
Electron. Commun. Probab. 18 (2013), no. 19, 1–13.
DOI: 10.1214/ECP.v18-2336
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

A local limit theorem for random
walks in balanced environments∗

Mikko Stenlund†

To Esko Valkeila (1951–2012)

Abstract

Central limit theorems for random walks in quenched random environments have at-
tracted plenty of attention in the past years. More recently still, finer local limit theo-
rems — yielding a Gaussian density multiplied by a highly oscillatory modulating fac-
tor — for such models have been obtained. In the one-dimensional nearest-neighbor
case with i.i.d. transition probabilities, local limits of uniformly elliptic ballistic walks
are now well understood. We complete the picture by proving a similar result for the
only recurrent case, namely the balanced one, in which such a walk is diffusive. The
method of proof is, out of necessity, entirely different from the ballistic case.
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1 Introduction

We consider in this paper nearest-neighbor random walks in fixed environments
on Z. An environment consists of a family of triplets (qk, rk, pk) of non-negative numbers
satisfying qk+rk+pk = 1, one assigned to each site k of the integer lattice Z. A discrete-
time random walk in the given environment is obtained as the Markov chain (Xn)n≥0
starting at zero (X0 = 0) with the time-homogeneous transition probabilities

Pk,j = P(Xn+1 = j |Xn = k) =


qk if j = k − 1,

rk if j = k,

pk if j = k + 1,

and Pk,j = 0 if |k − j| > 1.

If the triplets (qk, rk, pk) are drawn from the same distribution, independently of
each other, it is known that the corresponding random walk satisfies the central limit
theorem in two diametrically opposite regimes. In the first “diffusive regime” the walk
is assumed to satisfy a sufficiently strong ballisticity condition, in particular so that a
nonzero asymptotic speed limn→∞Xn/n = v 6= 0 exists. (In a random environment,
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A local limit theorem for random walks in balanced environments

this is not an automatic consequence of transience, i.e., of limn→∞Xn ∈ {±∞}.) In the
other diffusive regime the environment satisfies exactly the conditions

qk = pk = ωk and rk = 1− 2ωk (1.1)

for some numbers ωk ∈ (0, 12 ], k ∈ Z. Such an environment, or the resulting walk, is
called balanced. In particular, a balanced walk is recurrent, and in fact it is a martin-
gale. In addition to these two, there is a regime of ballistic walks which is sub-diffusive
in the sense that the central limit theorem does not hold. Moreover, the transient but
non-ballistic regime, and the recurrent but non-balanced regime are both sub-diffusive.
We refer the reader to [4, 1, 9] for the precise conditions and the complete picture.

Knowing the diffusive regimes above, one is led to ask if it is possible to do better
than the central limit theorem and to obtain a more detailed description of the limit
behavior of the random walk than what is provided by the weak convergence following a
diffusive scaling. More precisely, one wonders what happens to the site-wise probability
mass function k 7→ P(Xn = k |X0 = 0) as n becomes large. Results in this direction are
known as local limit theorems.

For the diffusive ballistic case, a rigorous proof of the local limit theorem proceeds
via careful analysis of first hitting times of the walk to various sites of the integer lattice:
One proves a local limit theorem for the hitting times and, with the aid of ballisticity,
transforms the result concerning hitting times into one concerning the walk. This was
first done in [6] for the “purely ballistic” case qk = 0, assuming rather little about
rk, pk. In particular, no i.i.d. or uniform ellipticity assumption was placed. By the same
strategy, the result was complemented in the preprint [3] to include diffusive ballistic
cases for which qk 6= 0 is allowed, in uniformly elliptic (qk, rk, pk ≥ ε > 0 for all k ∈ Z)
i.i.d. environments.

For recurrent walks the approach based on first hitting times seems doomed, be-
cause the “maximum process” and the actual walk have very little in common in the
absence of a nonzero asymptotic speed. Consequently, our line of attack is quite differ-
ent altogether, and of independent interest: We make explicit use of the central limit
theorem, and upgrade the associated weak convergence of the random walk to point-
wise convergence of a “reversed” random walk. To that end, we take advantage of
a classical tool in analysis known as a Nash inequality, originally devised for control-
ling solutions of parabolic partial differential equations. Namely, it turns out that the
abovementioned “reversed” random walk satisfies a discrete heat equation with random
diffusivity. We then prove, with the aid of a Nash inequality, that the solutions of that
equation must be rather regular, which in combination with the central limit theorem
yields convergence of the (suitably scaled) density to a smooth Gaussian. Interpreted in
terms of the original random walk, the result then yields a highly oscillatory modulated
Gaussian density (Figure 1). It is worth pointing out that this density does not converge
by a long shot (even after scaling).

