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Abstract

Bounds for the expected return probability of the delayed random walk on finite clus-
ters of an invariant percolation on transitive unimodular graphs are derived. They
are particularly suited for the case of critical Bernoulli percolation and the associated
heavy-tailed cluster size distributions. The upper bound relies on the fact that carte-
sian products of finite graphs with cycles of a certain minimal size are Hamiltonian.
For critical Bernoulli bond percolation on the homogeneous tree this bound is sharp.
The asymptotic type of the expected return probability for large times t in this case
is of order t−3/4.
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1 Introduction

1.1 Context and Results

This paper is about the expected return probability of the delayed random walk
on the finite clusters of percolation graphs with heavy-tailed cluster size distributions
(such as critical Bernoulli percolation).

The asymptotics of the integrated density of states (IDS) of the graph Laplacian on
percolation subgraphs of the Euclidean lattice has recently been studied in the subcrit-
ical phase by Kirsch and Müller [19], and the supercritical phase by Müller and Stoll-
mann [24]. The question of the IDS’ asymptotics in the critical phase was left open. For
the two-dimensional Euclidean lattice, we present upper and lower polynomial bounds
(Theorem 2.6) for general invariant percolation. More generally, we find polynomial
bounds for the expected return probability on finite critical percolation clusters on any
planar transitive unimodular graph (Theorem 2.2). The upper estimates also hold in the
non-planar case. For homogeneous trees, this bound proves to be sharp if the asymp-
totic type of decay of the cluster size’ probability density function is known (Theorem
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The annealed return probability on large finite percolation graphs

2.4). Furthermore, improved bounds for the number of open clusters per vertex [13] in
terms of the expected return probability are found (Theorem 2.7).

The method from which these bounds are derived are comparison theorems for ran-
dom walks on finite graphs. For the upper bound, the main idea is the comparison of
all the eigenvalues of the transition matrices. Taking into account the whole spectrum
instead of only the spectral gap leads to an additional polynomially decreasing prefac-
tor in front of the exponentially converging return probability. For the expected return
probability an additional integration over all finite random clusters is involved. As in
critical percolation, the corresponding cluster size distribution is heavy-tailed, i.e. inte-
gral moments do not exist [4]. The result is a polynomial decay in time. For this decay
the additional prefactor is an essential improvement.

The comparison theorem is obtained from the property of cartesian products of finite
graphs with maximum vertex-degree δ and cycles C of size equal to δ to be Hamiltonian
[6]. This cycle exists due to Hamiltonicity. In addition to this fact, we will use that the
return probability of a continuous time random walk on a finite cartesian product graph
factorises into the return probabilities on its factors. Since the return probabilities are
known on the cycle, this gives a bound for the return probability on the original graph.
For the lower bound, we resort to a result by Boshier [8] about the isoperimetric num-
ber of a finite graph (see [23]): This is an upper bound for the isoperimetric number of
graphs with bounded genus. For planar graphs, this gives us a bound of the spectral
gap from above by Cheeger’s inequality.

1.2 Delayed Random walk on finite graphs

We now recall some standard facts from finite random walk theory. We write N0

for {0, 1, 2, 3, ....}, and R+ := [0,∞). Since we will assume |Co| < ∞, we will reserve
subscript ‘o’ for objects defined in connection with finite graphs.

Let Go = 〈Vo, Eo〉 be a finite simple graph, i.e. the vertex-set Vo has finite cardinality
and there are no multiple edges in Eo, nor are they directed or have coinciding incident
vertices (‘loops’). Let δ be the maximal occurring degree, i.e. δ := max{ deg(v) | v ∈ Vo},
where deg(v) = |{w ∈ Vo | {v, w} ∈ Eo}|.

We define the discrete-time delayed random walk (DRW) on Go to be the nearest
neighbour random walk [28] with state space Vo, some initial distribution ν ∈M+,1(Vo),
and transition probabilities Pvw := (P (Go))vw with v, w ∈ Vo, and

(P (Go))vw =


1/δ {v, w} ∈ Eo,

1 − deg(v)/δ v = w,

0 otherwise.

Recall that the transition probabilities of v to w after n steps is given by the element
of the matrix-power (Pn)vw, for all v, w ∈ Vo.

The continuous-time version of the delayed random walk with coordinate-map Xt is
defined as the Markov-process on the right-continuous Vo-valued functions depending
on t ∈ R+, with some initial distribution ν ∈M+,1(Vo), and transition probabilities

P[Xt = w|X0 = v] =
(
e−t(1−P )

)
vw
, v, w ∈ Vo. (1.1)
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The annealed return probability on large finite percolation graphs

We note that
(
e−t(1−P )

)
vw

=
∞∑
n=0

(Pn)vw
tn

n! e
−t, and that (Pn)vw is also the pro-

bability of Xt to reach w from v conditioned on the event of there having been ex-
actly n jumps up to time t. The number e−ttn/n! is the probability of that event,
which is also characterised by t ∈ [tn, tn+1), where tn is the sum of n independent
exponentially distributed random variables (‘waiting times’) with parameter 1. So(
e−t(1−P )

)
vw

=
∑∞
n=0P[Xt = w|X0 = v, t ∈ [tn, tn+1) ]P[t ∈ [tn, tn+1)], (see [25]).

Finally, we note that choosing the initial distribution ν ∈M+,1(Vo) to be the uniform
distribution, i.e. X0 ∼UNIF(Vo), and ν({v}) = 1/|Vo| gives the return probability as
the value of a normalised trace

P[Xt = X0] =
∑
v∈Vo

(
e−t(I−P )

)
vv

1

|Vo|
=

1

|Vo|
Tr[e−t(I−P )], (1.2)

as P[Xt = X0] =
∑
v∈Vo P[Xt = X0|X0 = v]P[X0 = v], and P[X0 = v] = 1

|Vo| .

1.3 Invariant percolation on unimodular graphs

We now define the setting for which the results of section 2.1 will be applied (see
section 2.2).

Let G = 〈V,E〉 be an infinite simple (see above) graph, which has a transitive,
unimodular subgroup Γ of the automorphism group Aut(G). ‘Transitive’ means vertex-
transitive, here, i.e. for all v, w ∈ V , there is an automorphism γ ∈ Γ, s.t. w = γ(v).
‘Unimodular’ means that the left Haar measure of Γ is the same as the right Haar mea-
sure. We call such a graph a unimodular graph.

