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Abstract

We provide a simple characterization of the critical temperature for the Ising model
on an arbitrary planar doubly periodic weighted graph. More precisely, the critical
inverse temperature β for a graph G with coupling constants (Je)e∈E(G) is obtained
as the unique solution of an algebraic equation in the variables (tanh(βJe))e∈E(G).
This is achieved by studying the high-temperature expansion of the model using Kac-
Ward matrices.
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1 Introduction

1.1 Motivation

The Ising model is probably one of the most famous models in statistical physics. It
was introduced by Lenz in [25] as an attempt to understand Curie’s temperature for
ferromagnets. It can be defined as follows. Let G be a finite graph with vertex set
V (G) and edge set E(G). A spin configuration on G is an element σ of {−1,+1}V (G).
Given a positive edge weight system J = (Je)e∈E(G) on G, the energy of such a spin
configuration σ is defined by

H (σ) = −
∑

e={u,v}∈E(G)

Jeσuσv.

Fixing an inverse temperature β ≥ 0 determines a probability measure on the set Ω(G)

of spin configurations by

µG,β(σ) =
e−βH (σ)

ZJβ (G)
,
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The critical temperature for the Ising model

where the normalization constant

ZJβ (G) =
∑

σ∈Ω(G)

e−βH (σ)

is called the partition function of the Ising model on G with coupling constants J .

In this article, we focus on planar locally-finite doubly periodic weighted graphs
(G , J), i.e. weighted graphs which are invariant under the action of some lattice Λ '
Z ⊕ Z. In such case, G /Λ =: G is a finite graph embedded in the torus T2 = R2/Λ.
By convention G will always denote a doubly periodic graph embedded in the plane,
while G will denote a graph embedded in the torus. Ising probability measures can
be constructed on G as limits of finite volume probability measures [28]. In particular,
the Ising measure at inverse temperature β on G with + boundary conditions will be
denoted by µ+

G ,β .

We further assume that G (or equivalently G) is non-degenerate, i.e. that the com-
plement of the edges is the union of topological discs. A Peierls argument [31] and
the GKS inequality [14, 19] classically imply that the Ising model on G exhibits a phase
transition at some critical inverse temperature βc ∈ (0,∞):

• for β < βc, µ
+
G ,β(σv) = 0 for any v ∈ V (G ),

• for β > βc, µ
+
G ,β(σv) > 0 for any v ∈ V (G ).

This article provides a computation of the critical inverse temperature for arbitrary
non-degenerate doubly periodic weighted graphs (G , J) as a solution of an algebraic
equation in the variables xe = tanh(βJe).

1.2 High-temperature expansion of the Ising model

The result will be best stated in terms of the high-temperature expansion of the Ising
model, which we present briefly now. As observed by van der Waerden [35], the identity

exp(βJeσuσv) = cosh(βJe)(1 + tanh(βJe)σuσv)

allows to express the partition function as

ZJβ (G) =
( ∏
e∈E(G)

cosh(βJe)
) ∑
σ∈Ω(G)

∏
e=[uv]∈E(G)

(1 + tanh(βJe)σuσv)

=
( ∏
e∈E(G)

cosh(βJe)
)

2|V (G)|
∑

γ∈E (G)

∏
e∈γ

tanh(βJe), (1.1)

where E (G) denotes the set of even subgraphs of G, that is, the set of subgraphs γ of
G such that every vertex of G is adjacent to an even number of edges of γ. As a conse-
quence, the Ising partition function is proportional to Z(G, x) :=

∑
γ∈E (G) x(γ), where

x(γ) =
∏
e∈γ xe and xe = tanh(βJe). This is called the high-temperature expansion of

the partition function.

1.3 Statement of the result

Let (G , J) be a planar non-degenerate locally-finite doubly periodic weighted graph.
Recall that G = G /Λ is naturally embedded in the torus. Let E0(G) denote the set of
even subgraphs of G that wind around each of the two directions of the torus an even
number of times. Set E1(G) = E (G) \ E0(G).
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Theorem 1.1. The critical inverse temperature βc for the Ising model on the weighted
graph (G , J) is the unique solution 0 < β <∞ to the equation

∑
γ∈E0(G)

x(γ) =
∑

γ∈E1(G)

x(γ), (1.2)

where x(γ) =
∏
e∈γ xe and xe = tanh(βJe).

Note that the sign of
∑
γ∈E0(G) x(γ) −

∑
γ∈E1(G) x(γ) indicates if the system is in the

disordered phase (when the quantity is positive) or ordered phase (when it is negative).

We would like to highlight the fact that in the case of doubly periodic coupling con-
stants on G = Z2 (with arbitrarily large fundamental domain), Theorem 1.1 was proved
independently by Li [26]. More precisely, Li considers the dimer model on the associ-
ated Fisher graph and identifies the critical inverse temperature as the only value of β
for which the spectral curve of this dimer model has a real node in the unit torus. The
proof relies on the paper [27] of the same author, which uses a mapping of Dubédat [11]
from the dimer model on the Fisher graph to the dimer model on an associated bipartite
graph.

Let us briefly summarize the strategy of our proof, and compare it to the one de-
scribed above. One of our main tools is the so-called Kac-Ward matrix associated to
the weighted graph (G, J) and to a pair of non-vanishing complex numbers (z, w), see
Definition 2.1 below. We show that the free energy per fundamental domain can be ex-
pressed in terms of the Kac-Ward determinants (Lemma 4.3). Using exponential decay
of the spin correlations in the disordered phase [1] together with a duality argument
(Theorem 4.4), the free energy is then shown to be twice differentiable in each variable
Je at any β 6= βc. The proof is completed by observing that Equation (1.2) is equivalent
to the vanishing of the Kac-Ward determinant at (z, w) = (1, 1), which translates into
the free energy not being twice differentiable in some variable Je. The main technical
difficulty is to make sure that these Kac-Ward determinants never vanish for z and w

of modulus 1, except at (z, w) = (1, 1). This is achieved by showing that these determi-
nants are proportional to the Kasteleyn determinants of an associated bipartite graph
(Theorem 3.1). One can then use [20] to show that the associated spectral curve is a
special Harnack curve, and the desired statement follows (Lemma 4.2).

