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Abstract

We present a streamlined derivation of the theorem of M. Maxwell and M. Woodroofe
[3], on martingale approximation of additive functionals of stationary Markov pro-
cesses, from the non-reversible version of the Kipnis-Varadhan theorem.
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1 Setup

Let (Ω,F , π) be a probability space: the state space of a stationary and ergodic
Markov process t 7→ η(t). We put ourselves in the real Hilbert space H := L2(Ω, π),
with inner product (ϕ,ψ) :=

∫
Ω
ϕ(ω)ψ(ω) dπ(ω). Denote by Pt the Markov semigroup of

conditional expectations acting on H:

Pt : H → H, Ptϕ(ω) := E
(
ϕ(ηt)

∣∣ η0 = ω
)
, t ≥ 0.

This is assumed to be a strongly continuous contraction semigroup, whose infinitesimal
generator is denoted by G, which is a well-defined (possibly unbounded) closed linear
operator of Hille-Yosida type on H. It is assumed that there exists a dense core C ⊆ H
on which G is decomposed as

G = −S +A,

where S is Hermitian and positive semidefinite, while A is skew-Hermitian:

∀ϕ,ψ ∈ C : (ϕ, Sψ) = (Sϕ,ψ), (ϕ, Sϕ) ≥ 0, (ϕ,Aψ) = −(Aϕ,ψ).

Finally, it is assumed that S, respectively, A are essentially self-adjoint, respectively,
essentially skew-self-adjoint on the core C. The operator S1/2 appearing in the forth-
coming arguments is defined in terms of the spectral theorem.

Let f ∈ H, be such that (f, 11) =
∫

Ω
f dπ = 0, where 11 ∈ H is the constant function

11(ω) ≡ 1. We ask about CLT/invariance principle, as N →∞, for

N−1/2

∫ Nt

0

f(η(s)) ds.
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We denote:

Rλ :=

∫ ∞
0

e−λsPs ds =
(
λI −G

)−1
, uλ := Rλf, λ > 0,

Vt :=

∫ t

0

Ps ds = G−1(I − Pt), vt := Vtf, t > 0.

Recall the non-reversible version of the Kipnis-Varadhan theorem and the theorem
of Maxwell and Woodroofe about the CLT problem mentioned above:

Theorem KV. With the notation and assumptions as before, if the following two limits
hold in H (in norm topology):

lim
λ→0

λ1/2uλ = 0, (1.1)

lim
λ→0

S1/2uλ =: w ∈ H, (1.2)

then
σ2 := 2 lim

λ→0
(uλ, f) = 2 ‖w ‖2 ∈ [0,∞),

exists, and there also exists a zero mean, L2-martingale M(t) adapted to the filtration
of the Markov process η(t), with stationary and ergodic increments, and variance

E
(
M(t)2

)
= σ2t,

such that

lim
N→∞

N−1E

((∫ N

0

f(η(s)) ds−M(N)
)2)

= 0.

In particular, if σ > 0, then the finite dimensional marginal distributions of the rescaled
process t 7→ σ−1N−1/2

∫ Nt
0

f(η(s)) ds converge to those of a standard 1d Brownian mo-
tion.

Conditions (1.1) and (1.2) of Theorem KV are jointly equivalent to the following

lim
λ,λ′→0

(λ+ λ′)(uλ, uλ′) = 0. (1.3)

Indeed, straightforward computations yield:

(λ+ λ′)(uλ, uλ′) =
∥∥∥S1/2(uλ − uλ′)

∥∥∥2

+ λ ‖uλ ‖2 + λ′ ‖uλ′ ‖2 . (1.4)

Theorem MW. With the notation and assumptions as before, if:∫ ∞
0

t−3/2 ‖ vt ‖ dt <∞, (1.5)

then the martingale approximation and CLT from Theorem KV hold.

Remarks:

◦ The reversible version (when A = 0) of Theorem KV appears in the celebrated pa-
per [1]. In that case conditions (1.1) and (1.2) are equivalent and the proof relies
on spectral calculus. The non-reversible formulation of Theorem KV appears – in
discrete-time Markov chain, rather than continuous-time Markov process setup and
with condition (1.3) – in [4]. Its proof follows the original proof from [1], with spectral
calculus methods replaced by resolvent calculus.