A well-known result for unimodular graphs is the so called mass-transport-principle
(see [22],[7]). It says that for all Γ-diagonally invariant functions (f(γ(v), γ(w)) = f(v, w)

for all γ ∈ Γ) it holds that ∑
w∈V

f(v, w) =
∑
w∈V

f(w, v).

Let now (Ω,F , µ) be the probability space with Ω = 2E the two-valued functions on
the edges and F = ⊗EFo the product σ− algebra with Fo = {∅, {0}, {1}, {0, 1}}. On F ,
we consider a probability distribution µ : F → [0, 1] with the property of Γ-invariance:

µ(A) = µ(γ(A)), for all A ∈ F , γ ∈ Γ.

In this way, for any fixed ω ∈ Ω, we obtain a random subgraph G′(ω) ≤ G = 〈V,E〉,
of the form G′(ω) = 〈V,E′(ω)〉, where

E′(ω) = { e ∈ E | ω(e) = 1 } = ω−1({1}).

A subgraph of G in which only edges are removed is called a partial graph of G.
Therefore, with every ω ∈ Ω, we associate the random partial graph

G′(ω) = 〈V, ω−1({1})〉.

We call the pair 〈G,µ〉 an invariant percolation µ on a unimodular graph G.
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The annealed return probability on large finite percolation graphs

We will now fix an arbitrary vertex o ∈ V , the ‘root’, and look for fixed ω ∈ Ω at the
connected component of the graph G′(ω) which contains o, and call it Co(ω). Since we
will assume |Co| < ∞, we will be interested in invariant percolation measures µ with
µ-almost surely finite connected components, i.e.

µ({ω ∈ Ω | |Co(ω)| <∞}) = 1.

Examples: a.) Bernoulli Percolation on the Euclidean Lattice: G = 〈Zd, N.N.〉
(‘Nearest Neighbours’), and µ is the product measure on Ω: µ = ⊗e∈Eπe, where πe :

Fo → [0, 1], and p = π(ω(e) = 1) ∈ [0, 1], for all e ∈ E. It is well-known that for suffi-
ciently small p, the connected components are a.s. finite (‘subcritical regime’). Also,
in the ‘supercritical regime’ or the ‘critical regime’, for which µ(|Co| = ∞) > 0,
we may condition on the event A := {ω ∈ Ω | |Co| < ∞}. The conditional measure
µ(·|A) = µ(· ∩ A)/µ(A) is also Γ-invariant. It is a celebrated result that Bernoulli bond-
percolation has almost surely finite clusters in the case d = 2.

b.) Bernoulli Percolation on homogeneous trees. The Bernoulli percolation measure
µ on a homogeneous tree of degree δ is invariant under the action of any transitive
subgroup of its automorphism group. It is well-known (see [12], Chap. 10.1), that for
critical percolation on the binary tree, we have that the Pµ[|Co| ≥ m] ∼ m− 1

2 .

Now, we define the delayed random walk on a random partial graph: Given ω ∈ Ω,
consider the finite subgraph of G′(ω) induced by Co(ω), i.e. (using a standard notation)
consider

Go(ω) := G′(ω)|Co(ω).

As discussed in Section 1.2 this induces a random finite random walk with random state
space Co(ω), random initial distribution ν(ω) ∈M+,1(Co(ω)), and corresponding random
return probabilities

P (ω)
vw := (P (Go(ω))vw , (1.3)

which form a |Co(ω)| × |Co(ω)| matrix, where |Co(ω)| is µ-a.s. finite.

The random continuous-time random walk is formed analogously to the procedure
of section 1.2, with Go = Go(ω). Choosing ν(ω) ∈ M+,1(Co(ω))as the initial distribution
of the process to be the uniform distribution on Co(ω), the random continuous-time
return probabilities turn out to be (compare with (1.2))

P[X
(ω)
t = X

(ω)
0 ] =

1

|Co(ω)|
Tr[e−t(I−P (ω))],

where P (ω) = ((P (ω))vw) with v, w ∈ Co(ω) is the transition probability matrix (1.3)
of the random discrete-time random walk on Co(ω).

We are interested in the asymptotic corrections of the expectation value of the return
probabilities

Pt(o) := Eµ

[
1

|Co|
Tr[e−t(I−P )]

]
for large values of the time t > 0 from its limiting value, which is given by Eµ[1/|Co|].
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2 Results

We first present our estimates for finite graphs in Section 2.1, and apply them in
Section 2.2 to bound the expected return probability. Sections 2.3 and 2.4 contain the
applications concerning the integrated density of states and the expected number of
open clusters per vertex.

2.1 Bounds of the Return Probability on finite graphs

Theorem 2.1. Let Go = 〈Vo, Eo〉 be a simple, finite, connected graph with N vertices
and largest degree δ. Let Xt be the delayed random walk on Go, and β2 the second-
largest eigenvalue of its transition kernel. For X0 ∼ UNIF(Vo), k ∈ {1, ..., N − 2} and
t > 0

i.) P[Xt = X0] ≤ 1

N
+ 2 · k

N
e−t(1−β2) +

√
π

32

δ
√
δ + 2√
t

exp

(
− 32tk2

(δ + 2)δ2N2

)
,

ii.) P[Xt = X0] ≤ 1

N
+ 2 · k

N
e−t(1−β2) +

δ2(δ + 2)

16t

N

k
exp

(
− 32tk2

(δ + 2)δ2N2

)
.

iii.) If Go is also planar, and N > 288, it holds for t > 0

P[Xt = X0] ≥ 1

N
+

exp
(
−tK/

√
N
)

N
, with K = 12

√
2 · δ.

These bounds allow choosing an optimal value of k if something about the relation
between β2 and N is known. If k in Theorem 2.1, i.) and ii.) is of the order of N ,
the bound is qualitatively the same as the obvious estimate resulting from using the
Poincaré inequality 1− βj ≥ δ/(4N2) for all j ∈ {2, ..., N} (see [26], Chap. 3.2).

2.2 Annealed Return Probability on finite Percolation Subgraphs

Let Pt := Pt(o) = EµP[Xt = o | X0 = o] denote the expected return probability to
the vertex o of the continuous-time delayed random walk on Co(ω) at time t ≥ 0.

