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1. Introduction

Let G be an open set in Rd. We consider parabolic stochastic partial
differential equations of the form

du = (Di(a
ijuxj + biu+ f i)+ b̄iuxi + cu+ f̄) dt+(νku+ gk) dwk

t , (1.1)

given for x ∈ G, t ≥ 0. Here wk
t are independent one-dimensional

Wiener processes, i and j go from 1 to d, and k runs through {1, 2, ...}.
The coefficients aij, bi, b̄i, c, νk and the free terms f i, f̄ , gk are random
functions depending on t > 0 and x ∈ G.

This article is a natural continuation of the article [15], where Lp

estimates for the equation

du = Di(a
ijuxj + f i) dt+ (νku+ gk) dwk

t (1.2)

with discontinuous coefficients was constructed on Rd.
Our approach is based on Sobolev spaces with or without weights,

and we present the unique solvability result of equation (1.1) on Rd,Rd
+

(half space) and on bounded C1 domains. We show that Lp-norm of
ux can be controlled by Lp-norms of f i, f̄ and g if p is sufficiently close
to 2.

Pulvirenti [13] showed by example that without the continuity of aij

in x one can not fix p even for deterministic parabolic equations. For
an Lp theory of linear SPDEs with continuous coefficients on domains,
we refer to [1], [2] and [7].

Actually L2 theory for type (1.1) with bounded coefficients was de-
veloped long times ago on the basis of monotonicity method, and an
account of it can be found in [14]. But our results are new even for
p = 2 (and probably even for determistic equation) since, for instance,
we are only assuming the functions

ρbi, ρb̄i, ρ2c, ρνk

are bounded, where ρ(x) = dist(x, ∂G). Thus we are allowing our
coefficients to blow up near the boundary of G.

An advantage of Lp(p > 2) theory can be found, for instance, in [16],
where solvability of some nonlinear SPDEs was presented with the help
of Lp estimates for linear SPDEs with discontinuous coefficients. Also
we will see that some Hölder type estimates are valid only for p > 2
(Corollary 2.5).

We finish the introduction with some notations. As usual Rd stands
for the Euclidean space of points x = (x1, ..., xd), Rd

+ = {x ∈ Rd : x1 >
0} and Br(x) := {y ∈ Rd : |x − y| < r}. For i = 1, ..., d, multi-indices
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α = (α1, ..., αd), αi ∈ {0, 1, 2, ...}, and functions u(x) we set

uxi = ∂u/∂xi = Diu, Dαu = Dα1

1 · ... ·Dαd
d u, |α| = α1 + ...+ αd.

2. Main Results

Let (Ω,F , P ) be a complete probability space, {Ft, t ≥ 0} be an
increasing filtration of σ-fields Ft ⊂ F , each of which contains all
(F , P )-null sets. By P we denote the predictable σ-field generated
by {Ft, t ≥ 0} and we assume that on Ω we are given independent
one-dimensional Wiener processes w1t , w

2
t , ..., each of which is a Wiener

process relative to {Ft, t ≥ 0}.
Fix an increasing function κ0 defined on [0,∞) such that κ0(ε)→ 0

as ε ↓ 0.
Assumption 2.1. The domain G ⊂ Rd is of class C1

u. In other words,
there exist constants r0, K0 > 0 such that for any x0 ∈ ∂G there exists
a one-to-one continuously differentiable mapping Ψ from Br0(x0) onto
a domain J ⊂ Rd such that

(i) J+ := Ψ(Br0(x0) ∩G) ⊂ Rd
+ and Ψ(x0) = 0;

(ii) Ψ(Br0(x0) ∩ ∂G) = J ∩ {y ∈ Rd : y1 = 0};
(iii) ‖Ψ‖C1(Br0 (x0)) ≤ K0 and |Ψ−1(y1) − Ψ−1(y2)| ≤ K0|y1 − y2| for

any yi ∈ J ;
(iv) |Ψx(x1)−Ψx(x2)| ≤ κ0(|x1 − x2|) for any xi ∈ Br0(x0).

Assumption 2.2. (i) For each x ∈ G, the functions aij(t, x), bi(t, x),
b̄i(t, x), c(t, x) and νk(t, x) are predictable functions of (ω, t).

(ii) There exist constants λ,Λ ∈ (0,∞) such that for any ω, t, x and
ξ ∈ Rd,

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2.
(iii) For any x, t and ω,

ρ(x)|bi(t, x)|+ ρ(x)|b̄i(t, x)|+ ρ(x)2|c(t, x)|+ ρ(x)|νk(t, x)|`2 ≤ K.

(iv) There is control on the behavior of bi, b̄i, c, ν near ∂G, namely,

lim
ρ(x)→0
x∈G

sup
t,ω

ρ(x)(|bi(t, x)|+|b̄i(t, x)|+ρ(x)|c(t, x)|+|ν(t, x)|`2) = 0. (2.1)

To describe the assumptions of f i, f̄ and g we use Sobolev spaces
introduced in [7], [8] and [12]. If n is a non negative integer, then

Hn
p = Hn

p (Rd) = {u : u,Du, ..., Dαu ∈ Lp : |α| ≤ n},

Lp,θ(G) := H0
p,θ(G) = Lp(G, ρ

θ−ddx), ρ(x) := dist(x, ∂G),

Hn
p,θ(G) := {u : u, ρux, ..., ρ

|α|Dαu ∈ Lp,θ(G) : |α| ≤ n}. (2.2)



4 KYEONG-HUN KIM

In general, by Hγ
p = Hγ

p (Rd) = (1 −∆)−γ/2Lp we denote the space of
Bessel potential, where

‖u‖Hγ
p
= ‖(1−∆)γ/2u‖Lp ,

and the weighted Sobolev space Hγ
p,θ(G) is defined as the set of all

distributions u on G such that

‖u‖p
Hγ
p,θ(G)

:=
∞

∑

n=−∞
enθ‖ζ−n(e

n·)u(en·)‖p
Hγ
p
<∞, (2.3)

where {ζn : n ∈ Z} is a sequence of functions ζn ∈ C∞0 (G) such that
∑

n

ζn ≥ c > 0, |Dmζn(x)| ≤ N(m)emn.