As explained in [8], there is a correspondence between determinants of Kac-Ward
matrices and of Kasteleyn matrices for associated Fisher graphs. As a consequence of
this connection, Equation (1.2) corresponds to the fact that the determinant of the al-
tered Kasteleyn matrix on the Fisher graph vanishes, thus relating Theorem 1.1 to Li’s
result. It also implies that we could have used the Fisher-Kasteleyn approach instead
of the Kac-Ward one, and that Li’s strategy and ours follow closely related lines of argu-
ments. However, the Kac-Ward method enables us to work on the original graph almost
throughout. We avoid in particular the detour through the Fisher graph and the use of
Dubédat’s mapping from the Fisher graph to the associated bipartite graph. This comes
at the cost of proving a direct correspondence between Kac-Ward and Kasteleyn deter-
minants on a bipartite graph (Section 3), which requires some effort but is interesting
in its own right.

Let us finally mention that Kac-Ward matrices are related to s-holomorphicity and
fermionic observables introduced in [7] (see [12] for an overview on the subject). There-
fore, this identification of the critical inverse temperature using the Kac-Ward matrices
opens new grounds in the understanding of universality and conformal invariance for
the Ising model on arbitrary doubly periodic graphs.
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J1 J2

J3 J4

Figure 1: The graphs of Examples 1.3, 1.4, 1.5 and 1.7.

1.4 A corollary

A consequence of the proof is the following corollary, which identifies the critical
point as being the unique singularity of the free energy per fundamental domain, see
(4.1) for the definition.

Corollary 1.2. The free energy per fundamental domain is analytic in β for any β 6= βc.

1.5 Some examples

We now illustrate Theorem 1.1 with several examples.

Example 1.3. Consider the square lattice with coupling constants Je = 1. It can be
represented by the toric graph illustrated to the left of Figure 1. The equation of The-
orem 1.1 then reads 1 = 2x + x2, where x = tanh(β). This leads to the well-known
value

βc = tanh−1(
√

2− 1) =
1

2
log(
√

2 + 1).

This value was first predicted in [22] and proved in [30]. Several alternative derivations
have been presented, see e.g. [1, 3, 4].

Example 1.4. Consider now the hexagonal lattice with coupling constants Je = 1 (see
Figure 1). This time, the equation reads 1 = 3x2, leading to

βc = tanh−1(
√

3/3) =
1

2
log(2 +

√
3).

Example 1.5. Similarly, the equation associated to the homogeneous triangular lattice
as represented in Figure 1 is 1 + x3 = 3x+ 3x2. This leads to

βc = tanh−1(2−
√

3) =
1

2
log(
√

3).

Example 1.6. More generally, consider a doubly periodic graph G isoradially embed-
ded in the plane, i.e. embedded in such a way that each face is inscribed in a circle of
radius one, with the circumcenter in the closure of the face. To each edge e, associate
the coupling constant

Je =
1

2
log

(
1 + sin θe

cos θe

)
,

where θe ∈ (0, π/2) is the half-rhombus angle associated to the edge e, as illustrated in
Figure 2.

It follows from [9, Theorem 4.7] (see also [5]) that
∑
γ∈E0(G) x(γ) −

∑
γ∈E1(G) x(γ)

vanishes for β = 1. By Theorem 1.1, this is the critical temperature for the isoradial
graph G . The cases with constant angles θe = π/4, π/3 and π/6 correspond to the three
examples above. Let us mention that the class of isoradial graphs has been extensively
studied in order to understand universality; see [2, 5, 6, 7].
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eθe

Figure 2: An edge e of an isoradial graph, the associated rhombus, and the half-rhombus
angle θe.

Example 1.7. Let us conclude with one last example which does not belong to the
class of isoradial weighted graphs. Let G denote the 2× 1 square lattice with arbitrary
coupling constants J1, J2, J3, J4 as illustrated in the right-hand side of Figure 1. Then,
the critical inverse temperature is given by the equation

1 + x3x4 = x3 + x4 + x1x2 + x1x2x3 + x2x3x4 + x1x2x3x4

where xi = tanh(βJi) for i = 1, 2, 3, 4.

Organization of the article

The next section defines the Kac-Ward matrices and recalls several of their prop-
erties. Section 3 presents a connection between Kac-Ward and Kasteleyn matrices, as
well as consequences for the Ising model. Section 4 contains the proofs of Theorem 1.1
and Corollary 1.2.

2 The Kac-Ward matrices

The aim of this section is to review the definition and main properties of the Kac-
Ward matrices associated with graphs embedded in surfaces. To simplify the present
exposition, we shall only treat the case of toric graphs with straight edges, referring
the reader to [8] for the general case and the proofs.

Let us start with some general terminology and notation. Given a weighted graph
(G, x), let E = E(G) be the set of oriented edges of G. Following [32], we shall denote
by o(e) the origin of an oriented edge e ∈ E, by t(e) its terminus, and by ē the same
edge with the opposite orientation. By abuse of notation, we shall write xe = xē for the
weight associated to the unoriented edge corresponding to e and ē.