Theorem 2.2. For µ being any invariant percolation on a unimodular transitive graph
G = 〈V,E〉, let A,B, a, b > 0, with b ≤ 2 such that for all m ∈ N

Am−a ≤ Pµ[|Co| ≥ m] ≤ Bm−b. (2.1)

i.) Then with C = 5 (4b/δ)
b

(2 · 4b + δ(δ + 2)/2), for all α with 0 < α < b and t > 0

Pt − Eµ

[
1
|Co|

]
≤ C · Eµ[|Co|α] t−

1
2 (1+α) .

ii.) If G is also assumed planar, and K as in Theorem 2.1, then for t >
√

288

D · t−2a(1+1/b) ≤ Pt − Eµ

[
1
|Co|

]
, where D = e−K

A/2

1 + (2B/A)1/b
.

Remarks: The folklore rule about easily obtained lower bounds doesn’t apply in
this general setting of transitive graphs. The quality of the argument of comparing the
graph with the ‘host graph’ G on which the percolation is defined (see e.g. Lemma 2.2
in [11]) generally gives poor results. If for example Co is the finite connected component
containing the root of Bernoulli percolation on a homogeneous tree with vertex-degree
δ, then the subtree of the homogeneous tree induced by a ball with radius equal to
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that of Co has typically a much smaller spectral gap. Thus, it cannot be used for lower
bounds of the return probability. In the case of amenable graphs, however, this com-
parison technique is successful (see e.g. [3] for results beyond the Euclidean lattice).
Furthermore, as upper bounds on the volume-growth give lower bounds on the return
probability (see e.g. [28], Chap. 14.C), the lack of such a bound on the volume-growth
under the present assumptions comes at the cost of weaker results in Theorem 2.2, ii.).

Nevertheless, from the following discussion it will be seen that it is for tree-like
graphs G, for which the upper bounds perform well. The upper bounds turn out better
if few manipulations of the finite graph in form of removals and additions of edges have
to be undertaken to retrieve a spanning cycle (we say that the graph is similar to the
spanning cycle). The proof (see Section 3.2) involves the comparison of the graph with
that of a cycle having length comparable to the graph’s order (number of vertices). An
example of graphs for which this property may be likely to prevail is given by finite
subgraphs of the incipient infinite cluster of Bernoulli percolation (see [12], Chap. 9.4).
It occurs at the critical retention probability pc under the additional condition of being
infinite [17]. It is therefore of interest to compare the expected return probability of the
delayed random walk on the incipient infinite cluster with the corresponding quantity
on the ordinary connected components of critical percolation to which Theorem 2.2 can
be applied, as long as it has clusters at criticality which are almost surely finite ([16],
Theorem 2; [7]):

Corollary 2.3. Consider Pt, the expected return probability of the delayed random
walk on finite percolation clusters of critical Bernoulli bond percolation:

i.) For the 2-dimensional Euclidean lattice, with α ∈ (0, 1/5] such that Eµ[|Co|α] < ∞,
there is C2 > 0 such that for t ≥ 1

C−1
2 t−(1+α−1) ≤ Pt − Eµ[1/|Co|] ≤ C2Eµ[|Co|α] t−

1
2 (1+α).

ii.) For the homogeneous tree of degree δ, there is ε > 0, and a constant Cδ depending
on ε, such that for t ≥ 1

Cδ(ε)
−1t−3 ≤ Pt − Eµ[1/|Co|] ≤ Cδ(ε)Eµ[|Co|

1
2−2ε] t−

3
4 +ε. (2.2)

Remarks: It is easy to show that given b > 0, the condition Pµ[|Co| ≥ m] ≤ Bm−b

for some B > 0 implies Eµ[|Co|α] <∞ for all α ∈ R such that 0 < α < b.

The upper bound for the range of α in Corollary 2.3, i.) is a result by Kesten [18]
(see also [12], Table 10.1). The results obtained in Theorem 2.2 are valid for the very
general setting of any invariant percolation on a unimodular transitive graph G, and
therefore their quality varies strongly depending on the structure of G and the type of
percolation measure µ. The α ≤ 1/5 condition implies that the upper bound Corollary
2.3 i.) for Pt isn’t stronger than ∼ t−2/3, which would distinguish DRW on the finite
critical percolation cluster from the incipient infinite cluster if the Alexander-Orbach
conjecture would be true. However, it isn’t believed that the this conjecture holds for
the Euclidean lattice in dimensions d ≤ 6 ([15], Chap. 7.4.4).

The situation with Corollary 2.3, ii.) is different. It is clear from Lemma 1.6 of [27],
that DRW and the simple random walk SRW on any finite subgraph of an infinite graph
of polynomial growth have the same decay-type of the expected or quenched return
probability, as long as the maximum vertex-degree is uniformly bounded. Kozma and
Nachmias (see Theorem 1.2 and 1.3 in [21]) have shown that the volume growth of the
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incipient infinite cluster in high dimensional Euclidean lattices is almost surely polyno-
mial. The same follows from Lemma 2.2 of Barlow and Kumagai [5] for homogeneous
trees. Both of these cases are percolation models on transitive graphs with uniformly
bounded vertex-degree. Corollary 2.3 is therefore interesting when compared with the
results obtained in [21] and [5] for the asymptotics of the simple random walk on the
incipient infinite cluster on trees. It is proved there that the expected return probability
is - regardless of the degree δ - of the order of t−2/3. (That the so called spectral dimen-
sion −2 limn logPo[Xn = o]/ log n is equal to −4/3 is known as the Alexander-Orbach
conjecture [2], proven for homogeneous trees [5], and Euclidean lattices for high di-
mensions [21].) Since (2.2) represents an upper bound for Pt − Eµ[1/|Co|] that can be
chosen to have an exponent arbitrarily close to −3/4, it proves that the expected re-
turn probability at criticality on ordinary finite percolation clusters displays a different
asymptotic decay towards its limit than on the incipient infinite cluster.

