Electron. Commun. Probab. **17** (2012), no. 54, 1–3. DOI: 10.1214/ECP.v17-2383 ISSN: 1083-589X

ELECTRONIC COMMUNICATIONS in PROBABILITY

Erratum: Convergence in law in the second Wiener/Wigner chaos

Ivan Nourdin*

Guillaume Poly[†]

Abstract

We correct an error in our paper [1].

Keywords: second Wiener chaos; second Wigner chaos.AMS MSC 2010: 46L54; 60F05; 60G15; 60H05.Submitted to ECP on October 19, 2012, final version accepted on October 30, 2012.

1 Introduction

We use the same notation as in [1] and we assume that the reader is familiar with it. We are indebted to Giovanni Peccati for pointing out, in the most constructive and gentle way, an error in [1, Theorem 3.4] and for providing an explicit counterexample supporting his claim.

2 A correct version of Lemma 3.5

Unfortunately, Lemma 3.5 in [1] is not correct. Our mistake comes from an improper calculation involving a Vandermonde determinant at the end of its proof. To fix the error is not a big deal though: it suffices to replace *different* by *consecutive* in the statement of Lemma 3.5, see below for a correct version together with its proof. As a direct consequence of this new version, we should also replace *different* by *consecutive* in the assumption (ii-c) of both Theorems 3.4 and 4.3 in [1]. We restate these latter results correctly in Section 2 for convenience.

Lemma 3.5. Let $\mu_0 \in \mathbb{R}$, let $a \in \mathbb{N}^*$, let $\mu_1, \ldots, \mu_a \neq 0$ be pairwise distinct real numbers, and let $m_1, \ldots, m_a \in \mathbb{N}^*$. Set

$$Q(x) = x^{2(1+\mathbf{1}_{\{\mu_0\neq 0\}})} \prod_{i=1}^{a} (x-\mu_i)^2.$$

^{*}Université de Lorraine, France. E-mail: inourdin@gmail.com

[†]Université Paris-Est Marne-la-Vallée, France. E-mail: guillaume.poly@crans.org

Assume that $\{\lambda_j\}_{j\geq 0}$ is a square-integrable sequence of real numbers satisfying

$$\lambda_0^2 + \sum_{j=1}^\infty \lambda_j^2 = \mu_0^2 + \sum_{i=1}^a m_i \,\mu_i^2 \tag{2.1}$$

$$\sum_{r=3}^{2(1+\mathbf{1}_{\{\mu_0\neq 0\}}+a)} \frac{Q^{(r)}(0)}{r!} \sum_{j=1}^{\infty} \lambda_j^r = \sum_{r=3}^{2(1+\mathbf{1}_{\{\mu_0\neq 0\}}+a)} \frac{Q^{(r)}(0)}{r!} \sum_{i=1}^a m_i \, \mu_i^r$$
(2.2)

$$\sum_{j=1}^{\infty} \lambda_j^r = \sum_{i=1}^{a} m_i \, \mu_i^r, \text{for 'a' consecutive values of } r \ge 2(1 + \mathbf{1}_{\{\mu_0 \neq 0\}}).$$
(2.3)

Then:

- (*i*) $|\lambda_0| = |\mu_0|$.
- (ii) The cardinality of the set $S = \{j \ge 1 : \lambda_j \neq 0\}$ is finite.
- (iii) $\{\lambda_j\}_{j \in S} = \{\mu_i\}_{1 \leq i \leq a}$. (iv) for any i = 1, ..., a, one has $m_i = \#\{j \in S : \lambda_j = \mu_i\}$.

Proof. As in the original proof of [1, Lemma 3.5], we divide the proof according to the nullity of μ_0 .

First case: $\mu_0 = 0$. We have $Q(x) = x^2 \prod_{i=1}^{a} (x - \mu_i)^2$. Since the polynomial Q can be rewritten as

$$Q(x) = \sum_{r=2}^{2(1+a)} \frac{Q^{(r)}(0)}{r!} x^r,$$

assumptions (2.1) and (2.2) together ensure that

$$\lambda_0^2 \prod_{i=1}^a \mu_i^2 + \sum_{j=1}^\infty Q(\lambda_j) = \sum_{i=1}^a m_i Q(\mu_i) = 0.$$

Because Q is positive and $\prod_{i=1}^{a} \mu_i^2 \neq 0$, we deduce that $\lambda_0 = 0$ and $Q(\lambda_j) = 0$ for all $j \ge 1$, that is, $\lambda_j \in \{0, \mu_1, \dots, \mu_a\}$ for all $j \ge 1$. This shows claims (i) as well as:

$$\{\lambda_j\}_{j\in S} \subset \{\mu_i\}_{1\leqslant i\leqslant a}.\tag{2.4}$$

Moreover, since the sequence $\{\lambda_j\}_{j \ge 1}$ is square-integrable, claim (ii) holds true as well. It remains to show (*iii*) and (*iv*). For any i = 1, ..., a, let $n_i = \#\{j \in S : \lambda_j = \mu_i\}$. Also, let $r \ge 2$ be such that $r, r+1, \ldots, r+a-1$ are 'a' consecutive values satisfying (2.3). We then have

$$\begin{pmatrix} \mu_1^r & \mu_2^r & \cdots & \mu_a^r \\ \mu_1^{r+1} & \mu_2^{r+1} & \cdots & \mu_a^{r+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_1^{r+a-1} & \mu_2^{r+a-1} & \cdots & \mu_a^{r+a-1} \end{pmatrix} \begin{pmatrix} n_1 - m_1 \\ n_2 - m_2 \\ \vdots \\ n_a - m_a \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Since $\mu_1, \ldots, \mu_a \neq 0$ are pairwise distinct, one has (Vandermonde matrix)