The phenomenology in the present paper is very similar to the one observed for
ballistic walks in the sequence of papers [10, 11, 6]. In fact, also recurrent walks,
including balanced ones, were studied in [11]. Here we confirm some findings of that
paper rigorously.

2 Preliminaries

Notation. Given a function u on Z, let ∇u denote its discrete gradient

∇u(k) = u(k + 1)− u(k)
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and ∆u its discrete Laplacian

∆u(k) = u(k + 1)− 2u(k) + u(k − 1)

throughout this note. For any real number ξ, we write bξc for the largest integer ≤ ξ.

Assume that the numbers ωk ∈ (0, 12 ], k ∈ Z, are given, and consider the discrete-
time random walk (Xn)n≥0 on Z, starting at zero, with the balanced environment satis-
fying (1.1). Next, denote by π the measure on Z with

πk =
1

ωk
.

It is easily checked that π is reversible for the Markov transition matrix P :

πkPk,j = πjPj,k (j, k) ∈ Z2.

We are interested in the k-dependence of the quantity (Pn)0,k = P(Xn = k |X0 = 0) for
large values of n. In fact, it will be more convenient to study the “reversed” quantity

a(n, k) = (Pn)k,0 =
ωk
ω0

(Pn)0,k.

This is related to the fact that

a(n+ 1, k)− a(n, k) = ((P − I)Pn)k,0 =
∑
j∈Z

(P − I)k,ja(n, j),

or
a(n+ 1, k)− a(n, k) = ωk∆a(n, k). (2.1)

In other words, a satisfies a discrete heat equation with variable diffusivity. The initial
condition is a(0, k) = 1{0}(k) by definition.

It is apparent from Figure 1 that, as functions of k, the “forward” and “reversed”
quantities (Pn)0,k and (Pn)k,0 behave very differently at the local level, although their
global structures are reminiscent. This observation is at the heart of the present paper.

An intimately related model is the continuous-time random walk (Yt)t≥0 on Z ob-
tained by Poissonizing the discrete walk with an average of one transition1 per time
unit: Set

(Pt)k,j = P(Ys+t = j |Ys = k) = e−t
∞∑
n=0

tn

n!
(Pn)k,j .

As in the discrete-time case, π is reversible for the semigroup Pt. Moreover, defining

a(t, k) = (Pt)k,0, (2.2)

we likewise get the heat equation

∂ta(t, k) = ωk∆a(t, k), t ≥ 0,

a(0, k) = 1{0}(k),
(2.3)

with variable diffusivity for a = a(t, k). We will first concentrate on the continuous-
time model, because it makes the analysis technically fluent and the arguments easy to
follow. We then discuss in Section 6 how the analysis can be adapted to the discrete-
time setting.

1The transition could be redundant; when the exponential clock rings so as to allow for a jump, the walker
makes a transition from its current location according to the discrete-time transition matrix P .
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Figure 1: The distribution k 7→ P0(Xn = k) at n = 215 in a fixed realization of a bal-
anced random environment is shown in black. The Gaussian density corresponding to
the variance of the data is shown in green, whereas the blue curve graphs a solution
k 7→ const · a(n, k) to the heat equation (2.1) with variable diffusivity. The latter two
match to a high precision.

3 Main results

Given a number σ > 0, we write

φσ2(x) =
1√
2πσ

e−x
2/2σ2

for the density of the centered normal random variable with variance σ2.

Theorem 1. Let ωk ∈ (0, 12 ], k ∈ Z, be given and assume (A1)–(A3) below:

(A1) There exists a σ > 0 for which

lim
t→∞

P0
(
Yt/
√
t ≤ x

)
=

∫ x

−∞
φσ2(ξ) dξ, x ∈ R. (3.1)

That is, the central limit theorem holds for Yt/
√
t. (Here P0 means Y0 = 0 is given.)

(A2) There exists a µ > 0 for which

lim
T→∞

1

y − x

∫ y

x

1

ωbTξc
dξ = µ, (x, y) ∈ R2. (3.2)

(A3) The bound
sup
t≥0

sup
k∈Z

√
t (Pt)0,k <∞ (3.3)

holds.