We expect the upper bound Theorem 2.2, i.) to be a good approximation when G is
similar to a homogeneous tree and Pµ[|Co| = m] is polynomially decreasing in m:

Theorem 2.4. Let G be the homogeneous tree of degree δ and µ an invariant perco-
lation on G obeying assumption (2.1), and A ≤ Pµ[|Co| = m]ma+1 for all m ∈ N. Then
there is c > 0, such that for all t > 0

Pt(o)− Eµ[1/|Co|] ≥ c t−
1
2 (1+a). (2.3)

We conclude the discussion of our results by the following tight estimate for inde-
pendent percolation on the homogeneous tree:

Corollary 2.5. For critical Bernoulli bond percolation on the homogeneous tree

lim
t→∞

log( Pt(o) − Eµ[1/|Co|] )

log t
= −3

4
.

These findings allow to conclude that the observation by Kirsch and Müller [19]
of the predominance of path-like clusters also determines the asymptotics of critical
percolation in the present case. The difference of (2.3) over subcritical percolation con-
sidered in [19] consists of the necessity to include, in addition to the ‘linear’ clusters
[see Remark 1.15, iii.) in [19]), the larger class of clusters Co which have diameters D
comparable to the cluster’s size |Co|.

The fact that path-like clusters are the dominating structures for the large-time
asymptotics in the case of trees is also illustrated by the following ‘heuristic’, but wrong
argument: Suppose that for a given realisation ω ∈ Ω at time t > 0, the cluster size
|Co| is larger than t2/3. One might guess that up to this time the Markov chain hasn’t
equilibrated and this cluster contributes significantly in the averaging over P[Xt =

X0]− 1/|Co|. For times larger than t2/3 one then assumes that P[Xt = X0] ∼ 1/|Co|. As-
suming further that up to the time of equilibriation the return probability on the finite
cluster typically decays just like on the incipient infinite cluster, namely like t−2/3 (see
[5], Theorem 1.4), then by using Pµ[|Co| = m] ∼ m−3/2, one arrives at the following
rough estimate:

Pt(o)− Eµ
[

1

|Co|

]
∼

∑
m≥t2/3

(
t−2/3 − 1

m

)
m−3/2 ∼ t−1,

where the first ∼ (meaning ‘of this order, for large t’) follows from assuming that
only unsignificant terms are neglected. This, however, contradicts Corollary 2.5.
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The reason for restricting the considered clusters to sizes of at least t2/3 in this ar-
gument comes from the idea that because the characteristic asymptotic decay of the
random walk on the incipient infinite cluster is t−2/3 the random walk on smaller clus-
ters will have already reached equilibrium, and all of the significant contributions to
(t−2/3 − 1/|Co|)+ are accounted for. It is therein implicitly assumed, that the typical
decay on clusters of smaller size before equilibriation is also ∼ t−2/3. However, the
path-like clusters have a characteristic heat-kernel decay towards 1/|Co| of order t−1/2

instead of t−2/3 (see Part ii. and iii. in the proof of Theorem 2.4). And so our result
shows that the regime of cluster sizes between t1/2 and t3/2 plays the dominant part in
the averaging for Bernoulli percolation on the homogeneous tree.

The reason why these contributions are not relevant in the case of the infinite in-
cipient cluster follows from the results of Barlow and Kumagai [5]: According to their
Lemmata 2.2 and 2.3 the incipient infinite cluster on homogeneous trees has realisa-
tions which, if restricted to subtrees with radius n, typically have a size of order n2 ,
so that the diameter (∼ n) is never a positive fraction of the cluster size. From this it
becomes apparent that the main characteristic responsible for the stronger decay of the
upper bounds in Theorem 2.2 is the existence of a significant fraction of finite clusters
with diameter comparable to their size.

2.3 Integrated density of states for Z2

Let µ be an invariant bond percolation on the 2-dimensional Euclidean lattice G =

〈Z2, N.N.〉 with a µ-a.s. finite percolation cluster Co having a size distribution obeying
(2.1). Let α ∈ (0, 2) such that Eµ[|Co|α] <∞.

Let N(E) be the integrated density of states (IDS) of the graph Laplacian L(ω)

belonging to the percolation subgraphs G′(ω). This means for ΛN = {−N + 1, ..., N}2 ⊂
Z2 the limit

N(E) = lim
N→∞

1

|ΛN |
#{λ eigenvalue of LΛN (ω) ≤ E}

exists, where LΛN (ω) is the graph Laplacian of the finite induced subgraph G′(ω)|ΛN
(see e.g. [19], Lemma 1.12).

Theorem 2.6. There is C3 > 0, s.t. for E > 0 sufficiently small the integrated density
of states E 7→ N(E) of the graph Laplacian obeys

C−1
3

E1+1/α

(log 1/E)1+1/α
≤ NN (E) − NN (0) ≤ C3 E

1
2 (1+α).

Remarks: This shows that independently of the vertex-degree δ, the type of the
asymptotics of these bounds for small values of E > 0 is polynomial and only depends
on the decay of the cluster size distribution. By comparison with Theorem 1.14 of [19],
by which for subcritical percolation on the Euclidean lattice in any dimension (d = δ/2)

exp(−α−/
√
E) ≤ N(E) − N(0) ≤ exp(−α+/

√
E),

for some α−, α+ > 0, and E > 0 sufficiently close to zero, it is seen that observation
of the type of asymptotics of the IDS for small energies suffices to decide about whether
the finite random cluster of the origin is generated with a critical, or subcritical perco-
lation measure.
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2.4 Number of open clusters per vertex

A central theme in percolation theory on the Euclidean lattice G = 〈Zd, N.N.〉 is
the so called number of open clusters per vertex. Given a finite box ΛN = {−N +

1, ..., N}d, and the number MN (ω) of connected components of the induced subgraph
G′(ω)|ΛN , the µ-a.s. existence of the limit

κ(p) = lim
N→∞

MN (ω)

|ΛN |

and its almost sure independence of ω ∈ Ω has been shown by Grimmett [13]. Its
value equals κ(p) = Eµ[1/|Co|] (see [12], (4.18) ). Note that the number 1/Co(ω) is the
value of the density of the uniform distribution on Co(ω).

In [13] there are upper and lower bounds for κ(p) (there it is defined by Eµ[1/|Co|]−
µ[|Co| = 1]) in the case of Bernoulli percolation on the Euclidean lattice. They entail
expansions which are converging slowly in the regime of the retention probability p

being close to the critical value. We present the consequences of our bounds in terms
of the expected cluster size χ(p) = Eµ[|Co|]:

Theorem 2.7. Let µ be subcritical Bernoulli bond percolation on the d-dimensional
Euclidean lattice G = 〈Zd, N.N.〉 with almost surely finite connected components. Let
χ(p) = Eµ[|Co|]. Then, for t > 0

Pt − c
χ(p)

t
≤ κ(p) ≤ Pt . (2.4)

with c = min{ 1
2 (d3 + d2 + 4), 20

d (4 + d(d+ 1))}.

