here and throughout the paper, for two functions f and g, we write $f(n)=O(g(n))$ if there exists a constant $C>0$ such that $|f(n)| \leq C|g(n)|$ for all $n \geq 1$. Lesigne and Volný [9] also showed that the power $\frac{1}{3}$ in (1.1) is optimal even for stationary and ergodic sequence of martingale differences, in the sense that there exists a stationary and ergodic sequence of martingale differences $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ such that $\mathbb{E} e^{\left|X_{1}\right|}<\infty$ and $\mathbb{P}\left(S_{n} \geq n\right) \geq \exp \left\{-C_{2} n^{\frac{1}{3}}\right\}$ for some constant $C_{2}>0$ and infinitely many n 's. Liu and Watbled [10] proved that the power $\frac{1}{3}$ in (1.1) can be improved to 1 under the conditional Cramér condition $\sup _{i} \mathbb{E}\left(e^{\left|X_{i}\right|} \mid \mathcal{F}_{i-1}\right) \leq C_{3}$, for some constant C_{3}. It is natural to ask under what condition

$$
\begin{equation*}
\mathbb{P}\left(S_{n} \geq n\right)=O\left(\exp \left\{-C_{1} n^{\alpha}\right\}\right), \quad n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

where $\alpha \in(0,1)$ is given and $C_{1}>0$ is a constant. In this paper, we give some sufficient conditions in order that (1.2) holds for supermartingales $\left(S_{k}, \mathcal{F}_{k}\right)_{k \geq 1}$.

The paper is organized as follows. In Section 2, we present the main results. In Sections 3-5, we give the proofs of the main results.

[^0]
2 Main Results

Our first result is an extension of the bound (1.1) of Lesigne and Volný [9].
Theorem 2.1. Let $\alpha \in(0,1)$. Assume that $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ is a sequence of supermartingale differences satisfying $\sup _{i} \mathbb{E} \exp \left\{\left|X_{i}\right|^{\frac{2 \alpha}{1-\alpha}}\right\} \leq C_{1}$ for some constant $C_{1} \in(0, \infty)$. Then, for all $x>0$,

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n x\right) \leq C(\alpha, x) \exp \left\{-\left(\frac{x}{4}\right)^{2 \alpha} n^{\alpha}\right\} \tag{2.1}
\end{equation*}
$$

where

$$
C(\alpha, x)=2+35 C_{1}\left(\frac{1}{x^{2 \alpha} 16^{1-\alpha}}+\frac{1}{x^{2}}\left(\frac{3(1-\alpha)}{2 \alpha}\right)^{\frac{1-\alpha}{\alpha}}\right)
$$

does not depend on n. In particular, with $x=1$, it holds

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n\right)=O\left(\exp \left\{-\frac{1}{16} n^{\alpha}\right\}\right), \quad n \rightarrow \infty . \tag{2.2}
\end{equation*}
$$

Moreover, the power α in (2.2) is optimal in the class of martingale differences: for each $\alpha \in(0,1)$, there exists a sequence of martingale differences $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ satisfying $\sup _{i} \mathbb{E} \exp \left\{\left|X_{i}\right|^{\frac{2 \alpha}{1-\alpha}}\right\}<\infty$ and

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n\right) \geq \exp \left\{-3 n^{\alpha}\right\} \tag{2.3}
\end{equation*}
$$

for all n large enough.
In fact, we shall prove that the power α in (2.2) is optimal even for stationary martingale difference sequences.

It is clear that when $\alpha=\frac{1}{3}$, the bound (2.2) implies the bound (1.1) of Lesigne and Volný.