If G = Rd
+ we fix a function ζ ∈ C∞0 (R+) such that

∑

n∈Z

ζ(en+x) ≥ c > 0, ∀x ∈ R, (2.4)

and define ζn(x) = ζ(enx), then (2.3) becomes

‖u‖p
Hγ
p,θ

:=
∞

∑

n=−∞
enθ‖ζ(·)u(en·)‖p

Hγ
p
<∞. (2.5)

It is known that up to equivalent norms the space Hγ
p,θ is independent

of the choice ζ, and Hγ
p,θ(G) and its norm are independent of {ζn} if G

is bounded.
We use above notations for `2-valued functions g = (g1, g2, ...). For

instance
‖g‖Hγ

p (`2) = ‖|(1−∆)γ/2g|`2‖Lp .

For any stopping time τ , denote |(0, τ ]] = {(ω, t) : 0 < t ≤ τ(ω)},
Hγ

p(τ) = Lp( |(0, τ ]],P , Hγ
p ), Hγ

p,θ(G, τ) = Lp( |(0, τ ]],P , Hγ
p,θ(G)),

Hγ
p,θ(τ) = Lp( |(0, τ ]],P , Hγ

p,θ), L...(...) = H0
...(...).

Fix (see [5]) a bounded real-valued function ψ defined in Ḡ such that
for any multi-index α,

[ψ]
(0)
|α| := sup

G
ρ|α|(x)|Dαψx(x)| <∞

and the functions ψ and ρ are comparable in a neighborhood of ∂G.
As in [11], by Mα we denote the operator of multiplying by (x1)α and
M =M1. Define

Uγ
p = Lp(Ω,F0, Hγ−2/p

p ), Uγ
p,θ =M1−2/pLp(Ω,F0, Hγ−2/p

p,θ ),

Uγ
p,θ(G) = ψ1−2/pLp(Ω,F0, Hγ−2/p

p,θ (G)).
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By H
γ
p,θ(G, τ) we denote the space of all functions u ∈ ψHγ

p,θ(G, τ)

such that u(0, ·) ∈ U γ
p,θ(G) and for some f ∈ ψ−1Hγ−2

p,θ (G, τ), g ∈
Hγ−1

p,θ (G, τ),

du = f dt+ gk dwk
t , (2.6)

in the sense of distributions. In other words, for any φ ∈ C∞0 (G), the
equality

(u(t, ·), φ) = (u(0, ·), φ) +
∫ t

0

(f(s, ·), φ) ds+
∞

∑

0

∫ t

0

(gk(s, ·), φ) dwk
s

holds for all t ≤ τ with probability 1.
The norm in H

γ
p,θ(G, τ) is introduced by

‖u‖H
γ
p,θ(G,τ) = ‖ψ−1u‖Hγ

p,θ(G,τ) + ‖ψf‖Hγ−2

p,θ (G,τ)

+‖g‖Hγ−1

p,θ (G,τ) + ‖u(0, ·)‖Uγ
p,θ(G)

.

It is easy to check that up to equivalent norms the space H
γ
p,θ(G, τ) and

its norm are independent of the choice of ψ if G is bounded.
We write u ∈ H

γ
p,θ(τ) if u ∈ MHγ

p,θ(τ) satisfies (2.6) for some f ∈
M−1Hγ−2

p,θ (τ), g ∈ Hγ−1
p,θ (τ, `2), and we define

‖u‖H
γ
p,θ(τ)

= ‖M−1u‖Hγ
p,θ(τ)

+ ‖Mf‖Hγ−2

p,θ (τ)

+‖g‖Hγ−1

p,θ (τ)
+ ‖u(0, ·)‖Uγ

p,θ
.

Similarly we define stochastic Banach space Hγ
p(τ) on Rd (and its

norm) by formally taking ψ = 1 and replacing Hγ
p,θ(G), Uγ

p,θ(G) by

Hγ
p , U

γ
p , respectively, in the definition of the space H

γ
p,θ(G, τ).

We drop τ in the notations of appropriate Banach spaces if τ ≡ ∞.
Note that if G = Rd

+, then H
γ
p,θ(G, τ) is slightly different from H

γ
p,θ(τ)

since ψ(x) is bounded. Finally we define

H
γ
p,θ,0(...) = H

γ
p,θ(...) ∩ {u : u(0, ·) = 0},

Hγ
p,0(...) = Hγ

p(...) ∩ {u : u(0, ·) = 0}.
Some properties of the spacesHγ

p,θ,H
γ
p,θ(G, τ) andHγ

p(τ) are collected
in the following lemma (see [3],[7], [8] and [12] for detail). From now
on we assume that

p ≥ 2, d− 1 < θ < d− 1 + p.

Lemma 2.3. (i) The following are equivalent:
(a)u ∈ Hγ

p,θ(G),

(b)u ∈ Hγ−1
p,θ (G) and ψDu ∈ Hγ−1

p,θ (G),

(c)u ∈ Hγ−1
p,θ (G) and D(ψu) ∈ Hγ−1

p,θ (G).
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In addition, under either of these three conditions

‖u‖Hγ
p,θ(G)

≤ N‖ψux‖Hγ−1

p,θ (G) ≤ N‖u‖Hγ
p,θ(G)

, (2.7)

‖u‖Hγ
p,θ(G)

≤ N‖(ψu)x‖Hγ−1

p,θ (G) ≤ N‖u‖Hγ
p,θ(G)

. (2.8)

(ii) For any ν, γ ∈ R, ψνHγ
p,θ(G) = Hγ

p,θ−pν(G), and

‖u‖Hγ
p,θ−pν(G)

≤ N‖ψ−νu‖Hγ
p,θ(G)

≤ N‖u‖Hγ
p,θ−pν(G)

.