Remarks: The power of the method for the upper bound (mainly due to Lemma
3.3) becomes visible if one compares Theorem 2.7 with the simple bound obtained by
using Poincaré’s inequality for λ, together with λ ≤ 1 − βj , for j ≥ 2: In this case

Pt − κ(p) ≤ Eµ[e−tδ/(4|Co|
2) instead of (2.4) which yields for t > 0

Pt −
2

d
· Eµ[|Co|2]

t
≤ κ(p) ≤ Pt.

The constant in front of the term t−1 includes the second moment of the cluster size,
while in (2.4) only the first moment appears.

3 Proofs

3.1 Auxiliary results

The proofs rest on the theory of infinite unimodular transitive graphs [7]. ‘Uni-
modularity’ of a graph refers to the existence of a vertex-transitive subgroup of the
automorphism group of the graph.

Lemma 3.1. Let G be an infinite unimodular vertex-transitive graph, an µ an invariant
percolation measure on G. If Eµ refers to the integration of the expected value over all
partial graphs ω ∈ Ω,

Eµ [Po[Xt = o]] = Eµ [P[Xt = X0]] . (3.1)
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Proof: (see [27] for a detailed discussion) Let Cv be the connected component of
H(ω) containing the vertex v ∈ V . Since the Euclidean lattice is a graph with a unimod-
ular group of automorphisms, by the mass-transport-principle [7], [22], the left-hand
side of (3.1) equals∑
v∈V

Eµ

[
Po[Xt = o]

χ{v∈Co}
|Co|

]
=
∑
v∈V

Eµ

[
Pv[Xt = v]

χ{o∈Cv}
|Cv|

]
=
∑
v∈V

Eµ

[
Pv[Xt = v]

χ{v∈Co}
|Co|

]
since v ∈ Co ⇔ o ∈ Cv, which equals the right-hand side of(3.1).

Lemma 3.2. For N > 3 and k ∈ {1, ..., N − 2}, let It(k,N) :=
N−1∑
j=k+1

e−t(1−cosπ j
N ). Then

i.) It(k,N) ≤ 1

2

√
π

2

N√
t
e−2t k

2

N2 , and (3.2)

ii.) It(k,N) ≤ 1

2

N2

kt
e−2t k

2

N2 . (3.3)

Proof: From cosπx ≤ 1− 2x2, if x ∈ [0, 1], we obtain by following [26], (Ex. 2.1.1)

N−1∑
j=k+1

e−t(1−cosπ j
N ) ≤

∞∫
k

e−2t x
2

N2 dx =
N√
2t

∞∫
√

2tk/N

e−y
2

dy (3.4)

≤ N√
2t
e−2t k

2

N2

∞∫
0

e−y
2−2
√

2t kN ydy ≤ N√
2t
e−2t k

2

N2

∞∫
0

e−y
2

dy,

which proves (3.2). Moreover, we have

∞∫
z

e−u
2

du =
1

2

∞∫
z2

e−y
dy
√
y

=
1

2

∞∫
0

e−(y+z2) dy√
y + z2

≤ e−z
2

2z

∞∫
0

e−ydy.

Applying this inequality to the right-hand side of (3.4) with z =
√

2tk
N gives (3.3).

Lemma 3.3. Let Ĝ = GX�GY be the cartesian product of the simple, connected, finite
graphs GX , GY . Let X̂t be the continuous-time delayed random walk on Ĝ with uniform
initial distribution on the vertices of Ĝ. Let Xt and Yt be the continuous-time delayed
random walk on GX and GY , also with uniform initial distribution on the vertex-sets of
GX and GY , respectively . Then

P[ X̂2t = X̂0 ] = P[Xt = X0 ] · P[Yt = Y0 ].

Proof: Let N = |V (GX)|, and M = |V (GY )|. Let PX and PY be the transition kernels
of Xt and Yt, respectively. For the delayed random walk on Ĝ, with equal transition
weights across edges of type {〈x, v〉, 〈y, v〉}, and {〈x, v〉, 〈x,w〉} (where x, y ∈ V (GX),
and v, w ∈ V (GY )), the transition kernel is given by 1

2 (PX ⊗ I + I⊗PY ) (see [28], Chap.
18). Therefore,

P[X̂2t = X̂0] =
1

N ·M
Tr[e−2t(I− 1

2 (PX⊗I + I⊗PY ))] =
1

N ·M
Tr[e−t(I−PX) ⊗ e−t(I−PY )]

=
1

N
Tr[e−t(I−PX)]

1

M
Tr[e−t(I−PY )] = P[Xt = X0] P[Yt = Y0].

EJP 17 (2012), paper 79.
Page 10/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2329
http://ejp.ejpecp.org/


The annealed return probability on large finite percolation graphs

Remark: This auxiliary result can also be derived by using the fact that the sum of
two independent Poisson processes is also a Poisson process, however with rate equal
to the sum of the two components’ rates (see e.g. [25], Theorem 2.4.4).

Lemma 3.4. Let φ : N0 → R+, s.t.
∞∑
k=0

φ(k) = 1 with Φ(m) :=
∞∑
k=m

φ(k). Let there exist

A,B, a, b ∈ R+ such that A
ma ≤ Φ(m) ≤ B

mb
for all m ∈ N. Then

∞∑
k=m

1

k
φ(k) ≥ C

ma(1+1/b)
, with C =

(A/2)1−1/b

B1/b
.

Proof:

∞∑
k=m

1

k
φ(k) ≥

L∑
k=m

1

k
φ(k) ≥ 1

L
(Φ(m) − Φ(L+ 1))) ≥ 1

L

(
A

ma
− B

(L+ 1)b

)
.

We set L̃ > 0 to be the real value L, such that the parentheses on the right-hand side are

exactly 1
2 · A/m

a, i.e. L̃ :=
(

2B
A

)1/b
ma/b. Now, by defining L− := bL̃c and L+ := L− + 1,

we have as a lower bound for the right-hand side

1

L−

(
A

ma
− B

(L+)b

)
≥ 1

L̃

(
A

ma
− B

L̃b

)
≥ 1

ma/b
(

2B
A

)1/b · A

2ma
.

