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Abstract

This work is concerned with the approximation to the solutions of the stochastic
Stokes equations by the splitting up method. We apply the resolvent operator to
evaluate the solution of the deterministic equations at the endpoints of every small
interval, and the error is estimated.
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1 Introduction

Let D be a bounded domain in Rd with smooth boundary ∂D, where d = 2 or d = 3.
Denote by v : D → Rd the velocity vector field and π : D → R the scalar pressure. The
stochastic Stokes equations describe the time evolution of incompressible fluid flow and
are given as follows

∂v

∂t
−∆v +∇π = σ̃(v)Ẇt in D × (0, T ); (1.1)

∇ · v = 0 in D × (0, T ) (1.2)

with no-slip boundary condition

v = 0 on ∂D × [0, T ], (1.3)

where W (t) is a U -valued Wiener process in a given real separable Hilbert space (U, | ·
|U , < ·, · >U ). Here the viscosity coefficient is assumed to be 1 since no information is
obtained on the dependence of the error on the viscosity coefficient.

To formulate the stochastic Stokes equations, we need the usual Sobolev space
Hm,p(D) (m is an integer) which is space of all functions whose derivatives up to or-
der m belong to space Lp(D). Denoted by H1,2

0 (D) the completion of C∞0 (Ω) (the set
of smooth functions with compact supports) with respect to the norm of H1,2(D). We
introduce the space H0 for stochastic Stokes equations:

H0 = {u ∈ (L2(D))d : div u = 0 in D and u ·N = 0 on ∂D},
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where N is the exterior normal vector field. H0 is a closed subspace in (L2(D))d.
Define the Stokes operator A : D(A)→ H0 by

A = −P∆,

where P : (L2(D))d → H0 is Leray projection and D(A) = (H2,2(D))d∩(H1,2
0 (D))d∩H0.

Applying the operator P on each term of equation (1.1), we can rewrite equation
(1.1)-(1.3) to be the following infinite dimensional stochastic Stokes equation:

v′ +Av = σ(v)Ẇ in (0, T ), (1.4)

Where σ = Pσ̃. We consider a fixed complete stochastic basis (Ω, P,F ; {Ft; t ≥ 0}). Let
Q be a symmetric nonnegative trace class operator on U . Then there exists a complete
orthonormal basis {ei}i∈N in U and a real numbers αi such that

Qei = αiei,

where αi ≥ 0 and
∑
i

αi <∞. For arbitrary t, W has the expansion

W (t) =
∑
i

√
αiβi(t)ei,

where βi, i = 1, 2, · · · are independent real-valued standard Wiener processes. For
convenience, we denote (H2,2(D) ∩H0(D))d by H2. Define

|G|2Q,Hs = Tr(GQG∗) =
∑
i

αi|Gei|2Hs for G ∈ L(U,Hs), s = 0, 2.

We assume that σ(·) : Hs → L(U,Hs), s = 0, 2 satisfies
(H7) |σ(u)− σ(v)|2Q,Hs ≤ L|u− v|2Hs .

The mathematical theory and numerical techniques of finding solutions of the deter-
ministic differential equations and stochastic differential equations have been consid-
ered in a large amount of literatures. We cite here Beale and Greengard [5], Grecksch
and Kloeden [11], Gyoengy and Nualart [12], Germani and Piccioni [13], Kloeden and
Platen [17], where the finite difference method, finite element method, Galerkin’s ap-
proximation, Wiener chaos decomposition, and the combination of different numerical
methods are applied respectively. Also, splitting-up method has been the subject of in-
tense investigation which first appears as Trotter’s formula in Trotter [23]. For more
guidance we refers to the book and articles Marchuk [18], Barbu [2] and Teman [24].
We concentrate on the splitting up method to approximate the solutions of stochastic
Stokes equations. Denoted by v(t) = T1(t, s)ξ1, u(t) = T2(t, s)ξ2, y(t) = T3(t, s)ξ3 the
respective solutions of equations{

v′(t) +Av(t) = σ(v(t))Ẇ , t ∈ (s, T ];

v(s) = ξ1,{
u′(t) +Au(t) = 0, t ∈ (s, T ];

u(s) = ξ2,

and {
y′(t) = σ(y(t))Ẇ , t ∈ (s, T ];

y(s) = ξ3.

Then the convergence result
lim
ε→0

yε(t) = v(t),
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where yε is the approximate solution which is defined by iteration. It will be specified
in equation (2.5) in Section 2, is equivalent to Lie-Trotter type formula:

lim
n→∞

n−1∏
i=0

T3(
n− i
n

t,
n− 1− i

n
t)T2(

n− i
n

t,
n− 1− i

n
t)ξ1 = T1(t, 0)ξ1.

