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Abstract

In the present paper we consider the fluctuations of the free energy in the random en-
ergy model (REM) on a moderate deviation scale. We find that for high temperatures
the normal approximation holds only in a narrow range of scalings away from the
CLT. For scalings of higher order, probabilities of moderate deviations decay faster
than exponentially.
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1 Introduction

The random energy model (REM for short) is a disordered spin system from sta-
tistical mechanics, invented by Derrida in 1980 [4, 5]. It is a toy model to describe
a system of N particles that can assume one of the 2N accessible states from the set
SN = {−1,+1}N , called the configuration space. The energy of a state σ ∈ SN is given
by H(σ) = −

√
NXσ where Xσ is a N (0, 1)-distributed random variable, and the ener-

gies of different states are assumed to be independent, that is, (H(σ))σ∈SN is (for fixed
N) a sequence of i. i. d. normally distributed random variables. Despite its far-reaching
simplifications, the REM is an important model from statistical mechanics and has been
intensively studied over the last decades. More recent expositions of the model can be
found in the books [1, 13].

In the following, let (Ω,F , P ) be the probability space on which the triangular array
of independent N (0, 1)-distributed random variables

(
Xσ : σ ∈ SN , N ∈ N

)
is defined.

The probability of observing a configuration σ ∈ SN of the N particle system is given by
the random Gibbs measure

PN,β(σ) :=
e−βH(σ)

ZN (β)

where β > 0 is the inverse temperature and ZN (β) a random normalization given by

ZN (β) :=
∑
σ∈SN

eβ
√
NXσ ,
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Moderate deviations for the REM

which is called partition function. Obviously, the minus sign in the definition of the
random Hamiltonian H(σ) and the minus sign in the definition of the Gibbs measure
cancel each other, however, it is convention to use them.

In statistical mechanics, one is interested in the existence of the so-called free en-
ergy

FN (β) :=
1

N
logZN (β)

in the limit N → ∞ in an appropriate sense. Note that this definition of the free en-
ergy differs from the one used by physicists by the factor −β−1, which is constant and,
therefore, omitted by mathematicians. A complete result on the existence of the free
energy in the sense of almost sure convergence and convergence in Lp was proved by
Olivieri and Picco in 1984 [11] and reads as follows:

Theorem 1.1 ([11]). Let βc =
√

2 log 2. For all β > 0

lim
N→∞

FN (β) = F (β) :=

{
β2

2 +
β2
c

2 if β ≤ βc
ββc if β > βc

(1.1)

P -almost surely and in Lp(Ω,F , P ) for any 1 ≤ p <∞.

The convergence in L1 implies that the quenched free energy EFN (β) also converges
to F (β) and, consequently,

lim
N→∞

|FN (β)− EFN (β)| = 0

holds P -almost surely, which is why the free energy of the REM is said to be a self-
averaging quantity. Moreover, the annealed free energy is given by

1

N
logEZN,β =

β2

2
+
β2
c

2
,

and, therefore, the quenched free energy and annealed free energy coincide in the limit
N → ∞ if β ≤ βc. This breaks down for β > βc, where the quenched free energy is
strictly less than the annealed free energy.

Even more, one already obtained a precise picture of free energy’s deviations and
fluctuations. In view of Theorem 1.1, it is a natural first step to ask for refinements of
this limit theorem on the level of large deviations and, therefore, we shall briefly recall
what a large deviation principle (LDP) is. For a thorough introduction to the field we
refer to the books [3, 8]. Let (X ,BX ) be a measurable space, consisting of a Hausdorff
topological space X endowed with the Borel σ-field BX . In addition to that, let γn →∞
be a sequence of real numbers and I : X → [0,∞] be a lower semicontinuous function.
A sequence of random variables (Xn)n∈N defined on some probability space (S,A,P)

with values in (X ,BX ) is said to satisfy the large deviation principle (LDP for short)
with speed γn and rate function I if

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

1

γn
logP (Xn ∈ A) ≤ lim sup

n→∞

1

γn
logP (Xn ∈ A) ≤ − inf

x∈A
I(x)

for all A ∈ BX . The rate function I is said to be good if the level sets {x ∈ X : I(x) ≤ c}
are compact subsets of X for all c ∈ R.