(iii) There exists a constant N depending only on d, p, γ, T (and θ)
such that for any t ≤ T ,

‖u‖p
Hγ
p,θ(G,t)

≤ N

∫ t

0

‖u‖p
H
γ+1

p,θ (G,s)
ds ≤ Nt‖u‖p

H
γ+1

p,θ (G,t)
, (2.9)

‖u‖p
Hγ
p (t)

≤ N

∫ t

0

‖u‖pHγ+1
p (s)

ds ≤ Nt‖u‖pHγ+1
p (t)

. (2.10)

(iv) Let γ − d/p = m + ν for some m = 0, 1, ... and ν ∈ (0, 1), then
for any k ≤ m,

|ψk+θ/pDku|C0 + [ψm+ν+θ/pDmu]Cν(G) ≤ N‖u‖Hγ
p,θ(G)

.

(v) Let

2/p < α < β ≤ 1.

Then for any u ∈ H
γ
p,θ,0(G, τ) and 0 ≤ s < t ≤ τ ,

E‖ψβ−1(u(t)− u(s))‖p
Hγ−β
p,θ (G)

≤ N |t− s|pβ/2−1‖u‖p
H
γ
p,θ(G,τ)

, (2.11)

E|ψβ−1u|p
Cα/2−1/p([0,τ ],Hγ−β

p,θ (G))
≤ N‖u‖p

H
γ
p,θ(G,τ)

. (2.12)

Here are our main results.

Theorem 2.4. Assume G is bounded and τ ≤ T . Under the above
assumptions, there exist p0 = p0(λ,Λ, d) > 2 and χ = χ(p, d, λ,Λ) > 0
such that if p ∈ [2, p0) and θ ∈ (d− χ, d+ χ), then

(i) for any f i ∈ Lp,θ(G, τ), f̄ ∈ ψ−1H−1
p,θ(G, τ), g ∈ Lp,θ(G, τ) and

u0 ∈ U 1p,θ(G) equation (1.1) admits a unique solution u ∈ H1
p,θ(G, τ),

(ii) for this solution

‖ψ−1u‖H1
p,θ(G,τ) ≤ N(‖f i‖Lp,θ(G,τ)+‖ψf̄‖H−1

p,θ(G,τ)+‖g‖Lp,θ(G,τ)+‖u0‖U1
p,θ(G)

),

(2.13)
where the constant N is independent of f i, f̄ , g, u and u0.

Lemma 2.3 (iv) and (v) yield the following results. It is crucial that
p is bigger than 2.
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Corollary 2.5. Let u ∈ H1
p,θ,0(G, τ) be the solution of (1.1) and

2/p < α < β ≤ 1.

(i) Then for any 0 ≤ s < t ≤ τ ,

E‖ψβ−1(u(t)− u(s))‖p
H1−β
p,θ (G)

≤ N |t− s|pβ/2−1C(f i, f̄ , g, θ) (2.14)

E|ψβ−1u|p
Cα/2−1/p([0,τ ],H1−β

p,θ (G))
≤ NC(f i, f̄ , g, θ), (2.15)

where C(f i, f̄ , g, θ) := ‖f i‖Lp,θ(G,τ) + ‖ψf̄‖H−1

p,θ(G,τ) + ‖g‖Lp,θ(G,τ).

(ii) If d ≤ 2, 1− d/p =: ν, then

E

∫ τ

0

(|ψθ/p−1u|C0 + [ψ(θ−d)/pu]Cν(G))dt ≤ NC(f i, f̄ , g, θ), (2.16)

thus if θ ≤ d, then the function u itself is Hölder continuous in x.

The following corollary shows that if some extra conditions are as-
sumed, then the solutions are Hölder continuous in (t, x) (regardless of
the dimension d).

Corollary 2.6. Let u ∈ H1
p,d,0(G, T ) be the solution of (1.1). Assume

that bi, b̄, c are bounded, ν = 0 and

1− 2/q − d/r > 0, q ≥ r > 2,

f i, f, g ∈ Lq(Ω× [0, T ],P , Lr(G)).

Then there exists α = α(q, r, d,G) > 0 such that

E|u|qCα(G×[0,T ]) <∞. (2.17)

Proof. It is shown in [3] that under the conditions of the corollary,
there is a solution v ∈ H1

2,d,0(G, T ) satisfying (2.17). By the uniqueness

result (Theorem 2.4) in the space H1
2,d(G, T ), we conclude that u = v

and thus v ∈ H1
p,d(G, T ). ¤

We will see that the proof of Theorems 2.4 depends also on the
following results on Rd

+ and Rd.

Theorem 2.7. Assume that

x1|bi(t, x)|+ x1|b̄i(t, x)|+ (x1)2|c(t, x)|+ x1|ν(t, x)| ≤ β, ∀ω, t, x.
Then there exist p0 = p0(λ,Λ, d) > 2, β0 = β0(p, d, λ,Λ) ∈ (0, 1) and
χ = χ(p, d, λ,Λ) > 0 such that if

β ≤ β0, p ∈ [2, p0), d− χ < θ < d+ χ, (2.18)
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then for any f i ∈ Lp,θ(τ), f̄ ∈ M−1H−1
p,θ(τ), g ∈ Lp,θ(τ) and u0 ∈ U 1p,θ

equation (1.1) with initial data u0 admits a unique solution u in the
class H1

p,θ(τ) and for this solution,

‖M−1u‖H1
p,θ(τ)

≤ N(‖f i‖Lp,θ(τ) + ‖Mf̄‖H−1

p,θ(τ)
+ ‖g‖Lp,θ(τ) + ‖u0‖U1

p,θ
),

(2.19)
where N depends only d, p, θ, λ and Λ.

Theorem 2.8. Assume that

|bi(t, x)|+ |b̄i(t, x)|+ |c(t, x)|+ |ν(t, x)| ≤ K, ∀ω, t, x.
Then there exists p0 > 2 such that if p ≤ [2, p0), then for any f i ∈
Lp(τ), f̄ ∈ H−1

p (τ), g ∈ Lp(τ), u0 ∈ U 1p equation (1.1) with initial data

u0 admits a unique solution u in the class H1
p(τ) and for this solution,

‖u‖H1
p(τ)

≤ N(‖f i‖Lp(τ) + ‖f̄‖H−1
p (τ) + ‖g‖Lp(τ) + ‖u0‖U1

p
), (2.20)

where N depends only d, p, λ,Λ, K and T .