$$\det \begin{pmatrix} \mu_1^r & \mu_2^r & \cdots & \mu_a^r \\ \mu_1^{r+1} & \mu_2^{r+1} & \cdots & \mu_a^{r+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_1^{r+a-1} & \mu_2^{r+a-1} & \cdots & \mu_a^{r+a-1} \end{pmatrix}$$
$$= \prod_{i=1}^a \mu_i^r \times \det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \mu_1 & \mu_2 & \cdots & \mu_a \\ \vdots & \vdots & \ddots & \vdots \\ \mu_1^{a-1} & \mu_2^{a-1} & \cdots & \mu_a^{a-1} \end{pmatrix} \neq 0,$$

ECP 17 (2012), paper 54.

Page 2/3

from which (iv) follows. Finally, recalling the inclusion (2.4) we deduce (iii).

Second case: $\mu_0 \neq 0$. In this case, one has $Q(x) = x^4 \prod_{i=1}^a (x - \mu_i)^2$ and claims (*ii*), (*iii*) and (*iv*) may be shown by following the same line of reasoning as above. We then deduce claim (*i*) by looking at (2.1).

3 Correct versions of Theorems 3.4 and 4.3

For convenience, we restate Theorems 3.4 and 4.3 correctly here. Their proofs are unchanged.

Theorem 3.4. Let $f \in L^2_s(\mathbb{R}^2_+)$ with $0 \leq \operatorname{rank}(f) < \infty$, let $\mu_0 \in \mathbb{R}$ and let $N \sim \mathcal{N}(0, \mu_0^2)$ be independent of the underlying Brownian motion W. Assume that $|\mu_0| + ||f||_{L^2(\mathbb{R}_+)} > 0$ and set

$$Q(x) = x^{2(1+\mathbf{1}_{\{\mu_0\neq 0\}})} \prod_{i=1}^{a(f)} (x - \lambda_i(f))^2.$$

Let $\{F_n\}_{n \ge 1}$ be a sequence of double Wiener-Itô integrals. Then, as $n \to \infty$, we have

(i)
$$F_n \stackrel{\text{law}}{\to} N + I_2^W(f)$$

if and only if all the following are satisfied:

$$\begin{array}{l} \text{(ii-a)} \ \kappa_2(F_n) \to \kappa_2(N+I_2^W(f)) = \mu_0^2 + 2\|f\|_{L^2(\mathbb{R}^2_+)}^2; \\ \text{(ii-b)} \ \sum_{r=3}^{\deg Q} \ \frac{Q^{(r)}(0)}{r!} \ \frac{\kappa_r(F_n)}{(r-1)!2^{r-1}} \to \sum_{r=3}^{\deg Q} \ \frac{Q^{(r)}(0)}{r!} \ \frac{\kappa_r(I_2^W(f))}{(r-1)!2^{r-1}}; \\ \text{(ii-c)} \ \kappa_r(F_n) \to \kappa_r(I_2^W(f)) \ \text{for } a(f) \ \text{consecutive values of } r, \ \text{with } r \geqslant 2(1+\mathbf{1}_{\{\mu_0\neq 0\}}). \end{array}$$

Theorem 4.3. Let $f \in L^2_s(\mathbb{R}^2_+)$ with $0 \leq \operatorname{rank}(f) < \infty$, let $\mu_0 \in \mathbb{R}$ and let $A \sim S(0, \mu_0^2)$ be independent of the underlying free Brownian motion S. Assume that $|\mu_0| + ||f||_{L^2(\mathbb{R}_+)} > 0$ and set

$$Q(x) = x^{2(1+\mathbf{1}_{\{\mu_0 \neq 0\}})} \prod_{i=1}^{a(f)} (x - \lambda_i(f))^2.$$

Let $\{F_n\}_{n \ge 1}$ be a sequence of double Wigner integrals. Then, as $n \to \infty$, we have

(i)
$$F_n \stackrel{\text{law}}{\to} A + I_2^S(f)$$

if and only if all the following are satisfied:

 $\begin{array}{l} \text{(ii-a)} \ \ \widehat{\kappa}_{2}(F_{n}) \to \widehat{\kappa}_{2}(A + I_{2}^{S}(f)) = \mu_{0}^{2} + \|f\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2}; \\ \text{(ii-b)} \ \ \sum_{r=3}^{\deg Q} \frac{Q^{(r)}(0)}{r!} \ \widehat{\kappa}_{r}(F_{n}) \to \sum_{r=3}^{\deg Q} \frac{Q^{(r)}(0)}{r!} \ \widehat{\kappa}_{r}(I_{2}^{S}(f)); \\ \text{(ii-c)} \ \ \widehat{\kappa}_{r}(F_{n}) \to \widehat{\kappa}_{r}(I_{2}^{W}(f)) \ \text{for } a(f) \ \text{consecutive values of } r, \ \text{with } r \geqslant 2(1 + \mathbf{1}_{\{\mu_{0} \neq 0\}}). \end{array}$

References

I. Nourdin and G. Poly (2012): Convergence in law in the second Wiener/Wigner chaos. *Electron. Comm. Probab.* 17, no. 36. DOI: 10.1214/ECPv17-2023