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Abstract

We consider the spreading dynamics of two nested invasion clusters on an infinite
tree. This model was defined as the chase-escape model by Kordzakhia and it admits
a limit process, the birth-and-assassination process, previously introduced by Aldous
and Krebs. On both models, we prove an asymptotic equivalent of the extinction
probability near criticality. In the subcritical regime, we give a tail bound on the total
progeny of the preys before extinction.
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1 Introduction

The chase-escape process is a stochastic predator-prey dynamics which was studied
by Kordzakhia [15] on a regular tree. In an earlier paper, Aldous and Krebs [4] had
introduced the birth-and-assassination (BA) process. The latter model can be seen as
a natural limit of the chase-escape model. In [8] the two models were merged into
the rumor scotching process. The original motivation of Aldous and Krebs was then to
analyze a scaling limit of a queueing process with blocking which appeared in database
processing, see Tsitsiklis, Papadimitriou and Humblet [24]. As pointed in [8], the BA
process is also the scaling limit of a rumor spreading model which is motivated by
network epidemics and dynamic data dissemination (see for example, [19], [5], [20]).

We may conveniently define the chase-escape processes as a SIR dynamics (see for
example [19] or [5] for some background on standard SIR dynamics). This process rep-
resents the dynamics of a rumor/epidemic spreading on the vertices of a graph along its
edges. A vertex may be unaware of the rumor/susceptible (S), aware of the rumor and
spreading it as true/infected (I), or aware of the rumor and trying to scotch it/recovered
(R).

We fix a locally finite connected graph G = (V,E). The chase-escape process is
described by a Markov process on X = {S, I,R}V . If {u, v} ∈ E, we write u ∼ v. For
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Predator-prey dynamics on infinite trees

v ∈ V , we also define the X → X maps Iv and Rv by : for x = (xu)u∈V , (Iv(x))u =

(Rv(x))u = xu, if u 6= v and (Iv(x))v = I, (Rv(x))v = R. Let λ ∈ (0, 1) be a fixed infection
intensity. We then define the Markov process with transition rates:

K(x, Iv(x)) = λ1(xv = S)
∑
u∼v

1(xu = I),

K(x,Rv(x)) = 1(xv = I)
∑
u∼v

1(xu = R),

and all other transitions have rate 0. In words, a susceptible vertex is infected at rate λ
by its infected neighbors, and an infected vertex is recovered at rate 1 by its recovered
neighbors. The absorbing states of this process are the states without I-vertices or with
only I vertices. In this paper, we are interested by the behavior of the process when at
time 0 there is a non-empty finite set of I and R-vertices.

In [15], this model was described as a predator-prey dynamics: each vertex may be
empty (S), occupied by a prey (I) or occupied by a predator (R). The preys spread on
unoccupied vertices and predators spread on vertices occupied by preys. If G is the Zd-
lattice and if there is no R-vertex, the process is the original Richardson’s model [21].
With R-vertices, this process is a variant of the two-species Richardson model with prey
and predators, see for example Häggström and Pemantle [12], Kordzakhia and Lalley
[16]. There is a growing cluster of (I)-vertices spreading over (S)-vertices and a nested
growing cluster of (R)-vertices spreading on (I)-vertices.

The chase-escape process differs from the classical SIR dynamics on the transition
from I to R: in the classical SIR dynamics, a I-vertex is recovered at rate 1 indepen-
dently of its neighborhood.

Chase-escape process on a tree If the graph G = T = (V,E) is a rooted tree, the
process is much simpler to study. We denote by ø the root of T . For the range of initial
conditions of interest (non-empty finite set of I and R-vertices), there is no real loss of
generality to study the chase-escape process on the tree T ↓ obtained from T by adding
a particular vertex, say o, connected to the root of the tree. At time 0, vertex o is in
state R, the root ø is in state I, while all other vertices are in state S (see figure 1). We
shall denote by X(t) ∈ {S, I,R}V our Markov process on the tree T ↓. Under Pλ, X is
the chase escape process on T ↓ with infection rate λ.

o

ø

Figure 1: The initial condition : the root is I, o is R, all other vertices are S.

We say that the Markov processX gets extinct if at some (random) time τ <∞, there
is no I-particle. Otherwise the process is said to survive. We define the probability of
extinction as

qT (λ) = Pλ(X gets extinct).
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Predator-prey dynamics on infinite trees

Obviously, if T is finite then qT (λ) = 1 for any λ ≥ 0. Before stating our results, we first
need to introduce some extra terminology.

There is a canonical way to represent the vertex set V as a subset of Nf = ∪∞k=0N
k

with N0 = ø and N = {1, 2 · · · }. If k ≥ 1 and v ∈ V is at distance k from the root, then
v = (i1, · · · , ik) ∈ V ∩ Nk. The genitor of v is (i1, · · · , ik−1): it is the first vertex on the
path from v to the root ø of length k. The offsprings of v are set of vertices who have
genitor v. They are indexed by (i1, · · · , ik, 1), · · · , (i1, · · · , ik, nv), where nv is the number
of offsprings of v. The ancestors of v is the set of vertices (i1, · · · , i`), 0 ≤ ` ≤ k − 1 with
the convention i0 = . Similarly, the n-th generation offsprings of v are the vertices in
V ∩Nk+n of the form (v, ik+1, · · · , ik+n).

Recall that the upper growth rate d ∈ [1,∞] of a rooted infinite tree T is defined as

d = lim sup
k→∞

|Vk|1/k,

where Vk = V ∩Nk is the set of vertices at distance k from the root and | · | denotes the
cardinal of a finite set. The lower growth rate is defined similarly with a lim inf. When
the lim inf and the lim sup coincide, this defines the growth rate of the tree.

For example, for integer d ≥ 1, we define the d-ary tree as the tree where all vertices
have exactly d offsprings1. Obviously, the d-ary tree has growth rate d. More generally,
consider a realization T of a Galton-Watson tree with mean number of offsprings d ∈
(1,∞). Then, the Seneta-Heyde Theorem [23, 14] implies that, conditioned on T infinite,
the growth rate of T is a.s. equal to d. For background on random trees and branching
processes, we refer to [6, 22].

For integer n ≥ 1, we define T ∗n as the rooted tree on V obtained from T by putting
an edge between all vertices and their n-th generation offsprings. For real d > 1, we
say that T is a lower d-ary if for any 1 < δ < d, there exist an integer n ≥ 1 and v ∈ V
such that the subtree of the descendants of v in T ∗n contains a dδne-ary tree. Note that
if T is lower d-ary then its lower growth rate is at least d. Also, if T is the realization of
a Galton-Watson tree with mean number of offsprings d ∈ (1,∞) then, conditioned on T
infinite, T is a.s. lower d-ary (for a proof see Lemma 5.5 in appendix).

The first result is an extension of [15, Theorem 1] where it is proved for d-ary trees.
It describes the phase transition of the event of survival.

Theorem 1.1. Let d > 1 and

λ1 = 2d− 1− 2
√
d(d− 1).

If 0 < λ < λ1 and the upper growth rate of T is at most d, then qT (λ) = 1. If λ > λ1 and
T is lower d-ary, then 0 < qT (λ) < 1.

Note that in the classical SIR dynamics, it is easy to check that the critical value of
λ is λ = 1/(d− 1). Also, for any d > 1, λ1 < 1 and,

λ1 ∼d↑∞
1

4d
. (1.1)

The proof of Theorem 1.1 will follow a strategy parallel to [15, 4]. We employ tech-
niques akin to the study the infection process in the Richardson model. They will be
based on large deviation estimates on the probability that a single vertex is I at time t.

To our knowledge, there is no known closed form expression for the extinction prob-
ability qT (λ). Our next result determines an asymptotic equivalent for the probability
of survival for λ close to λ1. Our method does not seem to work on the sole assumption

1It would be more proper to call this tree the complete infinite d-ary tree.
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Predator-prey dynamics on infinite trees

that T has growth rate d > 1 and is lower d-ary. We shall assume that T is a realization
of a Galton-Watson tree with offspring distribution P and

d =

∞∑
k=1

kP (k) > 1.

We consider the annealed probability of extinction:

q(λ) = E′[qT (λ)] = P′λ(X gets extinct),

where the expectation E′(·) is with respect to the randomness of the tree and P′λ(·) =

E′ (Pλ(·)) is the probability measure with respect to the joint randomness of T and
X. Note that in the specific case d integer and P (d) = 1, T is the d-ary tree and the
measures P′λ and Pλ coincide.

Theorem 1.2. Assume further that the offspring distribution has finite second moment.
There exist constants c0, c1 > 0 such that for all λ1 < λ < 1,

c0ω
3e
− (1−λ1)π

2(d(d−1))1/4
ω−1

≤ 1− q(λ) ≤ c1e
− (1−λ1)π

2(d(d−1))1/4
ω−1

,

with

ω =
√
λ− λ1.

Note that the behavior depicted in Theorem 1.2 contrasts with the classical SIR
dynamics, where 1 − q(λ) is of order (λ(d − 1) − 1)+. This result should however be
compared to similar results in the Brunet-Derrida model of branching random walk
killed below a linear barrier, see Gantert, Hu and Shi [11] and also Bérard and Gouéré
[7]. As in this last reference, our approach is purely analytic. We will first check that
q(λ) is related to a second order non-linear differential equation. Then, we will rely on
comparisons with linear differential equations. A similar technique was already used
by Brunet and Derrida [9], and notably also in Mueller, Mytnik and Quastel [18, section
2].

A possible parallel with the Brunet-Derrida model of branching random walk killed
below a linear barrier is the following. Consider a branching random walk on Z started
from a single particle at site 0 where the particles may only move by one step on the
right. If we are only concerned by the extinction, we can think of this process as some
branching process without walks where a particle at site k gives birth to particles at
site k + 1. We can in turn represent this process by a growing random tree where the
set of vertices at depth k is the set of particles at site k. Hence (I)-vertices play the
role of the particles, the branching mechanism is the spreading of the (I)-vertices over
the (S)-vertices and the set of (R)-vertices is a randomly growing barrier which absorbs
the particles/(I)-vertices. Kortchemski [17] has recently built an explicit coupling of a
branching random walk with the chase-escape process on a tree.

In the case 0 < λ < λ1, the process X stops a.s. evolving after some finite τ . We
define Z as the total progeny of the root, i.e. the total number of recovered vertices
(excluding the vertex o of T ↓) at time τ . It is the number of vertices which will have
been infected before the process reaches its absorbing state. We define the annealed
parameter:

γ(λ) = sup {u ≥ 0 : E′λ[Zu] <∞} .

The scalar γ(λ) can be though as a power-tail exponent of the variable Z under the
annealed measure P′λ. In particular, for any 0 < γ < γ(λ), from Markov Inequality,
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Predator-prey dynamics on infinite trees

there exists a constant c > 0 such that for all t ≥ 1, P′λ(Z ≥ t) ≤ ct−γ . Conversely, if
there exist c, γ > 0 such that for all t ≥ 1, P′λ(Z ≥ t) ≤ ct−γ , then γ(λ) ≥ γ. We define

γP = sup

{
u ≥ 1 :

∞∑
k=1

kuP (k) <∞

}
≥ 1.

Theorem 1.3. (i) For any 0 < λ < λ1,

γ(λ) = min

(
λ2 − 2dλ+ 1− (1− λ)

√
λ2 − 2λ(2d− 1) + 1

2λ(d− 1)
, γP

)
.

