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Abstract

This paper describes a second order perturbation analysis of the BK property in the
space of Hermitian determinantal probability measures around the subspace of prod-
uct measures, showing that the second order Taylor approximation of the BK inequal-
ity holds for increasing events.
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1 Introduction and results

1.1 Motivation

The van den Berg Kesten (BK) inequality concerns occurrence of two events on
disjoint sets. It has numerous applications in percolation theory, see e.g. Grimmett’s
book on percolation [2]. For increasing events and product measures, the BK inequality
was proven by van den Berg and Kesten in [9]; see also variants of it in [6]. Reimer [5]
proved the generalization of the BK inequality to arbitrary, not necessarily increasing
events and product measures. Quite recently, several variants and generalizations of
the BK inequality have been proven; see [8], [7], and [3].

Determinantal probability measures and their continuum analogue, determinantal
point processes, have found considerable interest in mathematics and physics, e.g. in
the description of quantum systems of fermions and in random matrix theory. For an
interesting introduction to the theory of determinantal probability measures, including
more details on the history and references, see [4]. One of the facts shown in that
paper is that determinantal probability measures are positively associated; compare
the remark below (1.12). In §9 of [4], Lyons asks whether determinantal probability
measures have the BK property. This question is still not answered, but it motivated the
present work.
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Perturbation of the BK inequality for determinantal measures

1.2 Results

Fix n ∈ N with n ≥ 2, and set Ω := {0, 1}n. We imagine any ω = (ωi)1≤i≤n ∈ Ω as a
particle configuration on the set [n] := {1, . . . , n} of the first n natural numbers, where
ωi denotes the number of particles at location i ∈ [n]. For ω, ω′ ∈ Ω, we write ω ≤ ω′ if
ωi ≤ ω′i for all 1 ≤ i ≤ n. A set A ⊆ Ω is called increasing if for all ω ∈ A and ω′ ∈ Ω with
ω ≤ ω′ one has ω′ ∈ A. The expressions ω ∧ ω′ and ω ∨ ω′ denote the componentwise
minimum and maximum of ω and ω′, respectively. For i, j ∈ [n] with i 6= j, we set

Ωi 6=j := {ω ∈ Ω : ωi 6= ωj}. (1.1)

For x ∈ {0, 1}, we abbreviate x := 1− x. This notation is also used componentwise and
for sets: For a tuple ω ∈ Ω and a set B ⊆ Ω, we define ω := (ωi)i∈[n] and B := {ω :

ω ∈ B}. For events A,B ⊆ Ω, the event A2B means that A and B occur on disjoint
locations. More formally, A2B consists of all ω ∈ Ω such that there exist S̃ ∈ Ω and
T̃ ∈ Ω with the following three properties:

1. S̃ ∧ T̃ = 0.

2. For all η ∈ Ω with η ∧ S̃ = ω ∧ S̃ holds η ∈ A.

3. Similarly, for all η ∈ Ω with η ∧ T̃ = ω ∧ T̃ holds η ∈ B.

In this paper, we are mostly interested in increasing events A and B. In this case, A2B
can be characterized as follows.

A2B = {ω ∈ Ω : ∃S ∈ A ∃T ∈ B with S ∧ T = 0 and S ∨ T ≤ ω}. (1.2)

Reimer has proven the following theorem; see Theorem 1.2 in [5]. More precisely,
we cite here the equivalent version of the theorem given in [8], Proposition 1.3. A de-
tailed review of Reimer’s proof can be found in [1], Sections 4 and 5. Reimer’s theorem
plays the key role in his proof of the van den Berg - Kesten - Reimer inequality.

Fact 1.1 (Reimer’s butterfly theorem). For all events A,B ⊆ Ω, the following holds:

|A ∩B| ≥ |A2B|. (1.3)

We deduce the following corollary of this theorem; it plays an important role in this
paper.

Corollary 1.2 (A variant of Reimer’s theorem). For all i, j ∈ [n] with i 6= j and for all
increasing events A,B ⊆ Ω, one has

|A ∩B ∩ Ωi6=j | ≥ |(A2B) ∩ Ωi 6=j |. (1.4)

We remark that this variant is not valid for arbitrary events A and B. A counterex-
ample to this and some related counterexamples are given in Remark 2.2, below.

A similar variant of Corollary 1.2 has been proven in [8], Proposition 2.2. It states
the following:

Fact 1.3 (cited from Proposition 2.2 in [8]). Let Ω̂m be the set of all ω ∈ {0, 1}m with
the property that for all 1 ≤ i ≤ m/2, (ω2i−1, ω2i) is equal to (1, 0) or (0, 1). Let P̂m be
the probability distribution on {0, 1}m which assigns equal probabilities to all ω ∈ Ω̂m,
and probability 0 to all other ω.

Then, for all even m and all increasing A,B ⊂ {0, 1}m,

P̂m(A2B) ≤ P̂m(A ∩B). (1.5)
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This variant of Reimer’s theorem groups all indices in pairs, while Corollary 1.2 uses
only a single pair. Nevertheless, the proofs are quite similar.

For increasing events A,B ⊆ Ω and measures ν on Ω, we abbreviate

ReimA,B(ν) :=
∑

ω∈A∩B

ν(ω)ν(ω)−
∑

ω∈A2B

ν(ω)ν(ω), (1.6)

where ν(ω) := ν({ω}).

Corollary 1.4. Assume that P =
∏
k∈[n](pkδ1 + (1 − pk)δ0) is a product probability

measure on Ω. Then, for all i, j ∈ [n] with i 6= j and for all increasing events A,B ⊆ Ω,
one has

ReimA,B(P (· ∩ Ωi 6=j)) ≥ 0. (1.7)

Second order Taylor approximation of the van den Berg-Kesten inequality for
determinantal probability measures. Take k ∈ N. (At this moment, one may think
of k = n, but later, we use also k = 2n.) For I ⊆ [k] and b ∈ {0, 1}, we abbreviate

{ωI ≡ b} := {ω ∈ {0, 1}k : ωi = b ∀i ∈ I}. (1.8)

Thus, ωI ≡ 1 holds if there are particles at least at I, and ωI ≡ 0 holds if there are no
particles at least at I.

For a matrix G, let G∗ := G
t

denote the Hermitian conjugate of G. Recall that
G ∈ Ck×k is called Hermitian if G = G∗. The identity matrix is denoted by Id ∈ Ck×k.
For any matrix M = (Mij) ∈ Cl×m and I ⊆ [l], J ⊆ [m], we denote by MI,J = (Mij)i∈I,j∈J
the submatrix with index sets I and J . For convenience of the reader, we have collected
some basic facts and notation on positive definite matrices in Appendix A.1.

We introduce the following sets of matrices:

Gk :={G ∈ Ck×k : G = G∗, 0 < G < Id} and

Gk :={G ∈ Ck×k : G = G∗, 0 ≤ G ≤ Id}. (1.9)

Fact 1.5. For every G ∈ Gk, there exists a unique probability measure PG which satis-
fies

PG(ωI ≡ 1) = detGI,I for all I ⊆ [k]. (1.10)

These probability measures PG are called Hermitian determinantal probability mea-
sures.

Although Fact 1.5 is well-known, we include a proof in Appendix A.2 to make the
paper self-contained.

