Erratum: Convergence in law in the second Wiener/Wigner chaos

Ivan Nourdin* Guillaume Poly ${ }^{\dagger}$

Abstract

We correct an error in our paper [1]. Keywords: second Wiener chaos; second Wigner chaos. AMS MSC 2010: 46L54; 60F05; 60G15; 60H05. Submitted to ECP on October 19, 2012, final version accepted on October 30, 2012.

1 Introduction

We use the same notation as in [1] and we assume that the reader is familiar with it. We are indebted to Giovanni Peccati for pointing out, in the most constructive and gentle way, an error in [1, Theorem 3.4] and for providing an explicit counterexample supporting his claim.

2 A correct version of Lemma 3.5

Unfortunately, Lemma 3.5 in [1] is not correct. Our mistake comes from an improper calculation involving a Vandermonde determinant at the end of its proof. To fix the error is not a big deal though: it suffices to replace different by consecutive in the statement of Lemma 3.5, see below for a correct version together with its proof. As a direct consequence of this new version, we should also replace different by consecutive in the assumption (ii-c) of both Theorems 3.4 and 4.3 in [1]. We restate these latter results correctly in Section 2 for convenience.

Lemma 3.5. Let $\mu_{0} \in \mathbb{R}$, let $a \in \mathbb{N}^{*}$, let $\mu_{1}, \ldots, \mu_{a} \neq 0$ be pairwise distinct real numbers, and let $m_{1}, \ldots, m_{a} \in \mathbb{N}^{*}$. Set

$$
Q(x)=x^{2\left(1+\mathbf{1}_{\left\{\mu_{0} \neq 0\right\}}\right)} \prod_{i=1}^{a}\left(x-\mu_{i}\right)^{2} .
$$

[^0]Assume that $\left\{\lambda_{j}\right\}_{j \geqslant 0}$ is a square-integrable sequence of real numbers satisfying

$$
\begin{align*}
& \lambda_{0}^{2}+\sum_{j=1}^{\infty} \lambda_{j}^{2}=\mu_{0}^{2}+\sum_{i=1}^{a} m_{i} \mu_{i}^{2} \tag{2.1}\\
& \sum_{r=3}^{2\left(1+\mathbf{1}_{\left\{\mu_{0} \neq 0\right\}}+a\right)} \frac{Q^{(r)}(0)}{r!} \sum_{j=1}^{\infty} \lambda_{j}^{r}=\sum_{r=3}^{2\left(1+\mathbf{1}_{\left\{\mu_{0} \neq 0\right\}}+a\right)} \frac{Q^{(r)}(0)}{r!} \sum_{i=1}^{a} m_{i} \mu_{i}^{r} \tag{2.2}\\
& \sum_{j=1}^{\infty} \lambda_{j}^{r}=\sum_{i=1}^{a} m_{i} \mu_{i}^{r}, \text { for ' } a \text { ' consecutive values of } r \geqslant 2\left(1+\mathbf{1}_{\left\{\mu_{0} \neq 0\right\}}\right) . \tag{2.3}
\end{align*}
$$

Then:
(i) $\left|\lambda_{0}\right|=\left|\mu_{0}\right|$.
(ii) The cardinality of the set $S=\left\{j \geqslant 1: \lambda_{j} \neq 0\right\}$ is finite.
(iii) $\left\{\lambda_{j}\right\}_{j \in S}=\left\{\mu_{i}\right\}_{1 \leqslant i \leqslant a}$.
(iv) for any $i=1, \ldots, a$, one has $m_{i}=\#\left\{j \in S: \lambda_{j}=\mu_{i}\right\}$.

Proof. As in the original proof of [1, Lemma 3.5], we divide the proof according to the nullity of μ_{0}.

