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Comment on a theorem of M. Maxwell and M. Woodroofe*
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Abstract

We present a streamlined derivation of the theorem of M. Maxwell and M. Woodroofe
[3], on martingale approximation of additive functionals of stationary Markov pro-
cesses, from the non-reversible version of the Kipnis-Varadhan theorem.
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1 Setup

Let (2, F,7) be a probability space: the state space of a stationary and ergodic
Markov process t +— n(t). We put ourselves in the real Hilbert space H := £2(Q,7),
with inner product (¢, ) := [, ¢(w)i(w) dr(w). Denote by P, the Markov semigroup of
conditional expectations acting on H:

P :H—-H, Pip(w) := E((p(m) | Ny = w), t>0.

This is assumed to be a strongly continuous contraction semigroup, whose infinitesimal
generator is denoted by (, which is a well-defined (possibly unbounded) closed linear
operator of Hille-Yosida type on H. It is assumed that there exists a dense core C C H
on which G is decomposed as

G=-S+A,

where S is Hermitian and positive semidefinite, while A is skew-Hermitian:

Vo, eC: (p,S%) = (Sp,), (0,Sp) >0, (p,AY)=—(Ap,?).

Finally, it is assumed that S, respectively, A are essentially self-adjoint, respectively,
essentially skew-self-adjoint on the core C. The operator S'/? appearing in the forth-
coming arguments is defined in terms of the spectral theorem.

Let f € M, be such that (f,1) = [, fdr = 0, where 1 € # is the constant function
1(w) = 1. We ask about CLI/invariance principle, as N — oo, for

Nt
N2 / £(1(s)) ds.
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We denote:
Ry = / e M Pods = (M —G) ™, uy == Ry f, A >0,
0
t
Vt;:/ P,ds =G (I - P), v = Vi f, t>0.
0

Recall the non-reversible version of the Kipnis-Varadhan theorem and the theorem
of Maxwell and Woodroofe about the CLT problem mentioned above:

Theorem KV. With the notation and assumptions as before, if the following two limits
hold in ‘H (in norm topology):

lim AY2uy =0, (1.1)
A—0
lim SY2uy, = w e A, (1.2)
A—0

then
0? =2 lim (ux, f) = 2[|w]|® € [0, 00),
A—0

exists, and there also exists a zero mean, L£*-martingale M (t) adapted to the filtration
of the Markov process 7(t), with stationary and ergodic increments, and variance

E (M(t)%) = o*t,

such that

N —o00

lim N'E ((/O F(n(s))ds — M(N))2> = 0.

In particular, if o > 0, then the finite dimensional marginal distributions of the rescaled
process t — g LN ~1/2 fONt f(n(s))ds converge to those of a standard 1d Brownian mo-
tion.

Conditions (1.1) and (1.2) of Theorem KV are jointly equivalent to the following

. / _
)\71/{/11_1)0()\+)\)(u>\,u>\/) =0. (1.3)

Indeed, straightforward computations yield:

2
O+ X, ) = || 8Y2 G = ) |+ a2 4 X e |2 (1.4)

Theorem MW. With the notation and assumptions as before, if:
o0
/ £3/2 ||, || dt < o0, (1.5)
0
then the martingale approximation and CLT from Theorem KV hold.

Remarks:

o The reversible version (when A = 0) of Theorem KV appears in the celebrated pa-
per [1]. In that case conditions (1.1) and (1.2) are equivalent and the proof relies
on spectral calculus. The non-reversible formulation of Theorem KV appears - in
discrete-time Markov chain, rather than continuous-time Markov process setup and
with condition (1.3) —in [4]. Its proof follows the original proof from [1], with spectral
calculus methods replaced by resolvent calculus.
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o Theorem MW appears in [3]. Its proof contains elements in common with the ar-
guments of the proof of Theorem KV. However, in the original formulation it’s not
transparent that Theorem MW is actually a direct consequence of Theorem KV.

o For full historical record of the circle of ideas and results related to Theorem KV (as,
e.g., the various sector conditions) and a wide range of applications to tagged particle
diffusion in interacting particle systems, random walks and diffusions in random en-
vironment, other random walks and diffusions with long memory, etc., see the recent
monograph [2].

2 Theorem MW from Theorem KV

Proposition 2.1. If there exists a decreasing sequence A\, \, 0 such that

D VA fua || < oo, (2.1)
k=1
then conditions (1.1) and (1.2) of Theorem KV hold.

Remark:

o Proposition 2.1 also sheds some light on the conditions of Theorem KV: It shows that
(1.1) alone is just marginally short of being sufficient.

Proof of Proposition 2.1. Note first that from (1.4), by Schwarz’s inequality it follows
that

1/2 2 / 2 2 2 ' 2
2|15 (ux —un) || < A= A)([Jun [I7 = Tux ) < Alaa 7+ A lux | (2.2)

Hence, A — || uy || is monotone decreasing and

max VA ux || < VAo luag |- (2.3)

A <SA<Ag -1

The summability condition (2.1) and the bound (2.3) clearly imply (1.1).
From (2.2) we also get

H 51/2(u>\k - u/\k—l)

’ SSRVOVESR KTV ¢

Hence, by the assumption (2.1)

Z H Sl/Q(U)\k - ukk71) H < 00,

k=1

and thus

lim SY2%uy, = we M (2.4)

k—o0

exists. Now, using again (2.2) we have

SY2(uy, — uy) H < lim VA s, || = 0. (2.5)

lim max
k—00 A <A<Ak_1

Finally, (2.4) and (2.5) jointly yield (1.2).
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The following is essentially Lemma 1 from [3]. We reproduce it only for sake of
completeness.

Lemma 2.2. Condition (1.5) of Theorem MW implies the summability condition (2.1)
of Proposition 2.1, with any exponential sequence \;, = 6%, § € (0,1).

Proof of Lemma 2.2. This is straightforward computation. Note first that

uy = )\/ e My, dt, [un]l < )\/ e M vg | dt.
0 0

Thus,

D 6F2 Juge || < / (Z(tdk)?’/ze_wk) 732 vy | dt. (2.6)

k=0 0 \k=0
Next we prove that for any § € (0,1)

o 3/2
3 NG
su t5%)3/2=18" < () + . (2.7)
0§t<poo k:z—:oo( ) ~ \2e 2(1-9)

From (2.6) and (2.7) the statement of the lemma follows.
Fix t € [0,00), € (0,1) and denote uy, := t6*. Since the function [0,00) 3 u + u!/2e™"
is strictly unimodular, there exists a unique k* = k*(t,d) € Z such that
min  u'/Ze™"  ifk < k*,
1L]1€/26_uk _ ) urpiSusug )
min  u'/Ze"  if k> k*.

uk <uSug—1

Then the sum on the left hand side of (2.7) is:

o0
3/2 —up _
g u, e =

k=—o00

k-1 oo
1 1)
75, 2 (e P e T B0 (e e/ <

1 o0
sup u??e v 4 7/ u'?e " du.
1-4J,

0<u<Loo

Hence (2.7), and the statement of the lemma follows.
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