Now, assume that G is embedded in the oriented torus T2 so that its edges are
straight lines and its faces are topological discs. Fix a character ϕ of the fundamental
group of T2, that is, an element of

Hom(π1(T2),C∗) = H1(T2;C∗),

the first cohomology group of T2 with coefficients in C∗.1

Note that the choice of two oriented simple closed curves γx, γy representing a basis
of H1(T2;Z) determines an isomorphism H1(T2;C∗) ' (C∗)2. Then, such a character
simply corresponds to a pair of non-zero complex numbers (z, w). Let us now assume

1Recall that in the present context, a 1-cochain is a map ϕ : E→ C∗ such that ϕ(ē) = ϕ(e)−1 for all e ∈ E.
Such a map is called a 1-cocycle if for each face f of G ⊂ T2, ϕ(∂f) :=

∏
e∈∂f ϕ(e) = 1. Multiplying each

ϕ(e) such that o(e) = v by a fixed λv ∈ C∗ results in another 1-cocycle, which is said to be cohomologous to
ϕ. Equivalence classes of 1-cocycles define the first cohomology group H1(T2;C∗).
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e e′

α(e, e′)

Figure 3: The angle α(e, e′) ∈ (−π, π).

that the curves γx, γy avoid the vertices of G and intersect its edges transversally. Then,
a natural 1-cocycle representing the class (z, w) is given by the map ϕ : E→ C∗ defined
by ϕ(e) = zγx·e wγy·e, where · denotes the intersection form. In words, γ · e gathers a +1

(resp. −1) each time γ and e intersect in such a way that (γ, e) define the positive (resp.
negative) orientation on T2.

Definition 2.1. Let Tϕ denote the |E| × |E| matrix defined by

Tϕe,e′ =

{
ϕ(e) exp

(
i
2α(e, e′)

)
xe if t(e) = o(e′) but e′ 6= ē;

0 otherwise,

where α(e, e′) ∈ (−π, π) denotes the angle from e to e′, as illustrated in Figure 3. We
shall call the matrix I−Tϕ the Kac-Ward matrix associated to the weighted graph (G, x),
and denote its determinant by Pϕ(G, x). When ϕ is identified with a pair of complex
numbers (z, w), we shall simply denote the determinant by P z,w(G, x).

Expanding this determinant, see [8], leads to an expression of the form

Pϕ(G, x) =
∑

γ∈Γ(G)

(−1)ε(γ)x(γ)ϕ(γ), (2.1)

where ε(γ) ∈ {0, 1} is some sign and elements of Γ(G) are unions of closed paths in
G that never backtrack and pass through each edge of G at most twice, and if so, in
opposite directions. This shows that Pϕ(G, x) does not depend on the choice of the 1-
cocycle representing the cohomology class ϕ ∈ H1(T2;C∗). Since γ belongs to Γ(G) if
and only if γ̄ does, we also immediately obtain that if ϕ belongs to H1(T2;S1) ' S1×S1

and x to RE(G), then Pϕ(G, x) is a real number.
As detailed in [8], a closer analysis of the sign ε(γ) leads to the following results.

Fix two oriented simple closed curves γx, γy as above, thus identifying H1(T2;C∗) with
(C∗)2 and H1(T2;Z2) with (Z2)2. For α ∈ H1(T2;Z2), let Zα denote the corresponding
partial partition function, that is

Zα =
∑

γ∈E (G),[γ]=α

x(γ),

where the sum ranges over all paths with homology class equal to α.

Proposition 2.2 ([8]). We have the following equalities:

P 1,1(G, x) = (Z00 − Z10 − Z01 − Z11)2, P−1,1(G, x) = (Z00 + Z10 − Z01 + Z11)2,

P 1,−1(G, x) = (Z00 − Z10 + Z01 + Z11)2, P−1,−1(G, x) = (Z00 + Z10 + Z01 − Z11)2.

This proposition has two interesting consequences. First of all, it implies that Equa-
tion (1.2) is equivalent to the vanishing of P 1,1(G, x). Also, it shows that for z, w = ±1,
P z,w(G, x) is the square of a polynomial in the weight variables x. By construction,
the constant coefficient (with respect to the variables x) of the polynomial P z,w(G, x) is
equal to 1. Denoting by P z,w(G, x)1/2 the square root of the polynomial with constant
coefficient +1, we get the following formula.
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G CG

tan(θ/2)
sin(θ)

sin(θ)

cos(θ) cos(θ)

1

1

1

1

Figure 4: The weighted bipartite graph CG associated to the weighted graph G.

Theorem 2.3 ([8]). The Ising partition function for a toric weighted graph (G, x) is
given by

Z(G, x) =
1

2

(
− P 1,1(G, x)1/2 + P 1,−1(G, x)1/2 + P−1,1(G, x)1/2 + P−1,−1(G, x)1/2

)
.

3 Relation to dimers and consequences

The aim of this section is to show that the Kac-Ward determinant Pϕ(G, x) is propor-
tional to the Kasteleyn determinant of an associated bipartite weighted graph (CG, y)

(see Theorem 3.1 below). By Kenyon and Okounkov’s [20, Theorem 1], it follows that
the curve defined by the zero-set of Pϕ(G, x) is a (simple) Harnack curve. It also implies
some new avatar of Kramers-Wannier duality (Corollary 3.3).

Let (G, x) ⊂ T2 be a weighted graph, and let us parametrize xe ∈ (0, 1) by xe =

tan(θe/2) with θe ∈ (0, π/2). Following Wu-Lin [36] (see also [10, 11]), let us consider
the associated weighted graph (CG, y) ⊂ T2 obtained from G as follows. Replace each
edge e of G by a rectangle with the edges parallel to e having weight sin(θe) while the
other two edges have weight cos(θe). In each corner of each face of G ⊂ T2, we now
have two vertices; join them with an edge of weight 1. This is illustrated in Figure 4.
Note that since the torus is orientable, the graph CG is bipartite: its vertices can be
split into two sets B tW (say, black and white vertices) such that no edge of CG joins
two vertices of the same group.

Recall that a Kasteleyn orientation [16, 17, 18] on a bipartite graph C embedded in
an orientable surface can be understood as a map ω : E(C) → {±1} such that for each
face f of C,

(δω)(f) :=
∏
e∈∂f

ω(e) = (−1)
|∂f|
2 +1.