3. Proof of Theorem 2.7

First we prove the following lemmas.

Lemma 3.1. Let f = (f 1, f 2, ..., f d), g = (g1, g2, ...) ∈ L2,d(T ) and
u ∈ H1

2,d,0(T ) be a solution of

du = (∆u+ f i
xi)dt+ gkdwk

t . (3.1)

Then
‖ux‖2L2,d(T )

≤ ‖f‖2L2,d(T )
+ ‖g‖2L2,d(T )

. (3.2)

Proof. It is well known (see [11]) that (3.1) has a unique solution u ∈
H1

p,d,0(T ) and

‖ux‖pLp,d(T )
≤ N(p)(‖f‖pLp,d(T )

+ ‖g‖pLp,d(T )
). (3.3)

We will show that one can take N(2) = 1. Let Θ be the collections
of the form

f(t, x) =
m

∑

i=1

I |(τi−1,τi]](t)fi(x),

where fi ∈ C∞0 (Rd
+) and τi are stopping times, τi ≤ τi+1 ≤ T . It is

well known that the set Θ is dense in Hγ
p,θ(T ) for any γ, θ ∈ R. Also

the collection of sequences g = (gk), such that each gk ∈ Θ and only
finitely many of gk are different from zero, is dense in Hγ

p,θ(T, `2). Thus
by considering approximation argument, we may assume that f and g
are of this type.
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We continue f(t, x) to be an even function and g(t, x) to be an odd
function of x1. Then obviously f, g ∈ Hγ

p(T ) for any γ and p. By

Theorem 5.1 in [7], equation (3.1) considered in the whole Rd has a
unique solution v ∈ H1

p and v ∈ Hγ
p for any γ. Also by the uniqueness

it follows that v is an odd function of x1 and vanishes at x1 = 0.
Moreover remembering the fact that v satisfies

dv = ∆v dt

outside the support of f and g, we conclude (see the proof of Lemma
4.2 in [10] for detail) that v ∈ H

γ
p,d for any γ.

Thus, both u and v satisfy (3.1) considered in Rd
+ and belong to H1

p,d.

By the uniqueness result (Theorem 3.3 in [11]) on Rd
+, we conclude that

u = v.
Finally, we see that (3.2) follows from Itô’s formula. Indeed (remem-

ber that u is infinitely differentiable and vanishes at x1 = 0),

|u(t, x)|2 =
∫ t

0

(2u∆u+ 2uf i
xi + |g|2`2) dt+ 2

∫ t

0

ugkdwk
t ,

therefore

0 ≤ E

∫

Rd
+

|u(t, x)|2 dx = −2E
∫ t

0

∫

Rd
+

|Du(s, x)|2 dxdt

−2E
∫ t

0

∫

Rd
+

f iDiu dxdt+ E

∫ t

0

∫

Rd
+

|g|2`2 dxdt

≤ −E
∫ t

0

∫

Rd
+

|Du(s, x)|2 dxdt

+E

∫ t

0

∫

Rd
+

|f |2 dxdt+ E

∫ t

0

∫

Rd
+

|g|2`2 dxdt.

¤

Lemma 3.2. There exists p0 = p0(λ,Λ, d) > 2 such that if p ∈ [2, p0)
and u ∈ H1

p,d,0(T ) is a solution of

du = Di(a
ijuxj + f i)dt+ gkdwk

t , (3.4)

then

‖ux‖Lp,d(T ) ≤ N(‖f‖Lp,d(T ) + ‖g‖Lp,d(T )), (3.5)

where N is independent of T .
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Proof. We repeat arguments in [15]. Take N(p) from (3.3). By (real-
valued version) Riesz-Thorin theorem we may assume that N(p) ↘ 1
as p↘ 2. Indeed, consider the operator

Φ : (f i, g)→ Du,

where u ∈ H1
p,d,0 is the solution of (3.1). Then for any r > 2 and

p ∈ [2, r],

‖Φ‖p ≤ ‖Φ‖1−α
2 ‖Φ‖αr , 1/p = (1− α)/2 + α/r,

and (as p→ 2)

‖Φ‖p ≤ ‖Φ‖αr = ‖Φ‖(1/2−1/p)/(1/2−1/r)r → 1.

Denote A := (aij), κ := λ+Λ
2

and observe that the eigenvalues of
A− κI satisfy

−(Λ− λ)/2 = λ− κ ≤ λ1 − κ ≤ ... ≤ λd − κ ≤ Λ− κ = (Λ− λ)/2,

and therefore for any ξ ∈ Rd,

|(aij − κI)ξ| ≤ Λ− λ

2
|ξ|. (3.6)

Assume that v ∈ H1
p,d,0(T ) satisfies

dv = (κ∆v + f i
xi) dt+ gkdwk

t .

Then v̄(t, x) := v(t,
√
κx) satisfies

dv̄ = (∆v̄ + f̄ i
xi) dt+ ḡkdwk

t ,

where f̄ i(t, x) = 1√
κ
f i(t,

√
κx) and ḡk(t, x) = gk(t,

√
κx). Thus by

(3.3),

‖vx‖pLp,d(T )
≤ N(p)

κp
‖f‖pLp,d(T )

+
N(p)

κp/2
‖g‖pLp,d(T )

. (3.7)

Therefore we conclude that if u ∈ H1
p,d,0(T ) is a solution of (3.4), then

u satisfies

du = (κ∆u+ (f i + (A− κI)uxj)xi) dt+ gkdwk
t ,

and

‖ux‖pLp(T )
≤ N(p)

κp
‖F‖pLp,d(T )

+
N(p)

κp/2
‖g‖pLp,d(T )

,

where F i = (A− κI)uxj + f i. By (3.6)

|F |p ≤ (1 + ε)
(Λ− λ)p

2p
|ux|p +N(ε)|f |p.

