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Abstract

We establish new Bonferroni-type lower bounds for the probability of a union of
finitely many events where the selection of intersections in the estimates is deter-
mined by the clique complex of a chordal graph.
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1 Introduction

The classical Bonferroni inequalities state that for any finite collection of events
{Av}v∈V ,

Pr

(⋃
v∈V

Av

)
≤

∑
I∈P∗(V )
|I|≤2r−1

(−1)|I|−1 Pr

(⋂
i∈I

Ai

)

Pr

(⋃
v∈V

Av

)
≥

∑
I∈P∗(V )
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(−1)|I|−1 Pr
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) (r = 1, 2, 3, . . . ), (1.1)

where P∗(V ) denotes the set of non-empty subsets of V . Numerous variants of these
inequalities are known; see, e.g., Galambos and Simonelli [6] for a survey on Bonferroni-
type inequalities, which are variants of (1.1) that are applicable to any finite family of
events. More recent variants arising from abstract tubes [3, 8] and monomial ideals [11]
take advantage of the underlying structure of events, thus reducing the sum in (1.1) to
a subcomplex of P∗(V ), while providing provably tighter bounds at all truncations.

This short note is inspired by both lines of research. Our main result is a variant of
the lower bound in (1.1), which is applicable to any finite family of events, and where
the selection of intersections in the estimates is determined by the clique complex of a
chordal graph.

We refer to [2] for terminology on graphs. We write G = (V,E) to denote that G is
a graph having vertex-set V , which we assume to be finite, and edge-set E, consisting
of two-element subsets of V . We use C (G) to denote the clique complex of G, that is,
the abstract simplicial complex consisting of all non-empty cliques of G. A graph is
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referred to as chordal if it contains no cycles of length four or any higher length as
induced subgraphs.

Our main result in Section 2 complements the upper bound in Proposition 1.1 below,
which interpolates between Boole’s inequality (G edgeless or r = 1), Hunter’s inequality
[7] (G a tree and r ≥ 2), and the sieve formula (G complete and r ≥ (|V | + 1)/2). For
r = 2, the bound in Proposition 1.1 was independently found by Boros and Veneziani
[1] by linear programming techniques; see also [10] for a discussion on this particular
case.

Proposition 1.1 ([3, 4]). Let {Av}v∈V be a finite collection of events, where the indices
form the vertices of a chordal graph G. Then,
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(r = 1, 2, 3, . . . ). (1.2)

2 Main result

We use c(G) resp. α(G) to denote the number of connected components resp. the
independence number of G. Our main result is a lower bound analogue of (1.2).

Theorem 2.1. Let {Av}v∈V be a non-empty finite collection of events, where the indices
form the vertices of a chordal graph G. Then,
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(r = 1, 2, 3, . . . ). (2.1)

Remark 2.2. Due to (1.2) the upper bound in (2.1) is non-negative for r ≥ |V |/2. If G
is complete, (2.1) coincides with the classical Bonferroni lower bounds.

The proof of Theorem 2.1 is facilitated by the following proposition.

Proposition 2.3. For any chordal graph G = (V,E),∑
I∈C(G)
|I|≤2r

(−1)|I|−1 ≤ c(G) (r = 1, 2, 3, . . . ), (2.2)

with equality if r ≥ |V |/2.

Proof. If G is connected, the result follows from the following topological results:

i) The clique complex of any connected chordal graph is contractible ([5]).

ii) For any contractible abstract simplicial complex, the Euler characteristic of its (2r−
1)-skeleton is at most 1, with equality if r ≥ |V |/2 ([8]).

If G is disconnected, apply the inequality to each of its connected components.

Proof of Theorem 2.1. For any J ⊆ V , J 6= ∅, define

BJ :=
⋂
i∈J

Ai ∩
⋂
i/∈J

Ai.
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Note that the BJ ’s form a partition of
⋃
v∈V Av. Clearly, G[J ] is chordal and c(G[J ]) ≤

α(G) for any J ⊆ V , J 6= ∅. Hence, by applying Proposition 2.3 to G[J ] we obtain
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Remark 2.4. In view of the preceding proof and Proposition 2.3 the best bound in
(2.1) is obtained for r ≥ |V |/2. Tighter bounds can be obtained by replacing α(G) by
α′(G) := max{c(G[J ]) | ∅ 6= J ⊆ V, BJ 6= ∅}. In particular, if G[J ] is connected whenever
BJ 6= ∅ for any choice of J ⊆ V , J 6= ∅, then α′(G) = 1. In this case, for r ≥ |V |+1

2 the
inequalities in (1.2) and (2.1) turn into an identity, which is well-known in abstract tube
theory [3].

Remark 2.5. The requirement that G is chordal cannot be omitted from Theorem 2.1.
Consider the non-chordal graph G = (V,E) depicted in Figure 1, and consider events
Av, v ∈ V , with Pr(Av) = 1 for any v ∈ V . The clique complex of this graph consists of 8
cliques of size 1, 20 cliques of size 2, and 16 cliques of size 3. Since α(G) = 3, the first
inequality in Theorem 2.1 gives the non-valid bound 1 ≥ 1

3 (8− 20 + 16) = 4
3 for r ≥ 2.

This graph G is a subgraph of G3 — the first graph in an infinite sequence (Gk)k=3,5,...

of non-chordal graphs for which (2.1) does not hold. Each Gk is the join of k disjoint
copies of the edgeless graph on three vertices. By letting r ≥ 3k

2 and Pr(Av) = 1 for any
vertex v of Gk, (2.1) specializes to 1 ≥ 1

3 (1 + 2k), which does not hold for any k ≥ 3.

Figure 1: A non-chordal graph for which (2.1) does not hold.

3 Particular cases

Similar to [3], where upper bounds are derived from (1.2) for different choices of G,
lower bound analogues of these bounds can be derived from (2.1). As examples we
consider lower bound analogues of Hunter’s inequality [7] and Seneta’s inequality [9].
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Corollary 3.1. Let {Av}v∈V be a non-empty finite collection of events, where the in-
dices form the vertices of a tree G = (V,E). Then,

Pr

( ⋃
v∈V
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 .

Proof. Since any tree is chordal, the result follows from Theorem 2.1 with r ≥ 2.

Corollary 3.2. Let A1, . . . , An be a finite collection of events, and j, k ∈ {1, . . . , n}.
Then,
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provided n > 2− δjk where δjk denotes the Kronecker delta.

Proof. Define G = K2−δjk ∗Ln−2+δjk (the join of a complete graph on 2−δjk vertices and
an edgeless graph on n− 2 + δjk vertices), and apply Theorem 2.1 with r ≥ |V |/2.
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