Let

D :={D ∈ Gn : D is diagonal} (1.11)

denote the set of diagonal matrices in Gn. Note that for any diagonal matrix D ∈ D,
under PD, the event that there is a particle at position i ∈ [n] occurs independently of
all particles at other locations. For increasing events A,B ⊆ Ω, we define

BKA,B : Gn → R, G 7→ PG(A)PG(B)− PG(A2B). (1.12)

Whenever A and B are measurable with respect to deterministic disjoint sets of loca-
tions, one has BKA,B ≥ 0. This is called negative associations of determinantal prob-
ability measures and shown in Theorem 6.5 in [4]. The classical BK inequality can be
phrased as BKA,B(D) ≥ 0 for all D ∈ D. To our knowledge, it is not known whether
BKA,B(G) ≥ 0 for all G ∈ Gn. We prove here the following weaker statement:
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Theorem 1.6. For all increasing events A,B ⊆ Ω, the second order Taylor approxima-
tion of BKA,B at D is non-negative near D. More precisely, let G : (−1, 1) → Gn be a
C2 path with G(0) ∈ D. Then, the second order Taylor polynomial of BKA,B ◦G at 0 is
non-negative in a neighborhood of 0.

The proof of this theorem is based on the following theorem, which also might be
interesting on its own.

Theorem 1.7. For all increasing events A,B ⊆ Ω, the second order Taylor approxi-
mation of Gn 3 G 7→ ReimA,B(PG) at D is non-negative near D. More precisely, let
G : (−1, 1)→ Gn be a C2 path with G(0) ∈ D. Then, the second order Taylor polynomial
of (−1, 1) 3 t 7→ ReimA,B(PG(t)) at t0 = 0 is non-negative in a neighborhood of 0.

We remark that ReimA,B(PG) may take negative values. This holds even for G arbi-
trarily close to 1

2 Id ∈ D. For a counterexample, see Remark 3.14, below. However, in
some numerical and computer algebraic searches, we did not find any counterexample
to the conjecture BKA,B(G) ≥ 0 for any increasing events A and B and any G ∈ Gn.

Overview of the proofs and related techniques in the literature. The Corollaries
1.2 and 1.4 of Reimer’s butterfly theorem, Fact 1.1, are proven in Section 2. The key
idea is to collapse the two locations i and j to a single one.

The Taylor expansions in Theorems 1.6 and 1.7 are proven in Section 3. Reimer’s
butterfly theorem and Corollary 1.2 are used in these Taylor expansions for the treat-
ment of the 0-th order term and of the second order term, respectively. Parts of the
techniques used in Section 3 have also been used by Lyons in [4] and van den Berg
and Jonasson in [8], with different goals, perspectives, and notations. More precisely,
conditioning of determinantal probability measures is described in §6 of [4], lifting of
PG to PM(G) with a projection M(G) also appears in §8 of [4], and our partitioning of
Ω × Ω 3 (ω, η) according to different values of ξ = ω + η has some similarity with the
method of proof used in Section 2.2 of [8]. However, we have tried to make the paper
as self-contained as possible.

2 Proof of the variant of Reimer’s theorem

Throughout this section, we fix i, j ∈ [n] with i 6= j as in Corollary 1.2. We abbreviate
jc := [n] \ {j} and (ij)c := [n] \ {i, j}. The operation 2 is adapted to the index set jc

rather than [n]; we write 2jc in this case. We consider the restriction map ′ : Ωi 6=j → Ωjc ,
ω 7→ ω′ = (ωk)k∈jc . Note that this map is a bijection. For an event A ⊆ Ωi 6=j , we write
A′ = {ω′ : ω ∈ A}. The following lemma allows us to deduce Corollary 1.2 from Reimer’s
butterfly theorem.

Lemma 2.1. For increasing events A,B ⊆ Ω, one has:

((A2B) ∩ Ωi 6=j)
′ ⊆ (A ∩ Ωi6=j)

′2jc(B ∩ Ωi6=j)
′. (2.1)

Proof. Let ζ ∈ ((A2B) ∩ Ωi 6=j)
′. We take ω ∈ (A2B) ∩ Ωi 6=j with ω′ = ζ. By the

characterization (1.2) of A2B for increasing events A and B, we can take S ∈ A and
T ∈ B with S ∧ T = 0 and S ∨ T ≤ ω. In order to show

ζ ∈ (A ∩ Ωi6=j)
′2jc(B ∩ Ωi6=j)

′, (2.2)

we define S̃ ∈ Ωjc by S̃k = Sk for k ∈ (ij)c and S̃i = Si ∨ Sj , and similarly T̃k = Tk for
k ∈ (ij)c and T̃i = Ti ∨ Tj . By definition of 2jc , it suffices to show the following:
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(a) S̃ ∧ T̃ = 0.

(b) For all η ∈ Ωjc with η ∧ S̃ = ζ ∧ S̃ holds η ∈ (A ∩ Ωi 6=j)
′.

(c) For all η ∈ Ωjc with η ∧ T̃ = ζ ∧ T̃ holds η ∈ (B ∩ Ωi6=j)
′.

To prove claim (a), take k ∈ jc. In the case k ∈ (ij)c, we have

S̃k ∧ T̃k = Sk ∧ Tk = 0. (2.3)

In the remaining case k = i, we get

S̃i ∧ T̃i = (Si ∨ Sj) ∧ (Ti ∨ Tj)
= (Si ∧ Ti) ∨ (Si ∧ Tj) ∨ (Sj ∧ Ti) ∨ (Sj ∧ Tj)
= (Si ∧ Tj) ∨ (Sj ∧ Ti) (2.4)

because S ∧ T = 0. Since S ≤ ω and T ≤ ω, we conclude

S̃i ∧ T̃i ≤ (ωi ∧ ωj) ∨ (ωj ∧ ωi) = ωi ∧ ωj = 0 (2.5)

because ω ∈ Ωi 6=j .
To prove claim (b), let η ∈ Ωjc with η ∧ S̃ = ζ ∧ S̃. Define τ ∈ Ωi 6=j by τk = ηk for

k ∈ jc and τj = ηi. Then, τ ′ = η holds. We now show that τ ≥ S. Indeed, for k ∈ jc, we
have τk = ηk and S̃k ≥ Sk. Using S ≤ ω and ω′ = ζ, we conclude Sk ≤ ωk = ζk and hence

τk ≥ τk ∧ S̃k = ηk ∧ S̃k = ζk ∧ S̃k ≥ ζk ∧ Sk = Sk. (2.6)

Furthermore, we need to show τj ≥ Sj . We distinguish two cases.
Case 1: S̃i = 0: Then, Sj ≤ Si ∨ Sj = S̃i = 0 implies Sj = 0 and hence τj ≥ Sj .
Case 2: S̃i = 1: Then, ηi = ηi ∧ S̃i = ζi ∧ S̃i = ζi = ωi, ω ∈ Ωi 6=j , and Sj ≤ ωj imply

τj = ηi = ωi = ωj ≥ Sj . (2.7)

Thus, τ ≥ S is proven.
Using that S ∈ A and A is increasing, we conclude τ ∈ A and hence τ ∈ A ∩ Ωi 6=j .

This yields claim (b) as follows: η = τ ′ ∈ (A ∩ Ωi 6=j)
′.

The claim (c) is proven just as claim (b); one only replaces A, S, and S̃ by B, T , and
T̃ , respectively.

Summarizing, we have proven the claim (2.2).

Proof of Corollary 1.2. In the following estimate, we use in the first and last step that
′ : Ωi 6=j → Ωjc is a bijection. Furthermore, in the first inequality we use Reimer’s
butterfly theorem Fact 1.1. Finally, in the second inequality, we apply Lemma 2.1. This
yields the claim as follows:

|A ∩B ∩ Ωi 6=j | = |(A ∩B ∩ Ωi 6=j)
′| = |(A ∩ Ωi6=j)

′ ∩ (B ∩ Ωi 6=j)′|
≥ |(A ∩ Ωi 6=j)

′2jc(B ∩ Ωi 6=j)
′| ≥ |((A2B) ∩ Ωi 6=j)

′|
= |(A2B) ∩ Ωi 6=j |. (2.8)

Remark 2.2. We remark that the claim (1.4) of Corollary 1.2 is not valid for arbitrary
events A and B. Here is a simple counterexample. Take n = 2, i = 1, j = 2 and consider
A = {ω ∈ Ω : ω1 = 0} and B = {ω ∈ Ω : ω2 = 1}. Then (1.4) is false.