Thus, for sufficiently small ε, (since N(p)↘ 1 as p↘ 2)

N(p)

κp
(1 + ε)

(λ− λ)p

2p
= N(p)(1 + ε)

(Λ− λ)p

(Λ + λ)p
< 1. (3.8)
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Obviously the claims of the lemma follow from this. ¤

Lemma 3.3. Assume that for any solution u ∈ H1
p,θ0

(τ) of (1.1), we
have estimate (2.19) for θ = θ0, then there exists χ = χ(d, p, θ0, λ,Λ) >
0 such that for any θ ∈ (θ0−χ, θ0+χ), estimate (2.19) holds whenever
u ∈ H1

p,θ(τ) is a solution of (1.1).

Proof. The lemma is essentially proved in [6] for SPDEs with constant
coefficients. By Lemma 2.3, u ∈ H1

p,θ(τ) if and only if v :=M (θ−θ0)/pu ∈
H1

p,θ0
(τ) and the norms ‖u‖H1

p,θ(τ)
and ‖v‖H1

p,θ0
(τ) are equivalent. Denote

ε = (θ − θ0)/p and observe that v satisfies

dv = (Di(a
ijvxj + biv + f̃ i) + b̄ivxi + cv + ˜̄f)dt+ (νkv +M εgk)dwk

t ,

where
f̃ i =M εf i − εai1M−1v,

˜̄f =M εf̄ −M−1ε(b̄1v + a1jvxj − a11εM−1v + b1v +M εf i).

By assumption (remember that Mbi and Mb̄ are bounded),

‖v‖H1
p,θ0

(τ) ≤ N(‖f̃ i‖Lp,θ0
(τ) + ‖M ˜̄f‖H−1

p,θ0
(τ) + ‖M εu0‖Up,θ0

)

≤ N(‖f i‖Lp,θ(τ) + ‖Mf̄‖H−1

p,θ(τ)
+ ‖u0‖Up,θ

)

+Nε(‖M−1v‖Lp,θ0
(τ) + ‖vx‖Lp,θ0

(τ)).

Thus it is enough to take ε sufficiently small (see (2.8)). The lemma is
proved.

¤

Now we come back to our proof. As usual we may assume τ ≡ T
(see [7]), and due to Lemma 3.3, without loss of generality we assume
that θ = d.

Take p0 from Lemma 3.2. The method of continuity shows that to
prove the theorem it suffices to prove that if p ≤ p0, then (2.19) holds
true given that a solution u ∈ H1

p,d(T ) already exists.

Step 1. We assume that bi = b̄i = c = νk = 0. By (2.8) (or see
Lemma 1.3 (i) in [11])

‖ux‖Hγ
p,θ
∼ ‖M−1u‖Hγ+1

p,θ
.

Thus we estimate ‖ux‖Lp,d(T ) instead of ‖M−1u‖H1
p,d(T )

. By Theorem

3.3 in [11] there exists a solution v ∈ H1
p,d(T ) of

dv = (∆v + f̄) dt, v(0, ·) = u0,

and furthermore

‖vx‖Lp,d(T ) ≤ N‖Mf̄‖H−1

p,d(T )
+N‖u0‖U1

p,d
. (3.9)
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Observe that u− v satisfies

d(u− v) = Di(a
ij(u− v)xj + f̃ i) dt+ gk dwk

t , (u− v)(0, ·) = 0,

where f̃ i = f i + (aij − δij)vxj . Therefore (2.19) follows from Lemma
3.2 and (3.9).
Step 2(general case). By the result of step 1,

‖M−1u‖H1
p,d(T )

≤ N‖MbiM−1u+ f i‖Lp,d(T ) +N‖u0‖U1
p,d

+N‖Mb̄iuxi +M2cM−1u+Mf̄‖H−1

p,d(T )
+N‖MνM−1u+ g‖Lp,d(T )

≤ Nβ(‖M−1u‖Lp,d(T ) + ‖ux‖Lp,d(T ))

+N‖u0‖U1
p,d

+N‖f i‖Lp,d(T ) +N‖Mf̄‖H−1

p,d(T )
+N‖g‖Lp,d(T ).

Now it is enough to choose β0 such that for any β ≤ β0,

Nβ(‖M−1u‖Lp,d(T ) + ‖ux‖Lp,d(T )) ≤ 1/2‖M−1u‖H1
p,d(T )

.

The theorem is proved.

4. Proof of Theorem 2.8

First we need the following result on Rd proved in [15].

Lemma 4.1. There exists p0 = p0(λ,Λ, d) > 2 such that if p ∈ [2, p0)
and u ∈ H1

p,0(T ) is a solution of

du = Di(a
ijuxj + f i)dt+ gkdwk

t , (4.1)

then
‖ux‖Lp(T ) ≤ N(‖f‖Lp(T ) + ‖g‖Lp(T )).

Again, to prove the theorem, we only show that the apriori estimate
(2.20) holds for p < p0 (also see step 1 below).

As in theorem 5.1 in [7], considering u − v, where v ∈ H1
p(T ) is the

solution of
dv = ∆vdt, v(0, ·) = u0,

without loss of generality we assume that u(0, ·) = 0.
Step 1. Assume that bi = b̄i = c = νk = 0. By Theorem 5.1 in [7],

there exists a solution v ∈ H1
p,0(T ) of

dv = (∆v + f̄)dt,

and it satisfies
‖vx‖Lp(T ) ≤ N‖f̄‖H−1

p (T ). (4.2)

Observe that ū := u− v satisfies

dū = Di(a
ijūxj + f̃ i) dt+ gkdwk

t ,
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where f̃ i = f i + (A − I)vxj . Thus the estimate (2.20) follows from
Lemma 4.1 and (4.2).
Step 2. We show that there exists ε1 > 0 such that if T ≤ ε1,

then all the assertions of the theorem hold true. Thus without loss of
generality we assume that T ≤ 1.

Note that b̄iuxi ∈ Lp(T ) since u ∈ H1
p(T ), so by Theorem 5.1 in [7],

there exists a unique solution v ∈ H2
p,0(T ) of

dv = (∆v + b̄iuxi)dt,

and v satisfies

‖v‖pH2
p(T )

≤ N‖ux‖pLp(T )
.