(ii) Let 1 ≤ u < γP , Au = u2(d− 1) + 2ud+ (d− 1), and

λu =
Au −

√
A2
u − 4u2

2u
.

If λ < λu then E′λ[Zu] is finite. If λ > λu, E′λ[Zu] is infinite.

It is straightforward to check that (i) is equivalent to (ii). Also, for u = 1, λu co-
incides with λ1 defined in Theorem 1.1. It follows that γ(λ) ≥ 1 for all 0 < λ < λ1.
Theorem 1.3 contrasts with classical SIR dynamics. For example, if T is the d-ary tree,
for all λ < 1/(d − 1) there exists a constant c > 0 such that E′λ exp(cS) < ∞ where S

is the total progeny in the classical SIR dynamics. Here, the heavy-tail phenomenon is
an interesting feature of the chase-escape process. Intuition suggest that large values
of Z come from a (I)-vertex which is not recovered before an exceptionally long time.
Indeed, in the chase escape process, a (I)-vertex which is not recovered by time t will
typically have a progeny which is exponentially large in t (this is not the case in the
classical sub-critical SIR dynamics, the progeny of such vertex will typically be of order
1) . A similar phenomenon appears also in the Brunet-Derrida model, see Addario-Berry
and Broutin [1], Aïdékon [2] and Aïdékon Hu and Zindy [3]. Note finally that

γ(λ) ∼λ↓0 min

(
1

(d− 1)λ
, γP

)
and γ(λ) ∼λ↑λ1

1.

By recursion, we will also compute the moments of Z. The computation of the first
moment gives

Theorem 1.4. If 0 < λ ≤ λ1 and ∆ = λ2 − 2λ(2d− 1) + 1, then

E′λ[Z] =
2d

(d− 1)(1 + λ+
√

∆)
− 1

d− 1
.

Theorem 1.4 implies a surprising right discontinuity of the function λ 7→ E′λZ at the
critical intensity λ = λ1: E′λ1

Z = 2d/((d − 1)(1 + λ1)) − 1/(d − 1) < ∞. Again, this
discontinuity contrasts with what happens in a standard Galton-Watson process near
criticality, where for 0 < λ < 1/(d− 1), E′λZ is of order (1− (d− 1)λ)−1. From Theorem
1.4, we may fill the gap in Theorem 1.1 in the specific case of a realization of a Galton-
Watson tree.

Corollary 1.5. Let T be a Galton-Watson tree with mean number of offsprings d. Then
a.s. qT (λ1) = 1.

The method of proofs of Theorems 1.3-1.4 will be parallel to arguments in [8] on the
birth-and-assassination process.
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The birth-and-assassination process We now turn to the BA process. It is a scaling
limit in d→∞ of the chase-escape process on the d-ary tree when λ is rescaled in λ/d.

Informally, the process can be described as follows. We start from a root vertex that
produces offsprings according to a Poisson process of rate λ. Each offspring in turn
produces children according to independent Poisson processes and so on. The children
of the root are said to belong to the first generation and their children to the second
generation and so forth. Independently, the root vertex is at risk at time 0 and dies after
a random time Dø that is exponentially distributed with mean 1. Its offsprings become
at risk after time Dø and the process continues in the next generations. We now make
precise the above description.

As above, Nf = ∪∞k=0N
k denotes the set of finite k−tuples of positive integers (with

N0 = ø). Elements from this set are used to index the offspring in the BA process.
Let {Ξv}, v ∈ Nf , be a family of independent Poisson processes with common arrival
rate λ; these will be used to define the offsprings. Let {Dv}, v ∈ Nf , be a family of
independent, identically distributed (iid) exponential random variables with mean 1; we
use them to assign the lifetime for the appropriate offspring. The families {Ξv} and
{Dv} are independent. The process starts at time 0 with only the root, indexed by ø.
This produces offspring at the arrival times determined by Ξø that enter the system
with indices (1), (2), · · · according to their birth order. Each new vertex v, immediately
begins producing offspring determined by the arrival times of Ξv. The offspring of v
are indexed (v, 1), (v, 2), · · · also according to birth order. The root is at risk at time 0.
It continues to produce offspring until time Tø = Dø, when it dies. Let k > 0 and let
v = (n1, · · · , nk−1, nk), v′ = (n1, ..., nk−1) denote a vertex and its genitor. When a particle
v′ dies (at time Tv′), the particle v then becomes at risk; it in turn continues to produce
offspring until time Tv = Tv′ +Dv, when it dies (see figure 2).

The BA process can be equivalently described as a Markov processX(t) on {S, I,R}Nf ,
where a particle/vertex in state S is not yet born, a particle in state I is alive and a par-
ticle in state R is dead. A particle is at risk if it is in state I and its genitor is in state
R. We use the same notation as above : under Pλ, the process X(t) has infection rate
λ > 0, q(λ) is the probability of extinction and so on.

Figure 2: Illustration of the birth-and-assassination process, living particles are in red,
dead particles in blue, particles at risk are encircled.

The following result from [4] describes the phase transition on the probability of
survival as a function of λ.
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Predator-prey dynamics on infinite trees

Theorem 1.6. Consider the BA process with rate λ > 0. If λ ∈ [0, 1/4], then q(λ) = 1,
while if λ > 1

4 , 0 < q(λ) < 1.

The critical case λ = 1/4 was established in [8]. Note also that the threshold λ = 1/4

is consistent with (1.1).
Our final result is the analog of Theorem 1.2.

Theorem 1.7. Consider the BA process and assume that λ > 1/4. There exist constants
c0, c1 > 0 such that for all 1/4 < λ < 1,

c0ω
3e−

π
2 ω
−1

≤ 1− q(λ) ≤ c1ω−1e−
π
2 ω
−1

,

with

ω =

√
λ− 1

4
.

Note that the analog of Theorems 1.3-1.4 was already performed in [8]. The remain-
der of the paper is organized as follows. In section 2, we start with the study of the BA
process and prove Theorem 1.7. Proofs on the BA process are simpler and this section
is independent of the rest of the paper. We then come back to the chase escape pro-
cess: in section 3, we prove Theorem 1.1, in section 4, we prove Theorem 1.2. Finally,
in section 5, we prove Theorems 1.3-1.4.

2 Proof of Theorem 1.7

2.1 Differential equation for the survival probability

We first determine the differential equation associated to the probability of extinc-
tion for the BA process. Define Qλ(t) to be the extinction probability given that the root
dies at time t > 0 so that

q(λ) =

∫ ∞
0

Qλ(t)e−tdt (2.1)

and Qλ(0) = 1. Let {ξi}i≥1 be the arrival times of Ξø with 0 ≤ ξ1 ≤ ξ2 ≤ · · · . For integer
i with 1 ≤ ξi ≤ Dø, we define Bi as the subprocess on particles iNf with ancestors
i. For the process B to get extinct, all the processes Bi must get extinct. Conditioned
on Ξø, and on the root to die at time Dø = t, the evolutions of the (Bi) then become
independent. Moreover, on this conditioning, Bi is a birth-and-assassination process
conditioned on their root to be at risk at time t− ξi. Hence, we get

Qλ(t) = Eλ

∏
ξi≤t

Qλ(t− ξi +Di)

 = Eλ

∏
ξi≤t

Qλ(ξi +Di)

,
where {ξi}i≥1 is a Poisson point process of intensity λ and (Di), i ≥ 1, independent
exponential variables with parameter 1. Using Lévy-Khinchin formula, we deduce

Qλ(t) = exp

(
λ

∫ t

0

(EQλ(x+D1)− 1)dx

)
= exp

(
λ

∫ t

0

∫ ∞
0

(Qλ(x+ s)− 1)e−sdsdx

)
.

So finally, for any t ≥ 0,

Qλ(t) = exp

(
−λt+ λ

∫ t

0

ex
∫ ∞
x

Qλ(s)e−sdsdx

)
.
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We perform the change of variable

x(t) = − lnQλ(t). (2.2)

We find that for any t ≥ 0,

x(t) =

∫ t

0

ex
∫ ∞
x

ϕ(x(s))e−sdsdx, (2.3)

where
ϕ(y) = λ(1− e−y).

Differentiating (2.3) once gives

x′(t) = et
∫ ∞
t

ϕ(x(s))e−sds, (2.4)

Now, multiplying the above expression by e−t and differentiating once again, we find
that x(t) satisfies the differential equation

x′′ − x′ + ϕ(x) = 0. (2.5)

This non-linear ordinary differential equation is not a priori easy to solve. However,
in the neighborhood of λ = 1/4 it is possible to obtain an asymptotic expansion as
explained below. The idea will be to linearize the ODE near (x(0), x′(0)) = (0, 0) and
look at the long time behavior of the solutions of the linearized ODE. The critical value
λ = 1/4 appears to be the threshold for oscillating solutions of the linearized ODE. From
a priori knowledge on the long time behavior of the solution of (2.5) of interest (studied
in §2.2), we will obtain an asymptotic equivalent for (x(0), x′(0)) as λ ↓ 1/4 (in §2.4).

2.2 A fixed point equation

Let H be the set of measurable functions f : R+ → R+ such that f(0) = 0 and for
any a > 0,

lim
s→∞

e−asf(s) = 0.

We define the map A : H → H defined by

A(y)(t) =

∫ t

0

ex
∫ ∞
x

ϕ(y(s))e−sdsdx. (2.6)

Using ‖ϕ‖∞ = λ < ∞, it is straightforward to check that A(y) is indeed an element of
H (A(y)(t) it is bounded by ‖ϕ‖∞t). Note also that y ≡ 0 is a solution of the fixed point
equation

y = A(y).

Consider the function x defined by (2.2). Using (2.3) we find that x ∈ H and satisfies
also the fixed point x = A(x). If λ > 1/4, we know from Theorem 1.6 that x 6≡ 0.

In the sequel, we are going to study any non-trivial fixed point of A. To this end, let
x ∈ H such that x = A(x) and x 6≡ 0. By induction, it follows easily that t 7→ x(t) is twice
continuously differentiable. In particular, since x(s) ≥ 0, x′(t) ≥ 0 and the function
x : R+ → R+ is non-decreasing. Moreover, by assumption there exists t0 > 0 such that
x(t0) > 0. Since x is non-decreasing, we deduce that x(t) > 0 for all t > t0. Then, using
again (2.4), we find that for all t ≥ 0,

0 < x′(t) < λ. (2.7)
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Predator-prey dynamics on infinite trees

0

λ

x

x′

Figure 3: Illustration of the phase portrait. In blue, the curve L, in red the curve Φ of
Lemma 2.1.

From the argument leading to (2.5), x satisfies (2.5) and we are looking for a specific
non-negative solution of (2.5) which satisfies x(0) = 0. To characterize completely
this solution, it would be enough to compute x′(0) (which is necessary positive since
x(0) = x′(0) = 0 corresponds to the trivial solution x ≡ 0). We first give some basic
properties of the phase portrait, see figure 3. We define X(t) = (x(t), x′(t)) so that

X ′ = F (X) (2.8)

with F ((x1, x2)) = (x2, x2 − ϕ(x1)). We also introduce the set

∆ = {(x1, x2) ∈ R2
+ : ϕ(x1) < x2 < λ}.

Lemma 2.1. Let x ∈ H such that x = A(x) and x 6≡ 0. Then x′(0) > 0, x satisfies (2.5)
and for all t ≥ 0,

X(t) ∈ ∆. (2.9)

Moreover
lim
t→∞

x′(t) = λ.