First case: $\mu_{0}=0$. We have $Q(x)=x^{2} \prod_{i=1}^{a}\left(x-\mu_{i}\right)^{2}$. Since the polynomial Q can be rewritten as

$$
Q(x)=\sum_{r=2}^{2(1+a)} \frac{Q^{(r)}(0)}{r!} x^{r}
$$

assumptions (2.1) and (2.2) together ensure that

$$
\lambda_{0}^{2} \prod_{i=1}^{a} \mu_{i}^{2}+\sum_{j=1}^{\infty} Q\left(\lambda_{j}\right)=\sum_{i=1}^{a} m_{i} Q\left(\mu_{i}\right)=0
$$

Because Q is positive and $\prod_{i=1}^{a} \mu_{i}^{2} \neq 0$, we deduce that $\lambda_{0}=0$ and $Q\left(\lambda_{j}\right)=0$ for all $j \geqslant 1$, that is, $\lambda_{j} \in\left\{0, \mu_{1}, \ldots, \mu_{a}\right\}$ for all $j \geqslant 1$. This shows claims (i) as well as:

$$
\begin{equation*}
\left\{\lambda_{j}\right\}_{j \in S} \subset\left\{\mu_{i}\right\}_{1 \leqslant i \leqslant a} \tag{2.4}
\end{equation*}
$$

Moreover, since the sequence $\left\{\lambda_{j}\right\}_{j \geqslant 1}$ is square-integrable, claim (ii) holds true as well. It remains to show (iii) and (iv). For any $i=1, \ldots, a$, let $n_{i}=\#\left\{j \in S: \lambda_{j}=\mu_{i}\right\}$. Also, let $r \geqslant 2$ be such that $r, r+1, \ldots, r+a-1$ are ' a ' consecutive values satisfying (2.3). We then have

$$
\left(\begin{array}{cccc}
\mu_{1}^{r} & \mu_{2}^{r} & \cdots & \mu_{a}^{r} \\
\mu_{1}^{r+1} & \mu_{2}^{r+1} & \cdots & \mu_{a}^{r+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{1}^{r+a-1} & \mu_{2}^{r+a-1} & \cdots & \mu_{a}^{r+a-1}
\end{array}\right)\left(\begin{array}{c}
n_{1}-m_{1} \\
n_{2}-m_{2} \\
\vdots \\
n_{a}-m_{a}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Since $\mu_{1}, \ldots, \mu_{a} \neq 0$ are pairwise distinct, one has (Vandermonde matrix)

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cccc}
\mu_{1}^{r} & \mu_{2}^{r} & \cdots & \mu_{a}^{r} \\
\mu_{1}^{r+1} & \mu_{2}^{r+1} & \cdots & \mu_{a}^{r+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{1}^{r+a-1} & \mu_{2}^{r+a-1} & \cdots & \mu_{a}^{r+a-1}
\end{array}\right) \\
=\prod_{i=1}^{a} \mu_{i}^{r} \times \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\mu_{1} & \mu_{2} & \cdots & \mu_{a} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{1}^{a-1} & \mu_{2}^{a-1} & \cdots & \mu_{a}^{a-1}
\end{array}\right) \neq 0,
\end{aligned}
$$

from which (iv) follows. Finally, recalling the inclusion (2.4) we deduce (iii).
Second case: $\mu_{0} \neq 0$. In this case, one has $Q(x)=x^{4} \prod_{i=1}^{a}\left(x-\mu_{i}\right)^{2}$ and claims (ii), (iii) and (iv) may be shown by following the same line of reasoning as above. We then deduce claim (i) by looking at (2.1).

3 Correct versions of Theorems 3.4 and 4.3

For convenience, we restate Theorems 3.4 and 4.3 correctly here. Their proofs are unchanged.