Then the local limit theorem is satisfied in the form that

lim
t→∞

sup
x∈I

∣∣∣∣ωb√t xc · √t · P0
(
Yt = b

√
t xc
)
− 1

µ
φσ2(x)

∣∣∣∣ = 0

on any compact set I ⊂ R.

ECP 18 (2013), paper 19.
Page 4/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2336
http://ecp.ejpecp.org/


A local limit theorem for random walks in balanced environments

Let us briefly comment on Assumptions (A1)–(A3):

Remark 3.1. For any uniformly elliptic environment (infk∈Z ωk > 0), (A3) is satisfied as
we will see in Lemma 6 of the next section. If the environment is a typical realization of
a uniformly elliptic, stationary and ergodic law, then (A1) holds [5, 8]. The underlying
reason for this is that the balanced walk is a martingale, i.e.,

E(Yt |Yr, r ≤ s) = Ys, s ≤ t.

Incidentally, (A1) can also be proved using homogenization techniques allowing essen-
tially to replace the random diffusivity ωk in (2.3) with the effective constant µ−1 = 1

2σ
2.

Finally, for a stationary and ergodic law λ of the environment ω = (ωk)k∈Z, Birkhoff’s
ergodic theorem shows that (A2) holds for λ-almost-every ω, provided

∫
1
ω0

dλ(ω) < ∞.

In this case µ =
∫

1
ω0

dλ(ω).

As we will see next, an analogous result is true in the case of discrete time, which
explains the peculiar structure of the distribution of the random walk displayed in Fig-
ure 1 by the rapidly oscillatory modulating factor ωk, which was observed in [11]. For
sufficiently ballistic walks, see [10, 6] and the more recent [3] for similar results.

Theorem 2. Let ωk ∈ (0, 12 ], k ∈ Z, be given and assume (A2) of Theorem 1 as well as
(A1’) and (A3’) below:

(A1’) There exists a σ > 0 for which

lim
t→∞

P0
(
Xn/
√
n ≤ x

)
=

∫ x

−∞
φσ2(ξ) dξ, x ∈ R.

That is, the central limit theorem holds for Xn/
√
n. (Here P0 means X0 = 0 is given.)

(A3’) The bound
sup
n≥0

sup
k∈Z

√
n (Pn)0,k <∞

holds.

Then the local limit theorem is satisfied in the form that, for

gn(x) =
1

2

{
P0
(
Xn = b

√
nxc

)
+ P0

(
Xn+1 = b

√
nxc

)}
we have

lim
n→∞

sup
x∈I

∣∣∣∣ωb√nxc · √n · gn(x)− 1

µ
φσ2(x)

∣∣∣∣ = 0 (3.4)

on any compact set I ⊂ R.

In addition, suppose that also the following assumption is satisfied:

(A4) The bound

sup
n≥0

√
n sup
N≥n

N∑
m=n

(
P0
(
X2m+2 = 0

)
− P0

(
X2m+1 = 0

))
<∞

holds.

Then

lim
n→∞

sup
x∈I

∣∣∣∣ωb√nxc · √n · P0
(
Xn = b

√
nxc

)
− 1

µ
φσ2(x)

∣∣∣∣ = 0 (3.5)

on any compact set I ⊂ R.
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As in continuous time, (A3’) is satisfied for uniformly elliptic environments (Lemma 9),
and if the environment is also ergodic, then (A1’) and (A2) hold. Assumption (A4) has
to do with aperiodicity of the return times to zero, which is of concern in discrete time.
For example, the simple symmetric random walk with ωk = 1

2 for all k ∈ Z is recur-
rent and satisfies P0

(
X2m+1 = 0

)
= 0 for all m ≥ 0, and thus violates both (A4) and

(3.5); on the other hand, (3.4) is satisfied because of the average of two successive
time steps in the expression of gn(x). Note that P0

(
X2m+2 = 0

)
− P0

(
X2m+1 = 0

)
=

ω0〈Pm1{0}, (P
2 − P )Pm1{0}〉π ≤ 0 if the eigenvalues of P are non-negative, so that (A4)

is trivially satisfied. This is true if the walk is lazy, i.e., ωk ≤ 1
4 for all k ∈ Z, because then

P = 1
2 (I + P̂ ) where P̂ — like P — is a self-adjoint Markov contraction on L2(π). Sim-

ulations suggests that generally, under the other conditions of Theorem 2, (A4) holds if
ωk 6= 1

2 for at least one k ∈ Z. In other words, (A4) could well turn out to be equivalent
with the Markov chain being aperiodic, but we do not prove this.