Proof: We have already checked that x satisfies (2.5) and x′(0) > 0. Let us now prove
that (2.9) holds. Define the trajectory Φ = {X(t) ∈ R2

+ : t ≥ 0}. Since for all t ≥ 0,
X(t)′1 = F (X(t))1 > 0, Φ is the graph of a differentiable function f : [0, S) → R+ with
f(0) = x′(0) > 0:

Φ = {(s, f(s)) : s ∈ [0, S)},

with S = limt→∞ x(t) ∈ (0,∞], see figure 3. Moreover

f ′(s) =
F ((s, f(s)))2
F ((s, f(s)))1

=
f(s)− ϕ(s)

f(s)
. (2.10)

The graph of the function ϕ is the curve L = {(s, ϕ(s)) : s ∈ R+} and the set

∆′ = {(x1, x2) ∈ [0,∞)2 : x2 < ϕ(x1)}

is the set of points below L. Assume that (2.9) does not hold. Then by (2.7) and the
intermediate value Theorem, the curves L and Φ intersect. Then the exists s0 > 0 such
that

f(s0) = ϕ(s0).
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From (2.10), f ′(s0) = 0 while ϕ′(s0) > 0. It follows that (s, f(s)) ∈ ∆′ for all s ∈ (s0, s1)

for some s1 > s0. Since f ′(s) < 0 if (s, f(s)) ∈ ∆′ while ϕ′(s) > 0, the curves L and Φ

cannot intersect again. We get that all s > s0, (s, f(s)) ∈ ∆′.
On the other hand, since f ′(s) < 0, for all s > s1, f(s) < f(s1) < ϕ(s1). If x(t1) = s1

and δ = ϕ(s1) − f(s1) > 0, we deduce that for all t > t1 , x′′(t) = x′(t) − ϕ(x(t)) < −δ.
Integrating, this implies that limt→∞ x′(t) = −∞ which contradicts (2.7).

We have proved so far that for all t ≥ 0, X(t) ∈ ∆. This implies that x′(t) is increas-
ing. In particular limt→∞ x(t) = ∞ and S = ∞. Since lims→∞ ϕ(s) = λ, by (2.4), we
readily deduce that x′(t) converges to λ as t→∞.

2.3 Comparison of second order differential equations

It is possible to compare the trajectories of solutions of second order ODE by using
the phase diagram. Let D be the set of increasing Lipschitz-continuous functions ψ on
R+ such that ψ(0) = 0. For two functions ψ1, ψ2 in D, we write ψ1 ≤ ψ2 if for all t ≥ 0,
ψ1(t) ≤ ψ2(t).

Lemma 2.2. Let x ∈ H such that x = A(x) and x 6≡ 0. Let ψ ∈ D and y be a solution of
y′′ − y′ + ψ(y) = 0 with y(0) = 0, y′(0) > 0. We define the exit times

T = inf{t ≥ 0 : (y(t), y′(t)) /∈ R2
+},

T+ = inf{t ≥ 0 : y′(t) ≥ λ} and T− = inf{t ≥ 0 : ϕ(y(t)) ≤ y′(t)}.

(i) If T+ < T , T+ <∞ and ϕ ≤ ψ then y′(0) ≥ x′(0).

(ii) If T− < T , T− <∞ and ψ ≥ ϕ then x′(0) ≥ y′(0).

Proof: Let us start with the hypothesis of (i). The proof is by contradiction : we also
assume that y′(0) < x′(0). We set Y (t) = (y(t), y′(t)) and G(y1, y2) = (y2, y2 − ψ(y1)).
Define the trajectories Φ = {X(t) ∈ R2

+ : t ≥ 0}, and for τ > 0, Ψ(τ) = {Y (t) ∈ R2
+ :

0 ≤ t ≤ τ}. By Lemma 2.1, Φ is the graph of an increasing function f : R+ → R+ with
f(0) = x′(0) > 0 and

Φ = {(s, f(s)) : s ∈ R+}.

Similarly, if t ∈ [0, T ), y′(t) > 0. Thus, there exists a differentiable function g : [0, y(T )]→
R+ such that

Ψ(T ) = {(s, g(s)) : s ∈ [0, y(T )]},

with

g′(s) = 1− ψ(s)

g(s)
.

Now, the assumption 0 < y′(0) < x′(0) reads 0 < g(0) < f(0). Since T+ < T , for
s ∈ [0, T+], g(s) > 0 and there is a time s0 > 0 such that g(s0) ≥ λ. In particular, by
(2.7), f(s0) < g(s0). Hence, by the intermediate value Theorem, there exists a first time
0 < s1 < s0 such that the curves intersect: g(s1) = f(s1) and g(s) < f(s) on [0, s1).
However, it follows from (2.10) and ϕ ≤ ψ that for s ∈ [0, s1),

g′(s) = 1− ψ(s)

g(s)
≤ 1− ϕ(s)

g(s)
< 1− ϕ(s)

f(s)
= f ′(s).

Hence, integrating over [0, s1] the above inequality gives

g(s1)− g(0) =

∫ s1

0

g′(s)ds <

∫ s1

0

f ′(s)ds = f(s1)− f(0).
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However, by construction, f(s1) = g(s1). Thus, the above inequality contradicts g(0) <

f(0) and we have proved (i). The proof of (ii) is identical and is omitted.

2.4 Proof of Theorem 1.7

We first linearize (2.5) with ϕ(s) = λ(1− e−s) in the neighborhood of λ = 1/4.

Step one : Linearization from above. We have ϕ′(0) = λ, and from the concavity of
ϕ,

ϕ(s) ≤ λs. (2.11)

We take λ > 1/4 and consider the linearized differential equation

y′′ − y′ + λy = 0. (2.12)

The solutions of this differential equation are

y(t) = a sin(ωt)e
t
2 + b cos(ωt)e

t
2 ,

with

ω =

√
λ− 1

4
.

We use this ODE to upper bound x′(0) if x = A(x). Recall that A depends implicitly on
λ.

Lemma 2.3. For any λ > 1/4, let x ∈ H such that x = A(x) and x 6≡ 0. We have

x′(0) ≤ e2

4
e−

π
2ω (1 +O(ω2)).

Proof: Let a > 0 and consider the function

y(t) = a sin(ωt)e
t
2 . (2.13)

We have y(0) = 0, y′(0) = aω,

y′(t) = ae
t
2 (ω cos(ωt) +

1

2
sin(ωt)), (2.14)

and

y′′(t) = ae
t
2

(
ω cos(ωt) +

(
1

4
− ω2

)
sin(ωt)

)
.

Define

τ =
π

ω
− 1

ω
arctan

(
ω

1
4 − ω2

)
=
π

ω
− 4 +O(ω2). (2.15)

On the interval [0, τ ], y′′(t) ≥ 0 and y′′(τ) = 0. Thus the function y′(t) is increasing on
[0, τ ]. Moreover, since cos(ωτ) = −1 + O(ω2) and sin(ωτ) = 4ω + O(ω3), we get from
(2.14) that

y′(τ) = e−2ae
π
2ω (ω +O(ω3)).

Using (2.15), we have exp(τ/2) = exp(π/(2ω)− 2)(1 + O(ω2)). Hence, we may choose a
in (2.13) such that y′(τ) = λ = 1

4 + ω2 with

a =
e2

4

e−
π
2ω

ω
(1 +O(ω2)).

From what precedes, on the interval [0, τ ], y(t) > 0 and y′(t) > 0. From (2.11), we may
thus use Lemma 2.2(i) with T+ = τ and ψ(s) = λs. We get x′(0) ≤ y′(0) = aω.
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Step two : linearization from below. For 0 < κ < 1, we define

` =
1

4
+ κ2ω2 < λ,

and the function in D
ψ(s) = min (`s, ϕ(s)) .

In particular
ϕ ≥ ψ. (2.16)

We shall now consider the linear differential equation

y′′ − y′ + `y = 0, (2.17)

The solutions of (2.17) are

y(t) = a sin(ωκt)e
t
2 + b cos(ωκt)e

t
2 .

A careful choice of a, κ will lead to the following lower bound.

Lemma 2.4. For any λ > 1/4, let x ∈ H such that x = A(x) and x 6≡ 0. We have

x′(0) ≥ 8e

π
ω3e−

π
2ω (1 +O(ω2)).

Proof: For a > 0, we look at the solution

y(t) = a sin(ωκt)e
t
2 . (2.18)

We have y(0) = 0, y′(0) = aκω.

y′(t) = ae
t
2 (ωκ cos(ωκt) +

1

2
sin(ωκt)).

We repeat the argument of Lemma 2.3. On the interval [0, τ ], y′′(t) ≥ 0 and y′′(τ) = 0,
where

τ =
π

ωκ
− 1

ωκ
arctan

(
ωκ

1
4 − ω2κ2

)
=

π

ωκ
− 4 +O(ω2), (2.19)

and the O(·) is uniform over all κ > 1/2. The function y′(t) is increasing on [0, τ ] and

y′(τ) = ae−2e
π
2ω ωκ(1 +O(ω2)).

Now, we have `s ≤ ϕ(s) for all s ∈ [0, σ] with

`σ = λ(1− e−σ).

It gives

σ = 2

(
1− `

λ

)
+O

(
1− `

λ

)2

= 8(1− κ2)ω2 +O((1− κ2)ω4).

However from (2.17), for t = τ , since y′′(τ) = 0, we have

y′(τ)

y(τ)
= ` =

1

4
+ κ2ω2.

From (2.19), we have sin(ωκτ) = 4ωκ+O(ω3) and exp(τ/2) = exp(π/(2ωκ)−2)(1+O(ω2)).
In (2.18), we may thus choose a such that y(τ) = σ by setting

a = σ
e2

4

e−
π

2ωκ

ωκ
(1 +O(ω2)) = 2e2e−

π
2ωκ

(1− κ2)ω

κ
(1 +O(ω2)).
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Now, in the domain 0 ≤ y ≤ σ, ψ(y) = `σ and the non-linear differential equation
y′′ − y′ + ψ(y) obviously coincides with (2.17). Thus, using (2.16) and Lemma 2.2(ii)

with T− = τ , it leads to

x′(0) ≥ y′(0) = aκω = 2e2e−
π

2ωκ (1− κ2)ω2(1 +O(ω2)).

Taking finally κ = 1− 2ω/π gives the statement.

Step three : End of proof. We now complete the proof of Theorem 1.7. We should
consider the function x(t) defined by (2.2). We have seen that x = A(x) and x 6≡ 0 if
λ > 1/4. We start with the left hand side inequality. From (2.9) in Lemma 2.1, x′(t) is
increasing and we have

x(t) ≥ x′(0)t.

It follows from (2.1) that

q(λ) =

∫ ∞
0

e−x(t)e−tdt ≤
∫ ∞
0

e−x
′(0)te−tdt =

1

1 + x′(0)
.

It remains to use Lemma 2.4 and we obtain the left hand side of Theorem 1.7.
We now turn the right hand side inequality. For X = (x1, x2) ∈ R2, define G(X) =

(x2, x2). From the definition of F in (2.8), we have, component-wise, for any X ∈ R2,

F (X) ≤ G(X).

Note also that G is monotone : if component-wise X ≤ Y then G(X) ≤ G(Y ). A vector-
valued extension of Gronwall’s inequality implies that if X(0) = Y (0), X ′ = F (X) and
Y ′ = G(Y ) then, component-wise,

X(t) ≤ Y (t),

(see e.g. [13, Exercise 4.6]). Looking at the solution of y′′ − y′ = 0 such that y(0) = 0

and y′(0) = x′(0), we get that
x(t) ≤ x′(0)(et − 1).

