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Abstract

We prove the Yamada-Watanabe Theorem for semilinear stochastic partial differen-
tial equations with path-dependent coefficients. The so-called “method of the moving
frame” allows us to reduce the proof to the Yamada-Watanabe Theorem for stochastic
differential equations in infinite dimensions.
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1 Introduction

The goal of the present paper is to establish the Yamada-Watanabe Theorem – which
originates from the paper [17] – for mild solutions to semilinear stochastic partial dif-
ferential equations (SPDEs)

dX(t) = (AX(t) + α(t,X))dt+ σ(t,X)dW (t) (1.1)

in the spirit of [2, 12, 6] with path-dependent coefficients. More precisely, denoting by
H the state space of (1.1), we will prove the following result (see, e.g. [9] for the finite
dimensional case):

Theorem 1.1. The SPDE (1.1) has a unique mild solution if and only if both of the
following two conditions are satisfied:

1. For each probability measure µ on (H,B(H)) there exists a martingale solution
(X,W ) to (1.1) such that µ is the distribution of X(0).

2. Pathwise uniqueness for (1.1) holds.

The precise conditions on A, α and σ, under which Theorem 1.1 holds true, are
stated in Assumptions 2.2 and 3.1 below. So far, the following two versions of the
Yamada-Watanabe Theorem in infinite dimensions are known in the literature:

• For SPDEs of the type (1.1) with state-dependent coefficients α(t,X(t)) and σ(t,X(t));
see [11].

• For stochastic evolution equations in the framework of the variational approach;
see [13].
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The Yamada-Watanabe theorem for SPDEs

We will divide the proof of Theorem 1.1 into two steps:

1. First, we show that we can reduce the proof to Hilbert space valued SDEs

dYt = ᾱ(t, Y )dt+ σ̄(t, Y )dWt. (1.2)

This is due to the “method of the moving frame”, which has been presented in [5],
see also [16].

2. For Hilbert space valued SDEs (1.2) however, the Yamada-Watanabe Theorem is a
consequence of [13].

The remainder of this paper is organized as follows: In Section 2 we present the general
framework, in Section 3 we provide the proof of Theorem 1.1, and in Section 4 we show
an example illustrating Theorem 1.1.

2 Framework and definitions

In this section, we prepare the required framework and definitions. The framework
is similar to that in [13] and we refer to this paper for further details.

Let H be a separable Hilbert space and let (St)t≥0 be a C0-semigroup on H with
infinitesimal generator A : D(A) ⊂ H → H. The path space

W(H) := C(R+;H)

is the space of all continuous functions from R+ to H. Equipped with the metric

ρ(w1, w2) :=

∞∑
k=1

2−k
(

sup
t∈[0,k]

‖w1(t)− w2(t)‖ ∧ 1
)
, (2.1)

the path space (W(H), ρ) is a Polish space. Furthermore, we define the subspace

W0(H) := {w ∈W(H) : w(0) = 0}

consisting of all functions from the path space W(H) starting in zero. For t ∈ R+ we
denote by Bt(W(H)) the σ-algebra generated by all maps W(H) → H, w 7→ w(s) for
s ∈ [0, t]. Let C(H) be the collection of all cylinder sets of the form

{w ∈W(H) : w(t1) ∈ B1, . . . , w(tn) ∈ Bn} (2.2)

with t1, . . . , tn ∈ R+ and B1, . . . , Bn ∈ B(H) for some n ∈ N, and let C′(H) be the
collection of all cylinder sets of the form

{w ∈W(H) : (w(t1), . . . , w(tn)) ∈ B} (2.3)

for t1, . . . , tn ∈ R+ and B ∈ B(H)⊗n for some n ∈ N. Similarly, for t ∈ R+ let Ct(H) be
the collection of all cylinder sets of the form (2.2) with t1, . . . , tn ∈ [0, t] and B1, . . . , Bn ∈
B(H) for some n ∈ N, and let C′t(H) be the collection of all cylinder sets of the form
(2.3) for t1, . . . , tn ∈ [0, t] and B ∈ B(H)⊗n for some n ∈ N.

Lemma 2.1. The following statements are true:

1. We have B(W(H)) = σ(C(H)) = σ(C′(H)).

2. We have Bt(W(H)) = σ(Ct(H)) = σ(C′t(H)) for each t ∈ R+.

Proof. We can argue as in the finite dimensional case, see e.g. [14, Section 2.II].
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The Yamada-Watanabe theorem for SPDEs

Let U be another separable Hilbert space and let L2(U,H) denote the space of all
Hilbert-Schmidt operators from U to H equipped with the Hilbert-Schmidt norm. Let
α : R+ ×W(H)→ H and σ : R+ ×W(H)→ L2(U,H) be mappings.

Assumption 2.2. We suppose that the following conditions are satisfied:

1. α is B(R+) ⊗ B(W(H))/B(H)-measurable such that for each t ∈ R+ the mapping
α(t, •) is Bt(W(H))/B(H)-measurable.

2. σ is B(R+) ⊗ B(W(H))/B(L2(U,H))-measurable such that for each t ∈ R+ the
mapping σ(t, •) is Bt(W(H))/B(L2(U,H))-measurable.

We call a filtered probability space B = (Ω,F , (Ft)t≥0,P) satisfying the usual con-
ditions a stochastic basis. In the sequel, we shall use the abbreviation B for a stochastic
basis (Ω,F , (Ft)t≥0,P), and the abbreviationB′ for another stochastic basis (Ω′,F ′, (F ′t)t≥0,P′).
For a sequence (βk)k∈N of independent Wiener processes we call the sequence

W = (βk)k∈N

a standard R∞-Wiener process.