4 Regularity and boundedness of solutions

Define the quadratic forms

〈u, v〉 =
∑
k∈Z

u(k)v(k) and 〈u, v〉π =
∑
k∈Z

πk u(k)v(k),

and ‖ · ‖L2 and ‖ · ‖L2(π) for the corresponding L2-norms, respectively. The following
result controls local variations of the solutions to (2.3) through a gradient bound.

Lemma 3. For any r > 0, the functions defined in (2.2) satisfy∫ ∞
r

‖∇a(t, ·)‖2L2 dt ≤ 1
2π0 a(2r, 0).

Moreover, the map t 7→ ‖∇a(t, ·)‖2L2 is non-increasing.

Proof. By reversibility, Pt is self-adjoint with respect to the inner product 〈 · , · 〉π. There-
fore, ‖a(r, ·)‖2L2(π) = 〈a(r, ·), a(r, ·)〉π = 〈1{0},P2r1{0}〉π = π0 a(2r, 0). By (2.3),

∂t〈a, a〉π = 2〈∂ta, a〉π = 2〈ω∆a, a〉π = 2〈∆a, a〉 = −2〈∇a,∇a〉.

The last identity was obtained by summing by parts. The first claim of the lemma follows
by integrating with respect to time. On the other hand,

∂t〈∇a,∇a〉 = 2〈∇∂ta,∇a〉 = 〈∇(ω∆a),∇a〉 = −〈ω∆a,∆a〉 = −〈ω∆a, ω∆a〉π,

where the rightmost expression is non-positive.

The value of Lemma 3 becomes apparent next, when we look at the solutions of (2.3)
for increasing values of t at a diffusive scale — that is, when we study the functions

ft(x) =
√
t a(t, b

√
t xc).

Lemma 4. Suppose supt>0

√
t (Pt)0,0 < ∞ holds. Then the functions ft are asymptoti-

cally equicontinuous in the sense that there exists a C > 0 such that, for any ε > 0,

|ft(x)− ft(y)| ≤ Cε,

provided that |x− y| ≤ ε2 and t ≥ ε−4.
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Proof. For any pair of real numbers x < y, the Schwarz inequality yields

|ft(y)− ft(x)|2 = t

b√t yc−1∑
k=b
√
t xc

∇a(t, k)

2

≤ t
(
b
√
t yc − b

√
t xc
)
‖∇a(t, ·)‖2L2 .

By Lemma 3, the L2-norm above is non-increasing in t. Thus,

t

2
‖∇a(t, ·)‖2L2 ≤

∫ ∞
t
2

‖∇a(s, ·)‖2L2 ds ≤ 1
2π0 a(t, 0).

Combining the estimates and recalling that
√
t a(t, 0) =

√
t (Pt)0,0 is bounded, we get

|ft(y)− ft(x)|2 ≤
(√
t (y − x) + 1

)
π0 a(t, 0) ≤ C ′

(
(y − x) + 1√

t

)
.

This implies what was to be shown.

Of course, (3.3) implies the condition of Lemma 4. Notice that (3.3) holds in a
homogeneous environment satisfying ωk ≡ ω̄ for all k ∈ Z, for any ω̄ ∈ (0, 12 ], because
the process is then a simple symmetric random walk. Intuitively, “more diffusivity”
should lead to more rapid decay of (Pt)0,k with t. Indeed, we will next argue that (3.3)
remains true also when ωk is not constant but ωk ≥ ω̄ is satisfied for all k ∈ Z. To this
end, we recall from [2] a result concerning reversible Markov semigroups, adapted to
our needs. It is based on the early work [7]. But first, let us introduce the Dirichlet
quadratic form

E(u, v) = 〈∇u,∇v〉. (4.1)

Theorem 5 (Nash [7]; Carlen, Kusuoka and Stroock [2]). The following conditions are
equivalent for the pair (Pt, π):

(A) There exists a constant A > 0 such that the Nash inequality

‖u‖6L2(π) ≤ A E(u, u)‖u‖4L1(π), u ∈ L2(π),

holds.