The associated Kasteleyn operator K(C, y) : CB → CW can be defined by its matrix
elements: for w ∈W and b ∈ B, set

Kwb =
∑
e:w→b

ω(e)ye,

the sum being over all edges of C joining w to b. If C ⊂ T2 is endowed with a map
ϕ : E(C) → C∗ (for example, a 1-cocycle), then one can extend this definition to an
operator Kϕ(C, y) : CB → CW by multiplying the coefficient corresponding to the edge
e by ϕ(e), where e is oriented from the white to the black vertex.

The main result of this section is the following.

Theorem 3.1. For any weighted graph (G, x) ⊂ T2, there is a Kasteleyn orientation on
CG ⊂ T2 such that

Pϕ(G, x) = 2−|V (G)|
∏

e∈E(G)

(1 + x2
e) det(Kϕ(CG, y))
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e

R(e)

R2(e)R3(e)

...

R−1(e)

βe

Figure 5: The endomorphism R of L (E), and the angle βe.

for all ϕ ∈ H1(T2;C∗) ' (C∗)2.

Proof. The strategy of the proof is to gradually transform the Kac-Ward matrix for (G, x)

into the Kasteleyn matrix Kϕ(CG, y) while keeping track, at each step, of the effect of
the transformation on the determinant. Let us begin with some notation. We shall write
L (E) for the complex vector space spanned by the set E of oriented edges of G. Obvi-
ously, E can be partitioned into E =

⊔
v∈V (G)Ev, where Ev contains all oriented edges e

with origin o(e) = v. Now, let us cyclically order the elements of Ev by turning counter-
clockwise around v. (As T2 is orientable, this can be done in a consistent way.) Given
e ∈ Ev, let R(e) denote the next edge with respect to this cyclic order, as illustrated in
Figure 5. This induces an automorphism R of L (E). Also, let J denote the automor-
phism of L (E) given by J(e) = ē. Finally, we shall write x for the automorphism of
L (E) given by x(e) = xe e, and similarly for any weight system and for ϕ.

Let Succ ∈ End(L (E)) be defined as follows: if e is an oriented edge with terminus
t(e) = v, then

Succ(e) = ϕ(e)xe
∑
e′∈Ev

ω(e, e′) e′,

where ω(e, e′) = exp( i2α(e, e′)) for e′ 6= ē ∈ Ev with α(e, e′) as in Figure 3, and ω(e, ē) =

−i. Also, let T ∈ End(L (E)) be the endomorphism given by T = Succ + iJϕx. By
definition, the Kac-Ward matrix is equal to I − T . Now, consider the matrix

A = (I − T )(I + iJϕx) = I − Succ + Com,

where
Com(e) = −iϕ(e)xeT (ē) = −ix2

e

∑
e′∈Ev
e′ 6=e

ω(ē, e′) e′

if e has origin o(e) = v. Since

det(I + iJϕx) =
∏
e∈E

det

(
1 iϕ(ē)xe

iϕ(e)xe 1

)
=
∏
e∈E

(1 + x2
e),

we get the equality

Pϕ(G, x) = det(I − T ) =
∏
e∈E

(1 + x2
e)
−1 detA. (3.1)

We now focus on the computation of detA. We shall transform the matrix A by
multiplying it to the left with some well-chosen matrix N , whose determinant is easy to
compute. Let Q ∈ End(L (E)) be defined by

Q(e) = exp
(
i
2βe
)
e,
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where βe = π − α(J(R(e)), e) ∈ (0, 2π) denotes the angle between e and R(e) (see Fig-
ure 5). Obviously, the endomorphism N := I − RQ decomposes into N =

⊕
v∈V (G)Nv

with Nv ∈ End(L (Ev)), and one easily computes

detNv = 1−
∏
e∈Ev

exp
(
i
2βe
)

= 2.

Hence, the determinant of N is 2|V (G)|. Now, let us compute the composition NA. If e
has terminus t(e) = v, then

NSucc(e) = (I −RQ)ϕ(e)xe
∑
e′∈Ev

ω(e, e′) e′

= ϕ(e)xe
∑
e′∈Ev

(
ω(e, e′)− ω(e,R−1(e′)) exp

(
i
2βR−1(e′)

))
e′

= −2iϕ(e)xe ē.

Therefore, we have the equalityNSucc = −2iJϕx. Similarly, given ewith origin o(e) = v,

NCom(e) =(I −RQ)(−i)x2
e

∑
e′∈Ev\{e}

ω(ē, e′) e′

=− ix2
e

∑
e′∈Ev\{e,R(e)}

(
ω(ē, e′)− ω(ē, R−1(e′)) exp

(
i
2βR−1(e′)

))
e′

− ix2
e

(
ω(ē, R(e))R(e)− ω(ē, R−1(e)) exp

(
i
2βR−1(e)

)
e
)

=− x2
e(I +RQ)(e).

These two equalities lead to

NA = N(I − Succ + Com)

= (I −RQ) + 2iJϕx− (I +RQ)x2

= (1− x2) + 2iJϕx−RQ(1 + x2).

Since the determinant of N is 2|V (G)|, the equality displayed above together with Equa-
tion (3.1) give

Pϕ(G, x) = 2−|V (G)|
∏

e∈E(G)

(1 + x2
e) detM, (3.2)

where M is given by

M =
1− x2

1 + x2
+ iJϕ

2x

1 + x2
−RQ = cos(θ) + iJϕ sin(θ)−RQ,

using the paramatrization xe = tan(θe/2) of the weights.

The final step is now to show that this matrix M is conjugate to the Kasteleyn matrix
Kϕ(CG, y). The theorem will then follow from Equation (3.2). Let ψB : E → B (resp.
ψW : E → W ) denote the bijection mapping each oriented edge e of G to the unique
black (resp. white) vertex of CG immediately to the right (resp. left) of e, as illustrated
below. Observe that the three maps ψB ◦ ψ−1

W , ψB ◦ J ◦ ψ−1
W and ψB ◦ R ◦ ψ−1

W associate
to a fixed w ∈W the three black vertices of CG adjacent to w.