We deduce from (2.1) that, for any T > 0,

q(λ) =

∫ ∞
0

e−x(t)e−tdt ≥
∫ T

0

e−x
′(0)(et−1)e−tdt

≥
∫ T

0

(1− x′(0)(et − 1))e−tdt

≥ 1− e−T − x′(0)T.

Now, we notice that in order to prove Theorem 1.7, by Lemma 2.3, we may choose λ

close enough to 1/4 so that x′(0) < 1. We finally take T = − ln(x′(0)) and apply Lemma
2.3. This concludes the proof of Theorem 1.7.

3 Proof of Theorem 1.1

We define the set recovered and infected vertices as R(t) = {v ∈ V : Xv(t) = R}
and I(t) = {v ∈ V : Xv(t) = I}. The set R(t) being non-decreasing, we may define
R(∞) = ∪t>0R(t) and Z = |R(∞)| ∈ N ∪ {∞}. Note that also a.s. R(∞) = {v ∈ V : ∃t >
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0, Xv(t) = I}, in words, R(∞) is the set of vertices which have been infected at some
time.

Throughout this section, the chase-escape process is constructed thanks to i.i.d.
Exp(λ) variables (ξv)v∈V and independent i.i.d. Exp(1) variables (Dv)v∈V . The variable
ξv (resp. Dv) is the time by which v ∈ V will be infected (resp. recovered) once its
ancestor is infected (resp. recovered).

3.1 Subcritical regime

We fix 0 < λ < λ1. In this paragraph we prove that qT (λ) = 1 if T has upper growth
rate at most d. It is sufficient to prove that EλZ. To this end, we will upper bound the
probability that v ∈ R(∞) for any v ∈ V . Let Vk be the set of vertices of V which are at
distance k from the root . Let v ∈ Vn and v0, · · · , vn be the ancestor line of v: v0 = and
vn = v. The vertex v will have been infected if and only if for all 1 ≤ m ≤ n, vm−1 has
infected vm before being recovered. We thus find

Pλ(v ∈ R(∞)) = Pλ

(
∀1 ≤ m ≤ n,

m∑
i=1

ξvi <

m∑
i=1

Dvi−1

)
≤ Pλ

(
n∑
i=1

ξvi <

n∑
i=1

Dvi−1

)
.

The Chernov bound gives for any 0 < θ < 1,

Pλ

(
n∑
i=1

ξvi <

n∑
i=1

Dvi−1

)
≤ Eλ exp

{
θ

(
n∑
i=1

Dvi−1 −
n∑
i=1

ξvi

)}

=

(
1

1− θ

)n(
λ

λ+ θ

)n
,

where we have used the independence of all variables at the last line. Now, the above
expression is minimized for θ = (1− λ)/2 > 0 (since λ < λ1 < 1). We find

Pλ(v ∈ R(∞)) ≤
(

4λ

(λ+ 1)2

)n
.

Also, from the growth-rate assumption, there exists a sequence εn → 0,

|Vn| ≤ (d+ εn)n.

It follows that

EλZ =
∑
v∈V

Pλ(v ∈ R(∞)) ≤
∞∑
n=0

(
4(d+ εn)λ

(λ+ 1)2

)n
.

It is now straightforward to check that

4dλ

(λ+ 1)2
< 1,

if λ < λ1. This concludes the first part of the proof.

3.2 Supercritical regime

We now fix λ > λ1. We should prove that qT (λ) < 1 under the assumption that T
is lower d-ary. We are going to construct a random subtree of T whose vertices are
elements of R(∞) and which is a supercritical Galton-Watson tree.

First observe that we can couple two chase-escape processes with intensities λ > λ′

on the same probability space in such a way that they share the same variables (Dv)v∈V

and for all v ∈ V , ξ(λ)v ≤ ξ
(λ′)
v (for example, we take ξ

(λ′)
v = (λ/λ′)ξ

(λ)
v ). The event of

EJP 19 (2014), paper 20.
Page 14/33

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2361
http://ejp.ejpecp.org/


Predator-prey dynamics on infinite trees

non-extinction is easily seen to be non-increasing in the variables (ξv)v∈V for the partial
order on RV+ of component-wise comparison. It follows that the function λ 7→ qT (λ) is
non-increasing. We may thus assume without generality that λ1 < λ < 1. For δ > 0, we
define the function gδ by, for all x > 0,

gδ(x) =
1

x
− log

(
1

x

)
+
λ

x
− log

(
λ

x

)
− 2− log(δ)

=
1 + λ

x
+ log

(
x2

λδ

)
− 2.

Taking derivative, the minimum of gδ is reached at c = (1 + λ)/2. We deduce easily the
following property of the function gd.

Lemma 3.1. If λ1 < λ < 1, minx>0 gd(x) < 0.

By Lemma 3.1, using continuity, we deduce that there exist c > 0 and 1 < δ < d such
that

gδ(c) < 0.

In the remainder of the proof, we fix such pair (c, δ).

Construction of a nested branching process. We fix an integer m ≥ 1 that we will
be completely specified later on. We assume that m is large enough such that T ∗m

contains a dδme-ary subtree. We denote by T ′ this subtree and by ρ ∈ V its root. For
integer k ≥ 0, we define V ′k as the set of vertices of generation k in T ′. Note that by
assumption

|V ′k| = dδmek.

We may assume that the generation of ρ in T is larger than m. We denote a(ρ) ∈ V the
m-th ancestor of ρ in T . For z ∈ V ′k and k ≥ 1, we denote by a(z) ∈ V ′k−1 its ancestor in
T ′. For example, if z ∈ V ′1 , a(z) = ρ.

We now start a branching process as follows. We set ρ to be the root of the process,
S0 = {ρ}. For integer k ≥ 1, we define recursively the offsprings of the k-th generation
as the set Sk of vertices z ∈ V ′k satisfying the following three conditions :

1. the vertex a(z) ∈ V ′k−1 belongs to Sk−1;

2.
∑m
i=1 ξvi ≤

m
c where (v0, v1, · · · , vm) is the set of the vertices on the path from a(z)

to z, v0 = a(z), vm = z;

3.
∑m
i=1Dvi−1

≥ m
c with (v0, v1, · · · , vm) as above.

Thus for z ∈ V ′k, such that its ancestor a(z) ∈ Sk−1, we have that

Pλ(z ∈ Sk|Sk−1) = Pλ

(
m∑
i=1

ξvi ≤
m

c

)
Pλ

(
m∑
i=1

Dvi−1
≥ m

c

)
. (3.1)

Notice that by construction, the number of offsprings of z 6= z′ in Sk−1 are identically
distributed and are independent. It follows that the process forms a Galton-Watson
branching process. In the next paragraph, we will check that this branching process is
supercritical, i.e. we will prove that

M =
∑
v∈V ′1

Pλ(z ∈ S1) > 1. (3.2)
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It implies that with positive probability, the branching process does not die out (see
Athreya and Ney [6, chapter 1]).

Before proving (3.2), let us first check that it implies Theorem 1.1. Assume that at
some time t > 0, the vertex ρ becomes infected and that a(ρ) is still infected. Assume
further that

∑m
i=1Dvi−1

≥ m/c, where (v0, v1, · · · , vm) is the set of the vertices on the
path from a(ρ) to ρ. Note that the existence of such finite time t > 0 and such sequence
(Dvi)0≤i≤m−1 has positive probability. Let us denote by E such event. We set t0 = t and,
for integer k ≥ 1,

tk = tk−1 +
m

c
.

By construction, if E holds and z ∈ Sk then, at time tk, z and a(z) are both infected.
Hence on the events of E and of non-extinction of the nested branching process, the
chase-escape process does not get extinct. It thus remains to prove that (3.2) holds.

The nested branching process is supercritical. We need a standard large deviation
estimate. We define

J(x) = x− log x− 1.

The next lemma is an immediate consequence of Cramer’s Theorem for exponential
variables (see [10, §2.2.1]).

Lemma 3.2. Let (ζi)i≥1, be i.i.d. Exp(λ) variables. For any a > 1/λ, we have that

lim inf
m→∞

1

m
logP

(
m∑
i=1

ζi ≥ am

)
≥ −J(λa),

while, for any a < 1/λ,

lim inf
m→∞

1

m
logP

(
m∑
i=1

ζi ≤ am

)
≥ −J(λa).

Note that the bounds of Lemma 3.2 hold for all a > 0 (even if they are sharp only for
the above ranges). We may now estimate the terms in (3.1). We have from Lemma 3.2
that

Pλ

(
m∑
i=1

ξvi ≤
m

c

)
≥ exp

{
−mJ

(
λ

c

)
+ o(m)

}
and

Pλ

(
m∑
i=1

Dvi−1 ≥
m

c

)
≥ exp

{
−mJ

(
1

c

)
+ o(m)

}
.

Thus we obtain a lower bound on the mean number of offspring in the first generation
to be

M =
∑
z∈V ′1

Pλ(z ∈ S1)

≥ dδme exp

{
−m

(
J

(
1

c

)
+ J

(
λ

c

)
+ o(m)

)}
≥ exp (−mgδ(c) + o(m)) ,

where gδ(.) is as defined in (3.1). If m was chosen large enough, we have that M > 1 and
hence that the branching process is supercritical. Therefore with positive probability,
this branching process does not die out. This proves the theorem.
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4 Proof of Theorem 1.2

The proof of Theorem 1.2 parallels the proof of Theorem 1.7. Even if the strategy is
the same, we will meet some extra difficulties in the study of the phase diagram (notably
in the forthcoming Lemma 4.3).

4.1 Differential equation for the survival probability

We first determine a differential equation associated to the probability of extinction.
Under P′λ, define Qλ(t) to be the extinction probability given that the root ø is recovered
at time t ≥ 0 so that

q(λ) =

∫ ∞
0

Qλ(t)e−tdt (4.1)

and Qλ(0) = 1.
Now, in T , the offsprings of the root are {1, · · · , N}, where N has distribution P . The

root infects each of its offspring after an independent exponential variable with intensity
λ. Let {ξi}1≤i≤N be the infection times. Note that in T , the subtrees generated by each
of the offsprings of the root are iid copies of T . Hence, if for integer i with 1 ≤ ξi ≤ Dø,
we define Xi as the subprocess on vertices (iNf ) ∩ V with ancestors i. Conditioned on
Dø = t, onN and (ξi)1≤i≤N , the processes (Xi) are independent chase-escape processes
conditioned on the fact that root becomes at risk at time t − ξi (where we say that a I-
vertex is at risk if its genitor is in state R).

For the process X to get extinct, all the processes Xi must get extinct. So finally,
we get

Qλ(t) = E′λ

 ∏
1≤i≤N

(1(ξi > t) + 1(ξi ≤ t)Qλ(t− ξi +Di))


where (Di), i ≥ 1, are independent exponential variables with parameter 1. Consider
the generating function of P

ψ(x) = E′λ
[
xN
]

=

∞∑
k=0

xkP (k).

Recall that ψ is strictly increasing and convex on [0, 1] and ψ′(1) = EN = d. We find, for
any t ≥ 0,

Qλ(t) = ψ

(
e−λt + λ

∫ t

0

e−λx
∫ ∞
0

Qλ(t− x+ s)e−sdsdx

)
= ψ

(
e−λt + λe−λt

∫ t

0

eλx
∫ ∞
0

Qλ(x+ s)e−sdsdx

)
= ψ

(
e−λt + λe−λt

∫ t

0

e(λ+1)x

∫ ∞
x

Qλ(s)e−sdsdx

)
.