By (2.10),

‖vx‖pLp(T )
≤ N‖v‖pH1

p(T )
≤ N(T )‖ux‖Lp(T ), (4.3)

where N(T )→ 0 as T → 0. Observe that u− v satisfies

d(u− v) = (Di(a
ij(u− v)xj + (aij − δij)vxi + biu+ f i) + cu+ f̄) dt

+(νku+ gk) dwk
t .

By the result of step 1,

‖(u− v)x‖Lp(T ) ≤ N(‖(aij − δij)vxi + biu+ f i‖Lp(T )

+‖cu+ f̄‖H−1
p (T ) + ‖νku+ g‖Lp(T ))

≤ N(‖vx‖Lp(T ) + ‖f i‖Lp(T ) + ‖f̄‖H−1
p (T ) + ‖g‖Lp(T ) + ‖u‖Lp(T )),

where constants N are independent of T (T ≤ 1). This and (4.3) yield

‖ux‖Lp(T ) ≤ NN(T )‖ux‖Lp(T ) +N‖f i‖Lp(T ) +N‖f̄‖H−1
p (T )

+N‖g‖Lp(T ) +N‖u‖Lp(T ).

Note that the above inequality holds for all t ≤ T . Choose ε1 so that
NN(T ) ≤ 1/2 for all T ≤ ε1, then for any t ≤ T ≤ ε1 (see Lemma
2.3),

‖u‖pH1
p(t)
≤ N‖u‖pLp(t)

+N(‖f i‖p
H−1
p (T )

+ ‖f̄‖pLp(T )
+ ‖g‖pLp(T )

)

≤ N

∫ t

0

‖u‖pH1
p(t)

dt+N(‖f i‖p
H−1
p (T )

+ ‖f̄‖pLp(T )
+ ‖g‖pLp(T )

).

Gronwall’s inequality leads to (2.20).
Step 3. Consider the case T > ε1. To proceed further, we need the

following lemma.
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Lemma 4.2. Let τ ≤ T be a stopping and du(t) = f(t)dt+ gk(t)dwk
t .

(i) Let u ∈ Hγ+2
p,0 (τ). Then there exists a unique ũ ∈ Hγ+2

p,0 (T ) such
that ũ(t) = u(t) for t ≤ τ(a.s) and, on (0, T ),

dũ = (∆ũ(t) + f̃(t))dt+ gkIt≤τdw
k
t , (4.4)

where f̃ = (f(t)−∆u(t))It≤τ . Furthermore,

‖ũ‖Hγ+2
p (T ) ≤ N‖u‖Hγ+2

p (τ), (4.5)

where N is independent of u and τ .
(ii) all the claims in (i) hold true if u ∈ H

γ+2
p,θ,0(G, τ) and if one re-

place the space Hγ+2
p (τ) and Hγ+2

p (T ) with H
γ+2
p,θ (G, τ) and H

γ+2
p,θ (G, T ),

respectively.

Proof. (i) Note f̃ ∈ Hγ
p(T ), gIt≤τ ∈ Hγ+1

p (T ), so that, by Theorem 5.1

in [7], equation (4.4) has a unique solution ũ ∈ Hγ+2
p,0 (T ) and (4.5)

holds. To show that ũ(t) = u(t) for t ≤ τ , notice that, for t ≤ τ , the
function v(t) = ũ(t)− u(t) satisfies the equation

v(t) =

∫ t

0

∆v(s)ds, v(0, ·) = 0.

Theorem 5.1 in [7] shows that v(t) = 0 for t ≤ τ (a.e).
(ii) It is enough to repeat the arguments in (i) using Theorem 2.9 in

[1] (instead of Theorem 5.1 in [7]). ¤

Now, to complete the proof, we repeat the arguments in [4]. Take
an integer M ≥ 2 such that T/M ≤ ε1, and denote tm = Tm/M .
Assume that, for m = 1, 2, ...,M − 1, we have the estimate (2.20) with
tm in place of τ (and N depending only on d, p, λ,Λ, K and T ). We are
going to use the induction on m. Let um ∈ H1

p,0 be the continuation of
u on [tm, T ], which exists by Lemma 4.2(i) with γ = −1 and τ = tm.
Denote vm := u− um, then (a.s) for any t ∈ [tm, T ], φ ∈ C∞0 (G) (since
dum = ∆umdt on [tm, T ])

(vm(t), φ) = −
∫ t

tm

(aijvmxj + bivm + f i
m, φxi)(s)ds

+

∫ t

tm

(b̄ivmxi + cvm + f̄m, φ)(s)ds+

∫ t

tm

(νkvm + gkm, φ)(s)dw
k
s ,

where

f i
m = (aij − δij)umxj + bium + f i, f̄m = b̄iumxi + cum + f̄ ,

gkm = νkum + gk.
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Next instead of random processes on [0, T ] one considers processes
given on [tm, T ] and, in a natural way, introduce spaces Hγ

p([tm, T ]),
Lp([tm, t]), Hγ

p([tm, T ]). Then one gets a counterpart of the result of
step 2 and concludes that

E

∫ tm+1

tm

‖(u− um)(s)‖pH1
p
ds

≤ NE

∫ tm+1

tm

(‖f i
m(s)‖pLp

+ ‖f̄m(s)‖pH−1
p

+ ‖gm(s)‖pLp
)ds.

Thus by the induction hypothesis we conclude

E

∫ tm+1

0

‖u(s)‖pH1
p
ds ≤ NE

∫ T

0

‖um(s)‖pH1
p
ds

+NE

∫ tm+1

tm

‖(u− um)(s)‖pH1
p
ds

≤ N(‖f i‖pLp(tm+1)
+ ‖f̄‖p

H−1
p (tm+1)

+ ‖g‖pLp(tm+1)
).

We see that the induction goes through and thus the theorem is proved.

5. Proof of Theorem 2.8

As usual we may assume τ ≡ T . It is known (see [1]) that for
any u0 ∈ U 1p,θ(G) and (f, g) ∈ ψ−1H−1

p,θ(G, T )× Lp,θ(G, T ), there exists

u ∈ H1
p,θ(G, T ) such that u(0, ·) = u0 and

du = (∆u+ f) dt+ gk dwk
t . (5.1)

Thus as before, to finish the proof of the theorem, we only need to estab-
lish the apriori estimate (2.13) assuming that u ∈ H1

p,θ(G, T ) satisfies
(1.1) with initial data u0 = 0, where p ∈ [2, p0) and θ ∈ (d− χ, d+ χ).