3.2 Proofs of main results

Theorem 2.1; Upper bounds: By the Theorem of [6] (see also the discussion in [9])
the cartesian product Ĝ := Go�Cδ is Hamiltonian. Let Yt be the continuous-time
delayed random walk on the cycle Cδ of order δ, with transition kernel PY . Since
1/δ ≤ P[Yt = Y0] = (1/δ)Tr exp(−t(I− PY )) ≤ 1, and from Lemma 3.3 it follows

P[X̂2t = X̂0] ≤ P[Xt = X0] ≤ δ · P[X̂2t = X̂0],

where X̂t is the continuous-time delayed random walk on Ĝ. By Theorem 1 in [14],
the eigenvalues of the transition kernel P̂ of X̂t can be compared with the eigenvalues
of the delayed random walk on CδN ; namely,

β̂j ≤ 1− 2

δ + 2

(
1− cos 2π

j − 1

δN

)
, (j ∈ {1, ..., δN}), (3.5)

where 1 = β̂1 > β̂2 ≥ β̂3 ≥ β̂4 ≥ ... ≥ β̂δN , and N = |V (Go)|. The factor 2/(δ + 2)

in front of the parentheses results from the regularisation with loops, characteristic of
the delayed random walk on a graph (Ĝ) with maximal degree δ + 2, where the extra
2 comes from taking the cartesian product with Cδ (see [27]). Note, the eigenvalue
of P̂ can also be enumerated differently: {β̂j}δNj=1 = {β̂j,l}N,δj,l=1, where β̂j,l = 1

2 (βj +

cos(2π(l − 1)/δ), with j ∈ {1, ..., N} and l ∈ {1, ..., δ}. From (1.2), we have P[X̂2t =

X̂0] = 1
δN Tr[e−2t(1−P̂ )], so

δP[X̂2t = X̂0] =
1

N

N∑
j=1

δ∑
i=1

e−2t(1− 1
2 (βj+cos(2π(i−1)/δ)))

≤ 1

N
(1 + 2 · k e−t(1−β2)) +

1

N

δN−k∑
j=k+2

e−2t( 2
δ+2 (1−cos 2π j−1

δN ))

≤ 1

N
(1 + 2 · k e−t(1−β2)) +

2

N

bδN2 c−1∑
j=k+1

e−
4t
δ+2 (1−cos 2π j

δN ). (3.6)

EJP 17 (2012), paper 79.
Page 11/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2329
http://ejp.ejpecp.org/


The annealed return probability on large finite percolation graphs

The first inequality follows from bounding the first 2k eigenvalues of P̂ less than one
from above by β2 = β̂2,1, and from (3.5), giving that the n-th largest element of {β̂j,l}N,δj, l=1

is less than the n-th largest eigenvalue of DRW on CδN , which however is only applied
to n > 2k + 1. The second inequality follows from the symmetry of the cosine, and an
index-shift, with equality if δN is even. Since It(·, ·) is monotone in the second argu-
ment, the claim follows from applying Lemma 3.2 i.) and ii.) to It(4t/(δ + 2), δN/2).

Remark: (Theorem 2.1) For 1 − β2 we have the standard lower bound given by the
Poincaré inequality. The delayed random walk has the same spectrum as the simple
random walk on the path ‘decorated’ with loops to yield a regular graph of degree δ

[27]. In particular, 1 − β2 ≥ 1 − (1 − 2/δ(1 − cos(π/N))) ≥ 4/(δN2), by cosπx ≤ 1 − 2x2

for x ∈ [0, 1]. If k ∈ {1, ..., N − 2} in (3.6) is chosen such that 4
δN2 ≤ 32k2

(δ+2)δ2N2 , or, equiva-

lently k2 ≥ δ(δ + 2)/8, then the first exponential term exp(−t(1− β2)) has weaker decay
than the second. We see this is the case for a number k independent of N . Therefore,
provided that N is sufficiently large, even if nothing else is known about β2, Theorem
2.1 is an improvement over simply using β2 ≥ βj for j ≥ 2 and the Poincaré inequality
for 1− β2, which would be the bound corresponding to k = N − 1 and the second term
in (3.6) vanishing.

Theorem 2.1; Lower bound: For a given finite simple graph Go = 〈Vo, Eo〉, let I(Go)

be the isoperimetric number (or ‘Cheeger-constant’) of Go, defined by

I(Go) = min
A⊂Vo : |A|≤ 1

2 |Vo|

|∂GoA|
|A|

,

where ∂GoA = {{k, l} ∈ Eo | k ∈ A, l /∈ A} is the edge-boundary of A in Go, and |A| = #A

denotes cardinality of the finite set A.

By a theorem of A.G. Boshier [8] the isoperimetric number I for graphs with genus
bounded by g obeys I ≤ 3 δ(g + 2)/(

√
|Vo|/2 − 3(g + 2)) if |Vo| > 18(g + 2)2 (see [23] for

a discussion). From this result it holds that if |Vo| ≥ 4 · 72 and Go a planar finite graphs
(for which g = 0!) that

I ≤ K/
√
|Vo|, with K = 12

√
2 · δ. (3.7)

By Cheeger’s inequality (see [26], Lemma 3.3.7), the spectral gap λ = 1
2 minv 6=const

(v, (1 − P )v)/(v, v) = 1 − β2 for the delayed random walk with transition probability
matrix P can be estimated from above,

λ ≤ I.

By (3.7) this implies a lower bound on the return probability of the continuous-
time delayed random walk for planar graphs with the uniform distribution as the initial
distribution. We have P[Xt = X0] − 1/|Vo| is

P[Xt = X0] − 1
|Vo| = 1

|Vo|

|Vo|∑
j=2

e−t(1−βj) ≥ 1
|Vo|e

−tλ ≥ 1
|Vo|e

− tK

|Vo|1/2 .

Theorem 2.2; Lower bound: Compare this with [11], Lemma 2.2 and [28]. Let G be
transitive, with a unimodular, transitive subgroup of Aut(G), the automorphism group
of G. Given ω ∈ Ω, for G′(ω) being the whole percolation subgraph of G, the graph Go
is the connected subgraph of G′(ω) induced by Co(ω), i.e. Vo = Co(ω). (In what follows,
we will drop the dependence on ω, wherever it doesn’t cause confusion. For example,
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we write Co instead of Co(ω).)