We remark also that the inequality

|A ∩B ∩ {ω ∈ Ω : ωi = 0, ωj = 1}| ≥ |(A2B) ∩ {ω ∈ Ω : ωi = 0, ωj = 1}| (2.9)
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need not be true for all increasing events A,B ⊆ Ω. Take for instance n = 2, i = 1,
j = 2, A = Ω, B = {ω ∈ Ω : ω2 = 1}. Then, A ∩ B = {ω ∈ Ω : ω2 = 0}, A2B = B, and
hence,

|A ∩B ∩ {ω ∈ Ω : ω1 = 0, ω2 = 1}| = 0

< 1 = |(A2B) ∩ {ω ∈ Ω : ω1 = 0, ω2 = 1}|. (2.10)

Finally, in (1.4) one cannot replace Ωi6=j by Ωi=j := {ω ∈ Ω : ωi = ωj}. A counterex-
ample is given by n = 2, i = 1, j = 2, A = {ω1 = 1}, and B = {ω2 = 1}.

Proof of Corollary 1.4. Let P , i, j, and A,B be as in the assumption of the corollary.
Then,

P (ω)P (ω) =
∏
k∈[n]

pk(1− pk) (2.11)

is the same for all ω ∈ Ω. We conclude

ReimA,B(P (· ∩ Ωi6=j)) =
∑

ω∈Ωi6=j

(1A(ω)1B(ω)− 1A2B(ω))P (ω)P (ω)

= (|A ∩B ∩ Ωi6=j | − |(A2B) ∩ Ωi6=j |)
∏
k∈[n]

pk(1− pk) ≥ 0 (2.12)

by Corollary 1.2.

3 Proof of second order Taylor approximations

In Subsection 3.1, we derive a representation of PG in terms of a triangular matrix
W (G), defined in (3.24), below. This representation allows a simpler second order
Taylor expansion than the original form. This Taylor expansion is derived in Subsection
3.2 and then applied in Subsection 3.3 to derive Theorem 1.6.

3.1 A representation for determinantal probability measures

Let us first explain what is done in this subsection and why. In the definition (1.6)
of ReimA,B(PG), the probability PG(ω) of individual outcomes ω ∈ Ω plays an essential
role. However, these probabilities are difficult to compute directly using the defining
property (1.10) of PG, which is about events {ωI ≡ 1}. Events consisting of a single
outcome can be written in the form ΛI,n = {ωI ≡ 1, ω[n]\I ≡ 0}. If PG is supported on
configurations consisting of precisely |I| particles, the events {ωI ≡ 1} and ΛI,n differ
only by a null set. Consequently, the probability PG(ω) of ω ∈ Ω is a simple determi-
nant in this case. In particular, this holds when G is an orthogonal projector of rank
|I|. However, Gn does not contain any orthogonal projector. But one can write PG as a
marginal of another determinantal probability measure PM(G) on the set of configura-
tions {0, 1}2n with twice the number of locations and an orthogonal projector M(G) of
rank n; this is the meaning of Lemma 3.3 in combination with Lemma 3.1. Instead of
working with the projector M(G), one can also work with an orthonormal basis of the
space it projects to, encoded as columns in a matrix Ψ(G)∗. This yields a description of
PM(G) in terms of a measure µΨ(G), described in Definition 3.2(a); see also Lemma 3.3.
Choosing another basis (not necessarily orthonormal) of the same space only changes
a normalizing constant in this measure, as is shown in Lemma 3.5. A convenient choice
of such a basis, encoded in a matrix, is of the form Σ∗ = (σ, Id)∗, where the identity
matrix corresponds to the “second half” of locations which are dropped by taking the
marginal PG of PM(G). Details are given in Lemma 3.4. As a marginal of µΣ, one
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obtains another finite measure νσ on {0, 1}n. For quadratic matrices σ ∈ Cn×n, it is
introduced in Definition 3.2(b), below. Unlike PG, the measure νσ is defined in terms of
probabilities of individual outcomes. By construction, for an appropriate choice of σ, it
turns out to be a multiple of PG; see Lemma 3.6 below. The second order perturbation
analysis of ReimA,B(νσ) gets more elementary for triangular matrices σ with ones in
the diagonal. For this reason, we reduce the general case to this special case using a
QR-decomposition; this yields Lemma 3.10 below.

To make all this precise, we proceed as follows. Recall the definitions of Gn, Gn, and
D from (1.9) and (1.11). For any positive semidefinite Hermitian matrix A ≥ 0,

√
A ≥ 0

denotes its unique positive semidefinite square root. We define

Ψ : Gn → Cn×2n, Ψ(G) = (ψ(G), φ(G)) = (
√
G,
√

Id−G), and (3.1)

M : Gn → C2n×2n, M(G) = Ψ∗(G)Ψ(G). (3.2)

Note that the restriction of ψ and φ to Gn are real analytic functions taking values in
the set of positive definite n× n matrices; see also Appendix A.1. By definition, one has
ψ(G)∗ = ψ(G), φ(G)∗ = φ(G), ψ(G)ψ(G)∗ = G, and φ(G)φ(G)∗ = Id−G for G ∈ Gn. Note
further that φ(G) and ψ(G) are diagonal matrices whenever G is a diagonal matrix.

Lemma 3.1. For G ∈ Gn, the matrix Ψ(G) has orthonormal rows. M(G) is the orthogo-
nal projector to the space spanned by the columns of Ψ(G)∗. In particular, 0 ≤M(G) ≤
Id and rankM(G) = n = rank(Id−M(G)) hold.

Proof. It follows from Ψ(G)Ψ(G)∗ = ψ(G)ψ(G)∗ + φ(G)φ(G)∗ = Id that Ψ(G) has or-
thonormal rows. As a consequence, the second claim follows. In particular, Ψ(G),
M(G) = Ψ(G)∗Ψ(G), and Id−M(G) have rank n, and we get 0 ≤M(G) ≤ Id.

For k ∈ N and I ⊆ [k], let

ΛI,k := {ω ∈ {0, 1}k : ωI ≡ 1, ω[k]\I ≡ 0} (3.3)

denote the event that there are particles precisely at locations in I.
We introduce now two measures with a matrix as a parameter. They are both closely

related to PG as is shown in Lemmas 3.3 and 3.6 below.

Definition 3.2. (a) For Σ ∈ Cn×2n, we define a finite measure µΣ on {0, 1}2n by

µΣ(ΛI,2n) :=

{
det(Σ∗Σ)I,I for I ⊆ [2n] with |I| = n,

0 for I ⊆ [2n] with |I| 6= n.
(3.4)

Thus, µΣ is supported on configurations with precisely n particles at 2n locations.

(b) For σ ∈ Cn×n, we define another finite measure νσ on {0, 1}n by

νσ(ΛI,n) := det(σ∗σ)I,I for I ⊆ [n]. (3.5)

Thus, νσ is supported on particle configurations at n locations with an arbitrary
number of particles.

If rank Σ < n, µΣ is the zero measure. Although the definitions of µΣ and νσ look
somehow similar, these measures are quite different and should not be confused with
each other. In the special case Σ = Ψ(G), the following lemma establishes a connection
between µΣ and PG.