Our second result shows that the moment condition $\sup _{i} \mathbb{E} \exp \left\{\left|X_{i}\right|^{\frac{2 \alpha}{1-\alpha}}\right\}<\infty$ in Theorem 2.1 can be relaxed to $\sup _{i} \mathbb{E} \exp \left\{\left(X_{i}^{+}\right)^{\frac{\alpha}{1-\alpha}}\right\}<\infty$, where $X_{i}^{+}=\max \left\{X_{i}, 0\right\}$, if we add a constraint on the sum of conditional variances

$$
\langle S\rangle_{k}=\sum_{i=1}^{k} \mathbb{E}\left(X_{i}^{2} \mid \mathcal{F}_{i-1}\right)
$$

Theorem 2.2. Let $\alpha \in(0,1)$. Assume that $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ is a sequence of supermartingale differences satisfying $\sup _{i} \mathbb{E} \exp \left\{\left(X_{i}^{+}\right)^{\frac{\alpha}{1-\alpha}}\right\} \leq C_{1}$ for some constant $C_{1} \in(0, \infty)$. Then, for all $x, v>0$,

$$
\begin{align*}
& \mathbb{P}\left(S_{k} \geq x \text { and }\langle S\rangle_{k} \leq v^{2} \text { for some } k \in[1, n]\right) \\
& \qquad \leq \exp \left\{-\frac{x^{2}}{2\left(v^{2}+\frac{1}{3} x^{2-\alpha}\right)}\right\}+n C_{1} \exp \left\{-x^{\alpha}\right\} . \tag{2.4}
\end{align*}
$$

For bounded random variables, some inequalities closely related to (2.4) can be found in Freedman [5], Dedecker [1], Dzhaparidze and van Zanten [3], Merlevède, Peligrad and Rio [11] and Delyon [2].

Adding a hypothesis on $\langle S\rangle_{n}$ to Theorem 2.2, we can easily obtain the following Bernstein type inequality which is similar to an inequality of Merlevède, Peligrad and Rio [12] for weakly dependent sequences.

Corollary 2.3. Let $\alpha \in(0,1)$. Assume that $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ is a sequence of supermartingale differences satisfying $\sup _{i} \mathbb{E} \exp \left\{\left(X_{i}^{+}\right)^{\frac{\alpha}{1-\alpha}}\right\} \leq C_{1}$ and $\mathbb{E} \exp \left\{\left(\frac{\langle S\rangle_{n}}{n}\right)^{\frac{\alpha}{1-\alpha}}\right\} \leq C_{2}$ for some constants $C_{1}, C_{2} \in(0, \infty)$. Then, for all $x>0$,

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n x\right) \leq \exp \left\{-\frac{x^{1+\alpha}}{2\left(1+\frac{1}{3} x\right)} n^{\alpha}\right\}+\left(n C_{1}+C_{2}\right) \exp \left\{-x^{\alpha} n^{\alpha}\right\} \tag{2.5}
\end{equation*}
$$

In particular, with $x=1$, it holds

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n\right)=O\left(\exp \left\{-C n^{\alpha}\right\}\right), \quad n \rightarrow \infty \tag{2.6}
\end{equation*}
$$

where $C>0$ is an absolute constant. Moreover, the power α in (2.6) is optimal for the class of martingale differences: for each $\alpha \in(0,1)$, there exists a sequence of martingale differences $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ satisfying $\sup _{i} \mathbb{E} \exp \left\{\left(X_{i}^{+}\right)^{\frac{\alpha}{1-\alpha}}\right\}<\infty, \sup _{n} \mathbb{E} \exp \left\{\left(\frac{\langle S\rangle_{n}}{n}\right)^{\frac{\alpha}{1-\alpha}}\right\}<\infty$ and

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n\right) \geq \exp \left\{-3 n^{\alpha}\right\} \tag{2.7}
\end{equation*}
$$

for all n large enough.
Actually, just as (2.2), the power α in (2.6) is optimal even for stationary martingale difference sequences.