Theorem 3.4. Let $f \in L_{s}^{2}\left(\mathbb{R}_{+}^{2}\right)$ with $0 \leqslant \operatorname{rank}(f)<\infty$, let $\mu_{0} \in \mathbb{R}$ and let $N \sim \mathcal{N}\left(0, \mu_{0}^{2}\right)$ be independent of the underlying Brownian motion W. Assume that $\left|\mu_{0}\right|+\|f\|_{L^{2}\left(\mathbb{R}_{+}\right)}>0$ and set

$$
Q(x)=x^{2\left(1+\mathbf{1}_{\left\{\mu_{0} \neq 0\right\}}\right)} \prod_{i=1}^{a(f)}\left(x-\lambda_{i}(f)\right)^{2}
$$

Let $\left\{F_{n}\right\}_{n \geqslant 1}$ be a sequence of double Wiener-Itô integrals. Then, as $n \rightarrow \infty$, we have
(i) $F_{n} \xrightarrow{\text { law }} N+I_{2}^{W}(f)$
if and only if all the following are satisfied:
(ii-a) $\kappa_{2}\left(F_{n}\right) \rightarrow \kappa_{2}\left(N+I_{2}^{W}(f)\right)=\mu_{0}^{2}+2\|f\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2}$;
(ii-b) $\sum_{r=3}^{\operatorname{deg} Q} \frac{Q^{(r)}(0)}{r!} \frac{\kappa_{r}\left(F_{n}\right)}{(r-1)!2^{r-1}} \rightarrow \sum_{r=3}^{\operatorname{deg} Q} \frac{Q^{(r)}(0)}{r!} \frac{\kappa_{r}\left(I_{2}^{W}(f)\right)}{(r-1)!2^{r-1}}$;
(ii-c) $\kappa_{r}\left(F_{n}\right) \rightarrow \kappa_{r}\left(I_{2}^{W}(f)\right)$ for $a(f)$ consecutive values of r, with $r \geqslant 2\left(1+\mathbf{1}_{\left\{\mu_{0} \neq 0\right\}}\right)$.
Theorem 4.3. Let $f \in L_{s}^{2}\left(\mathbb{R}_{+}^{2}\right)$ with $0 \leqslant \operatorname{rank}(f)<\infty$, let $\mu_{0} \in \mathbb{R}$ and let $A \sim \mathcal{S}\left(0, \mu_{0}^{2}\right)$ be independent of the underlying free Brownian motion S. Assume that $\left|\mu_{0}\right|+\|f\|_{L^{2}\left(\mathbb{R}_{+}\right)}>0$ and set

$$
Q(x)=x^{2\left(1+\mathbf{1}_{\left\{\mu_{0} \neq 0\right\}}\right)} \prod_{i=1}^{a(f)}\left(x-\lambda_{i}(f)\right)^{2}
$$

Let $\left\{F_{n}\right\}_{n \geqslant 1}$ be a sequence of double Wigner integrals. Then, as $n \rightarrow \infty$, we have
(i) $F_{n} \xrightarrow{\text { law }} A+I_{2}^{S}(f)$
if and only if all the following are satisfied:
(ii-a) $\widehat{\kappa}_{2}\left(F_{n}\right) \rightarrow \widehat{\kappa}_{2}\left(A+I_{2}^{S}(f)\right)=\mu_{0}^{2}+\|f\|_{L^{2}\left(\mathbb{R}_{+}^{2}\right)}^{2}$;
(ii-b) $\sum_{r=3}^{\operatorname{deg} Q} \frac{Q^{(r)}(0)}{r!} \widehat{\kappa}_{r}\left(F_{n}\right) \rightarrow \sum_{r=3}^{\operatorname{deg} Q} \frac{Q^{(r)}(0)}{r!} \widehat{\kappa}_{r}\left(I_{2}^{S}(f)\right)$;
(ii-c) $\widehat{\kappa}_{r}\left(F_{n}\right) \rightarrow \widehat{\kappa}_{r}\left(I_{2}^{W}(f)\right)$ for $a(f)$ consecutive values of r, with $r \geqslant 2\left(1+\mathbf{1}_{\left\{\mu_{0} \neq 0\right\}}\right)$.

References

[1] I. Nourdin and G. Poly (2012): Convergence in law in the second Wiener/Wigner chaos. Electron. Comm. Probab. 17, no. 36. DOI: 10.1214/ECP.v17-2023

[^0]: *Université de Lorraine, France. E-mail: inourdin@gmail. com
 †Université Paris-Est Marne-la-Vallée, France. E-mail: guillaume.poly@crans.org