Let ι : {0, 1}2n → {0, 1}n denote the projection to the first n coordinates. We denote
by ι[µ] the image measure of any measure µ on {0, 1}2n with respect to ι.
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Lemma 3.3. For G ∈ Gn, one has µΨ(G) = PM(G) and PG = ι[µΨ(G)]. Consequently,
µΨ(G) is a probability measure.

Proof. By definition, µΨ(G) is supported on configurations with precisely n particles.
The same is true for PM(G) by Lemma A.3 in the appendix; the assumptions of this
lemma are fulfilled by Lemma 3.1. In particular, for all I ⊆ [2n] with |I| = n, the events
ΛI,2n and {ωI ≡ 1} coincide up to null events with respect to both measures µΨ(G) and
PM(G). Since µΨ(G)(ΛI,2n) = det(Ψ(G)∗Ψ(G))I,I = PM(G)(ωI ≡ 1) holds for these sets I,
the first claim µΨ(G) = PM(G) follows. The second claim PG = ι[µΨ(G)] follows then from
Lemma A.4.

For ω ∈ Ω, we set

I(ω) := {i ∈ [n] : ωi = 1}. (3.6)

The measures µΣ and νσ are related as follows.

Lemma 3.4. For σ ∈ Cn×n and Σ = (σ, Id) ∈ Cn×2n, one has ι[µΣ] = νσ. In addition, for
ω ∈ Ω, the following holds:

νσ(ω) =
∑

K⊆[n]:|K|=|I(ω)|

|detσK,I(ω)|2. (3.7)

Proof. Let I ⊆ [n]. If at the locations in [n] there are precisely particles in I and the
total number of particles in [2n] is n, then there must be n − |I| particles in [2n] \ [n].
Since µΣ is supported on configurations with precisely n particles, we get

(ι[µΣ])(ΛI,n) =
∑

J⊆[2n]\[n]:|J|=n−|I|

µΣ(ΛI∪J,2n). (3.8)

For any J ′ ⊆ [n] with |J ′| = n− |I| and J := J ′ + n, one has

µΣ(ΛI∪J,2n) = det(Σ∗Σ)I∪J,I∪J

=|det Σ[n],I∪J |2 = |det(σ[n],I , Id[n],J′)|2 = |detσK,I |2 (3.9)

with K = [n] \ J ′, where in the last equation, we have expanded the determinant with
respect to the columns coming from Id.

For matrices E ∈ Cn×i and F ∈ Ci×n with natural numbers i ≤ n, the well-known
Cauchy-Binet formula states the following:∑

K⊆[n],|K|=i

det(EF )K,K = det(FE). (3.10)

We use it in the special case E = σ[n],I and F = σ∗I,[n] to obtain

(ι[µΣ])(ΛI,n) =
∑

K⊆[n]:|K|=|I|

|detσK,I |2 =
∑

K⊆[n]:|K|=|I|

det(σK,Iσ
∗
I,K)

= det(σ∗I,[n]σ[n],I) = det(σ∗σ)I,I = νσ(ΛI,n). (3.11)

Since {ω} = ΛI(ω),n for ω ∈ Ω, the claims follow.

Lemma 3.5. For all Σ ∈ Cn×2n and all C ∈ Cn×n, one has µCΣ = |detC|2µΣ.

Proof. For I ⊆ [2n] with |I| = n, the matrices Σ[n],I and Σ∗I,[n] are square matrices.
Hence, the defining equation (3.4) of µΣ implies

µCΣ(ΛI,2n) = det(Σ∗C∗CΣ)I,I = |detC|2 det(Σ∗Σ)I,I = |detC|2µΣ(ΛI,2n). (3.12)

Because the measures µCΣ and µΣ are both supported on configurations with precisely
n particles, the claim follows.
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Perturbation of the BK inequality for determinantal measures

We define the real-analytic map

χ : Gn → Cn×n, χ(G) = φ(G)−1ψ(G).

Note that for G ∈ Gn, the matrix χ(G) = (Id−G)−1/2G1/2 is positive definite; in particu-
lar all its diagonal entries are positive. Note further that for diagonal matrices G ∈ D,
the matrix χ(G) is diagonal.

Lemma 3.6. For all G ∈ Gn one has PG = |detφ(G)|2νχ(G).

Proof. By definition, the formula φ(G)−1Ψ(G) = (χ(G), Id) holds for G ∈ Gn. The fol-
lowing calculation uses this fact in the third equality, Lemma 3.3 in the first equality,
Lemma 3.5 in the second equality, and Lemma 3.4 in the last equality.

PG = ι[µΨ(G)] = |detφ(G)|2ι[µφ−1(G)Ψ(G)]

= |detφ(G)|2ι[µ(χ(G),Id)] = |detφ(G)|2νχ(G). (3.13)

This proves the claim.

Lemma 3.7. For all R ∈ Cn×n and all unitary matrices Q ∈ U(n), one has νQR = νR.

Proof. By definition (3.5), one has for I ⊆ [n]:

νQR(ΛI,n) = det(R∗Q∗QR)I,I = det(R∗R)I,I = νR(ΛI,n). (3.14)

This implies the claim.

Now let

χ(G) = Q(G)R(G) for G ∈ Gn (3.15)

denote the QR-decomposition of χ(G), where

Q : Gn → U(n), (3.16)

R : Gn → T := {T ∈ Cn×n : T is upper triangular with Tii > 0 for all i ∈ [n]}. (3.17)

Note that the maps Q and R are uniquely determined by the Gram-Schmidt-algorithm in
terms of real-analytic operations. As a consequence, these two maps are real-analytic.
Note also that for diagonal matrices G ∈ D, the matrix R(G) is diagonal. We get

Lemma 3.8. For all G ∈ Gn, we have PG = |detφ(G)|2νR(G).

Proof. Combining Lemmas 3.6 and 3.7, we get the claim as follows:

PG = |detφ(G)|2νχ(G) = |detφ(G)|2νQ(G)R(G) = |detφ(G)|2νR(G). (3.18)

It is convenient to work with triangular matrices having all diagonal entries equal to
1 rather than using arbitrary positive diagonal entries. To describe the corresponding
normalization, we introduce the following notation: For any diagonal matrix D ∈ Cn×n
with positive entries, we define

κ(D) : Ω→ R+, κ(D)(ω) = |detDI(ω),I(ω)|2 =
∏

i∈I(ω)

D2
ii. (3.19)
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Perturbation of the BK inequality for determinantal measures

Lemma 3.9. For all R ∈ Cn×n, all diagonal matrices D ∈ Cn×n with positive diagonal
entries, and all ω ∈ Ω, one has

νR(ω) = κ(D)(ω)νRD−1(ω). (3.20)

In short notation, this means

dνR = κ(D) dνRD−1 . (3.21)

Proof. Using the defining formula (3.5) of νR and abbreviating J = I(ω), the claim is
proven as follows:

νR(ω) = νR(ΛJ,n) = det(R∗R)J,J = |detDJ,J |2 det((D−1)∗R∗RD−1)J,J

= |detDJ,J |2νRD−1(ΛJ,n) = |detDJ,J |2νRD−1(ω). (3.22)

We apply this lemma to the real-analytic maps

D : Gn → {∆ ∈ Cn×n : ∆ is a diagonal matrix with ∆ii > 0 for all i ∈ [n]},
D(G) = diag(R(G)ii, i ∈ [n]), (3.23)

W : Gn → T1 = {T ∈ T : Tii = 1 for all i ∈ [n]},
W (G) = R(G)D(G)−1. (3.24)

Note that

W (G) = Id holds for all G ∈ D. (3.25)

We get

Lemma 3.10. For all G ∈ Gn, one has dPG = |detφ(G)|2κ(D(G)) dνW (G).

Proof. This follows from Lemmas 3.8 and 3.9.