The framework of the scheme can be roughly explained as following. One can decom-
pose a complicated stochastic differential equation to a deterministic equation and a
stochastic equation which are simpler to handle than the original problem. Let an ini-
tial value v0 be given. We divide firstly the time interval [0, T ] into n subintervals and
each of size ε = T

n . The splitting scheme defines an approximate solution of the SDE. Let
uε(ε) be the solution of the deterministic equations at the time ε, with initial condition
yε(0). Then yε(ε) is defined to be the solution of the SDE at the time ε with initial condi-
tion uε(ε). Recursively, one can define the approximate solution yε(mε), for integers m,
0 ≤ m ≤ n.

The aim of this paper is to adopt splitting up method to approximate the solutions of
stochastic Stokes equations. We replace uε((m+ 1)ε) = e−εAyε(mε) with uε((m+ 1)ε) =

(I + εA)−1yε(mε). Regarding to effective and practical computations, resolvent method
is more convenient.

In Beale and Greengard [5] and Popa [21], the authors dealt with the approxima-
tion of the solutions of deterministic Navier-Stokes equations by splitting up them into
two partial differential equations: the Euler equations with the tangential boundary
condition and the Stokes equations with the no-slip boundary condition on sufficiently
small time intervals. As a preparation to approximate the solutions of stochastic Navier-
Stokes equations, we use splitting up methods to approximate the solutions of stochas-
tic Stokes equations. Then we will try to extend the result of Beale and Greengard [5]
to stochastic Navier-Stokes equations.

Let us compare our results to recent results on splitting schemes and approximation
methods for stochastic (partial) differential equations. To the best of our knowledge, it
is the first time to use resolvent for approximating the endpoints of the solution of the
deterministic equations at every small interval. This not only allow us get the similar
results of Asiminoaei and Rascanu [1], Bensoussan, Glowinski and Rascanu [6] and [7],
Gyoengy and Krylov [10], but also introduce a easier numerical computation theoreti-
cally. For high order method using in SPDEs, there are some works such as Doersek
and Teichmann [8] with nice operator, Jentzen and Kloeden [15] with smooth drift and
additive noise. For other numerical method like Euler’s method applied in stochastic
ordinary differential equations, see recent papers Hutzenthaler, Jentzen and Kloeden
[14], Kloeden and Neuenkirch [16] and reference in. We also mention that the split-
ting up method for solving Hamitton-Jacobi equations and, implicitly, for calculating the
value function was initiated by Barbu in [2], [3], and developed by him and Popa, sepa-
rately, in [4], [20], [22].

This paper will be arranged in the following way. In section 2, we shall introduce
the approximation scheme and give the main convergence result. Section 3 is devoted
to the proof of error between approximation solution and the exact solution.

2 The Scheme and Main Result

In this section, we consider stochastic Stokes equations on H0:{
v′(t) +Av(t) = σ(v(t))Ẇ , t ∈ (0, T ];

v(0) = v0.
(2.1)
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Let us denote byM2
W (0, T ;H) the space of all adapted processes in L2(0, T ; L2(Ω;H)),

where H is any separable Hilbert space, and denote by CW ([0, T ];H) its subspace of
processes in C([0, T ]; L2(Ω;H)). As the similar proof in Theorem 3.1 in Flandoli [9], we
have the following existence and uniqueness of weak and strong solutions.

Proposition 2.1. Let v0 ∈ L2(Ω;Hs), s = 0, 2, under corresponding assumptions (H7),
then there exists an unique solution to equation (2.1) which means v ∈M2

W (0, T ; Hs+1)∩
CW ([0, T ]; Hs).

To approximate the solution of equation (2.1), firstly we split up the stochastic Stokes
equations to be a deterministic Stokes equation

ū′(t) +Aū(t) = 0, (2.2)

and a stochastic equation
y′(t) = σ(y(t))Ẇ . (2.3)

Then we apply Trotter scheme to get the approximation of the solution of equation
(2.1).

Let n ∈ N, ε = T
n . Denote tm = mε, m = 1, 2, · · · , n − 1. Consider firstly the

deterministic equation in the interval (0, ε] with initial value v0:{
ū′ε(t) +Aūε(t) = 0, t ∈ (0, ε];

ūε(0+) = v0.