Therefore, the operator

K̃ϕ = (ψB ◦M ◦ ψ−1
W )∗ : CB → CW
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e = ψ−1
W (w)

R(e)
ψB(R(e))

ψB(e)

ψB(J(e))w

is given by the coefficients

K̃ϕ
wb =


cos(θe) if the edge (w, b) is perpendicular to e ∈ E;

ϕ(e)i sin(θe) if (w, b) is to the left of e ∈ E;

− exp
(
i
2βe
)

if (w, b) is in the “corner" of e and R(e);

0 if w and b are not adjacent in CG.

This is illustrated below.

e

R(e)

ϕ(e)i sin(θe)

ϕ(e)−1i sin(θe)
cos(θe)

cos(θe)

− exp
(
i
2
βe

)

In other words, K̃ϕ is precisely the Kasteleyn operator of (CG, y) associated to the 1-
cocycle ϕ̃ : E(CG)→ C∗ given by

ϕ̃(w, b) =

{
ϕ(e) if (w, b) runs parallel to e ∈ E;

1 else,

and to the map ω̃ : E(CG)→ S1 ⊂ C∗ given by

ω̃(w, b) =


1 if (w, b) is perpendicular to e ∈ E;

i if (w, b) is to the left of e ∈ E;

− exp
(
i
2βe
)

if (w, b) is in the corner of e and R(e).

Since the 1-cocycles ϕ and ϕ̃ induce the same class inH1(T2;C∗), it only remains to han-
dle the map ω̃. Extend it to a 1-cochain ω̃ : E(CG) → S1 by setting ω̃(b, w) = ω̃(w, b)−1.
Now, observe that for any face f of CG ⊂ T2,

(δω̃)(f) :=
∏
e∈∂f

ω̃(e) = (−1)
|∂f|
2 +1.

This is obvious for the rectangular faces; for the faces corresponding to vertices of G,
use the fact that the angles βe add up to 2π around each vertex; for the faces cor-
responding to faces of G, use the fact that the angles α(e, e′) add up to 2π around
each face. Furthermore, since we are working on the flat torus, one easily checks that
ω̃(γ) = ±1 if γ denotes a 1-cycle in CG ⊂ T2. Therefore, ω̃ is cohomologous to a Kaste-
leyn orientation ω. In other words, ω̃ can be transformed into ω by a sequence of the
following transformation: multiply all the edges adjacent to a fixed vertex of CG by
some complex number of modulus 1. Therefore, a Kasteleyn matrix Kϕ(CG, y) can be
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obtained from K̃ϕ by multiplying lines and columns by complex numbers of modulus 1,
and the equality

Pϕ(G, x) = 2−|V (G)|
∏

e∈E(G)

(1 + x2
e) det(Kϕ(CG, y))

holds up to multiplication by a fixed complex number of modulus 1. For ϕ taking values
in {±1}, both sides are real; therefore, the equality holds up to sign. One can then
choose a Kasteleyn orientation such that the identity holds.

Let us now fix a geometric basis of H1(T2;Z). As explained in Section 2, this al-
lows to identify any element ϕ of H1(T2;C∗) with a pair of non-zero complex numbers
(z, w) and to write Pϕ(G, x) = P z,w(G, x). The Newton polygon of such a polynomial
P z,w(G, x) =

∑
n,m∈Z anmz

nwm is the convex hull of {(n,m) ∈ Z2 ; anm 6= 0}. Recall
that a weighted graph (G, x) ⊂ T2 is non-degenerate if all the weights are positive and
the complement of G in the torus consists in topological discs. Using (2.1), one eas-
ily checks that for such graphs, the Newton polygon of P z,w(G, x) has positive area.
Theorem 3.1 and [20, Theorem 1] then immediately imply that (the real part of) the
associated spectral curve

A = {(z, w) ∈ (C∗)2 ; P z,w(G, x) = 0} ⊂ (C∗)2

is a (possibly singular) Harnack curve. This means that the curve A ⊂ (C∗)2 intersects
each torus T2(r, s) = {(z, w) ∈ (C∗)2 ; |z| = r, |w| = s} in at most two points (see [29]).

Recall that an element (z0, w0) of a complex curve A = {(z, w) ∈ (C∗)2 ; P (z, w) = 0}
is called a singularity of A if ∂

∂zP (z, w) = ∂
∂wP (z, w) = 0. As shown in [29, Lemma 6],

Harnack curves only admit (a very specific type of) real singularities, meaning that both
coordinates are real. In our case, this translates into the following corollary:

Corollary 3.2. The spectral curve associated to a non-degenerate weighted graph em-
bedded in the torus has no singularities other than real ones.

We now turn to Kramers-Wannier type duality for the Kac-Ward determinants. Again,
these results hold for the more general case of an arbitrary weighted graph embedded
in a closed orientable surface. For the simplicity of this exposition, we shall only con-
sider the special case of the torus.

If G is embedded in the torus, its dual is the graph G∗ ⊂ T2 obtained as follows:
each face of G ⊂ T2 defines a vertex of G∗, and each edge of G bounding two faces
of G ⊂ T2 defines an edge between the two corresponding vertices of G∗. Note that
(G∗)∗ = G. Finally, if G is endowed with weights x = (xe) ∈ (0, 1)E(G), define the
dual weights x∗ = (x∗e) ∈ (0, 1)E(G) via the condition x + x∗ + xx∗ = 1. If we use
the parametrization x = tan(θ/2), x∗ = tan(θ∗/2), then θ and θ∗ are simply related by
θ + θ∗ = π/2. Therefore, the weighted graph (CG∗ , y(x∗)) associated to (G∗, x∗) is equal
to the weighted graph (CG, y(x)) associated to (G, x). Hence, Theorem 3.1 together

with the equality 1+x2

1+x = 1+(x∗)2

1+x∗ immediately lead to the following.