In the i.i.d. case, the conditions of Corollary 2.3 can be weakened considerably, see Lanzinger and Stadtmüller [8] where it is shown that if $\mathbb{E} \exp \left\{\left(X_{1}^{+}\right)^{\alpha}\right\}<\infty$ with $\alpha \in(0,1)$, then

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n\right)=O\left(\exp \left\{-C_{\alpha} n^{\alpha}\right\}\right), \quad n \rightarrow \infty \tag{2.8}
\end{equation*}
$$

3 Proof of Theorem 2.1

We shall need the following refined version of the Azuma-Hoeffding inequality.
Lemma 3.1. Assume that $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ is a sequence of martingale differences satisfying $\left|X_{i}\right| \leq 1$ for all $i \geq 1$. Then, for all $x \geq 0$,

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq x\right) \leq \exp \left\{-\frac{x^{2}}{2 n}\right\} \tag{3.1}
\end{equation*}
$$

A proof can be found in Laib [7].
For the proof of Theorem 2.1, we use a truncating argument as in Lesigne and Volný [9]. Let $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ be a sequence of supermartingale differences. Given $u>0$, define

$$
\begin{aligned}
X_{i}^{\prime} & =X_{i} \mathbf{1}_{\left\{\left|X_{i}\right| \leq u\right\}}-\mathbb{E}\left(X_{i} \mathbf{1}_{\left\{\left|X_{i}\right| \leq u\right\}} \mid \mathcal{F}_{i-1}\right), \\
X_{i}^{\prime \prime} & =X_{i} \mathbf{1}_{\left\{\left|X_{i}\right|>u\right\}}-\mathbb{E}\left(X_{i} \mathbf{1}_{\left\{\left|X_{i}\right|>u\right\}} \mid \mathcal{F}_{i-1}\right), \\
S_{k}^{\prime} & =\sum_{i=1}^{k} X_{i}^{\prime}, \quad S_{k}^{\prime \prime}=\sum_{i=1}^{k} X_{i}^{\prime \prime}, \quad S_{k}^{\prime \prime \prime}=\sum_{i=1}^{k} \mathbb{E}\left(X_{i} \mid \mathcal{F}_{i-1}\right) .
\end{aligned}
$$

Then $\left(X_{i}^{\prime}, \mathcal{F}_{i}\right)_{i \geq 1}$ and $\left(X_{i}^{\prime \prime}, \mathcal{F}_{i}\right)_{i \geq 1}$ are two martingale difference sequences and $S_{k}=$ $S_{k}^{\prime}+S_{k}^{\prime \prime}+S_{k}^{\prime \prime \prime}$. Let $t \in(0,1)$. Since $S_{k}^{\prime \prime \prime} \leq 0$, for any $x>0$,

$$
\begin{align*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq x\right) & \leq \mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime}+S_{k}^{\prime \prime \prime} \geq x t\right)+\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime \prime} \geq x(1-t)\right) \\
& \leq \mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime} \geq x t\right)+\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime \prime} \geq x(1-t)\right) . \tag{3.2}
\end{align*}
$$

Using Lemma 3.1 and the fact that $\left|X_{i}^{\prime}\right| \leq 2 u$, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime} \geq x t\right) \leq \exp \left\{-\frac{x^{2} t^{2}}{8 n u^{2}}\right\} \tag{3.3}
\end{equation*}
$$

Let $F_{i}(x)=\mathbb{P}\left(\left|X_{i}\right| \geq x\right), x \geq 0$. Since $\mathbb{E} \exp \left\{\left|X_{i}\right|^{\frac{2 \alpha}{1-\alpha}}\right\} \leq C_{1}$, we obtain, for all $x \geq 0$,

$$
F_{i}(x) \leq \exp \left\{-x^{\frac{2 \alpha}{1-\alpha}}\right\} \mathbb{E} \exp \left\{\left|X_{i}\right|^{\frac{2 \alpha}{1-\alpha}}\right\} \leq C_{1} \exp \left\{-x^{\frac{2 \alpha}{1-\alpha}}\right\}
$$