(B) There exists a constant B > 0 such that the heat kernel bound

‖Pt‖L(L1(π),L∞(π)) ≤ B t−1/2, t > 0,

holds. (Here the norm is the one of linear operators from L1(π) to L∞(π)).

Observe that the Dirichlet form has the equivalent expression E(u, v) = 〈u, (I−P )v〉π.
Nevertheless it does not in our case depend on the transition probabilities ωk (unlike P
and π). This fact allows us to carry out, for uniformly elliptic environments, the proof
of (3.3) alluded to earlier:

Lemma 6. If infk∈Z ωk > 0, there exists a constant D > 0 such that

(Pt)i,j ≤ D t−1/2, (i, j) ∈ Z2, t > 0.

In particular, (3.3) in Assumption (A3) is satisfied.

Proof. Let ω̄ = infk∈Z ωk > 0. The semigroup P̄t corresponding to the homogeneous
environment ω̄k = ω̄, k ∈ Z, together with the uniform measure π̄k = ω̄−1, satisfies (B)
of Theorem 5. Therefore, it satisfies (A) of the same theorem. By uniform ellipticity, the
measures π̄ and π are equivalent. This means that (A) holds also for the pair (Pt, π)

corresponding to the environment ωk, k ∈ Z, and hence so does (B). As (Pt)i,j =

ωi〈1{i},Pt1{j}〉π ≤ ωi‖1{i}‖L1(π)‖Pt1{j}‖L∞(π) ≤ ωi‖1{i}‖L1(π)‖1{j}‖L1(π)B t
−1/2, the proof

is complete.
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5 Proof of Theorem 1

Suppose x < y and notice that

P(
√
t x < Yt ≤

√
t y) =

b
√
t yc∑

k=b
√
t xc+1

(Pt)0,k =

∫ b√t yc
b
√
t xc+1

(Pt)0,bξc dξ

=

∫ √t y
√
t x

(Pt)0,bξc dξ + E(t, x, y) =

∫ y

x

ω0

ωb
√
t ξc

ft(ξ) dξ + E(t, x, y),

where |E(t, x, y)| ≤ (Pt)0,b√t yc + (Pt)0,b√t xc ≤ D′ t−1/2 for some constant D′ > 0 by
Assumption (A3). We thus obtain from Assumption (A1) that

lim
t→∞

∫ y

x

ω0

ωb
√
t ξc

ft(ξ) dξ =

∫ y

x

φσ2(ξ) dξ. (5.1)

Fix any ε > 0. Then, by Lemma 4 (valid by (A3)),

max
[x,y]

ft −min
[x,y]

ft ≤ Cε, (5.2)

provided that |x − y| ≤ ε2 and t ≥ ε−4. By (3.2) and (5.1), there also exists T =

T (ε, x, y) > 0 such that both ∣∣∣∣∣ 1

y − x

∫ y

x

1

ωb
√
t ξc

dξ − µ

∣∣∣∣∣ ≤ ε (5.3)

and
1

y − x

∣∣∣∣∣
∫ y

x

ω0

ωb
√
t ξc

ft(ξ) dξ −
∫ y

x

φσ2(ξ) dξ

∣∣∣∣∣ ≤ ε (5.4)

hold, provided that t ≥ T . The bound in (5.2) yields∣∣∣∣∣
∫ y

x

1

ωb
√
t ξc

ft(ξ) dξ −
∫ y

x

1

ωb
√
t ξc

dξ · ft(x)

∣∣∣∣∣ ≤ Cε
∫ y

x

1

ωb
√
t ξc

dξ,

which in combination with (5.3) results in∣∣∣∣∣
∫ y

x

1

ωb
√
t ξc

ft(ξ) dξ − µ(y − x)ft(x)

∣∣∣∣∣
≤ Cε

∫ y

x

1

ωb
√
t ξc

dξ +

∣∣∣∣∣
∫ y

x

1

ωb
√
t ξc

dξ − µ(y − x)

∣∣∣∣∣ ft(x)

≤ Cε(y − x)µ+

∣∣∣∣∣ 1

y − x

∫ y

x

1

ωb
√
t ξc

dξ − µ

∣∣∣∣∣ (y − x) (ft(x) + Cε)

≤ Cε(y − x)µ+ ε(y − x) (ft(x) + Cε) .