Corollary 3.3. For any toric weighted graph (G, x) and any ϕ ∈ H1(T2;C∗),

2|V (G)|
∏

e∈E(G)

(1 + xe)
−1Pϕ(G, x) = 2|V (G∗)|

∏
e∈E(G)

(1 + x∗e)
−1Pϕ(G∗, x∗).

As mentioned in Proposition 2.2, for ϕ = (z, w) ∈ {±1}2, Pϕ(G, x) is the square of a
polynomial in the weight variables xe. As the constant coefficient of Pϕ(G, x) is equal
to 1, we can pick such a square root Pϕ(G, x)1/2 by requiring its constant coefficient to
be +1. Taking a closer look at the sign leads to the following duality.
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Corollary 3.4. For any toric weighted graph (G, x) and any ϕ ∈ H1(T2; {±1}),

2|V (G)|/2
∏

e∈E(G)

(1+xe)
−1/2Pϕ(G, x)1/2 = (−1)A(ϕ)2|V (G∗)|/2

∏
e∈E(G)

(1+x∗e)
−1/2Pϕ(G∗, x∗)1/2,

where A(ϕ) = 1 if ϕ = (1, 1), and A(ϕ) = 0 else.

Proof. By Corollary 3.3, we only need to determine the sign A(ϕ) in the equation above.
Setting x = 1 (and therefore, x∗ = 0) leads to

Pϕ(G, 1)1/2 = (−1)A(ϕ)2(|V (G∗)|+|E(G)|−|V (G)|)/2 = (−1)A(ϕ)2|V (G∗)|,

using the fact that |V (G)| − |E(G)| + |V (G∗)| is equal to the Euler characteristic of the
torus, i.e. zero. Furthermore, the Ising partition function Z(G, x) with weights x = 1 is
nothing but the cardinality of the Z2-vector space of 1-cycles modulo 2 in G. Since G
is connected, the dimension of this space is classically equal to |E(G)| − |V (G)| + 1 =

|V (G∗)|+ 1. Theorem 2.3 now reads

2|V (G∗)|+1 =
1

2

(
− (−1)A(1,1) + (−1)A(1,−1) + (−1)A(−1,1) + (−1)A(−1,−1)

)
2|V (G∗)|.

The term in parentheses is therefore equal to 4, a fact which determines the sign of the
four terms. The corollary follows.

4 The critical temperature

Consider a planar non-degenerate locally-finite weighted graph (G , J) invariant un-
der a lattice Λ ' Z ⊕ Z. Alternatively, we will use (G , x) when working directly with
the high-temperature expansion. Recall that G = G /Λ. For integral positive n,m, let
Λnm ' nZ ⊕mZ and let Gnm denote the toric weighted graph given by G /Λnm. Note
that G11 = G.

Let us introduce the free energy per fundamental domain as follows:

logZx := lim
n→∞

1

n2
logZ(Gnn, x). (4.1)

This definition is justified by classical super-multiplicative properties of partition func-
tions. The strategy of the proof of Theorem 1.1 is the following. We express the free
energy in terms of the Kac-Ward determinant, and we show that for any x such that
P z,w(G, x) has a zero on T2 := {(z, w) : |z| = 1, |w| = 1}, the free energy logZx is not
twice differentiable at x. We then use standard arguments on the Ising model to show
that logZx is twice differentiable except possibly at criticality. We begin by a classical
lemma.

Lemma 4.1. For any (z, w) ∈ T2 and x ∈ RE(G),

P z,w(Gnm, x) =
∏
un=z

∏
vm=w

Pu,v(G, x).

Proof. The proof of [21, Theorem 3.3] applies almost verbatim.

The next lemma shows that the only zeros of P z,w(G, x) are localized at (1, 1).

Lemma 4.2. For any (z, w) ∈ T2 \ {(1, 1)} and x ∈ (0, 1)E(G), P z,w(G, x) > 0.

Proof. The proof is divided into four steps.
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Step 1. P z,w(G, x) > 0 for any (z, w) ∈ {(−1, 1), (1,−1), (−1,−1)}. Proposition 2.2 shows
that

Z00(G, x) =
1

4

(
P 1,1(G, x)1/2 + P 1,−1(G, x)1/2 + P−1,1(G, x)1/2 + P−1,−1(G, x)1/2

)
.

Corollary 3.4 and Theorem 2.3 then give the equality Z00(G, x) = C · Z(G∗, x∗), where

C := 2|V (G∗)|/2−|V (G)|/2−1
∏
e

(
1 + xe
1 + x∗e

)1/2

.

In the same way, Z10(G, x) can be expressed as a linear combination of P 1,1(G∗, x∗)1/2,
P 1,−1(G∗, x∗)1/2, P−1,1(G∗, x∗)1/2 and P−1,−1(G∗, x∗)1/2. Using Proposition 2.2 again,
we obtain the equality

Z10(G, x) = C · (Z00(G∗, x∗) + Z10(G∗, x∗)− Z01(G∗, x∗)− Z11(G∗, x∗)) ,

which leads to Z10(G, x) ≤ C · Z(G∗, x∗) = Z00(G, x). This argument can be carried out
for any homology class α, so

Zα(G, x) ≤ Z00(G, x) for any α ∈ {00, 01, 10, 11}.

The assumption that G is non-degenerate implies that all Zα(G, x)’s are strictly positive.
The statement now follows from the inequality displayed above, and Proposition 2.2.

Step 2. P z,w(G, x) 6= 0 for any (z, w) such that zm = −1 and wn = −1 for some (m,n) ∈
N2. This follows immediately from the first step applied to Gmn and Lemma 4.1.

Step 3. P z,w(G, x) ≥ 0 for any (z, w) ∈ T2. Recall that P z,w(G, x) is real for any (z, w) ∈
T2. Let us fix (z, w) with zn = −1 and wm = −1. By the second step,

X = {x ∈ (0, 1)E(G) | P z,w(G, x) ≥ 0} = {x ∈ (0, 1)E(G) | P z,w(G, x) > 0}.