We introduce the following real analytic function, which plays the role of a normal-
izing constant:

c : Gn → R+, c(G) = |detφ(G)|4|detD(G)|2. (3.26)

Recall Definition (1.6) of ReimA,B.

Lemma 3.11. For all increasing events A,B ⊆ Ω and all G ∈ Gn, one has

ReimA,B(PG) = c(G) ReimA,B(νW (G)). (3.27)

Proof. For ω ∈ Ω, we have the following, using the definition (3.19) of κ(D(G)):

κ(D(G))(ω)κ(D(G))(ω) = |detD(G)I(ω),I(ω)|2|detD(G)I(ω),I(ω)|2 = |detD(G)|2. (3.28)

Using this together with Lemma 3.10 yields

PG(ω)PG(ω) = |detφ(G)|4κ(D(G))(ω)κ(D(G))(ω)νW (G)(ω)νW (G)(ω)

= c(G)νW (G)(ω)νW (G)(ω)

Summing this over ω ∈ A ∩ B and over ω ∈ A2B and taking the difference, the claim
follows.
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Perturbation of the BK inequality for determinantal measures

3.2 Perturbation analysis around Reimer’s butterfly theorem

We now take any matrix norm ‖·‖ on Cn×n. Recall that T1 denotes the set of all upper
triangular complex n × n matrices with all diagonal entries equal to 1. Consequently,
for σ ∈ T1, ‖σ− Id ‖ measures the size of the off-diagonals in σ. In the following, we use∑
i,j∈[n]
i 6=j

as a short notation for
∑
i∈[n]

∑
j∈[n]\{i}.

Lemma 3.12. For all events C ⊆ Ω we have the following for σ ∈ T1 in the limit as
σ → Id: ∑

ω∈C
νσ(ω)νσ(ω) = |C|+

∑
i,j∈[n]
i6=j

|C ∩ Ωi 6=j | · |σji|2 +O(‖σ − Id ‖3) (3.29)

Proof. The error terms in this proof are always understood in the limit T1 3 σ → Id. We
prove the following for ω ∈ Ω:

νσ(ω)νσ(ω) = 1 +
∑
i,j∈[n]
i 6=j

1Ωi6=j (ω)|σji|2 +O(‖σ − Id ‖3). (3.30)

Summing over ω ∈ C then yields the claim.
Recall the definition (3.6) of I(ω) and formula (3.7):

νσ(ω) =
∑

K⊆[n]:|K|=|I(ω)|

|detσK,I(ω)|2. (3.31)

Consider K ⊆ [n] with |K| = |I(ω)|. The following expansion of the determinant in
(3.31) is used below.

detσK,I(ω) =
∑

τ :K→I(ω)
bijective

sgn τ
∏
k∈K

σk,τk . (3.32)

We distinguish several cases:
Case 1: K = I(ω). In this case, we have

|detσK,I(ω)|2 = |detσI(ω),I(ω)|2 = 1 (3.33)

because σ is a triangular matrix with ones on the diagonal.
Case 2: K \ I(ω) consists of a single element j ∈ K. Then I(ω) \K consists also of a

single element i ∈ I(ω), i 6= j. Consider an index τ in the sum (3.32).
Case 2a: τj = i and τk = k for all k ∈ K \ {j}. Here, we get∏

k∈K

σk,τk = σji (3.34)

because σ has ones on the diagonal.
Case 2b: τk 6= k for more than one k ∈ K. In this case, we have the bound∏

k∈K σk,τk = O(‖σ − Id ‖2), because the product contains at least two non-diagonal
factors, which are bounded by O(‖σ − Id ‖).

Consequently in case 2, we obtain

detσK,I(ω) = ±σji +O(‖σ − Id ‖2) (3.35)

and hence

|detσK,I(ω)|2 = |σji|2 +O(‖σ − Id ‖3) (3.36)
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Perturbation of the BK inequality for determinantal measures

Case 3: K \ I(ω) consists of at least two elements. Consider again an index τ in the
sum (3.32). Just as in case 2b, we have τk 6= k for more than one k ∈ K. The same
argument as in case 2b yields again

∏
k∈K σk,τk = O(‖σ − Id ‖2). We conclude in this

case:

detσK,I(ω) = O(‖σ − Id ‖2) (3.37)

and hence

|detσK,I(ω)|2 = O(‖σ − Id ‖4). (3.38)

Summing over K in all three cases, formula (3.31) becomes

νσ(ω) = 1 +
∑
i∈I(ω)

∑
j∈I(ω)

|σji|2 +O(‖σ − Id ‖3); (3.39)

note that I(ω) = [n] \ I(ω). Replacing ω by ω, we conclude

νσ(ω) = 1 +
∑
i∈I(ω)

∑
j∈I(ω)

|σji|2 +O(‖σ − Id ‖3); (3.40)

Taking the product of (3.39) and (3.40) yields the claim (3.30) as follows:

νσ(ω)νσ(ω) = 1 +
∑
i∈I(ω)

∑
j∈I(ω)

|σji|2 +
∑
i∈I(ω)

∑
j∈I(ω)

|σji|2 +O(‖σ − Id ‖3)

= 1 +

n∑
i=1

n∑
j=1

(1{ωi=1,ωj=0} + 1{ωi=0,ωj=1})|σji|2 +O(‖σ − Id ‖3)

= 1 +

n∑
i=1

n∑
j=1

1{i 6=j,ωi 6=ωj}|σji|
2 +O(‖σ − Id ‖3)

= 1 +
∑
i,j∈[n]
i 6=j

1Ωi6=j (ω)|σji|2 +O(‖σ − Id ‖3). (3.41)

We combine the results obtained so far to obtain a Taylor-expansion of the function
ReimA,B, which was defined in formula (1.6):

Corollary 3.13. For all increasing events A,B ⊆ Ω, one has the following for σ ∈ T1 in
the limit as σ → Id:

ReimA,B(νσ) =|A ∩B| − |A2B|+
∑
i,j∈[n]
i6=j

(|A ∩B ∩ Ωi 6=j | − |(A2B) ∩ Ωi 6=j |)|σji|2

+O(‖σ − Id ‖3). (3.42)

As a consequence, the second order Taylor polynomial T of T1 3 σ 7→ ReimA,B(νσ) at
σ0 = Id is non-negative.

Proof. The first claim (3.42) follows immediately from Lemma 3.12. Now Reimer’s the-
orem, cited as Fact 1.1, shows that the 0th order term |A ∩ B| − |A2B| in the Taylor
polynomial T is non-negative. The first order terms in T vanish, and Corollary 1.2 shows
that the second order terms (|A ∩ B ∩ Ωi 6=j | − |(A2B) ∩ Ωi6=j |)|σji|2, i 6= j, in T are also
nonnegative. This proves the second claim.
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Perturbation of the BK inequality for determinantal measures

Proof of Theorem 1.7. Let G : (−1, 1) → Gn be a C2 path with G(0) ∈ D. From Lemma
3.11 we know

ReimA,B(PG(t)) = c(G(t)) ReimA,B(νW (G(t))). (3.43)

Note that W (G(0)) = Id by (3.25) and recall that c and W are real-analytic functions.
The second order Taylor polynomial of t 7→ ReimA,B(νW (G(t))) at t0 = 0 is non-negative
near t0 = 0 as a consequence of Corollary 3.13. Now c(G(t)) > 0 for t in a neighborhood
of 0. Combining these facts yields the claim of the theorem.