From Theorem 2.1, iii.), since Go is almost surely finite, there is a lower bound for
the expected return probability of the delayed random walk. Namely, since

Eµ [P[Xt = X0]] − Eµ

[
1

|Co|

]
≥ Eµ

[
1

|Co|
e
− tK√

|Co|χ|Co|>288

]
,

and due to the assumption t >
√

288, we have

Eµ

[
1

|Co|
e
− tK√

|Co|χ
|Co|≥t2

]
≥

∞∑
m≥t2

1

m
e
− tK√

mφ(m) ≥ e−K
∞∑

m≥t2

1

m
φ(m).

The lower bound of Theorem 2.2 now follows by Lemma 3.4, withD = e−K A/2
1+(2B/A)1/b

and by applying Lemma 3.1 to express Pt(o) by the normalised trace.

Theorem 2.2; Upper bound: By assumption, µ is invariant under a unimodular tran-
sitive subgroup of Aut(G), and by the remark after Corollary 2.3 there are almost surely
only finite cluster. In particular µ-a.s. |Co| <∞.

Let N = |Co|. In order to use Theorem 2.1 most effectively, we want to choose
k ∈ {1, ..., N − 2} as small as possible while keeping the exponents of the same order
in t/N2. We differentiate between two cases: First, we assume bN

√
qλc + 1 ≤ N − 2,

where q = δ2(δ + 2)/32. Then, we choose k in Theorem 2.1, i.) such that

λ := 1 − β2 ≤
32

δ2(δ + 2)
· k

2

N2
.

This is accomplished if we set k = bN
√
qλc+1. (Note, k ≤ N−2.) This choice implies

N
√
qλ < k ≤ 1 +N

√
qλ. Setting c =

√
πq/2, it follows

P[Xt = X0] ≤ 1

N
+

(
(

2

N
+ 2

√
qλ) +

c√
t

)
e−λt. (3.8)

From e−x ≤ yy/xy and e−x ≤ ((y − 1/2)/x)y−1/2 for y > 1
2 , we get

P[Xt = X0] ≤ 1

N
+

1

ty

(
yy
(

2

Nλy
+

2
√
q

λy−1/2

)
+ c

(y − 1
2 )y−1/2

λy−1/2

)
.

Now using the Poincaré inequality λ ≥ δ/(4N2), we obtain the following estimate:

P[Xt = X0] ≤ 1

N
+

1

ty

(
yy
(

2
16yN2y−1

δy
+

√
q 22yN2y−1

δy−1/2

)
+ c

(y − 1
2 )y−1/2(2N)2y−1)

δy−1/2

)

≤ 1

N
+ cδ

N2y−1

ty
, (3.9)

with

cδ = 22y
(y
δ

)y (
22y+1 +

δ
√
δ(δ + 2)

4
√

2

(
1 +

√
2π
))

. (3.10)

We have used that b > 0 and that by (2.1) and the remark after Corollary 2.3 the
exponent ofN in (3.9) is α := 2y−1 < b, so that 1/2 < y < 1/2+b/2 and (y− 1

2 )y−
1
2 < 2y y.

With
√
δ(δ + 2) ≤ δ + 2 and (1 +

√
2π)/(4

√
2) ≤ 1/2, this leads to the upper bound
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cδ ≤ (4α/δ)
α

(2 · 4α + δ(δ + 2)/2). Since b ≤ 2, we see that the constant in front of
N2y−1/ty in (3.9) is bounded below by 1

2 , independently of δ.
Now, turning to bN

√
qλc + 1 ≥ N − 2, which is equivalent to λ ≥ (1 − 3/N)2/q ≥

1/(16q), if N ≥ 4. If N < 4, we have the Poincaré inequality λ ≥ δ/(4N2) ≥ δ/36. So, in
both cases, the function t 7→ P[Xt = X0] − 1/N is decreasing exponentially fast. Since
it is smaller than 1, the overall estimate covering all three possibilities (including the
polynomially decreasing one) is given if the constant cδ > 1 in (3.10) is multiplied by
five, yielding 5 · (4b/δ)b (2 · 4b + δ(δ + 2)/2).

Taking the expected value of both sides of the inequality and applying Lemma 3.1 to
express Pt(o) by the normalised trace yields the result.

Corollary 2.3, i.); Upper bound: Since Bernoulli bond percolation on the Euclidean
lattice is invariant under the unimodular transitive group of translations of the Eu-
clidean lattice, this is a special case of Theorem 2.2. The result follows from the well-
known fact [18], that there exists α > 0, s.t. Eµ[|Co|α] <∞.

Corollary 2.3, i.); Lower bound: By the power law inequality Φ(m) = Pµ[|Co| ≥ m] ≥
1
2 m
− 1

2 (see [12], Theorem 11.89), we have a = 1
2 in (2.1). For any to > 0 it is now

possible to choose C2 depending on to such that C−1
2 (288)−(1+1/α) = 1. So, by choosing

to = 1 the given estimate follows from Theorem 2.2 for α < b and for all t ≥ 1.

Corollary 2.3, ii.); Upper and Lower bound: It is well-known that for the homoge-
neous tree of finite degree, a = b = 1

2 (see [1], [20], and [4]). Just as in the previous
proof, the constant Cδ can be chosen so large, that the estimate is valid for all t ≥ 1.

Theorem 2.4: a.) Let It = Eµ

[
P[Xt = X0]− 1

|Co|

]
, and let λ = 1 − β2 be the

smallest non-zero eigenvalue of I− P , as above. We have, for any c > 0, that

It ≥ Eµ
[
P[Xt = X0]− 1

|Co|

∣∣∣ λ ≤ c
|Co|2

]
· P
[
λ ≤ c/|Co|2

]
, and that by (1.2)

Eµ

[
P[Xt = X0]− 1

|Co|

∣∣∣∣ λ ≤ c

|Co|2

]
≥ Eµ

[
e−tλ

|Co|

∣∣∣∣ λ ≤ c

|Co|2

]
= Eµ

[
e
− ct
|Co|2

|Co|

]
.

b.) Let for ω ∈ Ω the diameter D(ω) of Co(ω) be defined by D = maxv,w∈Co d(v, w),
with d(., .) the graph metric of Go. Let π = (v0, v1, v2, ..., vD) be a geodesic path in

Go of length D. Consider the function g : Co → R with g(v) = cos(πk/D) where k is
uniquely defined by d(vk, v) = min{ d(vj , v) | j ∈ {0, ..., D} }.