To proceed we need the following results.

Lemma 5.1. Let u ∈ H1
p,θ,0(G, T ) be a solution of (1.1). Then

(i) there exists ε0 ∈ (0, 1) (independent of u) such that if u has
support in Bε0(x0), x0 ∈ ∂G then (2.13) holds.

(ii) if u has support on Gε for some ε > 0, where Gε := {x ∈ G :
dist(x, ∂G) > ε}, then then (2.13) holds.

Proof. The second assertion of the lemma follows from Theorem 2.8
since in this case (see [12]) u ∈ H1

p(T ) and

‖u‖H1
p,θ(G,T ) ∼ ‖u‖H1

p(T )
.

To prove the first assertion, we use Theorem 2.7. Let x0 ∈ ∂G and Ψ
be a function from Assumption 2.1. It is shown in [5] (or see [1]) that



16 KYEONG-HUN KIM

Ψ can be chosen such that Ψ is infinitely differentiable in G ∩ Br0(x0)
and satisfies

[Ψx]
(0)
n,Br0 (x0)∩G + [Ψ−1x ]

(0)
n,J+

< N(n) <∞ (5.2)

and

ρ(x)Ψxx(x)→ 0 as x ∈ Br0(x0) ∩G, and ρ(x)→ 0, (5.3)

where the constants N(n) and the convergence in (5.3) are independent
of x0.

Define r = r0/K0 and fix smooth functions η ∈ C∞0 (Br), ϕ ∈ C∞(R)
such that 0 ≤ η, ϕ ≤ 1, and η = 1 in Br/2, ϕ(t) = 1 for t ≤ −3, and
ϕ(t) = 0 for t ≥ −1 and 0 ≥ ϕ′ ≥ −1. Observe that Ψ(Br0(x0)) con-
tains Br. For m = 1, 2, ..., t > 0, x ∈ Rd

+ define ϕm(x) = ϕ(m−1 lnx1).
Also we denote Ψi

r := DrΨ
i,Ψi

rs := DrDsΨ
i,Φi

r := Di(Ψ
i
xr(Ψ

−1))(Ψ),

âm := ãη(x)ϕm + (1− ηϕm)I, b̂m := b̃ηϕm,
ˆ̄bm := ˜̄bηϕm,

ĉm := c̃ηϕm, ν̂m := ν̃ηϕm,

where

ãij(t, x) = ǎij(t,Ψ−1(x)), b̃i(t, x) = b̌i(t,Ψ−1(x)),

˜̄bi(t, x) = ˇ̄bi(t,Ψ−1(x)), c̃(t, x) = c(t,Ψ−1(x))

ν̃(t, x) = ν(t,Ψ−1(x)),

ǎij = arsΨi
xrΨ

j
xs , b̌i = brΨi

r,

ˇ̄bi = b̄rΨi
r + arsΨj

sΦ
i
r, č = c+ brΦi

r.

Take β0 from Theorem 2.7. Observe that ϕ(m−1 lnx1) = 0 for x1 ≥
e−m. Also we easily see that (5.3) implies x1Ψxx(Ψ

−1(x)) → 0 as
x1 → 0. Using these facts and Assumption 2.2(iv), one can find m > 0
independent of x0 such that

x1|b̂m(t, x)|+ x1|ˆ̄bm(t, x)|+ (x1)2|ĉm(t, x)|+ x1|ν̂m(t, x)| ≤ β0,

whenever t > 0, x ∈ Rd
+.

Now we fix a ε0 < r0 such that

Ψ(Bε0(x0)) ⊂ Br/2 ∩ {x : x1 ≤ e−3m}.
Let’s denote v := u(Ψ−1) and continue v as zero in Rd

+ \ Ψ(Bε0(x0)).
Since ηϕm = 1 on Ψ(Bε0(x0)), the function v satisfies

dv = ((âijmvxixj + b̂imv + f̂ i)xi +
ˆ̄bimvxi + ĉmv +

ˆ̄f) dt+ (ν̂k
mv + ĝk) dwk

t ,

where

f̂ i = f i(Ψ−1), ˆ̄f = f̄(Ψ−1), ĝk = gk(Ψ−1).
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Next we observe that by (5.2) and Theorem 3.2 in [12] (or see [5]) for
any ν, α ∈ R and h ∈ ψ−αHν

p,θ(G) with support in Bε0(x0)

‖ψαh‖Hν
p,θ(G)

∼ ‖Mαh(Ψ−1)‖Hν
p,θ
. (5.4)

Therefore we conclude that v ∈ H1
p,θ(T ). Also by Theorem 2.7 we have

‖M−1v‖H1
p,θ(T )

≤ N‖f̂‖Lp,θ(T ) +N‖M ˆ̄f‖H−1

p,θ(T )
+N‖ĝ‖Lp,θ(T ).

Finally (5.4) leads to (2.13). The lemma is proved. ¤

Coming back to our proof, we choose a partition of unity ζm,m =

0, 1, 2, ..., N0 such that ζ0 ∈ C∞0 (G), ζ(m) = ζ(2(x−xm)
ε0

),ζ ∈ C∞0 (B1(0)),
xm ∈ ∂G, m ≥ 1, and for any multi-indices α

sup
x

∑

ψ|α||Dαζ(m)| < N(α) <∞, (5.5)

where the constant N(α) is independent of ε0 (see section 6.3 in [9]).
Thus it follows (see [12]) that for any ν ∈ R and h ∈ Hν

p,θ(G) there
exist constants N depending only p, θ, ν and N(α) (independent of ε0)
such that

‖h‖pHν
p,θ(G)

≤ N
∑

‖ζmh‖pHν
p,d(G)

≤ N‖h‖pHν
p,θ(G)

, (5.6)

∑

‖ψζmx h‖pHν
p,θ(G)

≤ N‖h‖pHν
p,θ(G)

. (5.7)

Also,
∑

‖ζ(m)x h‖pHν
p,θ(G)

≤ N(ε0)‖h‖pHν
p,θ(G)

, (5.8)

where the constant N(ε0) depends also on ε0.
Using the above inequalities and Lemma 5.1 we will show

‖ux‖pLp,θ(G,t) ≤ N‖u‖pLp,θ(G,t) + appropriate norms of f i, f̄ , g (5.9)

and we will drop the term ‖u‖pLp,θ(G,t) using (2.9). But as one can see

in (5.10) below, one has to handle the term aijuxjζ
m
xi . Obviously if

the right side of inequality (5.9) contains the norm ‖ux‖pLp,θ(G,T ), then

this is useless. The following arguments below are used just to avoid
estimating ‖aijuxjζ

m
xi‖

p
Lp,θ(G,T ).