The mild form of solution at point ε is ūε(ε) = e−εAv0. Suppose ε is quite small. In
view of the exponential formula (see Theorem 8.3 in Chapter 1 in Pazy [19]), we replace
e−εA with operator (I + εA)−1. So we shall take u1 := uε(ε) := (I + εA)−1v0 instead of
ūε(ε) = e−εAv0.

Then consider the stochastic equation:{
y′ε(t) = σ(yε(t))Ẇ , t ∈ (0, ε];

yε(0+) = u1.

The solution of the equation can be written as

yε(t) = (I + εA)−1v0 +

∫ t

0

σ(yε(s))dWs, t ∈ (0, ε].

In the interval (ε, 2ε], we consider firstly the deterministic Stokes equation (2.2) with
the initial value yε(ε), and we take

u2 := uε(2ε) := (I + εA)−1yε(ε);

Then, the solution to equation (2.3) with initial value u2 can be written as

yε(t) = u2 +

∫ t

ε

σ(yε(s))dWs

= (I + εA)−2v0 +

∫ ε

0

(I + εA)−1σ(yε(s))dWs +

∫ t

ε

σ(yε(s))dWs.

By induction, we have the scheme in the interval (mε, (m+ 1)ε], m = 0, 1, · · · , n−1, with
the initial condition yε(mε):

um+1 := uε((m+ 1)ε) := (I + εA)−1yε(mε); (2.4)
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yε(t) = um+1 +

∫ t

mε

σ(yε(s))dWs

= (I + εA)−(m+1)v0 +

m∑
i=1

∫ iε

(i−1)ε
(I + εA)−(m+1−i)σ(yε(s))dWs

+

∫ t

mε

σ(yε(s))dWt. (2.5)

Introduce the notation

d(n, t) = [
t

ε
]ε, t ∈ [0, T ],

and d∗(n, t) = d(n, t) + ε. Then d(n, t) ≤ t < d∗(n, t) for every 0 ≤ t ≤ T . Thus,

yε(t) = (I + εA)−(
d(n,t)

ε +1)v0 +

∫ d(n,t)

0

(I + εA)−
d(n,t)−d(n,s)

ε σ(yε(s))dWs

+

∫ t

d(n,t)

σ(yε(s))dWt, t ∈ (0, T ]. (2.6)

Remark 2.2. We see that um+1, m = 0, 1, · · · , n− 1, are Fmε-measurable. yε(t) are left
continuous and with limit to right. Their discontinuity points are 0, ε, 2ε, · · · , (n− 1)ε.

Now we present our main convergence results.

Theorem 2.3. Assume that (H7) holds. v(t) is the solution of equation (2.1). We have
the following convergence results:
(i) If the initial value v0 ∈ L2(Ω; H0),

yε(t)→ v(t) in L2(Ω; H0), for t ∈ [0, T ]; (2.7)

(ii) If v0 ∈ L2(Ω; H2),

E[|yε(t)− v(t)|2H0 ] ≤ Ce4Ctε · ε, (2.8)

where C is a constant independent of ε.

3 The Proof of Main Convergence Result

In this section, we prove our convergence result Theorem 2.3.

Lemma 3.1. Assume that (H7) holds and the initial value v0 ∈ L2(Ω; Hs), s = 0, 2. Then

E[|yε(t)|2H ] ≤ 2e2Lt(E[|v0|2H ] + σ(0)t), (3.1)

where H denotes, if there is not confusion, Hs, s = 0, 2.

Proof. Before proving the boundedness of yε(t), we present an estimation from [5]:
there exist a constant ε0 > 0 such that for all complex ε with Re(ε) ≥ −ε0,

‖(A+ εI)−1‖ ≤ C

|ε|+ 1
, (3.2)

where ‖ · ‖ denotes the norm of the space of linear continuous operators on space H0.
Let ε1 = 1

ε and we still use the notation ε instead of ε1, then

‖(I + εA)−1‖ ≤ 1

|ε|+ 1
. (3.3)
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From the approximation (2.5), we get, for t ∈ (mε, (m+ 1)ε],

E[|yε(t)|2H ] ≤ 2E[|(I + εA)−(m+1)v0|2H ]

+2

m∑
i=1

E[|
∫ ti

ti−1

(I + εA)−(m+1−i)σ(yε(s))dWs|2H ]

+2E[|
∫ t

tm

σ(yε(s))dWs|2H ].