As ft(x) =
√
t (Pt)0,b√t xcωb√t xc/ω0 is uniformly bounded by (A3), and because (5.4)

holds, we conclude that there exists a uniform constant C̄ > 0 such that, for an arbitrary
ε > 0, ∣∣∣∣ 1

y − x

∫ y

x

φσ2(ξ) dξ − ω0µ ft(x)

∣∣∣∣ ≤ ε+ Cεµ+ ε (ft(x) + Cε) ≤ C̄ε,
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provided that y − x ≤ ε2 and that t is sufficiently large. It now follows that

lim
t→∞

ft(x) =
1

ω0µ
φσ2(x) ≡ f(x), (5.5)

for all x ∈ R, because φσ2 is smooth.
Next, we show that the convergence in (5.5) is uniform on compact subsets of R.

For that, Lemma 4 is instrumental. Thus, suppose I ⊂ R is an arbitrary closed interval
and that ε > 0 is given. Since I is compact, we can find a finite subset {ξi}Ni=1 ⊂ I and a
number t0 > 0 such that, for every x ∈ I, there exists i = i(x) with the property that

|ft(x)− ft(ξi)| ≤ ε/3 and |f(x)− f(ξi)| ≤ ε/3

for all t ≥ t0. Here we used the equicontinuity guaranteed by Lemma 4. On the other
hand, since N is finite, it follows from (5.5) that there exists a positive number t1 > 0,

max
1≤i≤N

|ft(ξi)− f(ξi)| ≤ ε/3

for all t ≥ t1. Hence,
sup
x∈I
|ft(x)− f(x)| ≤ ε, t ≥ max(t0, t1).

Since I and ε were arbitrary, ft indeed converges to f uniformly on compact sets.

6 Discrete time

In this section we will use repeatedly the fact that the operator P is self-adjoint
in L2(π).

Define

b(n, ·) =
a(n+ 1, ·) + a(n, ·)

2
with b(0, ·) =

a(1, ·) + a(0, ·)
2

.

The following is a discrete time analogue of Lemma 3.

Lemma 7. The maps n 7→ ‖∇a(n, ·)‖2L2 and n 7→ ‖∇b(n, ·)‖2L2 are non-increasing. More-
over, for any n > 0,

∞∑
m=n

‖∇a(m, ·)‖2L2 ≤ π0 sup
N≥n

N∑
m=n

(a(2m+ 2, 0)− a(2m+ 1, 0)) + π0 a(2n, 0)

and
∞∑
m=n

‖∇b(m, ·)‖2L2 ≤ π0 a(2n, 0).

Proof. Note the identity

2〈u, (P − I)u〉π = −〈u, (P − I)2u〉π − 〈u, (I − P 2)u〉π, u ∈ L2(π).

Here
〈u, (P − I)u〉π = 〈u, ω∆u〉π = 〈u,∆u〉 = −〈∇u,∇u〉, (6.1)

so that
2〈∇u,∇u〉 = 〈u, (P − I)2u〉π + 〈u, (I − P 2)u〉π. (6.2)

From (6.2) and a(n+ 1, ·) = Pa(n, ·),

2

∞∑
m=n

‖∇b(m, ·)‖2L2

=

∞∑
m=n

〈b(m, ·), (P − I)2b(m, ·)〉π +

∞∑
m=n

(
‖b(m, ·)‖2L2(π) − ‖b(m+ 1, ·)‖2L2(π)

)
.
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The second sum on the right is also telescoping, so that

2

∞∑
m=n

‖∇b(m, ·)‖2L2 ≤
∞∑
m=n

〈b(m, ·), (P − I)2b(m, ·)〉π + ‖b(n, ·)‖2L2(π). (6.3)

Note that

(P − I)b(n, ·) =
a(n+ 2, ·)− a(n, ·)

2
=

1

2
(P 2 − I)a(n, ·). (6.4)

As is easily checked, P is a contraction in L1(π) and L∞(π). It follows from the Riesz–
Thorin interpolation theorem that P is a contraction in L2(π) as well. In particular,
〈a(n, ·), P 4a(n, ·)〉π ≤ 〈a(n, ·), P 2a(n, ·)〉π, which together with (6.4) implies

4〈b(n, ·), (P − I)2b(n, ·)〉π = 〈(P 2 − I)a(n, ·), (P 2 − I)a(n, ·)〉π
= 〈a(n, ·), P 4a(n, ·)〉π − 2〈a(n, ·), P 2a(n, ·)〉π + 〈a(n, ·), a(n, ·)〉π
≤ 〈a(n, ·), a(n, ·)〉π − 〈a(n, ·), P 2a(n, ·)〉π
= 〈a(n, ·), a(n, ·)〉π − 〈a(n+ 1, ·), a(n+ 1, ·)〉π.