As already hinted at, the probabilities of O(1)-deviations from the limiting free en-
ergy F (β) have already been quantified. In [9], Fedrigo, Flandoli and Morandin proved
a large deviation theorem for the free energy, which is stated next:
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Moderate deviations for the REM

Theorem 1.2 (LDP, [9]). The sequence of random variables ( 1
N logZN (β))N∈N satisfies

the LDP with speed N and good rate function I given by

I(x) =


∞ if x < F (β)

0 if x = F (β)
x2

2β2 − log 2 if x > F (β),

where F (β) are the limit points of the free energy defined in (1.1).

Note that large deviation techniques can also be used to prove (1.1) P -a. s. via Varad-
han’s Lemma (cf. [6]).

While Theorem 1.2 describes the atypical behavior of FN (β) by studying the prob-
abilities of large deviations, the typical behavior is described by theorems on its fluc-
tuations, i. e. by theorems on distributional convergence of the properly rescaled free
energy. This has been done by Bovier, Kurkova and Löwe in [2]. They proved the exis-
tence of multiple phase transitions on the level of distributional convergence and found
that the fluctuations of the free energy are exponentially small. What is more, they are
Gaussian if and only if β ≤

√
log 2/2:

Theorem 1.3 (CLT, [2]).

(i) For β <
√

log 2/2

e
N
2 (log 2−β2) log

(
Zβ,N
EZβ,N

)
D−→ N (0, 1).

(ii) For β =
√

log 2/2

e
N
2 (log 2−β2) log

(
Zβ,N
EZβ,N

)
D−→ N (0, 1/2).

Remark 1.4. Since it will be of some importance for the present paper, we quickly want
to sketch the course of action followed in [2]: using the Taylor expansion log(1 + x) =

x+ o(x) for x→ 0 the authors defer the proof of a limit theorem for

e
N
2 (log 2−β2) log

(
Zβ,N
EZβ,N

)
= e

N
2 (log 2−β2) log

(
1 +

Zβ,N − EZβ,N
EZβ,N

)
to the more manageable random variable

e
N
2 (log 2−β2)Zβ,N − EZβ,N

EZβ,N
=

1

2N/2

∑
σ∈SN

YN (σ) (1.2)

where YN (σ) = (eβ
√
NXσ − eNβ2/2)/eNβ

2

are (for each N ) i. i. d. random variables with
mean zero and variance s2N = 1 − e−Nβ2 → 1 as N → ∞. Next, the authors show that
YN (σ) satisfies Lindeberg’s condition if β <

√
log 2/2, and obtain Theorem 1.3 (i) by

means of the CLT for triangular arrays. However, for β =
√

log 2/2 YN (σ) does not
satisfy Lindeberg’s condition, which is related to the fact that YN (σ)’s tails become too
heavy, and the behavior of the sum

∑
σ YN (σ) is dominated by extremal events. Yet, the

authors can still prove convergence in distribution to a normal distribution and attain
Theorem 1.3 (ii). It is worth noting that the authors also acquire complete results for
β >

√
log 2/2, where non-standard limiting distributions occur, which is due to the fact

that YN (σ) has even more weight on its tails in these cases.

In view of Theorem 1.3, we ask the following question: can the tail probabilities

P

(
e
N
2 (log 2−β2) log

(
Zβ,N
EZβ,N

)
> t

)
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be approximated by the tails of a normal distribution even for growing t, that is, does
one find

P

(
e
N
2 (log 2−β2) log

(
Zβ,N
EZβ,N

)
> tN

)
≈ P (N (0, 1) > tN )

even for tN →∞? It is well-known (use e. g. (2.4)) that

lim
N→∞

1

t2N
logP (N (0, 1) > x tN ) = − x2

2

for any x > 0 and, thus, we ask for the validity of

lim
N→∞

1

t2N
logP

(
e
N
2 (log 2−β2) log

(
Zβ,N
EZβ,N

)
> x tN

)
= − x2

2
(1.3)

for any x > 0 or, more general, for the existence of the LDP with speed t2N and Gaussian
rate function I(x) = x2/2 for exp (N(log 2− β2)/2) t−1N log(Zβ,N/EZβ,N ). Using the LDP
of Theorem 1.2, we see that (1.3) does not hold if tN is of order Θ

(
N exp (N(log 2− β2)/2)

)
.