Remark 3.14. The following counterexample shows that ReimA,B(νσ) may take nega-
tive values for σ ∈ T1 arbitrarily close to Id. Take n = 3, A = {ω1 = 1}, andB = {ω2 = 1}.
Then, for σ ∈ T1 ∩R3×3, one has

ReimA,B(νσ) = 2σ2
12 − 2σ12σ13σ23 + 2σ2

12σ
2
23, (3.44)

which is negative for 0 < σ12 � σ13σ23 � σ23 � σ13 � 1. However, in this example, we
get for complex σ ∈ T1,

νσ(A)νσ(B)− νσ(A2B)νσ(Ω) =
∣∣σ13σ

∗
23 − 2σ12 − σ12|σ23|2

∣∣2 ≥ 0. (3.45)

One can show that the function W : Gn → T1 maps small neighborhoods in Gn of 1
2 Id ∈

Gn onto small neighborhoods in T1 of Id ∈ T1. In view of Lemma 3.11, this implies that
ReimA,B(PG) may take negative values for G ∈ Gn arbitrarily close to 1

2 Id.

Note that the third order Taylor polynomial at σ0 = Id of expression (3.45), which
equals 4(|σ12|2 − Re(σ12σ23σ

∗
13)), may take negative values for σ arbitrarily close to Id.

This illustrates the following fact: if the BK inequality holds for a family of matrices, the
corresponding third order Taylor approximation may violate it even close to the point
of expansion. This implies also that our method of proof cannot be generalized to third
order Taylor polynomials in a straightforward way.

3.3 From the variant of Reimer’s theorem to the BK inequality

In this subsection, we work with arbitrary finite sets K ⊂ N of locations rather than
only with [k]. For this reason, we adapt the notations (1.8/1.9/1.10) as follows:

{ωI ≡ j} = {ω ∈ {0, 1}K : ωi = j for all i ∈ I} for I ⊆ K and j = 0, 1, (3.46)

GK = {G ∈ CK×K : G = G∗, 0 < G < Id}, and (3.47)

PG(ωI ≡ 1) = detGI,I for all G ∈ GK , I ⊆ K. (3.48)

The notations ReimA,B and 2 are adapted to arbitrary finite index sets K ⊂ N in the
obvious way; we use the notations ReimK

A,B and 2K , respectively. The restriction of a
configuration ω ∈ {0, 1}K to {0, 1}I , I ⊆ K, is denoted by ωI = (ωi)i∈I . For I ⊆ K, we
define Ic = K \ I.

We now introduce two functions C1
I,K and C0

I,K . The function C1
I,K corresponds to

conditioning on having particles on Ic, whereas C0
I,K corresponds to conditioning on

having holes on Ic. A precise formulation of this fact is given in Lemma 3.16, below.

C1
I,K : GK → GI , C1

I,K(G) = GI,I −GI,Ic(GIc,Ic)−1GIc,I , (3.49)

C0
I,K : GK → GI , C0

I,K(G) = GI,I +GI,Ic(Id−GIc,Ic)−1GIc,I . (3.50)

Note that CjI,K , j = 0, 1, are real analytic functions. They map diagonal matrices to
diagonal matrices.
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Lemma 3.15. The maps CjI,K , j = 0, 1, are well-defined. For all G ∈ GK and J ⊆ I ⊆ K,
one has

detGJ∪Ic,J∪Ic = det(C1
I,K(G))J,J detGIc,Ic . (3.51)

In addition, the following relation holds for all G ∈ GK :

C1
I,K(Id−G) = Id−C0

I,K(G) (3.52)

Identity (3.52) means intuitively that C1
I,K and C0

I,K are exchanged when exchanging
particles with holes.

Proof of Lemma 3.15. G ∈ GK implies GIc,Ic ∈ GIc and GI,I ∈ GI . In particular, GIc,Ic

and Id−GIc,Ic are invertible. For the matrix

T =

(
IdI,I −GI,Ic(GIc,Ic)−1

0 IdIc,Ic

)
, (3.53)

the following holds:

0 < TGT ∗ = T

(
GI,I GI,Ic

GIc,I GIc,Ic

)
T ∗ =

(
C1
I,K(G) 0

0 GIc,Ic

)
. (3.54)

As a consequence, we get C1
I,K(G) > 0; in particular, C1

I,K(G) is Hermitian. Now,
GI,Ic(GIc,Ic)

−1GIc,I = GI,Ic(GIc,Ic)
−1(GI,Ic)

∗ ≥ 0 implies C1
I,K(G) ≤ GI,I < Id. Hence,

C1
I,K(G) ∈ GI .

Next, we show (3.51). We abbreviate L = J ∪ Ic and Lc = K \ L = I \ J . Note that
TK,I = IdK,I implies TL,Lc = 0. Consequently, we get (TGT ∗)L,L = TL,LGL,LT

∗
L,L. Using

detTL,L = 1 and (3.54), we get

detGL,L = det(TGT ∗)L,L = det(C1
I,K(G))J,J detGIc,Ic . (3.55)

The claim (3.52) follows then from the definitions of C1
I,K(Id−G) and C0

I,K(G) together
with (Id−G)I,Ic = −GI,Ic and (Id−G)Ic,I = −GIc,I .

Finally, we conclude C0
I,K(G) = Id−C1

I,K(Id−G) ∈ Id−GI = GI .

Lemma 3.16. For all G ∈ GK , all I ⊆ K, and all j ∈ {0, 1}, one has

PG(ωI ∈ ·|ωIc ≡ j) = PCjI,K(G). (3.56)

Proof. Let G ∈ GK and I ⊆ K. First, we show (3.56) in the case j = 1. It suffices to
prove the claim for the events {ωJ ≡ 1}, J ⊆ I. Note that PG(ωIc ≡ 1) = detGIc,Ic 6= 0.
We calculate using (3.51) in the second but last inequality:

PG(ωJ ≡ 1|ωIc ≡ 1) =
PG(ωJ∪Ic ≡ 1)

PG(ωIc ≡ 1)
=

detGJ∪Ic,J∪Ic

detGIc,Ic

= det(C1
I,K(G))J,J = PC1

I,K(G)(ωJ ≡ 1). (3.57)

The case j = 0 is reduced to the case j = 1 by exchanging particles and holes as
follows. It suffices to verify the claim for the events {ωJ ≡ 0}, J ⊆ I. Using Lemma A.2
from the appendix in the first and the third step and (3.52) in the last step, we obtain

PG(ωJ ≡ 0|ωIc ≡ 0) =PId−G(ωJ ≡ 1|ωIc ≡ 1) = PC1
I,K(Id−G)(ωJ ≡ 1)

=PId−C1
I,K(Id−G)(ωJ ≡ 0) = PC0

I,K(G)(ωJ ≡ 0). (3.58)
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Perturbation of the BK inequality for determinantal measures

Set Ξ = {0, 1, 2}n. For ξ ∈ Ξ and j = 0, 1, 2, we write Ij(ξ) = {i ∈ [n] : ξi = j}. We
introduce the map

Cξ : Gn → GI1(ξ), Cξ(G) = C1
I1(ξ),I1(ξ)∪I2(ξ)(C

0
I1(ξ)∪I2(ξ),[n](G)). (3.59)

Corollary 3.17. For all G ∈ Gn and ξ ∈ Ξ, one has

PCξ(G) = PG(ωI1(ξ) ∈ ·|ωI0(ξ) ≡ 0, ωI2(ξ) ≡ 1). (3.60)

Proof. This follows immediately by applying Lemma 3.16 twice.