In the last line we used the self-adjointness of P and that a(n+ 1, ·) = Pa(n, ·). The final
bound obtained above is again of telescoping form, which in (6.3) yields

∞∑
m=n

‖∇b(m, ·)‖2L2 ≤
1

8
‖a(n, ·)‖2L2(π) +

1

2
‖b(n, ·)‖2L2(π) ≤ ‖a(n, ·)‖2L2(π) = π0 a(2n, 0),

because, by the contractivity of P in L2(π),

‖b(n, ·)‖2L2(π) =
1

4
‖Pa(n, ·) + a(n, ·)‖2L2(π) ≤

1

4

(
‖Pa(n, ·)‖L2(π) + ‖a(n, ·)‖L2(π)

)2
≤ 1

4

(
‖a(n, ·)‖L2(π) + ‖a(n, ·)‖L2(π)

)2
= ‖a(n, ·)‖2L2(π),

and because ‖a(n, ·)‖2L2(π) = 〈1{0}, a(2n, ·)〉π.

On the other hand, from (6.2) and (P − I)2 = 2(P 2 − P ) + (I − P 2) we get

N∑
m=n

‖∇a(m, ·)‖2L2 =

N∑
m=n

〈a(m, ·), (P 2 − P )a(m, ·)〉π +

N∑
m=n

〈a(m, ·), (I − P 2)a(m, ·)〉π,

where the second sum on the right side is telescoping and bounded by ‖a(n, ·)‖2L2(π).
Taking the supremum over N ≥ n, we see — equivalently to the claimed bound — that

∞∑
m=n

‖∇a(m, ·)‖2L2 ≤ sup
N≥n

N∑
m=n

〈a(m, ·), (P 2 − P )a(m, ·)〉π + ‖a(n, ·)‖2L2(π).

Regarding monotonicity, by (6.1), 〈∇b(n, ·),∇b(n, ·)〉 = −〈b(n, ·), (P − I)b(n, ·)〉π. After
an easy computation combining (6.4) with the fact that a(n+ 1, ·) = Pa(n, ·), this yields

‖∇b(n+ 1, ·)‖2L2 − ‖∇b(n, ·)‖2L2 = −1

4
‖(P 2 − I)a(n, ·)‖2L2(π) ≤ 0,

indeed. Another easy computation gives

‖∇a(n+ 1, ·)‖2L2 − ‖∇a(n, ·)‖2L2 = −〈(P − I)a(n, ·), (P + I)(P − I)a(n, ·)〉π.

Note that the eigenvalues of P +I are non-negative, because P is a self-adjoint contrac-
tion. Hence, the positive square root Q = (P + I)1/2 is defined, and

‖∇a(n+ 1, ·)‖2L2 − ‖∇a(n, ·)‖2L2 = −‖Q(P − I)a(n, ·)‖2L2(π) ≤ 0,

as well.
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Proof of Theorem 2. Lemma 7 can be used to derive the discrete-time analogue of Lemma 4,
which was the key ingredient in the proof of the local limit theorem. Indeed, note that
under Assumption (A3’) we have

n

2
‖∇b(n, ·)‖2L2 ≤

∞∑
m=bn/2c

‖∇b(m, ·)‖2L2 ≤ Cn−1/2, n ≥ 1.

Similarly, under Assumption (A4),

‖∇a(n, ·)‖2L2 ≤ Cn−3/2, n ≥ 1.

Clearly the statement of Lemma 4 continues to hold modulo notational differences in
discrete time, for fn(x) =

√
n b(n, b

√
nxc) and fn(x) =

√
na(n, b

√
nxc), respectively.

With minuscule modifications, which we leave to the reader, the proof of Theorem 1 in
Section 5 then becomes the proof of Theorem 2.

We finish the section with an analogue of Lemma 6. To that end, we introduce the
Dirichlet form

E2(u, v) = 〈u, (I − P 2)v〉π. (6.5)

Theorem 8 (Nash [7]; Carlen, Kusuoka and Stroock [2]). The following conditions are
equivalent for the pair (P, π):

(A’) There exists a constant A > 0 such that the Nash inequality

‖u‖6L2(π) ≤ A E2(u, u)‖u‖4L1(π) when E2(u, u) ≤ ‖u‖2L1(π),

holds.