By continuity of x 7→ P z,w(G, x), X is therefore both closed and open. It is also non-
empty since P z,w(G, x) tends to 1 as x tends to 0. By connexity of (0, 1)E(G), X is this
whole space. By continuity of (z, w) 7→ P z,w(G, x), the statement follows.

Step 4. P z,w(G, x) = 0 implies (z, w) = (1, 1). Assume that P z,w(G, x) = 0. Then,
(z, w) must be a singularity (i.e. satisfy ∂

∂zP
z,w(G, x) = ∂

∂wP
z,w(G, x) = 0); otherwise,

P z,w(G, x) would take negative values near (z, w), contradicting the third step. By Corol-
lary 3.2, (z, w) ∈ T2 is real, i.e. (z, w) ∈ {(−1,−1), (−1, 1), (1,−1), (1, 1)}. By the first
step, (z, w) must be equal to (1, 1), and the lemma is proved.

The free energy can be expressed in terms of P as follows:

Lemma 4.3. For any x ∈ (0, 1)E(G),

logZx =
1

2(2πi)2

∫
T2

logP z,w(G, x)
dz

z

dw

w
.

Proof. The proof is inspired by the proof of [21, Theorem 3.5]. First note that P z,w(G, x) >

0 for any (z, w) 6= (1, 1) by Lemma 4.2, and that

logP z,w(G, x) = O
[

log(|z − 1|+ |w − 1|)
]
,

which legitimates the integral on the right-hand side. Lemma 4.1 and the bounded
convergence theorem imply that for (ε, η) ∈ {(−1,−1), (−1, 1), (1,−1)},

1

n2
logP ε,η(Gnn, x) =

1

n2

∑
zn=ε

∑
wn=η

logP z,w(G, x) −→ 1

(2πi)2

∫
T2

logP z,w(G, x)
dz

z

dw

w
.
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Now, Proposition 2.2 and Theorem 2.3 imply the inequalities

P−1,1(Gnn, x) ≤ Z(Gnn, x)2 ≤ 9/4 max{P−1,−1(Gnn, x), P−1,1(Gnn, x), P 1,−1(Gnn, x)},

which lead to the claim.

For the next theorem, let us adopt the terminology of the high-temperature expan-
sion. For (G , x) biperiodic, let µ+

G ,x be the Ising measure on G with edge-weights x and
+ boundary conditions. Let x∗ such that x+ x∗ + xx∗ = 1 be the dual weights obtained
by Kramers-Wannier duality.

Theorem 4.4. Let G be a non-degenerate locally-finite doubly periodic graph and r ∈
V (G ). Then,

(i) If µ+
G ,y(σr) = 0 for any weights y in a neighborhood of x, then there exists c =

c(x) > 0 such that µ+
G ,x(σaσb) ≤ exp(−c|a− b|), for any a, b ∈ V (G );

(ii) If µ+
G ,y(σr) > 0 for any weights y in a neighborhood of x, there exists c′ = c′(x) > 0

such that µ+
G ∗,x∗(σuσv) ≤ exp(−c′|u− v|), for any u, v ∈ V (G ∗).

While this theorem is not surprising and follows from very classical ingredients, the
proof does not appear in the literature. We therefore recall it here.

Proof of Theorem 4.4. Let us prove (i). Choose β and J in such a way that xe = tanh(βJe).
The condition implies that β < βc for (G , J). Harnessing [1, Theorem 1], we obtain that
the susceptibility is finite: ∑

b∈G

µ+
G ,x(σaσb) <∞

for any a ∈ G . Using an inequality of Simon [34], finite susceptibility classically implies
that correlations decay exponentially fast. Note that [1] applies in the very general
context of finite range Ising models on Zd with periodic coupling constants. In our
case, the model is only biperiodic but as discussed by the authors, the proof extends
very easily to this framework.

Let us now deal with (ii). We aim to apply (i) to the dual measures. For this reason,
it is sufficient to prove that µ+

G ,y(σr) > 0 implies µ+
G ∗,y∗(σu) = 0 or equivalently that

µfree
G ∗,y∗(σuσv) → 0 as |u − v| → ∞ (u, v ∈ G ∗), where “free" refers to free boundary

conditions. Intuitively, this claim is valid since there cannot be a positive spontaneous
magnetization for both the primal and dual Ising models. This is best seen in the context
of random-cluster models. We thus use the Edwards-Sokal coupling [13].

Let φ1
G ,p,2 be the random-cluster measure on G with cluster-weight 2, edge-weights

given by

pe =
2ye

1 + ye

and wired boundary conditions; see [15, Section 4.2]. The Edwards-Sokal coupling [15,
Section 1.4] shows that

φ1
G ,p,2(r is connected to infinity) = µ+

G ,y(σr) > 0

which implies the existence of an infinite cluster φ1
G ,p,2-almost surely. Let (φ1

G ,p,2)∗ be
the dual measure, see [15, Section 6.1]. Since the random-cluster model satisfies the
FKG inequality [15, Theorem 3.8], Corollary 9.4.6 of [33] implies that there cannot be
coexistence of an infinite cluster and an infinite dual cluster φ1

G ,p,2-almost surely. Thus,
there is no infinite cluster on G ∗ for the dual random-cluster model (φ1

G ,p,2)∗-almost

EJP 18 (2013), paper 44.
Page 14/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2352
http://ejp.ejpecp.org/


The critical temperature for the Ising model

surely. Now, (φ1
G ,p,2)∗ = φfree

G ∗,p∗,2 and µfree
G ∗,y∗ are also coupled via the Edwards-Sokal

coupling. We obtain

µfree
G ∗,y∗(σuσv) = (φ1

G ,p,2)∗(u connected to v) −→ 0

as |u− v| → ∞ (u, v ∈ G ∗).

Remark 4.5. For (ii), one can also invoke (with some modifications) the result of
Lebowitz and Pfister [23] together with duality.