Using inequality (3.3) and the following property of martingale

E[|
∫ t

0

σ(yε(s))dWs|2H ] = E[

∫ t

0

|σ(yε(s))|2Q,Hds],

we infer that

E[|yε(t)|2H ] ≤ 2(
1

1 + ε
)2(m+1)E[|v0|2H ] + 2

m∑
i=1

E[

∫ ti

ti−1

|(I + εA)−(m+1−i)σ(yε(s))|2Q,Hds]

+2E[

∫ t

tm

|σ(yε(s))|2Q,H ]

≤ 2(
1

1 + ε
)2(m+1)E[|v0|2H ] + 2

m∑
i=1

(
1

1 + ε
)2(m+1−i)E[

∫ ti

ti−1

|σ(yε(s))|2Q,Hds]

+2E[

∫ t

tm

|σ(yε(s))|2Q,Hds].

Then applying (H7), one obtains

E[|yε(t)|2H ] ≤ 2(
1

1 + ε
)2(m+1)E[|v0|2H ] + 2σ(0)ε

m∑
i=1

(
1

1 + ε
)2i + 2σ(0)(t− tm)

+2L

∫ t

0

(
1

1 + ε
)2(m−

d(n,s)
ε )E[|yε(s)|2H ]ds.

It follows by Gronwall’s inequality that

E[|yε(t)|2H ] ≤ (2(
1

1 + ε
)2(m+1)E[|v0|2H ] + 2σ(0)ε

m∑
i=1

(
1

1 + ε
)2i + 2σ(0)(t− tm))

× exp{2Lε
m∑
i=1

(
1

1 + ε
)2i + 2L(t− tm))}.

Therefore, we get the result by using inequality (3.3).

Applying Ito formula to |yε(t)|2H , one can improve a little bit the estimate from equa-
tions (2.4) and (2.5). Although this is not essential in the following estimate, but since
the improved estimate can bring us better error estimate, we shall give the details here.
For t ∈ (mε, (m+ 1)ε],

|yε(t)|2H = |uε((m+ 1)ε)|2H + 2

∫ t

mε

(yε(s), σ(yε(s))dWs)H +

∫ t

mε

|σ(yε(s))|2Q,H .

Then,

E[|yε(t)|2H ] = E[|um+1|2H ] + E[

∫ t

mε

|σ(yε(s))|2Q,Hds]

= E[|(I + εA)−1yε(mε)|2H ] +

∫ t

mε

E[|σ(yε(s))|2Q,H ]ds

≤ (1 + ε)−2E[|yε(mε)|2H ] +

∫ t

mε

E[|σ(yε(s))|2Q,H ]ds.
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By induction,

E[|yε(t)|2H ] ≤ (1 + ε)−2(m+1)E[|v0|2H ] +

m∑
i=1

(1 + ε)−2(m+1−i)
∫ ti

ti−1

E[|σ(yε(s))|2Q,H ]ds

+

∫ t

tm

E[|σ(yε(s))|2Q,H ]ds.

Processing as in Lemma 3.1, we have

E[|yε(t)|2H ] ≤ eLt(E[|v0|2H ] + σ(0)t). (3.4)

The following inequality plays an important role in proving the convergence with
rate.

Proposition 3.2. For t, r ∈ (0, T ]. Let t = jε, and r ∈ ((j − 1)ε, jε), j(≥ 2) is an integer.
Then,

|(I + εA)−jg − e−rAg|H0 ≤ C · ε 1
2 · |g|H2 , for g ∈ D(A), (3.5)

where C > 0 is a constant independent of ε.

To prove this Proposition we need the result from Lemma 5.1 in Chapter 3 in [19].

Lemma 3.3. Let S be a bounded linear operator satisfying

‖Sk‖ ≤MNk, for k = 1, 2, · · · , N ≥ 1,

Then for every n ≥ 0, we have

|e(S−I)ng − Sng| ≤MNn−1e(N−1)n[n2(N − 1)2 + nN ]
1
2 |g − Sg|.

Proof of Proposition 3.2. The difference can be separated in the following way:

(I + εA)−jg − e−rAg = [(I + εA)−jg − e−tAg] + [e−tAg − e−rAg]

= [(I + εA)−jg − e−tAg] + e−rA[e−(t−r)A − I]g.

We have

|e−rA[e−(t−r)A − I]g|H0 = |
∫ t−r

0

e−rAe−sAAg|H0

≤ C1 · ε · |g|H2 , for g ∈ D(A), (3.6)

where C1 is a constant independent of ε.
So we only have to evaluate the term (I+εA)−jg−e−tAg. Denoted by Jε = (I+εA)−1.

It satisfies ‖Jε‖ ≤ 1
1+ε and

‖Jk
ε ‖ ≤ (

1

1 + ε
)k < 1, for k = 1, 2, · · · .