Large deviation results for the remaining cases of scalings between those of the CLT
and the LDP, i. e.

tN → ∞ and
tN

N exp (N(log 2− β2)/2)
→ 0,

are commonly referred to as moderate deviation results in the literature, since one asks
for deviations of FN (β) of order o(1) from F (β). In like manner, LDPs for scalings that
are between those of the CLT and the LDP are called moderate deviation principles
(MDPs). However, we will stick to the term LDP, since the formal definitions of the
LDP and MDP are the same. Note that moderate deviations for mean field models from
statistical mechanics have already been studied (cf. e. g. [10, 12]).

We will show in this article that (1.3) holds if and only if tN = o(
√
N), that is, (1.3)

holds only in a small range of scalings close to the CLT scaling. This is particularly
interesting since it is out of harmony with the general picture of moderate deviations
obtained by the case of partial sums of standardized i. i. d. random variables (Xi)i∈N.
The prototypical answer for this case is that (tn

√
n)−1

∑n
i=1Xi satisfies under suitable

conditions the LDP with speed t2n and Gaussian rate function I(x) = x2/2 for the whole
range of scalings between the corresponding CLT and LLN (see [7] for a necessary and
sufficient condition on this type of moderate deviations). In particular, the rate function
does not depend on the moderate deviation scaling.

The main result of the present paper reads as follows, where tN → ∞ is from now
on a diverging sequence of real numbers:

Theorem 1.5 (Moderate deviations for the free energy in the REM).

(i) Let β <
√

log 2/2. Then,

e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)
satisfies the large deviation principle. If tN = o(

√
N), then the corresponding

speed is t2N and the good rate function is

I(x) =
x2

2
.

Otherwise, if lim infn→∞
tN√
N
> 0, the LDP holds for any speed γN = o(N) with the

good rate function

I(x) =

{
0 if x = 0

∞ if x 6= 0.
(1.4)
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(ii) Let β =
√

log 2/2. Then,

e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)
satisfies, for any scaling tN = o(

√
logN), the LDP with speed t2N and good rate

function I given by
I(x) = x2.

Remark 1.6.

1. Note that the restriction γN = o(N) is natural in view of the LDP (Theorem 1.2):
if one considers deviations of lower order than in the LDP, then the speed of con-
vergence to zero of these probabilities is of lower order than the speed occurring
in the LDP, which was N in our case.

2. The degenerated rate function appearing in (1.4) reflects the superexponential
decay of moderate deviation probabilities in case of overscaling.

3. Observe that for β =
√

log 2/2 the obtained rate function is I(x) = x2, which
matches the fact that the limiting distribution in the CLT is N (0, 1/2) and

lim
N→∞

1

t2N
logP (N (0, 1/2) > x tN ) = − x2

for any x > 0.

2 Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5, which is based on the following
idea: as a first step, we follow the idea of the CLT’s proof and use the approximation
log(1 + x) = x+ o(x) for x→ 0 to defer the proof of the LDP for

e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)
(2.1)

to the proof of the LDP for

e
N
2 (log 2−β2)

tN

Zβ,N − EZβ,N
EZβ,N

. (2.2)

To that end, we will show in Lemma 2.1 that the random variables (2.1) and (2.2) are
exponentially equivalent (for a definition see e. g. Definition 4.2.10 in [3]), since it is
know that exponentially equivalent random variables satisfy the same LDP (see e. g.
Theorem 4.2.13 in [3]). Then, we are left to prove the LDP for the random variable

e
N
2 (log 2−β2)

tN

Zβ,N − EZβ,N
EZβ,N

=
1

tN 2N/2

∑
σ∈SN

YN (σ),

where (YN (σ);σ ∈ SN , N ∈ N) is a triangular array of independent random vari-
ables, which were defined in (1.2). However, the random variable YN (σ) does not
have finite exponential moments, which is why we use again the concept of expo-
nential equivalence to switch over to the truncated random variables Y tN (σ), where
Y tN (σ) :=YN (σ)1{YN (σ)≤2N/2t−1

N } (see Lemma 2.2), which can be studied by means of the

Gärtner-Ellis theorem (cf. e. g. Theorem 2.3.6 in [3]).
We prepare the proof of Theorem (1.5) by stating and proving the above-mentioned

lemmata:
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Lemma 2.1. Let β ≤
√

log 2/2. Then,

e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)
and

e
N
2 (log 2−β2)

tN

(
Zβ,N − EZβ,N

EZβ,N

)
are exponentially equivalent for any speed γN = o(N).