Denote um = uζm, m = 0, 1, ..., N0. Then u
m satisfies

dum = (Di(a
ijum

xj + bium + fm,i) + b̄ium
xi + cum + f̄m − aijuxjζ

m
xi ) dt

+(νkum + ζmgk) dwk
t , (5.10)

where
fm,i = f iζ − aijuζmxj ,

f̄m = −biuζmxi − f iζmxi − b̄iuζmxi + f̄ ζm.
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Since ψ−1aijuxjζ
m
xi ∈ ψ−1Lp,θ(G, T ), by Theorem 2.9 in [1] (or The-

orem 2.10 in [5]), there exists unique solution vm ∈ H2
p,θ,0(G, T ) of

dv = (∆v − ψ−1aijuxjζ
m
xi )dt,

and furthermore

‖vm‖H2
p,θ(G,T ) ≤ N‖aijuxjζ

m
xi‖Lp,θ(G,T ). (5.11)

By (2.2) and Lemma 2.3,

‖vm‖Lp,θ(G,T ) + ‖ψvmx ‖Lp,θ(G,T ) ≤ N(T )‖aijuxjζ
m
xi‖Lp,θ(G,T ), (5.12)

where N(T )→ 0 as T → 0.
For m ≥ 1, define ηm(x) = ζ(x−xm

ε0
) and fix a smooth function η0 ∈

C∞0 (G) such that η0 = 1 on the support of ζ0. Now we denote ūm :=
ψvmηm, then ūm ∈ H2

p,θ(G, T ) satisfies

dūm = (∆ūm + f̃m − aijuxjζ
m
xi ) dt, (5.13)

where f̃m = −2vmxi(ηmψ)xi − vm∆(ηmψ). Finally by considering ũm :=
um − ūm we can drop the term aijuxjζ

m
xi in (5.10) because ũm satisfies

dũm = (Di(a
ijũm

xj + biũm + Fm,i) + b̄iũm
xi + cũm + F̄m) dt

+(νkũm +Gm,k) dwk
t , (5.14)

where

Fm,i = f iζm − aijuζmxj + biūm + (aij − δij)ūm
xj ,

F̄m = b̄iūm
xi+cū

m−biuζmxi−f iζmxi−b̄iuζmxi+f̄ ζm+2vmxi(η
mψ)xi+v

m∆(ηmψ),

Gm,k = ζmgk + νkūm.

By Lemma 5.1, for any t ≤ T ,

‖ψ−1ũm‖pH1
p,θ(G,t)

≤ N‖Fm,i‖pLp,θ(G,t)+N‖ψF̄m‖H−1

p,θ(G,t)+N‖Gm‖pLp,θ(G,t).

Remember that ψbi, ψb̄, ψ2c, ψx and ψψxx are bounded and ‖·‖H−1

p,θ
≤

‖ · ‖Lp,θ
. By (5.6),(5.7) and (5.8),

∑

‖ψF̄m‖p
H−1

p,θ(G,t)
≤ N(‖ψf̄‖p

H−1

p,θ(G,t)
+ ‖f i‖Lp,θ(G,t) + ‖u‖pLp,θ(G,t))

+N
∑

(‖ūm
x ‖pLp,θ(G,t)+ ‖ψ−1ūm‖pLp,θ(G,t)+ ‖ψvmx ‖

p
Lp,θ(G,t)+ ‖vm‖

p
Lp,θ(G,t))

≤ N(‖ψf̄‖p
H−1

p,θ(G,t)
+ ‖f i‖Lp,θ(G,t) + ‖u‖pLp,θ(G,t)) +

∑

‖vm‖pH1
p,θ(G,t)

).

Similarly (actually much easily) the sums
∑

‖Fm,i‖pLp,θ(G,t),
∑

‖Gm‖pLp,θ(G,t)
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can be handled. Then one gets for each t ≤ T (see (5.12) and note that
ψ−1ūm = vmηm),

‖ψ−1u‖pH1
p,θ(G,t)

≤ N
∑

‖ψ−1um‖pH1
p,θ(G,t)

≤ N
∑

‖ψ−1ũm‖pH1
p,θ(G,t)

+N
∑

‖vmηm‖pH1
p,θ(G,t)

≤ N‖f i‖Lp,θ(G,T ) +N‖ψf̄‖p
H−1

p,θ(G,T )
+N‖g‖Lp,θ(G,T )

+N‖u‖Lp,θ(G,t) +NN(t)‖ux‖pLp,θ(G,t).

Since ‖ux‖Lp,θ
≤ N‖ψ−1u‖H1

p,θ
, we can choose ε2 ∈ (0, 1] such that

NN(t)‖ux‖pLp,θ(G,t) ≤ 1/2‖ψ−1u‖pH1
p,θ(G,t)

, if t ≤ T ≤ ε2,

and therefore

‖u‖p
H1
p,θ(G,t)

≤ N

∫ t

0

‖u‖p
H1
p,θ(G,s)

ds+N‖f i‖Lp,θ(G,T )

+N‖ψf̄‖p
H−1

p,θ(G,T )
+N‖g‖Lp,θ(G,T ).

This and Gronwall’s inequality lead to (2.13) if T ≤ ε2. For the general
case, one repeats step 3 in the proof of Theorem 2.8 using Lemma 4.2
(ii) instead of Lemma 4.2 (i). The theorem is proved.
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