Performing the change of variable

x(t) = ψ−1(Qλ(t)) ∈ [0, 1], (4.2)

leads to

x(t) = e−λt + λe−λt
∫ t

0

e(λ+1)x

∫ ∞
x

ψ(x(s))e−sdsdx. (4.3)

We multiply the above expression by eλt and differentiate once, it gives

eλt(λx(t) + x′(t)) = λe(λ+1)t

∫ ∞
t

ψ(x(s))e−sds, (4.4)
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Now, multiplying the above expression by e−(λ+1)t and differentiating once again, we
find that x(t) satisfies the differential equation

x′′ − (1− λ)x′ + ϕ(x) = 0 (4.5)

with
ϕ(x) = λψ(x)− λx.

4.2 A fixed point equation

We define ρ ∈ [0, 1) as the extinction probability in the Galton-Watson tree:

ρ = ψ(ρ).

We note that ϕ is convex, ϕ(1) = ϕ(ρ) = 0, ϕ is negative on (ρ, 1) and it is increasing in
a neighborhood of 1, ϕ′(1) = λ(d − 1) > 0. The fact that ϕ is not monotone is the main
difference with the proof of Theorem 1.7 .

Let H be the set of non-increasing functions f : R+ → R+ such that f(0) = 1,
limt→∞ f(t) = ρ. The next lemma is an easy consequence of the monotony of the pro-
cess.

Lemma 4.1. For any λ > λ1, the function x(·) defined by (4.2) is in H.

Proof: As in the previous section, we may construct the chase escape process condi-
tioned on the root is recovered at time t thanks to i.i.d. Exp(λ) variables (ξv)v∈V and
independent i.i.d. Exp(1) variables (Dv)v∈V 6=ø and set Dø = t. The variable ξv (resp.
Dv) is the time by which v ∈ V will be infected (resp. recovered) once its ancestor
is infected (resp. recovered). The event of extinction is then non-increasing in t. It
follows that the map t 7→ Qλ(t) is non-increasing. From (4.2), it follows that x(t) is also
non-increasing. We may thus define a = limt→∞ x(t). Using the continuity of ψ leads to

λe−λt
∫ t

0

e(λ+1)x

∫ ∞
x

ψ(x(s))e−sdsdx = λe−λt
∫ t

0

eλxψ(a)(1 + o(1))dx,

This last integral being divergent as t→∞, we deduce that

λe−λt
∫ t

0

e(λ+1)x

∫ ∞
x

ψ(x(s))e−sdsdx = ψ(a) + o(1).

From (4.3), we get that a = ψ(a) which implies that a ∈ {ρ, 1}. Note however that
Theorem 1.1 and Lemma 5.5 imply that q(λ) < 1 for all λ > λ1. Then (4.1) and the
monotony of t 7→ Qλ(t) give that for all t ≥ t0 large enough, Qλ(t) < 1. From (4.2) it
implies in turn that for all t ≥ t0, x(t) < 1. So finally a ≤ x(t0) < 1 and a = ρ.

From now on in this section, we fix a small u > 0 and we assume that

λ1 < λ < 1− u. (4.6)

We define the map A : H → L∞(R+,R+) defined by

A(y)(t) = e−λt + λe−λt
∫ t

0

e(λ+1)x

∫ ∞
x

ψ(y(s))e−sdsdx. (4.7)

Since maxx∈[0,1] |ψ(x)| = 1 it is indeed straightforward to check thatA(y) is in L∞(R+,R+):
A(y)(t) is bounded by 1. Note also that y ≡ 1 is a solution of the fixed point equation

y = A(y).
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By (4.3), we find that the function x defined by (4.2) satisfies also the fixed point x =

A(x). In the sequel, we are going to analyze the non trivial fixed points of A.

Let x ∈ H such that x = A(x). Then x 6≡ 1. By induction, it follows easily that t 7→ x(t)

is twice differentiable. In particular, from the argument following (4.3), x satisfies
(4.5) and we are looking for a specific non-negative solution of (4.5) with x(0) = 1. To
characterize completely this solution, it would be enough to compute x′(0) (which is
necessarily negative since x(0) = 1, x′(0) = 0 corresponds to the trivial solution x ≡ 1).
We will perform this in the next subsection in an asymptotic regime. We start with some
properties obtained from the phase diagram of the ODE (4.5).

Lemma 4.2. Let x ∈ H such that x = A(x). Then,

(i) for all t > 0, ρ < x(t) < 1;

(ii) for all t ≥ 0, −1 < x′(t) < 0.

Proof: Let us prove (i). We first observe that since x(t) is non-increasing, x(0) = 1 and
x′(0) < 0, we have that for all t > 0, x(t) < 1. Also, if x(t) = ρ for some t > 0, then
x(s) = ρ for all s ≥ t (since x is non-increasing and has limit ρ). However y ≡ ρ being
a distinct solution of (4.5), x and y cannot coincide on an interval. We thus have for all
t > 0, ρ < x(t) < 1.

We now prove (ii). Assume that there is a time t > 0 such that x′(t) = 0. Then,
from (4.5) and ρ < x(t) < 1, we deduce that x′′(t) > 0. In particular, x′(s) > 0 for all
s ∈ (t, t + δ) for some δ > 0. This contradicts that x(·) is non-increasing. Also, from
(4.4), for any t ≥ 0, λx(t) + x′(t) > 0. Since x(t) ≤ 1, we deduce that for all t ≥ 0,
−λ < x′(t) < 0.

We define X(t) = (x(t), x′(t)) and

F (x1, x2) = (x2, (1− λ)x2 − ϕ(x1))

so that

X ′ = F (X). (4.8)

We define the trajectory Φ = {X(t) : t ≥ 0}. Recall that ρ = limt→∞ x(t). Also, since for
all t ≥ 0, X(t)′1 = F (X(t))1 < 0, Φ is the graph of a differentiable function f : (ρ, 1] →
(−1, 0) with f(1) = x′(0) < 0,

Φ = {(s, f(s)) : s ∈ (ρ, 1]}.

Moreover

f ′(s) =
F ((s, f(s)))2
F ((s, f(s)))1

= 1− λ− ϕ(s)

f(s)
. (4.9)

We notice that on the curve

Γ = {(x1, x2) ∈ [ρ, 1]× [−1, 0] : (1− λ)x2 = ϕ(x1)}

the second coordinate of F vanishes (see figure 4). The next lemma shows that our
function (x(t), x′(t)) cannot cross Γ near its origin (x(0), x′(0)).

Lemma 4.3. There exists δ > 0 depending only on ψ and u defined in (4.6) such that
the following holds. Let x ∈ H such that x = A(x). If (x(t), x′(t)) ∈ Γ for some t > 0,
then x′(t) ≤ −δ and x(t) ≤ 1− δ.
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Figure 4: Illustration of the phase portrait. In blue, the curve Γ, in red the curve Φ.

Proof: Define σ as the largest s such that (s, f(s)) ∈ Γ (see figure 4). We have σ < 1.
We should prove that σ ≤ 1 − δ and f(σ) ≤ −δ. Recall that f(1) = x′(0) < 0. Thus, on
(σ, 1], (s, f(s)) is below Γ and it follows that f is increasing. By construction, f(σ) =

ϕ(σ)/(1− λ) = λ(ψ(σ)− σ)/(1− λ) and f ′(σ) = 0. We deduce that

f ′′(σ) = −ϕ
′(σ)

f(σ)
+
f ′(σ)ϕ(σ)

f2(σ)
= −ϕ

′(σ)

f(σ)
≥ 0, (4.10)

where the last inequality comes from f is increasing on [σ, 1] and f ′(σ) = 0.
We define α ∈ (ρ, 1) as the point where the function κ(x) = x − ψ(x) reaches its

maximum. Since ϕ′(s) < 0 on [ρ, α), from (4.10) we find that σ ∈ [α, 1). We set f(σ) = −η.
We will prove that η ≥ λδ0/(1 − λ) for some δ0 > 0 depending only on u and ψ. This
will conclude the proof of the lemma. Indeed, by construction (1 − λ)η = −ϕ(σ) =

λ(σ − ψ(σ)). The function κ(x) = x− ψ(x) has a continuous decreasing inverse in [α, 1]

with κ−1(0) = 1. Hence, σ = κ−1((1− λ)η/λ) and, if η ≥ λδ0/(1− λ), we deduce that the
statement of the lemma holds with δ = min(λ1δ0/(1− λ1), 1− κ−1(δ0)).

To this end, we fix any β ∈ (α, 1), we set b = κ(β) > 0, and

δ0 = min

(
b

2
, (1− u)

√
b(β − α)

u

)
. (4.11)

We assume that η < λδ0/(1− λ) and look for a contradiction. We first notice that δ0 < b

implies that σ = κ−1((1− λ)η/λ) > κ−1(b) = β.
Consider the solution Y (t) = (y(t), y′(t)) of the ODE (4.8) with initial condition

Y (0) = (β,−η). The trajectory of Y (t) is denoted by Φ̃ = {Y (t) : t ≥ 0}. We define the set
Γ+ = {(x1, x2) ∈ [α, 1)× [−η, 0) : (1− λ)x2 ≥ ϕ(x1)}. On Γ+, F (x)1 < 0 and F (x)2 ≥ 0. It
follows that the trajectories Φ and Φ̃ exit Γ+ either on its left side {(α, x2), x2 ∈ [−η, 0]}
or its upper side {(x1, 0), x1 ∈ [α, 1)}. However, Lemma 4.2(ii) implies that Φ exits Γ+ on
the left side. Since Φ and Φ̃ cannot intersect and Φ̃ is on the left side of Φ in Γ+ (since
β < σ), we deduce that necessarily, Φ̃ also exits Γ+ on the left side. We now check that,
with our choice of δ0 in (4.11), it contradicts η < λδ0/(1− λ).

Define τ > 0 as the exit time of Y (t) from Γ+. If 0 ≤ t ≤ τ , using that ϕ is increasing
on [α, β], we find

y′′(t) ≥ −(1− λ)η − ϕ(β) ≥ −λδ0 + λb ≥ λb/2,

since δ0 ≤ b/2. We deduce that for all t ∈ [0, τ ], y′(t) ≥ z′(t) and y(t) ≥ z(t) with
z(t) = (λb/4)t2 − ηt + β. We set te = 2η/(λb). Since z′(te) = 0, we have τ ≤ te. Also
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z being decreasing on [0, te], we have y(τ) ≥ z(te) = −η2/(λb) + β. Thanks to (4.11),
η2 < λ2δ20/(1 − λ)2 < λb(β − α) and we deduce that y(τ) ≥ −η2/(λb) + β > α. In
particular, Φ̃ exits Γ+ on the upper side. It leads to a contradiction. We have thus
proved that η ≥ λδ0/(1− λ).

4.3 Comparison of second order differential equations

For two functions ϕ1, ϕ2 on [0, 1], we write ϕ1 ≤ ϕ2 if for all t ∈ [0, 1], ϕ1(t) ≤ ϕ2(t).
The next lemma is proved as Lemma 2.2, we omit its proof.