Because, for g ∈ D(A),

|Jεg − g|H0 = |εAJεg|H0 = |εJεAg|H0 ≤ ε|Ag|H0 , (3.7)

the operators−Aε := −ε−1(I−Jε) are bounded and they are the infinitesimal generators
of uniformly continuous semigroups Sε(t) which satisfy

‖Sε(t)‖ = ‖e−tAε‖ = ‖e− t
ε

∞∑
k=0

(− t
ε

)k
1

k!
Jk
ε ‖ ≤ e−

t
ε

∞∑
k=0

(− t
ε

)k
1

k!
‖Jk

ε ‖ ≤ 1.

ECP 18 (2013), paper 21.
Page 7/10

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2374
http://ecp.ejpecp.org/


An approximation scheme of stochastic Stokes equations

We infer from Lemma 3.2 that,

|Sε(t)g − Jj
εg|H0 ≤ j

1
2 · |g − Jεg|H0

= j
1
2 · t

j
· |g − Jεg

ε
|H0 , for g ∈ D(A).

It follows from (3.7) that,

|Sε(t)g − Jj
εg|H0 ≤ C2ε

1
2 · |Ag|H0 , for g ∈ D(A), (3.8)

where C2 > 0 is a constant independent of ε.
Next, consider the estimation of |Sε(t)g − e−tAg|H0 . Sε(t) can be written formally

e−tA(I+εA)−1

. Introduce the functional

f(s) = e−tA(I+sA)−1

g, for fixed g ∈ D(A).

We see that f(0) = e−tAg. Moreover, f : [0, 1]→ H0 is continuous on [0, 1], differentiable
on (0, 1). So Lagrange mean value theorem implies that

|f(s)− f(0)|H0 ≤ s · sup
r∈(0,1)

|f ′(r)|H0 .

That means

|Sε(t)g − e−tAg|H0 ≤ C3ε · |g|H2 , for g ∈ D(A). (3.9)

Combining inequalities (3.6), (3.8) and (3.9), we get our result (3.5).

Proof of Theorem 2.3. We know that

E[|yε(t)− v(t)|2H0 ]

≤ 2E[|[(I + εA)−(m+1) − e−tA]v0|2H0 ]

+4E[|
∫ tm

0

[(I + εA)−(m−
d(n,s)

ε ) − e−(t−s)A]σ(yε(s))dWs|2H0 ]

+4E[|
∫ t

tm

[I − e−(t−s)A]σ(yε(s))dWs|2H0 ]

+4E[|
∫ t

0

e−(t−s)A[σ(yε(s))− σ(v(s))]dWs|2H0 ]

:= I1 + I2 + I3 + I4. (3.10)

For v0 ∈ D(A), from Proposition 3.2, we have the following two inequalities

|[(I + εA)−(m+1) − e−tA]v0|2H0 ≤ C · ε · |v0|2H2 ;

|[(I + εA)−(m−
d(n,s)

ε ) − e−(t−s)A]σ(yε(s))|2Q,H0

=
∑
i

αi|[(I + εA)−(m−
d(n,s)

ε ) − e−(t−s)A]σ(yε(s))ei|H0

=
∑
i

αi|[(I + εA)−(m−
d(n,s)

ε ) − e−(t−s)A]σ(yε(s))ei|H0

≤
∑
i

αi[Cε|σ(yε(s))ei|2H2 ]

= Cε
∑
i

αi|σ(yε(s))ei|2H2 , s ∈ [tm, t).
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Therefore,

E[|yε(t)− v(t)|2H0 ]

≤ 2CεE[|v0|2H2 ] + 4Cε

∫ t

0

σ(0) + LE[|yε(s)|2H2)ds

+4CL

∫ t

0

E[|yε(s)− v(s)|H0 ]ds.

It follows from Gronwall’s inequality that

E[|yε(t)− v(t)|2H0 ] ≤ ε · Ce4Cεt,

which implies the estimate (ii).
For v0 ∈ H0, using inequality (3.10) and denoting by C̃(ε) = I1 + I2 + I3, we have

E[|yε(t)− v(t)|2H0 ] ≤ C̃(ε) + 4CL

∫ t

0

E[|yε(s)− v(s)|2H0 ]ds,

where C̃(ε) → 0 as ε → 0 because of the exponential formula (see Theorem 8.3 in
Chapter 1 in Pazy [19]). Therefore, we can apply Gronwall’s inequality and get the
result (i):

E[|yε(t)− v(t)|2H0 ]→ 0, as ε→ 0.
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