For ω ∈ {0, 1}I1(ξ), we denote by ω0I0(ξ)1I2(ξ) the configuration in {0, 1}n that agrees
with ω on I1(ξ), equals 0 on I0(ξ), and equals 1 on I2(ξ). For an event A ⊆ Ω, we define

Aξ = {ω ∈ {0, 1}I1(ξ) : ω0I0(ξ)1I2(ξ) ∈ A}. (3.61)

Lemma 3.18. For all increasing events A,B ⊆ Ω and all ξ ∈ {0, 1, 2}n, one has

(A2B)ξ ⊆ Aξ2I1(ξ)Bξ. (3.62)

Proof. Let ω ∈ (A2B)ξ, i.e. ω0I0(ξ)1I2(ξ) ∈ A2B. By the characterization (1.2) of the
disjoint occurrence operator 2, there are S ∈ A and T ∈ B with S ∧ T = 0 and S ∨
T ≤ ω0I0(ξ)1I2(ξ). Let S̃ = SI1(ξ) and T̃ = TI1(ξ) denote the restrictions to I1(ξ) of S
and T , respectively. Since S ≤ ω0I0(ξ)1I2(ξ), we must have SI0(ξ) ≡ 0. Consequently,

S ≤ S̃0I0(ξ)1I2(ξ) and since A is increasing, it follows that S̃0I0(ξ)1I2(ξ) ∈ A. This means

S̃ ∈ Aξ. By the same argument, T̃ ∈ Bξ holds. Clearly, S̃ ∧ T̃ = 0 and S̃ ∨ T̃ ≤ ω.
Consequently, ω ∈ Aξ2I1(ξ)Bξ.

For ξ ∈ Ξ, we define

Ω(ξ) := {ω ∈ Ω : ωI0(ξ) ≡ 0, ωI2(ξ) ≡ 1}. (3.63)

For any probability measure P on Ω, we set

Ξ(P ) := {ξ ∈ Ξ : P (Ω(ξ)) > 0}. (3.64)

For ξ ∈ Ξ(P ), we introduce the probability measure

P (ξ) = P (ωI1(ξ) ∈ ·|Ω(ξ)) (3.65)

on {0, 1}I1(ξ).

Lemma 3.19. For any probability measure P on Ω and any increasing events A,B ⊆ Ω,
one has

P (A)P (B)− P (A2B) ≥
∑

ξ∈Ξ(P )

P (Ω(ξ))2 Reim
I1(ξ)
Aξ,Bξ

(P (ξ)). (3.66)

In particular, for all G ∈ Gn, this reduces to

BKA,B(G) ≥
∑
ξ∈Ξ

PG(Ω(ξ))2 Reim
I1(ξ)
Aξ,Bξ

(PCξ(G)). (3.67)
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Proof. We partition Ω × Ω into the sets {(ω, η) ∈ Ω(ξ) × Ω(ξ) : ω + η = ξ}, ξ ∈ Ξ. Using
this, we calculate

P (A)P (B)− P (A2B) = P (A)P (B)− P (A2B)P (Ω)

=
∑
ξ∈Ξ

∑
(ω,η)∈Ω(ξ))×Ω(ξ):

ω+η=ξ

(1A(ω)1B(η)− 1A2B(ω))P (ω)P (η)

=
∑

ξ∈Ξ(P )

P (Ω(ξ))2
∑

(ω,η)∈Ω(ξ))×Ω(ξ):
ω+η=ξ

(1A(ω)1B(η)− 1A2B(ω))P (ξ)(ωI1(ξ))P
(ξ)(ηI1(ξ))

=
∑

ξ∈Ξ(P )

P (Ω(ξ))2
∑

ω∈{0,1}I1(ξ)

(1Aξ(ω)1Bξ(ω)− 1(A2B)ξ(ω))P (ξ)(ω)P (ξ)(ω); (3.68)

for the last step, note that ω + η = 1 on I1(ξ) holds if and only if η = ω on I1(ξ). Using
Lemma 3.18, this yields the first claim (3.66) as follows:

P (A)P (B)− P (A2B)

≥
∑

ξ∈Ξ(P )

P (Ω(ξ))2
∑

ω∈{0,1}I1(ξ)

(1Aξ(ω)1Bξ(ω)− 1Aξ2I1(ξ)Bξ(ω))P (ξ)(ω)P (ξ)(ω)

=
∑

ξ∈Ξ(P )

P (Ω(ξ))2 Reim
I1(ξ)
Aξ,Bξ

(P (ξ)). (3.69)

In the special case P = PG, we have Ξ = Ξ(PG). In this case, P (ξ) = PCξ(G) holds for
ξ ∈ Ξ by Corollary 3.17. This proves the second claim (3.67).

Proof of Theorem 1.6. Note that for all ξ ∈ Ξ, the events Aξ and Bξ are increasing.

The maps Gn 3 G 7→ Reim
I1(ξ)
Aξ,Bξ

(PCξ(G)) and Gn 3 G 7→ PG(Ω(ξ))2 are real-analytic.
Note further that Cξ(G(0)) is a diagonal matrix because G(0) is a diagonal matrix. Now

PG(Ω(ξ))2 ≥ 0 holds, and the second order Taylor expansion of t 7→ Reim
I1(ξ)
Aξ,Bξ

(PCξ(G(t)))

at t0 = 0 is nonnegative for t near t0 = 0 by Theorem 1.7. Combining these facts with
Lemma 3.19 yields the claim of Theorem 1.6.

A Appendix

A.1 Positive definite matrices

A matrix G ∈ Cn×n, n ∈ N, is called positive semidefinite if it is Hermitian, i.e.
G∗ = G, and fulfills x∗Gx ≥ 0 for all column vectors x ∈ Cn. It is called positive definite,
if in addition x∗Gx = 0 implies x = 0. Equivalently, a Hermitian matrix G ∈ Cn×n
is positive semidefinite if and only if all its eigenvalues are positive or zero, and it is
positive definite if and only if all its eigenvalues are positive. As a consequence, the
determinant of any positive semidefinite matrix is positive or zero, and the determinant
of any positive definite matrix is positive.

The relation M ≤ N between Hermitian matrices M,N ∈ Cn×n means that N −M
is positive semidefinite. Similarly, M < N means that N −M is positive definite. These
two relations are transitive because the sum of two positive (semi)definite matrices is
positive (semi)definite. In particular, G ≥ 0 means that G is positive semidefinite and
G > 0 means that G is positive definite.

A Hermitian matrix M ∈ Cn×n is called an orthogonal projector if M2 = M . For
orthogonal projectors M ∈ Cn×n, one has 0 ≤ M ≤ Id because x∗Mx = ‖Mx‖2 and
x∗(Id−M)x = ‖(Id−M)x‖2 holds for all column vectors x ∈ Cn.
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Perturbation of the BK inequality for determinantal measures

For all positive semidefinite matrices G ∈ Cn×n, there is a unique positive semidefi-
nite matrix

√
G ∈ Cn×n such that (

√
G)2 = G. It is given by

√
G = T diag(

√
λ1, . . . ,

√
λn)T ∗

when G = T diag(λ1, . . . , λn)T ∗ is a diagonalization of G with a unitary matrix T ∈ Cn×n.
This square root is a real analytic function on the set of positive definite matrices. We
need this fact only on the set Gn defined in (1.9). On Gn, convergence of the binomial
power series

√
G =

∑∞
k=0

(
1/2
k

)
(G− Id)k proves real analyticity.

More generally, let M ∈ Cn×n be any Hermitian matrix. Let λ1, . . . , λk be its different
eigenvalues, listed without multiplicities. Let Πj ∈ Cn×n be the orthogonal projection
onto the eigenspace of M corresponding to the eigenvalue λj , j = 1, . . . , k. For any
real-valued function f defined at least on the eigenvalues of M , the Hermitian matrix
f(M) ∈ Cn×n is defined by

f(M) :=

k∑
j=1

f(λj)Πj . (A.1)

If g is another real-valued function defined at least on {λ1, . . . , λk} one has f(M)g(M) =

(fg)(M) = g(M)f(M).