Proof. Let ε > 0 and Tβ,N :=(Zβ,N − EZβ,N )/EZβN . Since | log(1 + x) − x| ≤ x2 for all
x ≥ −1/2, we find

P

(∣∣∣∣∣e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)
− e

N
2 (log 2−β2)

tN

(
Zβ,N − EZβ,N

EZβ,N

)∣∣∣∣∣ > ε

)
= P

(
|log (1 + Tβ,N )− Tβ,N | > ε tN e

−N2 (log 2−β2)
)

≤ P

(
Tβ,N < −1

2

)
+ P

(
T 2
β,N > ε tN e

−N2 (log 2−β2)
)

≤
(

4 + ε−1 t−1N e
N
2 (log 2−β2)

)
ET 2

β,N

≤ e
N
2 (log 2−β2)ET 2

β,N

for N sufficiently large, where we have made use of Markov’s inequality to obtain the
last but one line. A direct calculation yields

ET 2
β,N =

eNβ
2 − 1

2N
≤ eN(β2−log 2)

and, therefore,

lim sup
N→∞

1

γN
logP

(∣∣∣∣∣e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)
− e

N
2 (log 2−β2)

tN

(
Zβ,N − EZβ,N

EZβ,N

)∣∣∣∣∣ > ε

)

≤ lim sup
N→∞

1

γN
log
(
e
N
2 (log 2−β2) eN(β2−log 2)

)
= −∞.

Lemma 2.2. Let β ≤
√

log 2/2 and assume

tN =

{
o(
√
N) if β <

√
log 2/2

o(
√

logN) if β =
√

log 2/2.

Then,
1

tN2N/2

∑
σ∈SN

YN (σ) and
1

tN2N/2

∑
σ∈SN

Y tN (σ)

are exponentially equivalent on the scale t2N .

Proof. We get

P

(∣∣∣∣∣ 1

tN2N/2

∑
σ∈SN

YN (σ)− 1

tN2N/2

∑
σ∈SN

Y tN (σ)

∣∣∣∣∣ > ε

)

= P

(∣∣∣∣∣ 1

tN 2N/2

∑
σ∈SN

YN (σ)1{YN (σ)>2N/2t−1
N }

∣∣∣∣∣ > ε

)
≤ P

(
∃σ ∈ SN : YN (σ) > 2N/2 t−1N

)
≤ 2NP

(
YN (σ0) > 2N/2 t−1N

)
= 2NP (Xσ0

> cN (β))
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where σ0 ∈ SN and

cN (β) :=
1

β
√
N

log
(
eNβ

2

2N/2t−1N + eNβ
2/2
)

=
√
N

(
β +

log 2

2β

)
− log tN

β
√
N

+ o
(
N−1/2

)
.

(2.3)
Making use of the standard estimate

x

x2 + 1

1√
2π

e−x
2/2 ≤ P (N (0, 1) > x) ≤ 1

x

1√
2π

e−x
2/2, (2.4)

which holds for all x > 0, we get

1

t2N
logP

(∣∣∣∣∣ 1

tN2N/2

∑
σ∈SN

YN (σ)− 1

tN2N/2

∑
σ∈SN

Y tN (σ)

∣∣∣∣∣ > ε

)

≤ 1

t2N
log

(
2N

1

cN (β)
√

2π
e−cN (β)2/2

)
=

1

t2N
log

(
2N

1√
N
e−cN (β)2/2

)
+ o(1)

=
N

t2N
log 2− cN (β)2

2t2N
− logN

2t2N
+ o(1)

= − N

2t2N

(
β − log 2

2β

)2

− logN

2t2N
+ o(1)→ −∞

as N → ∞. Note that (β − log 2/(2β))2 > 0 if and only if β 6=
√

log 2/2 so that the last
line follows from the conditions made on the asymptotic behavior of tN .