Lemma 4.4. Let δ > 0 be as in Lemma 4.3. Let x ∈ H such that x = Ax. Let ϕ̃ be a
Lipshitz-continuous function and y be solution of y′′− (1− λ)y′+ ϕ̃(y) = 0 with y(0) = 1,
y′(0) < 0. We define the exit times

T = inf{t ≥ 0 : (y(t), y′(t)) /∈ [0, 1]× [−1, 0]},

T− = inf{t ≥ 0 : y′(t) ≤ −1} and T+ = inf{t ≥ 0 : (1− λ)y′(t) = ϕ(y(t)), y(t) ≥ 1− δ}.

(i) If T+ < T <∞ and ϕ̃ ≥ ϕ then y′(0) ≥ x′(0).

(ii) If T− = T <∞ and ϕ̃ ≤ ϕ then x′(0) ≥ y′(0).

4.4 Proof of Theorem 1.2

The proof of Theorem 1.2 follows now closely the proof of Theorem 1.7. We first
linearize (4.5) in the neighborhood of λ1.

Step one : linearization from below. We have ϕ(1) = 0, ϕ′(1) = λ(d − 1) > 0, and
from the convexity of ϕ,

ϕ(s) ≥ λ(d− 1)(s− 1). (4.12)

We take λ1 < λ < 1 and consider the linearized differential equation

y′′ − (1− λ)y′ + λ(d− 1)(y − 1) = 0. (4.13)

The solutions of this differential equation are

y(t) = 1 + a sin(ωt)e
(1−λ)t

2 + b cos(ωt)e
(1−λ)t

2 ,

where

ω =
1

2

√
−λ2 + 2(2d− 1)λ− 1 = c(λ)

√
λ− λ1,

and

c(λ) =
1

2

√
(2d− 1) + 2

√
d(d− 1)− λ = (d(d− 1))

1/4
+O(|λ− λ1|).

We use this ODE to bound from below x′(0) if A(x) = x.

Lemma 4.5. The exists a constant c0 > 0 such that for any λ1 < λ < 1, if x ∈ H satisfies
A(x) = x then

x′(0) ≥ −c0e−
π(1−λ)

2ω (1 +O(ω2)).

Proof: We can assume without loss of generality that λ satisfies (4.6). Let a < 0,
b = (1− λ)/2, and consider the function

y(t) = 1 + a sin(ωt)ebt.
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We have y(0) = 1, y′(0) = aω,

y′(t) = aebt(ω cos(ωt) + b sin(ωt)),

and
y′′(t) = aebt

(
2bω cos(ωt) +

(
b2 − ω2

)
sin(ωt)

)
.

Define

τ =
π

ω
− 1

ω
arctan

(
2bω

b2 − ω2

)
=
π

ω
− 2

b
+O(ω2).

On the interval (0, τ), y′′(t) < 0 and y′′(τ) = 0. Thus the function y′(t) is decreasing on
[0, τ ] and

y′(τ) = e−
2
b ae

πb
ω (ω +O(ω3)).

Hence, we may choose a such that y′(τ) = −1 with

a = −ω−1e 2
b e−

πb
ω (1 +O(ω2)).

It remains to use (4.12) with Lemma 4.4(ii) and τ = T−.

Step two : linearization from above. For 0 < η < min(1, c(λ)/(d− 1)), we define

` = (1− η)λ+ ηλ1 < λ,

and the Lipschitz-continuous function

ϕ̃(s) = max (ϕ(s), `(d− 1)(s− 1)) .

In particular
ϕ ≤ ϕ̃. (4.14)

We define the linear differential equation

y′′ − (1− λ)y′ + `(d− 1)(y − 1) = 0. (4.15)

The solutions of (4.15) are

y(t) = 1 + a sin(ω′t)e
(1−λ)t

2 + b cos(ω′t)e
(1−λ)t

2 ,

with

ω′ =
1

2

√
−λ2 + 2(2d− 1)λ− 1− 4η(d− 1)(λ− λ1) = ω

√
1− η(d− 1)

c(λ)
.

In the sequel, o(1) denotes a function which goes to 0 as ω goes to 0.

Lemma 4.6. If P has finite second moment, then there exists a constant c1 > 0 such
that for all λ1 < λ < 1, if x ∈ H satisfies A(x) = x then

x′(0) ≤ −c1ω3e−
π(1−λ)

2ω (1 + o(1)).

Proof: We can assume without loss of generality that λ satisfies (4.6). We set

b =
1− λ

2
and κ =

√
1− η(d− 1)

c(λ)
.
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We parametrize in terms of κ, so that

` = λ− (1− κ2)ω2 and ω′ = κω. (4.16)

For a < 0, we look at the solution

y(t) = 1 + a sin(ωκt)ebt.

We have y(0) = 1, y′(0) = aκω.

y′(t) = aebt(ωκ cos(ωκt) + b sin(ωκt)).

We repeat the argument of Lemma 4.5. On the interval [0, τ ], y′′(t) ≥ 0 and y′′(τ) = 0,
where

τ =
π

ωκ
− 1

ωκ
arctan

(
2bωκ

b2 − ω2κ2

)
=

π

ωκ
− 2

b
+O(ω2),

and the O(·) is uniform over all κ > 1/2. The function y′(t) is increasing on [0, τ ] and

y′(τ) = e−2ae
πb
ωκ (ωκ+O(ω2)).

Now, we have ϕ(s) < `(d− 1)(s− 1) for all s ∈ [1− σ, 1] with

−`(d− 1)σ = ϕ(1− σ) = λ(ψ(1− σ)− 1 + σ).

If P has finite second moment then, from Abel’s Theorem, ψ′′ is continuous on [0, 1].
Also from Jensen’s inequality, ψ′′(1) ≥ d(d − 1) > 0. We expand ψ in a neighborhood of
1, as ω → 0, it leads to,

σ =
2(d− 1)

ψ′′(1)λ
(λ− `)(1 + o(1))

=
2(d− 1)

ψ′′(1)λ
(1− κ2)ω2(1 + o(1)),

where o(1) is uniform over all 0 < κ < 1. In particular, for all ω small enough, σ < δ with
δ as in Lemma 4.3. Also, from (4.15), for t = τ , since y′′(τ) = 0, we have

y(τ)− 1

y′(τ)
=

1− λ
`(d− 1)

=
2b

`(d− 1)
.

We may choose a such that y(τ) = 1− σ by setting

a = −σe2 `(d− 1)

2b

e−
πb
ωκ

ωκ
(1 +O(ω2)) = −e2 `(d− 1)2

λψ′′(1)b
e−

πb
ωκ

(1− κ2)ω

κ
(1 + o(1)).

By construction, with this choice of a, we have (1 − λ)y′(τ) = ϕ(y(τ)). Now, in the
domain 1− σ ≤ y ≤ 1 the non-linear differential equation y′′ − (1− λ)y′ + ϕ̃(y) coincides
with (4.15). Thus, using (4.14) and Lemma 4.4(i) with τ = T+, we find that

x′(0) ≤ y′(0) = −e2 `(d− 1)2

λψ′′(1)b
e−

πb
ωκ (1− κ2)ω2(1 + o(1)).

We finally take κ = 1− ω/(πb) and use (4.16). It proves the lemma.
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Step three : end of proof. We may now complete the proof of Theorem 1.2. We start
with the left hand side inequality. We first note that, by Lemma 4.3, x′(t) is decreasing
on the interval [0, t0] where t0 is the time where (x(t0), x′(t0)) ∈ Γ = {(x1, x2) ∈ [ρ, 1] ×
[−1, 0] : (1− λ)x2 = ϕ(x1)}. Moreover by Lemma 4.3, we find x(t0) ≤ 1− δ. However, by
Lemma (4.2)(ii), we have

x(t) ≥ 1− t.

Hence t0 ≥ δ. Then, by construction, on the interval [0, t0],

x(t) ≤ 1 + x′(0)t = 1− |x′(0)|t.

Since ψ(x) ≤ x on [ρ, 1], it follows from (4.1) that the survival probability may be
lower bounded as

1− q(λ) =

∫ ∞
0

(1− ψ(x(t)))e−tdt ≥
∫ ∞
0

(1− x(t))e−tdt

≥
∫ t0

0

|x′(0)|te−tdt

≥ |x′(0)|
∫ δ

0

te−tdt.

It remains to use Lemma 4.6 and we obtain the left hand side of Theorem 1.2.
We turn to the right hand side inequality. For X = (x1, x2) ∈ [ρ, 1] × (−∞, 0), define

G(X) = (x2, (1− λ)x2). From the definition of F in (4.8), we have, component-wise, for
any X ∈ [ρ, 1]× (−∞, 0),

F (X) ≥ G(X).

Note also that G is monotone : if component-wise X ≥ Y then G(X) ≥ G(Y ). It follows
that if X(0) = Y (0), X ′ = F (X) and Y ′ = G(Y ) then component-wise

X(t) ≥ Y (t),

(see e.g. [13, Exercise 4.6]). Looking at the solution of y′′ − (1 − λ)y′ = 0 such that
y(0) = 1 and y′(0) = x′(0), we get that

x(t) ≥ 1 + x′(0)(e(1−λ)t − 1).

We deduce from (4.1)-(4.2) and the convexity of ψ that,

q(λ) =

∫ ∞
0

ψ(x(t))e−tdt

≥
∫ ∞
0

ψ(1 + x′(0)(e(1−λ)t − 1))e−tdt

≥
∫ ∞
0

(
1 + dx′(0)(e(1−λ)t − 1)

)
e−tdt

≥ 1 + dx′(0)/λ.

We finally apply Lemma 4.5 and this concludes the proof of Theorem 1.2.

5 Proofs of Theorems 1.3-1.4

5.1 Proof of Theorem 1.4

We are first going to find a recursive distributional equation (RDE) associated to the
total progeny of the chase-escape process on a Galton-Watson tree.
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As already pointed, we can build the chase escape process on the tree T ↓ thanks
to i.i.d. Exp(λ) variables (ξv)v∈V and independent i.i.d. Exp(1) variables (Dv)v∈V . The
variable ξv (resp. Dv) is the time by which v ∈ V will be infected (resp. recovered) once
its ancestor is infected (resp. recovered). For t ≥ 0, we define Y (t) as the total number
of recovered vertices when the process reach its absorbing state (without counting o)
when we replace Dø by t. The variable Y (t) is the conditional variable Z conditioned
on the root is recovered at time t. By definition, if D is an independent exponential
variable with mean 1, then

Z
d
= Y (D),

where the symbol
d
= stands for distributional equality.

In T , we denote the offsprings of the root by {1, · · · , N}. The random variable N

has distribution P . The root infects each of its offspring after an independent exponen-
tial variable with intensity λ. Note that in T , the subtrees generated by each of the
offsprings of the root are iid copies of T . Hence, the recursive structure of the tree T
leads to the following equality in distribution

Y (t)
d
= 1 +

N∑
i=1

11(ξi ≤ t)Yi(t− ξi +Di). (5.1)

where (ξi)i∈N are iid exponential variables with intensity λ, (Yi)1≤i≤N and (Di)1≤i≤N
are independent copies of Y and D respectively. Note that since all variables are non-
negative, there is no issue with the case Y (t) = +∞ in the above RDE.

The RDE (5.1) is the cornerstone of the argument. In the remainder of this subsec-
tion, we will use it to derive a linear second order ODE for the first moment of Y (t). In
the following subsection §5.2, we will extend this exact computation to any integer mo-
ment. Finally, using convexity inequalities, we will push further the method and obtain
sharp lower and upper bounds for any moment of Y (t) (in §5.3 and §5.4).