Proof of Theorem 1.1. Fix (G , J). Define xβ = (tanh(βJe))e where β > 0. First, Propo-
sition 2.2 implies that Equation (1.2) is equivalent to P 1,1(G, xβ)1/2 = 0. Note that
P 1,1(G, xβ)1/2 tends to 1 as β tends to 0 (by definition), and to −2|V (G∗)| as β tends to
∞ (by Corollary 3.4), so that there exists at least one solution (in β) to this equation.
We now show that there exists a unique such solution by proving that P 1,1(G, xβ) = 0

implies β = βc.
We first show that βc ≤ β by assuming that β < βc, or equivalently xβ < xβc , and

by seeking for a contradiction. Since P 1,1(G, x) is not constant on a neighborhood of
xβ (for instance P 1,1(G, xβ′) > 0 for β′ close enough to β), there exist e ∈ E(G) and
xβ ≤ x < xβc such that P 1,1(G, x) = 0 and xe 7→ P 1,1(G, x) is non constant. Fix such an
edge e and weights x, and let x(t) be defined by x(t)e′ = xe′ if e′ 6= e and x(t)e = xe + t.
By Equation (2.1), t 7→ P 1,1(G, x(t)) is a polynomial of degree exactly 2. Furthermore,

since P 1,1(G, x(0)) = 0, P e
iθ,eiη (G, x(t)) = P e

−iθ,e−iη (G, x(t)) and P e
iθ,eiη (G, x) ≥ 0 for

any (θ, η, t) in a neighborhood of the origin (Lemma 4.2), we obtain the following devel-
opment near (0, 0, 0):

P e
iθ,eiη (G, x(t)) = (a11t

2 + a22θ
2 + a33η

2 + 2a23θη)f(t, θ, η),

where f(t, θ, η) = 1+o(|t, θ, η|2) is a non-vanishing analytic function, and the coefficients
satisfy a22a33 − a2

23 ≥ 0 and a11 > 0. Now,

t 7−→
∫ π

−π

∫ π

−π
log f(t, θ, η)dθdη

is twice differentiable in t, so that logZx is twice-differentiable in xe at x if and only if

t 7−→
∫ π

−π

∫ π

−π
log(a11t

2 + a22θ
2 + a33η

2 + 2a23θη)dθdη

is twice differentiable at 0. For t 6= 0, the second derivative in t of this function equals∫ π

−π

∫ π

−π

2a11(a11t
2 + a22θ

2 + a33η
2 + 2a23θη)− 4a2

11t
2

(a11t2 + a22θ2 + a33η2 + 2a23θη)2
dθdη.

As t tends to 0, this integral tends to∫ π

−π

∫ π

−π

2a11

(a22θ2 + a33η2 + 2a23θη)
dθdη,

that is, to ∞, since a11 > 0 and a22a33 − a2
23 ≥ 0. But this is in contradiction with the

assumption that x < xβc since in this case, exponential decay implies that logZx is twice
differentiable. We now justify this last statement. Fix a representative {a, b} ∈ E(G ) of
the edge e. Let Gnn be a fundamental domain of the action of Λnn on G . Further assume
that Gnn contains the edge e. Let En (resp. E) be the set of translates of e in E(Gnn)
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(resp. E(G )). Since the definition of the free energy does not depend on the boundary
condition, one has

logZx = lim
n→∞

1

n2
logZ(Gnn, x),

where Z(Gnn, x) is the partition function on Gnn with free boundary conditions. Set
xe = tanh(βJ ′e). The high temperature expansion (1.1) shows that

logZx = lim
n→∞

1

n2
logZJ

′

β (Gnn)−
∑

e∈E(G)

log(cosh(βJ ′e))− |V (G)| · log(2),

where ZJ
′

β (Gnn) is defined in the introduction. Since J ′e depends smoothly on xe, it is

sufficient to show that limn→∞
1
n2 logZJ

′

β (Gnn) is twice differentiable with respect to J ′e.
We obtain

1

n2

∂2

∂J ′e
2

logZJ
′

β (Gnn) = β2
∑

{u,v}∈En

(
µGnn,x(σaσbσuσv)− µGnn,x(σaσb)µGnn,x(σuσv)

)
,

where µGnn,x is the measure on Gnn with free boundary conditions. Lebowitz’s inequal-
ity [24, Remark (i), p. 91] then yields

|µGnn,x(σaσbσuσv)−µGnn,x(σaσb)µGnn,x(σuσv)|
≤ µGnn,x(σaσu)µGnn,x(σbσv) + µGnn,x(σaσv)µGnn,x(σbσu).

The comparison between boundary conditions implies µGnn,x(σaσu) ≤ µ+
G ,x(σaσu), which,

together with Lebowitz’s inequality and Property (i) of Theorem 4.4, leads to∑
{u,v}∈En

∣∣∣µGnn,x(σaσbσuσv)− µGnn,x(σaσb)µGnn,x(σuσv)
∣∣∣ ≤ 2

∑
{u,v}∈E

exp(−c(x)|u− a|).

The term on the right-hand side is therefore bounded uniformly in n and in x, provided
that x takes value in a compact subset of {x < xβc}. The bounded convergence theorem
then implies that logZx is twice differentiable in J ′e, and thus in xe. In conclusion, x
cannot be smaller than xβc , and we obtain that β ≥ βc.

Let us conclude the proof by showing that β ≤ βc. Corollary 3.3 shows that P 1,1(G, xβ) =

0 implies P 1,1(G∗, x∗β) = 0. Now if β > βc, or equivalently x∗β < x∗βc , one can run the
previous argument for the dual model, using Property (ii) of Theorem 4.4 in place of
Property (i).

Proof of Corollary 1.2. When β 6= βc, P z,w(G, xβ) > 0 for any (z, w) ∈ T2 and β 7→
logP z,w(G, xβ) is analytic. By Lemma 4.3, the free energy is a parameter-dependent
integral which is analytic at β 6= βc.
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