Using the martingale maximal inequality (cf. e.g. p. 14 in [6]), we get

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime \prime} \geq x(1-t)\right) \leq \frac{1}{x^{2}(1-t)^{2}} \sum_{i=1}^{n} \mathbb{E} X_{i}^{\prime \prime 2} \tag{3.4}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
\mathbb{E} X_{i}^{\prime \prime 2} & =-\int_{u}^{\infty} t^{2} d F_{i}(t) \\
& =u^{2} F_{i}(u)+\int_{u}^{\infty} 2 t F_{i}(t) d t \\
& \leq C_{1} u^{2} \exp \left\{-u^{\frac{2 \alpha}{1-\alpha}}\right\}+2 C_{1} \int_{u}^{\infty} t \exp \left\{-t^{\frac{2 \alpha}{1-\alpha}}\right\} d t \tag{3.5}
\end{align*}
$$

Notice that the function $g(t)=t^{3} \exp \left\{-t^{\frac{2 \alpha}{1-\alpha}}\right\}$ is decreasing in $[\beta,+\infty)$ and is increasing in $[0, \beta]$, where $\beta=\left(\frac{3(1-\alpha)}{2 \alpha}\right)^{\frac{1-\alpha}{2 \alpha}}$. If $0<u<\beta$, we have

$$
\begin{align*}
\int_{u}^{\infty} t \exp \left\{-t^{\frac{2 \alpha}{1-\alpha}}\right\} d t & \leq \int_{u}^{\beta} t \exp \left\{-t^{\frac{2 \alpha}{1-\alpha}}\right\} d t+\int_{\beta}^{\infty} t^{-2} t^{3} \exp \left\{-t^{\frac{2 \alpha}{1-\alpha}}\right\} d t \\
& \leq \int_{u}^{\beta} t \exp \left\{-u^{\frac{2 \alpha}{1-\alpha}}\right\} d t+\int_{\beta}^{\infty} t^{-2} \beta^{3} \exp \left\{-\beta^{\frac{2 \alpha}{1-\alpha}}\right\} d t \\
& \leq \frac{3}{2} \beta^{2} \exp \left\{-u^{\frac{2 \alpha}{1-\alpha}}\right\} \tag{3.6}
\end{align*}
$$

If $\beta \leq u$, we have

$$
\begin{align*}
\int_{u}^{\infty} t \exp \left\{-t^{\frac{2 \alpha}{1-\alpha}}\right\} d t & =\int_{u}^{\infty} t^{-2} t^{3} \exp \left\{-t^{\frac{2 \alpha}{1-\alpha}}\right\} d t \\
& \leq \int_{u}^{\infty} t^{-2} u^{3} \exp \left\{-u^{\frac{2 \alpha}{1-\alpha}}\right\} d t \\
& =u^{2} \exp \left\{-u^{\frac{2 \alpha}{1-\alpha}}\right\} \tag{3.7}
\end{align*}
$$

By (3.5), (3.6) and (3.7), we get

$$
\begin{equation*}
\mathbb{E} X_{i}^{\prime \prime 2} \leq 3 C_{1}\left(u^{2}+\beta^{2}\right) \exp \left\{-u^{\frac{2 \alpha}{1-\alpha}}\right\} \tag{3.8}
\end{equation*}
$$

From (3.4), it follows that

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime \prime} \geq x(1-t)\right) \leq \frac{3 n C_{1}}{x^{2}(1-t)^{2}}\left(u^{2}+\beta^{2}\right) \exp \left\{-u^{\frac{2 \alpha}{1-\alpha}}\right\} \tag{3.9}
\end{equation*}
$$

Combining (3.2), (3.3) and (3.9), we obtain

$$
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq x\right) \leq 2 \exp \left\{-\frac{x^{2} t^{2}}{8 n u^{2}}\right\}+\frac{3 n C_{1}}{(1-t)^{2}}\left(\frac{u^{2}}{x^{2}}+\frac{\beta^{2}}{x^{2}}\right) \exp \left\{-u^{\frac{2 \alpha}{1-\alpha}}\right\}
$$