We start with a lemma

Lemma 5.1. Let t > 0 and u ≥ 1, if E′λ[Zu] <∞ then E′λ[Y (t)u] <∞.

Proof: Since Z
d
= Y (D), from Fubini’s Theorem, E′λ[Zu] =

∫∞
0
E′λ[Y (t)u]e−tdt. There-

fore E′λ[Y (t)u] < ∞ for almost all t ≥ 0. Note however that since t 7→ Y (t) is monotone
for the stochastic domination, it implies that E′λ[Y (t)u] <∞ for all t ≥ 0.

Now, assume that E′λZ <∞. We may then take expectation in (5.1):

E′λY (t) = 1 + d

∫ t

0

∫ ∞
0

E′λ[Y (t− x+ s)]e−sdsλe−λxdx.

Let f1(t) = E′λY (t), it satisfies the integral equation, for all t ≥ 0,

f1(t) = 1 + λde−λt
∫ t

0

e(λ+1)x

∫ ∞
x

f1(s)e−sdsdx. (5.2)

Multiplying by eλt and taking derivative, we get:

(f ′1(t) + λf1(t))eλt = λeλt + λde(λ+1)t

∫ ∞
t

f1(s)e−sds.

Then, multiplying by e−(λ+1)t, taking the derivative a second time and then re-multiplying
by et, we obtain: f ′′1 (t)− (1− λ)f ′1(t)− λf1 = −λ− λdf1(t). So, finally, f1 solves a linear
ordinary differential equation of the second order

x′′ − (1− λ)x′ + λ(d− 1)x = −λ,
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with initial condition f1(0) = 1. We get that

f1(t) = x(t)− 1

d− 1
,

where x(t) solves the ordinary differential equation

x′′ − (1− λ)x′ + λ(d− 1)x = 0. (5.3)

with x(0) = d/(d− 1). The discriminant of the polynomial X2− (1−λ)X +λ(d− 1) = 0 is

∆ = λ2 − 2λ(2d− 1) + 1.

If 0 < λ < λ1, the discriminant is positive. The roots of the polynomial are

α =
1− λ−

√
∆

2
and β =

1− λ+
√

∆

2
. (5.4)

The solutions of (5.3) are

x(t) =
d

d− 1

(
(1− a)eαt + aeβt

)
(5.5)

for some constant a.
Similarly, if λ = λ1, then α = β = 1− d+

√
d(d− 1) and the solutions of (5.3) are

x(t) =
d

d− 1
(at+ 1)eαt. (5.6)

For 0 < λ ≤ λ1, we check easily that the functions x(·) with a ≥ 0 are the nonnegative
solutions of the integral equation (5.2).

It remains to prove that if 0 < λ ≤ λ1 then EZ <∞ and

f1(t) =
deαt − 1

d− 1
.

Indeed, we would get EZ =
∫∞
0
EY (t)e−tdt = d

d−1
1

1−α −
1
d−1 as stated in Theorem 1.4.

To this end, define Tn as the tree T stopped at generation n. As above, we denote by
Y (n)(t) the total number of recovered particles in Tn when the root is recovered at time
t (Dø is replaced by t). As n → ∞, Yn(t) is non-decreasing and converges to Y (t). We
have Y (0)(t) = 1 and for all n ≥ 0, as in RDE (5.1),

Y (n+1)(t)
d
= 1 +

N∑
i=1

11(ξi ≤ t)Y (n)
i (t− ξi +Di),

where Y (n)
i , and Di are independent copies of Y (n) and D respectively. Since EN <∞,

the expectation of the number of vertices in Tn is finite. In particular, for all n ≥ 0,
gn(t) = EY (n)(t) < ∞ is bounded uniformly in t. Also, taking expectation in (5.7), we
have for all t ≥ 0,

gn+1(t) = 1 + λde−λt
∫ t

0

e(λ+1)x

∫ ∞
x

gn(s)e−sdsdx = Φ(gn)(t), (5.7)

where Φ is the mapping

Φ : g 7→ 1 + λde−λt
∫ t

0

e(λ+1)x

∫ ∞
x

g(s)e−sdsdx.
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It is easy to check that Φ is indeed a mapping from H1 to H1, where H1 is the set of
non-decreasing functions g : [0,∞) → [1,∞) such that supt≥0 g(t)e−αt < ∞. Now, from
what precedes the function

h(t) =
deαt − 1

d− 1
.

is a fixed point of Φ.
Denote by ≤ the partial order on H1 of point-wise domination: g ≤ f if for all t ≥ 0,

g(t) ≤ f(t). The mapping Φ is non-decreasing onH1 for this partial order. We notice that
g0 ≤ h and g0 ≤ g1. Composing by Φ, we obtain: g1 = Φ(g0) ≤ Φ(h) = h and g1 ≤ g2. By
recursion, it follows for any n ≥ 1, gn ≤ h and (gn)n≥0 is non-decreasing. By monotone
convergence, for any t ≥ 0, the limit g(t) = limn→∞ gn(t) exists and is bounded by h(t).
Also, since gn ≤ h, by dominated convergence, for any t ≥ 0, limn→∞Φ(gn)(t) = Φ(g)(t).
Therefore g solves the integral equation (5.2) and is equal to x − 1/(d − 1) where x is
given by (5.5) (or (5.6) if λ = λ1) for some a ≥ 0. However, from what precedes, we get
x(t) ≤ h(t) + 1/(d− 1) and the only possibility is a = 0 and g(t) = h(t).

Finally, since Y (n)(t) is non-decreasing and converges to Y (t), by monotone conver-
gence we have that f1(t) = EY (t) = limn→∞EY

(n)(t) = g(t). This concludes the proof
of Theorem 1.4.

5.2 Proof of Theorem 1.3 for integer moments

For 0 < λ < λ1, we define

γ =
λ2 − 2dλ+ 1− (1− λ)

√
∆

2λ(d− 1)
=
β

α
, (5.8)

where α and β are given by (5.4). The key property of γ(λ) is that (1−λ)uα−λ(d− 1)−
u2α2 > 0 if and only if 1 < u < γ(λ). We also note that if u > 1, u < γ is equivalent to
λ ∈ (0, λu). We first state an important lemma. Let 1 < u < γ, we define Hu, the set of
measurable functions h : [0,∞) → [0,∞) such that supt≥0 h(t)e−uαt < ∞. Let L > 0, we
define the mapping from Hu to Hu,

Ψ : h 7→ Leuαt + λde−λt
∫ t

0

e(λ+1)x

∫ ∞
x

h(s)e−sdsdx.

In order to check that Ψ is indeed a mapping from Hu to Hu, we use the fact that if
1 < u < γ = β/α then uα < β < 1.

Lemma 5.2. Let 1 < u < γ and f ∈ Hu such that f ≤ Ψ(f). Then for all t ≥ 0,

f(t) ≤ L(uα+ λ)(1− uα)

(1− λ)uα− λ(d− 1)− u2α2
euαt.

Proof: We set g0 = f and for k ≥ 1, we define gk = Ψ(gk−1). First, since 1 < u < γ then
(uα+ λ)(1− uα) > λd. We use the formula for all u ≥ 0 such that uα < 1:

λe−λt
∫ t

0

e(λ+1)x

∫ ∞
x

eαuse−sdsdx =
λ(eαut − e−λt)

(uα+ λ)(1− uα)
. (5.9)

We deduce easily that if g0(t) ≤ C0e
uαt then

g1(t) = Ψ(g0)(t) ≤ Leuαt +
Lλd

(uα+ λ)(1− uα)
(euαt − e−λt) ≤ C1e

uαt,
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with C1 = L + C0λd
(uα+λ)(1−uα) . By recursion, we obtain that lim supk gk(t) ≤ Ceuαt, with

C = L(uα+ λ)(1− uα)/((1− λ)uα− λ(d− 1)− u2α2) <∞.
We may now conclude the proof. Notice that Ψ is monotone: if for all t ≥ 0, h1(t) ≥

h2(t) then for all t ≥ 0, Ψ(h1)(t) ≥ Ψ(h2)(t). Hence, by recursion, from the assumption
f ≤ Ψ(f) = g1, we deduce that for all integer k ≥ 1, f ≤ gk. It remains to take the limit
in k.

Now, let p be an integer, and define fp(t) = E′λ[Y (t)p]. The main result of this sub-
section is the following lemma.

Lemma 5.3. Let 1 ≤ p < γP , if λ ∈ (0, λp), then fp is finite and there exists a constant
Cp such that for all t > 0

fp(t) ≤ Cpepαt.

Proof: In §5.1, we have computed fp for p = 1 and found f1(t) = (deαt − 1)/(d− 1). Let
p ≥ 2 and assume now that the statement of Lemma 5.3 holds for q = 1, · · · , p − 1. Let
κ > 0, Y (κ)(t) = min(Y (t), κ) and let ≤st denote the stochastic domination (beware that
Y (κ)(t) is different from Y (n)(t) defined in §5.1). We use that if yi ≥ 0, min(

∑
i yi, κ) ≤∑

i min(yi, κ). Hence, from RDE (5.1), we have

Y (κ)(t) ≤st 1 +

N∑
i=1

11(ξi ≤ t)Y (κ)
i (t− ξi +Di). (5.10)

Recall the multinomial formula(
n∑
i=1

yi

)p
=

∑
p1,··· ,pn

(
n

p1 · · · pn

)
yp11 · · · ypnn .

where the summation is taken over n-tuples of integers that sum up to p. Taking power
p in the above stochastic inequality and expanding brutally, we thus get

Y (κ)(t)p ≤st
∑

p1,··· ,pN+1

(
N + 1

p1 · · · pN+1

) N∏
i=1

(
11pi=0 + 11pi≥111(ξi ≤ t)Y (κ)

i (t− ξi +Di)
pi
)
,

where the summation is taken over N + 1-tuples of integers that sum up to p. Now we
define

f (κ)p (t) = E′λ

[
Y (κ)(t)p

]
= E′λ [min(Y (t), κ)p] .

Taking expectation and using independence leads to

f (κ)p (t) ≤
∞∑
n=0

P (n)
∑

p1,··· ,pn+1

(
n+ 1

p1 · · · pn+1

) n∏
i=1

(
11pi=0 + 11pi≥1E

′
λ

[
11(ξ ≤ t)Y (κ)(t− ξ +D)pi

])
≤

∞∑
n=0

P (n)
∑

p1,··· ,pn+1

(
n+ 1

p1 · · · pn+1

)

×
n∏
i=1

(
11pi=0 + 11pi≥1λe

−λt
∫ t

0

e(λ+1)x

∫ ∞
x

f (κ)pi (s)e−sdsdx

)
. (5.11)

Consider a n + 1-tuple that sums up to p such that for all i = 1, · · · , n, pi ≤ p − 1,∑n
i=1 pi = q ≤ p and

∑n
i=1 11pi≥1 = m ≤ p. From the recursive hypothesis and (5.9), with

L = max1≤k≤p−1 Ck, we get

n∏
i=1

(
11pi=0 + 11pi≥1λe

−λt
∫ t

0

e(λ+1)x

∫ ∞
x

f (κ)pi (s)e−sdsdx

)
≤

∏
i:pi≥1

Cpiλe
αpit

(λ+ piα)(1− piα)

≤ Lmeαqte−
∑n
i=1 ln(1−piα).
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Now recall that | ln(1− y) + y| ≤ y2

2(1−y) for y ∈ (0, 1). Since
∑n
i=1 p

2
i ≤ q2, we get

n∏
i=1

(
11pi=0 + 11pi≥1λe

−λt
∫ t

0

e(λ+1)x

∫ ∞
x

fpi(s)e
−sdsdx

)
≤ Lmeαqteαq+

α2q2

2(1−pα)

≤ L′eαpt.