ECP 18 (2013), paper 13.
Page 2/4

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2366
http://ecp.ejpecp.org/


On a theorem of M. Maxwell and M. Woodroofe

◦ Theorem MW appears in [3]. Its proof contains elements in common with the ar-
guments of the proof of Theorem KV. However, in the original formulation it’s not
transparent that Theorem MW is actually a direct consequence of Theorem KV.

◦ For full historical record of the circle of ideas and results related to Theorem KV (as,
e.g., the various sector conditions) and a wide range of applications to tagged particle
diffusion in interacting particle systems, random walks and diffusions in random en-
vironment, other random walks and diffusions with long memory, etc., see the recent
monograph [2].

2 Theorem MW from Theorem KV

Proposition 2.1. If there exists a decreasing sequence λk ↘ 0 such that

∞∑
k=1

√
λk−1 ‖uλk

‖ <∞, (2.1)

then conditions (1.1) and (1.2) of Theorem KV hold.

Remark:

◦ Proposition 2.1 also sheds some light on the conditions of Theorem KV: It shows that
(1.1) alone is just marginally short of being sufficient.

Proof of Proposition 2.1. Note first that from (1.4), by Schwarz’s inequality it follows
that

2
∥∥∥S1/2(uλ − uλ′)

∥∥∥2

≤ (λ− λ′)(‖uλ′ ‖2 − ‖uλ ‖2) ≤ λ ‖uλ′ ‖2 + λ′ ‖uλ ‖2 . (2.2)

Hence, λ 7→ ‖uλ ‖ is monotone decreasing and

max
λk≤λ≤λk−1

√
λ ‖uλ ‖ ≤

√
λk−1 ‖uλk

‖ . (2.3)

The summability condition (2.1) and the bound (2.3) clearly imply (1.1).
From (2.2) we also get∥∥∥S1/2(uλk

− uλk−1
)
∥∥∥ ≤√λk−1 ‖uλk

‖ .

Hence, by the assumption (2.1)

∞∑
k=1

∥∥∥S1/2(uλk
− uλk−1

)
∥∥∥ <∞,

and thus

lim
k→∞

S1/2uλk
=: w ∈ H (2.4)

exists. Now, using again (2.2) we have

lim
k→∞

max
λk≤λ≤λk−1

∥∥∥S1/2(uλk
− uλ)

∥∥∥ ≤ lim
k→∞

√
λk−1 ‖uλk

‖ = 0. (2.5)

Finally, (2.4) and (2.5) jointly yield (1.2).
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The following is essentially Lemma 1 from [3]. We reproduce it only for sake of
completeness.

Lemma 2.2. Condition (1.5) of Theorem MW implies the summability condition (2.1)
of Proposition 2.1, with any exponential sequence λk = δk, δ ∈ (0, 1).

Proof of Lemma 2.2. This is straightforward computation. Note first that

uλ = λ

∫ ∞
0

e−λtvt dt, ‖uλ ‖ ≤ λ
∫ ∞

0

e−λt ‖ vt ‖ dt.

Thus,

∞∑
k=0

δk/2 ‖uδk ‖ ≤
∫ ∞

0

( ∞∑
k=0

(tδk)3/2e−tδ
k

)
t−3/2 ‖ vt ‖ dt. (2.6)

Next we prove that for any δ ∈ (0, 1)

sup
0≤t<∞

∞∑
k=−∞

(tδk)3/2e−tδ
k

≤
(

3

2e

)3/2

+

√
π

2(1− δ)
. (2.7)

From (2.6) and (2.7) the statement of the lemma follows.
Fix t ∈ [0,∞), δ ∈ (0, 1) and denote uk := tδk. Since the function [0,∞) 3 u 7→ u1/2e−u

is strictly unimodular, there exists a unique k∗ = k∗(t, δ) ∈ Z such that

u
1/2
k e−uk =

 min
uk+1≤u≤uk

u1/2e−u if k < k∗,

min
uk≤u≤uk−1

u1/2e−u if k > k∗.

Then the sum on the left hand side of (2.7) is:

∞∑
k=−∞

u
3/2
k e−uk =

1

1− δ

k∗−1∑
k=−∞

(uk − uk+1)u
1/2
k e−uk + u

3/2
k∗ e

−uk∗ +
δ

1− δ

∞∑
k=k∗+1

(uk−1 − uk)u
1/2
k e−uk ≤

sup
0≤u≤∞

u3/2e−u +
1

1− δ

∫ ∞
0

u1/2e−u du.

Hence (2.7), and the statement of the lemma follows.
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