If Σ ∈ Cm×n, m,n ∈ N, is any rectangular complex matrix, then Σ∗Σ is positive
semidefinite because x∗Σ∗Σx = ‖Σx‖2 ≥ 0 for all column vectors x ∈ Cn.

Let G ∈ Cn×n be positive (semi)definite. Then, for any I ⊆ [n], the submatrix GI,I is
positive (semi)definite as well. In particular, detGI,I ≥ 0 when G is positive semidefinite
because detGI,I is the product of all eigenvalues of GI,I , counted with multiplicity, and
all these eigenvalues are positive or zero.

A.2 Hermitian determinantal probability measures

We include here a proof of the well-known existence of Hermitian determinantal
probability measures, Fact 1.5. The proof constructs first PG as a signed measure.
Then, it shows that PG is a positive measure. Some of the steps in the proof are also
useful in the rest of the paper.

Lemma A.1. For all k ∈ N and G ∈ Gk, there exists a unique signed measure PG
satisfying (1.10).

Proof. Uniqueness. The collection of events {ωI ≡ 1}, I ⊆ [k], is stable under inter-
sections and generates the power set of {0, 1}k. Consequently, there exists at most one
signed measure satisfying (1.10).

Existence. LetMs denote the set of signed measures on ({0, 1}k,P({0, 1}k)). Then,
Ms is a vector space with dimension dimMs = |{0, 1}k| = 2k. Consider the linear map

Ms → RP([k]), µ 7→ (µ(ωI ≡ 1))I⊆[k]. (A.2)

By the uniqueness statement, it is one-to-one. Since

dimRP([k]) = 2k = dimMs, (A.3)

it is a bijection. Thus, there exists a signed measure PG satisfying (1.10).

Lemma A.2. For l ∈ N, for all G ∈ Gl and all ω ∈ {0, 1}l, one has PG(ω) = PId−G(ω).
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Proof. In the following, we abbreviate L = [l]. Let H = Id−G. Let I, J,K be a partition
of L. In this proof, (GL,I , HL,J , IdL,K) ∈ Cl×l denotes the matrix with (i, j)-entry Gij for
j ∈ I, Hij for j ∈ J , and δij for j ∈ K. We prove the following by induction over J :

PG(ωI ≡ 1, ωJ ≡ 0) = det(GL,I , HL,J , IdL,K) (A.4)

For J = ∅, the claim (A.4) reduces to the fact

PG(ωI ≡ 1) = detGI,I = det(GL,I , IdL,Ic) (A.5)

with the abbreviation Ic = L \ I. As induction hypothesis, assume that the claim (A.4)
holds for all partitions I, J,K of L with some given J $ L. Take J ′ = J ∪ {j} with
j ∈ L \ J and a partition I, J ′,K of L. We abbreviate I ′ = I ∪ {j} and K ′ = K ∪ {j}. By
the induction hypothesis, one has

PG(ωI ≡ 1, ωJ ≡ 0) = det(GL,I , HL,J , IdL,K′), (A.6)

PG(ωI′ ≡ 1, ωJ ≡ 0) = det(GL,I′ , HL,J , IdL,K). (A.7)

Using IdL,j −GL,j = HL,j and additivity of the determinant in the j-th column, we cal-
culate

PG(ωI ≡ 1, ωJ′ ≡ 0) = PG(ωI ≡ 1, ωJ ≡ 0)− PG(ωI′ ≡ 1, ωJ ≡ 0)

= det(GL,I , HL,J , IdL,K′)− det(GL,I′ , HL,J , IdL,K) = det(GL,I , HL,J′ , IdL,K). (A.8)

This completes the inductive proof of (A.4).
Given any ω ∈ {0, 1}l, (A.4) gives us the same determinant for PG(ω) and for PH(ω),

using that ω equals 1 precisely on I(ω) = I(ω)c, while ω equals 0 precisely on the same
set:

PG(ω) = det(GL,I(ω)c , HL,I(ω)) = PH(ω). (A.9)

Here is an interpretation of Lemma A.2. Viewing locations without particles as “an-
tiparticles” or holes, exchanging particles with holes corresponds to exchanging G with
Id−G.

Lemma A.3. For any k ≤ l in N and M ∈ Gl with rankM = k and rank(Id−M) = l − k,
for any J ⊆ [l] with |J | 6= k, one has

PM (ωJ ≡ 1, ω[l]\J ≡ 0) = 0. (A.10)

In other words, the signed measure PM is supported on configurations with precisely k
particles.

Proof. For J ⊆ [l] with |J | > k, let EJ = {{ωI ≡ 1} : J ⊆ I ⊆ [l]}. Since rankM = k, the
measure PM vanishes on EJ . The event

{ωJ ≡ 1, ω[l]\J ≡ 0} = {ωJ ≡ 1} \
( ⋃
I: J$I⊆[l]

{ωI ≡ 1}
)

(A.11)

belongs to σ(EJ). Since EJ is closed under intersections, it follows that this event has
PM -measure zero. Consequently, PM is supported on configurations with at most k
particles.

By assumption, Id−M has rank l − k. Consequently, PId−M is supported on config-
urations with at most l − k particles. For ω ∈ {0, 1}l, Lemma A.2 states that PM (ω) =

PId−M (ω). From this we conclude that PM is supported on configurations with at most
l − k holes or equivalently with at least k particles. Thus, the claim of the lemma fol-
lows.
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Consider the orthogonal projector M(G) = Ψ∗(G)Ψ(G) ∈ C2k×2k from (3.2). Recall
that ι : {0, 1}2k → {0, 1}k denotes the projection to the first k coordinates. Slightly
more generally than in Section 3.1, we denote by ι[µ] the image signed measure of any
signed measure µ on {0, 1}2k with respect to ι. The following lemma shows that PG is
recovered from PM(G) by ignoring all locations indexed by k + 1, . . . , 2k.

Lemma A.4. For G ∈ Gk, we have PG = ι[PM(G)].

Proof. We use the notation from line (3.1). From

M(G) = Ψ(G)∗Ψ(G), Ψ(G) = (ψ(G), φ(G)),

and G = ψ(G)∗ψ(G), we get M(G)[k][k] = G. Consequently, we obtain for I ⊆ [k]:

PG({ω ∈ {0, 1}k : ωI ≡ 1}) = detGI,I = detM(G)I,I

= PM(G)({ω ∈ {0, 1}2k : ωI ≡ 1}) = ι[PM(G)]({ω ∈ {0, 1}k : ωI ≡ 1}) (A.12)

Since the events {ωI ≡ 1}, I ⊆ [k], form a ∩-stable generator of the power set of {0, 1}k,
the claim follows.

Proof of Fact 1.5. Let G ∈ Gk. It remains to show that the signed measure PG defined
in Lemma A.1 is a probability measure.

By Lemma 3.1, the matrices M(G) and Id−M(G) have rank k. Thus, Lemma A.3
implies that the signed measure PM(G) is supported on configurations with precisely k
particles.

Next, we consider the finite measure µΨ(G) introduced in Definition 3.2. Just as
PM(G), it is supported on configurations with precisely k particles at 2k locations. For
I ⊆ [2k] with |I| = k, we obtain

PM(G)(ωI ≡ 1, ω[2k]\I ≡ 0) = PM(G)(ωI ≡ 1)

= detM(G)I,I = µΨ(G)(ωI ≡ 1, ω[2k]\I ≡ 0). (A.13)

This implies PM(G) = µΨ(G). Since µΨ(G) is a positive measure, PM(G) is also positive.
Using Lemma A.4, we get that PG is also a positive measure. It is normalized because

of PG({0, 1}k) = PG(ω∅ ≡ 1) = 1 because the determinant of the empty matrix equals 1

by definition. This proves the claim.
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