Taking $t=\frac{1}{\sqrt{2}}$ and $u=\left(\frac{x}{4 \sqrt{n}}\right)^{1-\alpha}$, we get, for all $x>0$,

$$
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq x\right) \leq C_{n}(\alpha, x) \exp \left\{-\left(\frac{x^{2}}{16 n}\right)^{\alpha}\right\}
$$

where

$$
C_{n}(\alpha, x)=2+35 n C_{1}\left(\frac{1}{x^{2 \alpha}(16 n)^{1-\alpha}}+\frac{\beta^{2}}{x^{2}}\right) .
$$

Hence, for all $x>0$,

$$
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n x\right) \leq C(\alpha, x) \exp \left\{-\left(\frac{x}{4}\right)^{2 \alpha} n^{\alpha}\right\}
$$

where

$$
C(\alpha, x)=2+35 C_{1}\left(\frac{1}{x^{2 \alpha} 16^{1-\alpha}}+\frac{1}{x^{2}}\left(\frac{3(1-\alpha)}{2 \alpha}\right)^{\frac{1-\alpha}{\alpha}}\right)
$$

This completes the proof of the first assertion of Theorem 2.1.
Next, we prove that the power α in (2.2) is optimal by giving a stationary sequence of martingale differences satisfying (2.3). We proceed as in Lesigne and Volný ([9], p. 150). Take a positive random variable X such that

$$
\begin{equation*}
\mathbb{P}(X>x)=\frac{2 e}{1+x^{\frac{1+\alpha}{1-\alpha}}} \exp \left\{-x^{\frac{2 \alpha}{1-\alpha}}\right\} \tag{3.10}
\end{equation*}
$$

for all $x>1$. Using the formula $\mathbb{E} f(X)=f(1)+\int_{1}^{\infty} f^{\prime}(t) \mathbb{P}(X>t) d t$ for $f(t)=$ $\exp \left\{t^{\frac{2 \alpha}{1-\alpha}}\right\}, t \geq 1$, we obtain

$$
\mathbb{E} \exp \left\{X^{\frac{2 \alpha}{1-\alpha}}\right\}=e+\frac{4 e \alpha}{1-\alpha} \int_{1}^{\infty} \frac{t^{\frac{3 \alpha-1}{1-\alpha}}}{1+t^{\frac{1+\alpha}{1-\alpha}}} d t<\infty
$$

Assume that $\left(\xi_{i}\right)_{i \geq 1}$ are Rademacher random variables independent of X, i.e. $\mathbb{P}\left(\xi_{i}=\right.$ $1)=\mathbb{P}\left(\xi_{i}=-1\right)=\frac{1}{2}$. Set $X_{i}=X \xi_{i}, \mathcal{F}_{0}=\sigma(X)$ and $\mathcal{F}_{i}=\sigma\left(X,\left(\xi_{k}\right)_{k=1, \ldots, i}\right)$. Then, $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ is a stationary sequence of martingale differences satisfying

$$
\sup _{i} \mathbb{E} \exp \left\{\left|X_{i}\right|^{\frac{2 \alpha}{1-\alpha}}\right\}=\mathbb{E} \exp \left\{X^{\frac{2 \alpha}{1-\alpha}}\right\}<\infty .
$$

For $\beta \in(0,1)$, it is easy to see that

$$
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{i} \geq n\right) \geq \mathbb{P}\left(S_{n} \geq n\right) \geq \mathbb{P}\left(\sum_{i=1}^{n} \xi_{i} \geq n^{\beta}\right) \mathbb{P}\left(X \geq n^{1-\beta}\right)
$$

Since, for n large enough,

$$
\mathbb{P}\left(\sum_{i=1}^{n} \xi_{i} \geq n^{\beta}\right) \geq \exp \left\{-n^{2 \beta-1}\right\}
$$