(B’) There exists a constant B > 0 such that the heat kernel bound

‖Pn‖L(L1(π),L∞(π)) ≤ B n−1/2, n ≥ 1,

holds. (Here the norm is the one of linear operators from L1(π) to L∞(π)).

This is Theorem 4.1 from [2]. Just note that 0 ≤ Pi,j < 1 = ωjπj implies

‖Pu‖L∞(π) ≤ sup
i

∑
j

Pi,j |u(j)| ≤
∑
j

ωjπj |u(j)| ≤ 1

2
‖u‖L1(π)

so that the assumption ‖P‖L(L1(π),L∞(π)) <∞ in [2] is satisfied.

We now obtain

Lemma 9. If infk∈Z ωk > 0, there exists a constant D > 0 such that

(Pn)i,j ≤ Dn−1/2, (i, j) ∈ Z2, n ≥ 1.

In particular, Assumption (A3’) is satisfied.

Proof. By (6.5) and (6.2),

E2(u, u) = 2‖∇u‖2L2 − 〈u, (P − I)2u〉π = 2‖∇u‖2L2 − 〈ω, |∆u|2〉.

The last expression shows the dependence on ω explicitly. In particular, denoting Ẽ2 the
Dirichlet form of the simple symmetric random walk with ω̃k = 1

2 for all k ∈ Z,

Ẽ2(u, u) ≤ E2(u, u). (6.6)
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Now, assume E2(u, u) ≤ ‖u‖2L1(π). Then Ẽ2(u, u) ≤ (supk ω̃k/ωk‖u‖L1(π̃))
2 or

Ẽ2(u, u) ≤ 1

4
ω̄−2‖u‖2L1(π̃), (6.7)

where ω̄ = infk∈Z ωk > 0 and π̃k = ω̃−1k = 2. In the homogeneous environment ω̃, (B’)
and hence (A’) hold true. Note that 1

4 ω̄
−2 ≥ 1, so that the Nash inequality in (A’) is

not automatic for the function u satisfying (6.7). However, we will shortly prove the
following improvement to Theorem 8:

Claim. Suppose (B’) holds. Given a C > 0, there exists Ã > 0 such that

‖u‖6L2(π) ≤ Ã E2(u, u)‖u‖4L1(π) when E2(u, u) ≤ C‖u‖2L1(π).

Thus, we have ‖u‖6L2(π̃) ≤ Ã Ẽ2(u, u)‖u‖4L1(π̃) for some Ã. By (6.6), we may replace Ẽ2
by E2 in this inequality. Since π̃ and π are equivalent, we have shown that (A’) holds for
the original environment ω. Hence, also (B’) holds, which completes the proof.

Proof of Claim. We follow the proof of Theorem 4.1 in [2], supplying details. Let us
denote un = ‖Pnu‖2L2(π), n ≥ 0. Since E2(Pnu, Pnu) = un − un+1, we have

u0 = un +

n−1∑
k=0

E2(P ku, P ku).

Note that E2(u, u) − E2(Pu, Pu) = 〈u, (I − P 2)2u〉π ≥ 0 and that un = 〈u, P 2nu〉π yields
un ≤ ‖P 2n‖L(L1(π),L∞(π))‖u‖2L1(π). Assuming (B’), we thus get

‖u‖2L2(π) ≤ (2n)−1/2B‖u‖2L1(π) + n E2(u, u), n ≥ 1.

We perform a minimization. Set f(x) = ax−1/2 + bx for x > 0 with a = 2−1/2B‖u‖2L1(π)

and b = E2(u, u). The global minimum is at x∗ = (a/2b)2/3 and f(x∗) = c · a2/3b1/3
where c > 0 is independent of a, b. Suppose that u satisfies E2(u, u) ≤ C‖u‖2L1(π). Then

a/2b ≥ 2−3/2B/C. We can assume without any loss of generality that B ≥ 23/2C, so
that x∗ ≥ 1. Then, there exists an integer n∗ ≥ 1 such that n∗ ∈ [x∗, 2x∗]. Obviously
f(n∗) ≤ f(2x∗) ≤ 2f(x∗) = 2c · a2/3b1/3. This shows that

‖u‖2L2(π) ≤ 2c · (2−1/2B‖u‖2L1(π))
2/3(E2(u, u))1/3,

which proves the Nash inequality.
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