Then, grouping together all such n+ 1-tuples, from (5.11) we deduce

f (κ)p (t) ≤
∞∑
n=0

P (n)

(
(n+ 1)pL′eαpt + nλe−λt

∫ t

0

e(λ+1)x

∫ ∞
x

f (κ)p (s)e−sdsdx

)
≤ L′′eαpt + λde−λt

∫ t

0

e(λ+1)x

∫ ∞
x

f (κ)p (s)e−sdsdx, (5.12)

where we have used the hypothesis p < γP . We may then apply Lemma 5.2: there exists
a constant Cp such that

f
(κ)
1 (t) ≤ Cpeαpt.

The monotone convergence Theorem implies that fp(t) = limκ→∞ f
κ)
p (t) exists and is

bounded by Cpeαpt. The recursion is complete.

5.3 Proof of Theorem 1.3 : lower bound on γ(λ)

To prove Theorem 1.3, we shall prove two statements

If E′λ[Zu] <∞ then u ≤ γ, (5.13)

If 1 < u < min(γ, γP ) then E′λ[Zu] <∞. (5.14)

In this paragraph, we prove (5.14). The argument is a refinement of the argument
in §5.2. Let κ > 0 and let f (κ)u (t) = E′λ[min(Y (t), κ)u], we have the following lemma.

Lemma 5.4. If 1 < u < min(γ, γP ), there exists a constant Lu > 0 such that for all t ≥ 0

and κ > 0,

f (κ)u (t) ≤ Lueuαt + λde−λt
∫ t

0

e(λ+1)x

∫ ∞
x

f (κ)u (s)e−sdsdx.

Proof: The lemma is already proved if u is an integer in (5.12). The general case
extends of the same argument. We write u = p+ v with v ∈ (0, 1) and integer p ≥ 1. We
use the inequality, for all yi ≥ 0, 1 ≤ i ≤ n,(

n∑
i=1

yi

)u
≤

n∑
i=1

∑
p1,··· ,pn

(
n

p1 · · · pn

)
ypi+vi

∏
1≤j≤n,j 6=i

y
pj
j , (5.15)

where the summation is taken over n-tuples of integers that sum up to p (which follows
from the inequality (

∑
yi)

v ≤
∑
yvi and the multinomial formula). Then from (5.10), we

get the stochastic domination

Y (κ)(t)u ≤st
N∑
i=1

∑
p1,··· ,pN+1

(
N + 1

p1 · · · pN+1

)(
11pi=0 + 11pi≥111(ξi ≤ t)Y (κ)

i (t− ξi +Di)
pi+v

)
×

∏
1≤j≤N,j 6=i

(
11pj=0 + 11pj≥111(ξj ≤ t)Y (κ)

j (t− ξj +Di)
pj
)
,(5.16)
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where the summation is taken over N + 1-tuples of integers that sum up to p. From
Lemma 5.3, for all 1 ≤ q ≤ p, fq(t) ≤ Cqeqαt. Note also, by Jensen inequality, that for all

1 ≤ q ≤ p − 1, fq+v(t) ≤ fp(t)
q+v
p ≤ Cpe

(q+v)αt. The same argument (with p replaced by
u) which led to (5.12) in the proof of Lemma 5.3 leads to the result.

Statement (5.14) is a consequence of Lemma 5.2 and Lemma 5.4. Indeed, by Lemma
5.2, for all t ≥ 0, f (κ)u (t) ≤ Cueuαt for some positive constant Cu independent of κ. From
the monotone convergence Theorem, we deduce that, for all t ≥ 0, fu(t) ≤ Cue

uαt.

However from Z
d
= Y (D), we find

E′λZ
u =

∫ ∞
0

fu(t)e−tdt ≤
∫ ∞
0

Cue
uαte−tdt.

Then, statement (5.14) follows from uα < 1.

5.4 Proof of Theorem 1.3 : upper bound on γ(λ)

In this paragraph, we prove statement (5.13). This will conclude the proof of Theo-
rem 1.3. Let u > 1, we assume that E′λ[Zu] < ∞ we need to show that λ < λu. Without
loss of generality we can assume that λ < λ1. From Lemma 5.1 and (5.1), we get

fu(t) = E′λ[Y (t)u] = E′λ

(
1 +

N∑
i=1

11(ξi ≤ t)Yi(t− ξi +Di)

)u
.

Taking expectation and using the inequality (x+ y)u ≥ xu + yu, for all positive x and y,
we get:

fu(t) ≥ 1 + λde−λt
∫ t

0

e(λ+1)x

∫ ∞
x

fu(s)e−sdsdx. (5.17)

From Jensen’s Inequality, fu(t) ≥ f1(t)u ≥ euαt. Note that the integral
∫∞
x
eαuse−sds is

finite if and only if u < α−1. Suppose now that γ < u < α−1. We use the fact that if
u > γ then u2α2 − (1 − λ)uα + λ(d − 1) > 0. It implies that there exists 0 < ε < λ such
that

u2α2 − (1− λ)uα+ λ(d− 1) > εd. (5.18)

We define λ̃ = λ − ε, ∆̃(ε) = (1 − λ)2 − 4(λ̃d − λ). Note that ∆̃(0) = ∆. Since λ < λ1,
for ε small enough, ∆̃ is non-negative, we may then consider the real roots of X2 − (1−
λ)X + λ̃d− λ:

α̃(ε) =
1− λ−

√
∆̃

2
and β̃(ε) =

1− λ+
√

∆̃

2
.

Again, for ε = 0, α̃(0) = α and β̃(0) = β. Hence, since u > γ = β/α, by continuity, for ε
small enough,

uα > β̃. (5.19)

We compute a lower bound from (5.17) as follows:

fu(t) ≥ 1 + εde−λt
∫ t

0

e(λ+1)x

∫ ∞
x

fu(s)e−sdsdx+ λ̃de−λt
∫ t

0

e(λ+1)x

∫ ∞
x

fu(s)e−sdsdx

≥ 1 + εde−λt
∫ t

0

e(λ+1)x

∫ ∞
x

euαse−sdsdx+ λ̃de−λt
∫ t

0

e(λ+1)x

∫ ∞
x

fu(s)e−sdsdx

≥ 1 + L(euαt − e−λt) + λ̃de−λt
∫ t

0

e(λ+1)x

∫ ∞
x

fu(s)e−sdsdx,
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with

L =
εd

(λ+ uα)(1− uα)
> 0.

We consider the mapping Ψ : h 7→ 1 + L(euαt − e−λt) + λ̃
∫ t
0
ex
∫∞
x
fu(s)e−sdsdx. Ψ is

monotone: if for all t ≥ 0, h1(t) ≥ h2(t) then for all t ≥ 0, Ψ(h1)(t) ≥ Ψ(h2)(t). Since, for
all t ≥ 0, fu(t) ≥ Ψ(fu)(t) ≥ 1, we deduce by iteration that there exists a function h such
that h = Ψ(h) ≥ 1. As in §5.1, solving h = Ψ(h) is simple, taking twice the derivative,
we get,

h′′ − (1− λ)h′ + (λ̃d− λ)h = −λ− L(λ+ uα)(1− uα)euαt.

Therefore, h = aeα̃t+beβ̃t−ε(u2α2−(1−λ)uα+λ(d−1))−1euαt for some constant a and b.
From (5.19) the leading term as t goes to infinity is equal to −ε(u2α2− (1−λ)uα+λ(d−
1))−1euαt. However from (5.18), −ε(u2α2− (1−λ)uα+λ(d−1))−1 < 0 and it contradicts
the assumption that h(t) ≥ 1 for all t ≥ 0. Therefore we have proved that u ≤ γ.

Appendix

In this appendix, for the sake of completeness we include the proof of the following
lemma on Galton-Watson trees.

Lemma 5.5. Let T be a Galton-Watson tree with mean number of offsprings d > 1.
Conditioned on T is infinite, T is a.s. lower d-ary.

Proof: Let 1 < δ < d and Zn = |Vn| be the number of offsprings of generation n. From
Seneta-Heyde Theorem (see [22, Chapter 5]), conditioned on T is infinite, a.s.

lim
n→∞

1

n
logZn = d.

Let p > 0 be the probability that T is infinite. It implies that for any ε > 0, for all n large
enough, we have P(Zn ≥ δn) ≥ p− ε.

Now, consider a new Galton-Watson tree T ′ starting from the root where each ver-
tex produces independently m = bδnc offsprings with probability p − ε and 0 offspring
otherwise. From what precedes, we may couple T and T ′ such that T ′ is a subtree of
T ∗n.

We are now going to prove that T ′ contains a large regular tree with probability at
least p− 2ε. To this end, we set

q = q(ε) = 1− p+ ε.

Note that we may have chosen n = n(ε) large enough so that

q + (1− q)e−mε
2/2 ≤ q + ε. (5.20)

We consider the following pruning algorithm on T ′. At step 0, we start with all
vertices of T ′. At step 1, we remove all vertices which have less than (1 − q − 2ε)m

offsprings. We now iterate: at step k ≥ 1, we remove all vertices which have less than
(1− q − 2ε)m offsprings left by step k − 1.

Denote by ρk the probability that the root of T ′ is removed by step k. We have ρ0 = 0,
ρ1 = q and (ρk)k≥0 is an non-decreasing sequence. We are going to check by recursion
that for all k ≥ 1,

ρk ≤ q + ε. (5.21)

Indeed, let k ≥ 1 and assume that ρk−1 ≤ q + ε. Note that if the root is removed by step
k, then either it has 0 offspring or more than (q + 2ε)m of its offsprings were removed
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by step k − 1. From the recursive structure of the Galton-Watson tree, the probability
that an offspring was removed by step k − 1 is ρk−1 and these events for each offspring
are independent. It follows that

ρk ≤ q + (1− q)P

(
m∑
i=1

Xi ≥ (q + 2ε)m

)
,

where (Xi)1≤i≤m are i.i.d. {0, 1}-Bernoulli variables with mean ρk−1. By recursion
hypothesis, ρk−1 ≤ q + ε. Hence, Hoeffding’s inequality leads to

P

(
m∑
i=1

Xi ≥ (q + 2ε)m

)
≤ P

(
m∑
i=1

(Xi − EXi) ≥ εm

)
≤ e−mε

2/2.

From (5.20), we deduce that ρk ≤ q + ε. This proves (5.21).
We have thus proven that with probability at least 1− (q+ε) = p−2ε, the root of T is

never removed by the pruning algorithm. However, on the latter event, by construction
T ′ contains a b(1− q − 2ε)mc-ary tree rooted at (note that 1− q − 2ε = p− 3ε).

We may now conclude the proof. We apply the above argument to some δ′ ∈ (δ, d).
This proves that for any 0 < ε < 1, there exists an integer nε such that with probability
at least (1−ε)p, T ∗nε contains a dδnεe-ary tree. Note that the latter event is contained in
the event that T is infinite. It follows that the conditional probability that T ∗nε contains
a dδnεe-ary tree, given T infinite, is at least 1− ε.

We finally consider the sequence εk = 1/k2. From Borel-Cantelli lemma, conditioned
on T infinite, a.s. there exists k such that T ∗nεk contains a dδnεk e-ary tree.
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