(cf. Corollary 3.5 in Lesigne and Volný [9]), we get, for n large enough,

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{i} \geq n\right) \geq \frac{2 e}{1+\left(n^{1-\beta}\right)^{\frac{1+\alpha}{1-\alpha}}} \exp \left\{-n^{2 \beta-1}-\left(n^{1-\beta}\right)^{\frac{2 \alpha}{1-\alpha}}\right\} . \tag{3.11}
\end{equation*}
$$

Setting $2 \beta-1=\alpha$, we obtain, for n large enough,

$$
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{i} \geq n\right) \geq \frac{2 e}{1+n^{\frac{1+\alpha}{2}}} \exp \left\{-2 n^{\alpha}\right\} \geq \exp \left\{-3 n^{\alpha}\right\}
$$

which proves (2.3). This ends the proof of Theorem 2.1.

4 Proof of Theorem 2.2

To prove Theorem 2.2, we need the following inequality.
Lemma 4.1 ([4], Remark 2.1). Assume that $\left(X_{i}, \mathcal{F}_{i}\right)_{i>1}$ are supermartingale differences satisfying $X_{i} \leq 1$ for all $i \geq 1$. Then, for all $x, v>0$,

$$
\begin{equation*}
\mathbb{P}\left(S_{k} \geq x \text { and }\langle S\rangle_{k} \leq v^{2} \text { for some } k \in[1, n]\right) \leq \exp \left\{-\frac{x^{2}}{2\left(v^{2}+\frac{1}{3} x\right)}\right\} \tag{4.1}
\end{equation*}
$$

Assume that $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ are supermartingale differences. Given $u>0$, set

$$
X_{i}^{\prime}=X_{i} \mathbf{1}_{\left\{X_{i} \leq u\right\}}, \quad X_{i}^{\prime \prime}=X_{i} \mathbf{1}_{\left\{X_{i}>u\right\}}, \quad S_{k}^{\prime}=\sum_{i=1}^{k} X_{i}^{\prime} \text { and } S_{k}^{\prime \prime}=\sum_{i=1}^{k} X_{i}^{\prime \prime}
$$

Then, $\left(X_{i}^{\prime}, \mathcal{F}_{i}\right)_{i \geq 1}$ is also a sequence of supermartingale differences and $S_{k}=S_{k}^{\prime}+S_{k}^{\prime \prime}$. Since $\left\langle S^{\prime}\right\rangle_{k} \leq\langle S\rangle_{k}$, we deduce, for all $x, u, v>0$,

$$
\begin{align*}
& \mathbb{P}\left(S_{k} \geq x \text { and }\langle S\rangle_{k} \leq v^{2} \text { for some } k \in[1, n]\right) \\
\leq & \mathbb{P}\left(S_{k}^{\prime} \geq x \text { and }\langle S\rangle_{k} \leq v^{2} \text { for some } k \in[1, n]\right) \\
& +\mathbb{P}\left(S_{k}^{\prime \prime} \geq 0 \text { and }\langle S\rangle_{k} \leq v^{2} \text { for some } k \in[1, n]\right) \\
\leq & \mathbb{P}\left(S_{k}^{\prime} \geq x \text { and }\left\langle S^{\prime}\right\rangle_{k} \leq v^{2} \text { for some } k \in[1, n]\right)+\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime \prime} \geq 0\right) . \tag{4.2}
\end{align*}
$$

Applying Lemma 4.1 to the supermartingale differences $\left(X_{i}^{\prime} / u, \mathcal{F}_{i}\right)_{i \geq 1}$, we have, for all $x, u, v>0$,

$$
\begin{equation*}
\mathbb{P}\left(S_{k}^{\prime} \geq x \text { and }\left\langle S^{\prime}\right\rangle_{k} \leq v^{2} \text { for some } k \in[1, n]\right) \leq \exp \left\{-\frac{x^{2}}{2\left(v^{2}+\frac{1}{3} x u\right)}\right\} \tag{4.3}
\end{equation*}
$$