Now, we show that if for some number ε > 0 it holds ε|Co| ≤ D, then the function g

gives an upper estimate of λ in terms of |Co|−2:

λ = min
f⊥const

∑
i<j∈Co(fi − fj)

2∑
v∈Co |f(v)|2

≤
∑
v∼w∈Co(g(v)− g(w))2∑

v∈Co |g(v)|2
≤
∑D
j=1(g(vj)− g(vj−1))2∑D

j=1 |g(vj)|2
,

where the second inequality results from neglecting the terms in the denominator
not belonging to the geodesic π. By Taylor’s Theorem cos(πj/D) = cos(π(j − 1)/D) +

(π/D) sin(π(j − 1)/D) +O(1/D2) as D 7→ ∞, so for some number c > 0

λ ≤ π2

D2

∑D
j=1(sin(π(j − 1)/D)2∑D
j=1 | cos(πj/D)|2

(
1 +O(

1

D2
)

)
≤ c

D2
≤ c

ε2|Co|2
.

c.) By Markov’s inequality, for α < b

Pµ

[
|Co|
D
≥ ε−1

]
≤ εαEµ

[
|Co|α

Dα

]
≤ εαEµ[|Co|α]
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of which the right-hand side can be made smaller than one by choosing ε sufficiently
small. For such an ε the probability of the complement is positive, or, in other words,
C := Pµ[ε|Co| < D] > 0. So, from b.), P[λ < c/(ε2|Co|2)] for some c > 0 with a probability
bounded below by C > 0.

d.) Let φ(m) = Pµ[|Co| = m], and t > 0. Under the assumptions

∑
m>
√
t

φ(m)

m
≥ A

∑
m>
√
t

m−a−2 ≥ A

∫ ∞
√
t

x−a−2dx =
A

a+ 1

1

(
√
t)a+1

and so, by the foregoing arguments (a., b., c.), It is bounded from below by

C · Eµ

[
e−t/(ε

2|Co|2)

|Co|

]
≥ C

∑
m>
√
t

1

m
e−

t
ε2m2P[|Co| = m] ≥ C Ae−1/ε2

(a+ 1)
t−

a+1
2 .

Corollary 2.5: Since by Corollary 2.3, ii.) it holds for all ε > 0 that

lim
t→∞

log( Pt(o) − Eµ[1/|Co|] )

log t
≤ −3

4
+ ε,

it must be true for ε = 0, and the upper bound follows. Furthermore, it is well known
[10] that for critical percolation on the homogeneous tree Pµ[|Co| = m] ∼ m−3/2. There-
fore, the assumptions of Theorem 2.4 are fulfilled where a = b = 1/2 (see [12], Chap.
10.1, and [15], Chap. 1.3), which implies the lower bound.

Theorem 2.6; Upper bound: The integrated density of states N(E) obeys [19], [24],
[27]] the relation

∫∞
0
e−tEdN(E) = Eµ[Po[Xt = o]], such that by Theorem 2.2, i.)

e−tε(N(ε) − N(0)) ≤
∫ ε

0

e−tEdN(E) ≤ Pt − κ ≤ c4Eµ[|Co|α] t−ν ,

where ν = 1
2 (1 + α), with α such that Eµ[|Co|α] < ∞, and c4 =

(
8 +
√

3π
)
. Choosing

t = ν/ε and thereby optimising the upper bound for N(ε) − N(0) leads to the result.

Theorem 2.6; Lower bound: Again, by
∫∞

0
e−tEdN(E) = Eµ[Po[Xt = o]], Lemma 3.1

and Corollary 2.3, with α > 0 s.t. Eµ[|Co|α] <∞,

C−1
2

t(1+1/α)
≤
∫ ∞

0

e−t EdN(E) ≤
∫ ε

0

dN(E) + e−tε
∫ ∞
ε

dN(E) ≤ N(ε)−N(0) + e−tε.

So, N(ε) − N(0) ≥ 1
2C
−1
2 t−(1+1/α) − e−tε. Choosing t = −(c̄/ε) log ε for ε > 0 pro-

duces the result if, for example, c̄ = 2 · (1 + 1/α). Then C3 = max{C−1
2 /(c̄ log ε)1+α−1

,

c4 Eµ[|Co|a]}.

Theorem 2.7: Bernoulli bond percolation on the d-dimensional Euclidean lattice is a
percolation invariant under the unimodular translation group of the lattice. The degree
is δ = 2 · d. Assuming subcritical Bernoulli bond-percolation, we have existence of the
first moment of the cluster size. By repeating the argument of the proof of the upper
bound in Theorem 2.2 (which lead to (3.8)) with Theorem 2.1 ii.) instead of 2.1 i.) yields
for all t > 0 with q = 4/(d2(d+ 1))

EµP[Xt = X0] ≤ Eµ

[
1

|Co|

]
+ Eµ

[
2k

|Co|
e
− t
|Co|2 +

2

q t

|Co|
k

exp

(
−q t k

2

|Co|2

)]
.
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Now, choosing k = 1, and using exp(−x) ≤ 1/x for x > 0 gives for all t > 0

EµP[Xt = X0] ≤ Eµ

[
1

|Co|

]
+ Eµ

[
2
|Co|
t

+
2|Co|
q t

]
.

Calling κ(p) = Eµ[1/|Co|] (note the difference to [13] regarding the cluster which
consist of only one vertex), letting χ(p) := Eµ[|Co|] and noting 2 + 2/q = (d3 + d2 + 4)/2,
leads to the lower bound after a subsequent application of Lemma 3.1, and a rearrange-
ment of the terms in the inequality.

The other constant 20
d (4 + d(d + 1)) follows from the method used for proving the

upper bound of Theorem 2.2, and by using b = 1 and setting α in Ep[|Co|α] <∞ equal to
b, which is possible due to the existence of the first moment.

The upper bound follows from observing Pt − κ(p) = Eµ[(1/|Co|)·Tr exp(−t(1−P ))] ≥
0, since 1− P has only non-negative eigenvalues.
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