Now that we have gathered all preliminary results, we can start with a proof of this
article’s main theorem:

Proof of Theorem 1.5. We start with a proof of (i)’s first part and (ii). To that purpose,
let β ≤

√
log 2/2 and assume

tN =

{
o(
√
N) if β <

√
log 2/2

o(
√

logN) if β =
√

log 2/2.

By means of Lemma 2.1 and Lemma 2.2 it suffices to prove the desired LDP for

1

tN2N/2

∑
σ∈SN

Y tN (σ).

This follows directly from the Gärtner-Ellis theorem once we have proved

lim
N→∞

1

t2N
logE

[
e
λ t2N

1

tN 2N/2

∑
σ∈SN

Y tN (σ)
]

= Λ(λ) :=

λ2

2 if β <
√

log 2
2

λ2

4 if β =
√

log 2
2

for all λ ∈ R. Since

t−2N logE

[
e
λ t2N

1

tN 2N/2

∑
σ∈SN

Y tN (σ)
]

= t−2N 2N log
(

1 +
(
E
[
eλ tN 2−N/2Y tN (σ0)

]
− 1
))

for any σ0 ∈ SN , this follows, using the Taylor expansion log(1+x) = x+O(x2) as x→ 0,
from

t−2N 2N
(
E
[
eλ tN 2−N/2Y tN (σ0)

]
− 1
)

= Λ(λ) + o(1), (2.5)
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which we are going to prove in the sequel. To that purpose, we calculate the asymptotics
of the first three moments of Y tN (σ0) and get

EY tN (σ0) = o
(
tN 2−N/2

)
, (2.6)

EY tN (σ0)2 =
2

λ2
Λ(λ) + o(1), (2.7)

E |Y tN (σ0)|3 = o(t−1N 2N/2). (2.8)

Ad (2.6): With cN (β) (cf. (2.3)) we have

EY tN (σ0) = e−Nβ
2

E
[(
e
√
NβXσ0 − eNβ

2/2
)
1{e

√
NβXσ0−eNβ2/2≤ 2N/2 eNβ2 t−1

N }

]
= e−Nβ

2/2

(
1√
2π

∫ cN (β)

−∞
e−

1
2 (x−

√
Nβ)2dx− P

(
Xσ0 ≤ cN (β)

))

= e−Nβ
2/2P

(
Xσ0

> cN (β)−
√
Nβ
)( P (Xσ0

> cN (β))

P
(
Xσ0

> cN (β)−
√
Nβ
) − 1

)
.

Using the standard estimate (2.4) for a Gaussian random variable, we see

P (Xσ0
> cN (β))

P
(
Xσ0

> cN (β)−
√
Nβ
) = o(1)

and

P
(
Xσ0

> cN (β)−
√
Nβ
)

= o
(
e−(cN (β)−

√
Nβ)2/2

)
,

which yields (2.6) as

t−1N 2N/2EY tN (σ0) = o

(
t−1N eN(log 2/2−β2/2) e

−N2 ( log 2
2β )

2
+

log 2 log tN
2β2

)
= o

(
(tN )log 2/(2β2)−1 e−

N
2 (β− log 2

2β )
2)

= o(1), (2.9)

where we have used in the last line that

· log 2/(2β2)− 1 = 0 and (β − log 2/(2β))2 = 0 if β =
√

log 2/2 and

· (β − log 2/(2β))2 > 0 if β <
√

log 2/2.

Ad (2.7): It is

EY tN (σ0)2 =
1√
2π

∫ cN (β)

−∞
e−

1
2x

2

(
e
√
Nβx − eNβ2/2

eNβ2

)2

dx

=
1√
2π

∫ cN (β)

−∞
e−

1
2x

2+2
√
Nβx−2Nβ2

dx+ o(1)

=
1√
2π

∫ √N(log 2/(2β)−β)+o(1)

−∞
e−

1
2x

2

dx+ o(1)

→

1 if β <
√

log 2
2

1
2 if β =

√
log 2
2

as N →∞.
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Ad (2.8): For every ε > 0 it is

tN 2−
N
2 E |Y tN (σ0)|3

= tN 2−
N
2 E

[
|Y tN (σ0)|3 1{|YN (σ0)|≤ε t−1

N 2N/2}

]
+ tN 2−

N
2 E

[
|Y tN (σ0)|3 1{|YN (σ0)|>ε t−1

N 2N/2}

]
≤ εEY tN (σ0)2 + t−2N 2NP

(
|YN (σ0)| > ε t−1N 2N/2

)
= εEY tN (σ0)2 + t−2N 2NP

(
XN (σ0) > cN (β) +O(N−1/2)