Using the exponential Markov's inequality and the condition $\mathbb{E} \exp \left\{\left(X_{i}^{+}\right)^{\frac{\alpha}{1-\alpha}}\right\} \leq C_{1}$, we get

$$
\begin{align*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}^{\prime \prime} \geq 0\right) & \leq \sum_{i=1}^{n} \mathbb{P}\left(X_{i}>u\right) \\
& \leq \sum_{i=1}^{n} \mathbb{E} \exp \left\{\left(X_{i}^{+}\right)^{\frac{\alpha}{1-\alpha}}-u^{\frac{\alpha}{1-\alpha}}\right\} \\
& \leq n C_{1} \exp \left\{-u^{\frac{\alpha}{1-\alpha}}\right\} . \tag{4.4}
\end{align*}
$$

Combining the inequalities (4.2), (4.3) and (4.4) together, we obtain, for all $x, u, v>0$,

$$
\begin{align*}
\mathbb{P}\left(S_{k} \geq x \text { and }\langle S\rangle_{k} \leq\right. & \left.v^{2} \text { for some } k \in[1, n]\right) \\
& \leq \exp \left\{-\frac{x^{2}}{2\left(v^{2}+\frac{1}{3} x u\right)}\right\}+n C_{1} \exp \left\{-u^{\frac{\alpha}{1-\alpha}}\right\} . \tag{4.5}
\end{align*}
$$

Taking $u=x^{1-\alpha}$, we get, for all $x, v>0$,

$$
\begin{align*}
\mathbb{P}\left(S_{k} \geq x \text { and }\langle S\rangle_{k} \leq\right. & \left.v^{2} \text { for some } k \in[1, n]\right) \\
& \leq \exp \left\{-\frac{x^{2}}{2\left(v^{2}+\frac{1}{3} x^{2-\alpha}\right)}\right\}+n C_{1} \exp \left\{-x^{\alpha}\right\} . \tag{4.6}
\end{align*}
$$

This completes the proof of Theorem 2.2.

5 Proof of Corollary 2.3.

To prove Corollary 2.3 we make use of Theorem 2.2. It is easy to see that

$$
\begin{align*}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n x\right) \leq & \mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n x,\langle S\rangle_{n} \leq n v^{2}\right) \\
& +\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n x,\langle S\rangle_{n}>n v^{2}\right) \\
\leq & \mathbb{P}\left(S_{k} \geq n x \text { and }\langle S\rangle_{k} \leq n v^{2} \text { for some } k \in[1, n]\right) \\
& +\mathbb{P}\left(\langle S\rangle_{n}>n v^{2}\right) \tag{5.1}
\end{align*}
$$

By Theorem 2.2, it follows that, for all $x, v>0$,

$$
\begin{aligned}
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n x\right) \leq & \exp \left\{-\frac{x^{2}}{2\left(n^{\alpha-1} v^{2}+\frac{1}{3} x^{2-\alpha}\right)} n^{\alpha}\right\} \\
& +n C_{1} \exp \left\{-x^{\alpha} n^{\alpha}\right\}+\mathbb{P}\left(\langle S\rangle_{n}>n v^{2}\right)
\end{aligned}
$$

Using the exponential Markov's inequality and the condition $\mathbb{E} \exp \left\{\left(\frac{\langle S\rangle_{n}}{n}\right)^{\frac{\alpha}{1-\alpha}}\right\} \leq C_{2}$, we get, for all $v>0$,

$$
\mathbb{P}\left(\langle S\rangle_{n}>n v^{2}\right) \leq \mathbb{E} \exp \left\{\left(\left(\frac{\langle S\rangle_{n}}{n}\right)^{\frac{\alpha}{1-\alpha}}-v^{2 \frac{\alpha}{1-\alpha}}\right)\right\} \leq C_{2} \exp \left\{-v^{2 \frac{\alpha}{1-\alpha}}\right\}
$$

Taking $v=(n x)^{\frac{1-\alpha}{2}}$, we obtain, for all $x>0$,

$$
\mathbb{P}\left(\max _{1 \leq k \leq n} X_{k} \geq n x\right) \leq \exp \left\{-\frac{x^{1+\alpha}}{2\left(1+\frac{1}{3} x\right)} n^{\alpha}\right\}+\left(n C_{1}+C_{2}\right) \exp \left\{-x^{\alpha} n^{\alpha}\right\}
$$

which gives inequality (2.5).
Next, we prove that the power α in (2.6) is optimal. Let $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geq 1}$ be the sequence of martingale differences constructed in the proof of the second assertion of Theorem 2.1. Then $\frac{\langle S\rangle_{n}}{n}=X^{2}$,

$$
\sup _{i} \mathbb{E} \exp \left\{\left(X_{i}^{+}\right)^{\frac{\alpha}{1-\alpha}}\right\}=\frac{1}{2} \mathbb{E} \exp \left\{X^{\frac{\alpha}{1-\alpha}}\right\}<\infty
$$

and

$$
\sup _{n} \mathbb{E} \exp \left\{\left(\frac{\langle S\rangle_{n}}{n}\right)^{\frac{\alpha}{1-\alpha}}\right\}=\mathbb{E} \exp \left\{X^{\frac{2 \alpha}{1-\alpha}}\right\}<\infty
$$

Using the same argument as in the proof of Theorem 2.1, we obtain, for n large enough,

$$
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k} \geq n\right) \geq \exp \left\{-3 n^{\alpha}\right\}
$$

This ends the proof of Corollary 2.3.

References

[1] J., Dedecker. Exponential inequalities and functional central limit theorems for random fields. ESAIM Probab. Statit. 5 (2001), 77-104.
[2] B., Delyon. Exponential inequalities for sums of weakly dependent variables. Electron. J. Probab. 14 (2009), 752-779. MR-2495559
[3] K., Dzhaparidze and J. H., van Zanten. On Bernstein-type inequalities for martingales. Stochastic Process. Appl. 93 (2001), 109-117. MR-1819486
[4] X., Fan, I., Grama and Q., Liu. Hoeffding's inequality for supermartingales. Stochastic Process. Appl. 122 (2012), 3545-3559. MR-2956116
[5] D. A., Freedman. On tail probabilities for martingales. Ann. Probab. 3 (1975), 100-118. MR-0380971
[6] P., Hall and C. C., Heyde. Martingale Limit Theory and Its Application, Academic Press, 1980, 81-96.
[7] N., Laib. Exponential-type inequalities for martingale difference sequences. Application to nonparametric regression estimation. Commun. Statist.-Theory. Methods, 28 (1999), 15651576. MR-1707103
[8] H., Lanzinger and U., Stadtmüller. Maxima of increments of partial sums for certain subexponential distributions. Stochastic Process. Appl., 86 (2000), 307-322. MR-1741810
[9] E., Lesigne and D., Volný. Large deviations for martingales. Stochastic Process. Appl. 96 (2001), 143-159. MR-1856684
[10] Q., Liu and F., Watbled. Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment. Stochastic Process. Appl. 119 (2009), 3101-3132. MR-2568267
[11] F., Merlevède, M., Peligrad and E., Rio. Bernstein inequality and moderate deviations under strong mixing conditions. IMS Collections. High Dimensional Probability 5 (2009), 273-292. MR-2797953
[12] F., Merlevède, M., Peligrad and E., Rio. A Bernstein type inequality and moderate deviations for weakly dependent sequences. Probab. Theory Relat. Fields 151 (2011), 435-474. MR2851689

Acknowledgments. We would like to thank the two referees for their helpful remarks and suggestions.

[^0]: *Université de Bretagne-Sud, LMBA, UMR CNRS 6205, Vannes, France.
 E-mail: fanxiequan@hotmail.com E-mail: ion.grama, quansheng.liu@univ-ubs.fr