)
= εEY tN (σ0)2 + o

(
t−2N 2Ne−cN (β)2/2

)
= εEY tN (σ0)2 + o

(
t−2N eN log 2−N2 (β+log 2/(2β))2+(1+log 2/(2β)) log tN

)
= εEY tN (σ0)2 + o

(
t
log 2/(2β2)−1
N e−

N
2 (β−log 2/(2β))2

)
= εEY tN (σ0)2 + o(1),

where we have used the same argument as in (2.9) to derive the last line. Thus, with
the help of (2.7) we see

lim
N→∞

tN 2−N/2E |Y tN (σ0)|3 ≤ ε

which yields (2.8) as ε was arbitrary.
Now, we see that (2.5) follows with the help of (2.6) and (2.7) from

E

[
eλ tN 2−N/2Y tN (σ0) −

2∑
i=0

(
λ tN 2−N/2Y tN (σ0)

)i
i!

]
= o

(
t2N
2N

)
.

Since λ tN 2−N/2Y tN (σ0) is bounded by λ it can easily be seen, using the Lagrange form
of the remainder in Taylor’s formula, that∣∣∣∣∣E

[
eλ tN 2−N/2Y tN (σ0) −

2∑
i=0

(
λ tN 2−N/2Y tN (σ0)

)i
i!

]∣∣∣∣∣ ≤ eλ

3!
λ3 t3N 2−3N/2E

[
| Y tN (σ0) |3

]
,

which finishes the proofs of (i)’s first part and (ii) with the help of (2.8).
For the the second part of (i), let γN = o(N) be an arbitrary speed. It suffices to

prove

lim
N→∞

1

γN
logP

(∣∣∣∣∣e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)∣∣∣∣∣ > ε

)
= −∞, (2.10)

lim
N→∞

1

γN
logP

(∣∣∣∣∣e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)∣∣∣∣∣ ≤ ε
)

= 0 (2.11)

for any ε > 0. The validity of (2.10) follows directly from

1

γN
logP

(∣∣∣∣∣e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)∣∣∣∣∣ > ε

)

=
1

γN
logP

(∣∣∣∣∣e
N
2 (log 2−β2)

√
γN

log

(
Zβ,N
EZβ,N

)∣∣∣∣∣ > ε
tN√
γN

)

since (it holds lim inf tN/
√
N > 0 and γN = o(N) in this case)

tN√
γN

=
tN√
N

√
N

γN
→ ∞
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and

lim
N→∞

1

γN
logP

(∣∣∣∣∣e
N
2 (log 2−β2)

√
γN

log

(
Zβ,N
EZβ,N

)∣∣∣∣∣ > δ

)
= − δ2

2

for any δ > 0 by the first part of (i), which we proved above. Finally, this also yields the
validity of (2.11) as (2.10) implies

lim
N→∞

P

(∣∣∣∣∣e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)∣∣∣∣∣ ≤ ε
)

= 1.

Remark 2.3. The LDP for
e
N
2 (log 2−β2)

tN
log

(
Zβ,N
EZβ,N

)
in the case β =

√
log 2/2, lim infN→∞ tN/

√
logN > 0 is still an open question. By Lemma

2.1 this random variable is exponentially equivalent to t−1N 2−N/2
∑
σ∈SN YN (σ) and it

can even be shown that t−1N 2−N/2
∑
σ∈SN Y

t
N (σ) satisfies the LDP with speed t2N and rate

function I(x) = x2 under the natural condition tN = o(
√
N). However, one can show that

in this case t−1N 2−N/2
∑
σ∈SN Y

t
N (σ) and t−1N 2−N/2

∑
σ∈SN YN (σ) are not exponentially

equivalent, since YN (σ)’s tails become too heavy and extremal events start to dominate
the sum’s behavior. This is the same effect that can be observed in the CLT, where it
engenders a breakdown of the standard CLT.
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