Definition 2.3. A pair (X,W ), where X is an adapted process with paths in W(H)

and W is a standard R∞-Wiener process on a stochastic basis B is called a martingale
solution to (1.1), if we have P–almost surely∫ t

0

‖α(s,X)‖ds+

∫ t

0

‖σ(s,X)‖2L2(U,H)ds <∞ for all t ≥ 0

and P–almost surely it holds

X(t) = StX(0) +

∫ t

0

St−sα(s,X)ds+

∫ t

0

St−sσ(s,X)dW (s), t ≥ 0.

Remark 2.4. In finite dimensions, a pair (X,W ) as in Definition 2.3 is called a weak
solution. As in [2, Chapter 8], we use the term martingale solution in order to avoid
ambiguities with the concept of a weak solution to (1.1), which means that for each
ζ ∈ D(A∗) we have P–almost surely

〈ζ,X(t)〉 = 〈ζ,X(0)〉+

∫ t

0

(
〈A∗ξ,X(s)〉+ 〈ζ, α(s,X)〉

)
ds+

∫ t

0

〈ζ, σ(s,X)〉dW (s)

for all t ≥ 0. Sometimes, the latter concept is also called an analytically weak solution,
see [12].

Remark 2.5. By the measurability conditions from Assumption 2.2, the processes
α(•, X) and σ(•, X) from Definition 2.3 are adapted.

Remark 2.6. The stochastic integral from Definition 2.3 is defined as∫ t

0

St−sσ(s,X)dW (s) :=

∫ t

0

St−sσ(s,X) ◦ J−1dW̄ (s), t ≥ 0,

where J : U → Ū is a one-to-one Hilbert Schmidt operator into another Hilbert space
Ū , and

W̄ :=

∞∑
k=1

βkJek,

where (ek)k∈N denotes an orthonormal basis of U , is an Ū -valued trace class Wiener
process with covariance operator Q = JJ∗. Further details about this topic can be
found in [12, Section 2.5].
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The Yamada-Watanabe theorem for SPDEs

Definition 2.7. We say that weak uniqueness holds for (1.1), if for two martingale
solutions (X,W ) and (X ′,W ′) on stochastic bases B and B′ with

PX(0) = (P′)X
′(0)

as measures on (H,B(H)), we have

PX = (P′)X
′

as measures on (W(H),B(W(H))).

Definition 2.8. We say that pathwise uniqueness holds for (1.1), if for two martin-
gale solutions (X,W ) and (X ′,W ) on the same stochastic basis B and with the same
R∞-Wiener process W such that P(X(0) = X ′(0)) = 1 we have X = X ′ up to indistin-
guishability.

Definition 2.9. Let Ê(H) be the set of maps F : H ×W0(Ū) → W(H) such that for
every probability measure µ on (H,B(H)) there exists a map

Fµ : H ×W0(Ū)→W(H),

which is B(H)⊗ B(W0(Ū))
µ⊗PQ

/B(W(H))-measurable, such that for µ–almost all x ∈ H
we have

F (x,w) = Fµ(x,w) for PQ–almost all w ∈W0(Ū).

Here B(H)⊗ B(W0(Ū))
µ⊗PQ

denotes the completion of B(H)⊗B(W0(Ū)) with respect to
µ⊗PQ, andPQ denotes the distribution of theQ-Wiener process W̄ on (W0(Ū),B(W0(Ū))).
Of course, Fµ is µ⊗ PQ–almost everywhere uniquely determined.

Definition 2.10. A martingale solution (X,W ) to (1.1) on a stochastic basis B is called
a mild solution if there exists a mapping F ∈ Ê(H) such that the following conditions
are satisfied:

1. For all x ∈ H and t ∈ R+ the mapping

W0(Ū)→W(H), w 7→ F (x,w)

is Bt(W0(Ū))
PQ

/Bt(W(H))-measurable, where Bt(W0(Ū))
PQ

denotes the comple-
tion with respect to PQ in B(W0(Ū)).

2. We have up to indistinguishability

X = FPX(0)(X(0), W̄ ).

Definition 2.11. We say that the SPDE (1.1) has a unique mild solution if there exists
a mapping F ∈ Ê(H) such that:

1. For all x ∈ H and t ∈ R+ the mapping

W0(Ū)→W(H), w 7→ F (x,w)

is Bt(W0(Ū))
PQ

/Bt(W(H))-measurable, where Bt(W0(Ū))
PQ

denotes the comple-
tion with respect to PQ in B(W0(Ū)).
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2. For every standard R∞-Wiener process W on a stochastic basis B and any F0-
measurable random variable ξ : Ω→ H the pair (X,W ), where X := F (ξ, W̄ ), is a
martingale solution to (1.1) with P(X(0) = ξ) = 1.

3. For any martingale solution (X,W ) to (1.1) we have up to indistinguishability

X = FPX(0)(X(0), W̄ ).

Remark 2.12. For A = 0 the SPDE (1.1) becomes a SDE, and in this case we speak
about a strong solution (unique strong solution), if the conditions from Definition 2.10
(Definition 2.11) are fulfilled.

3 Proof of Theorem 1.1

In this section, we shall provide the proof of Theorem 1.1. The general framework
is that of Section 2. In particular, we suppose that the coefficients α and σ satisfy
Assumption 2.2. As mentioned in Section 1, we shall utilize the “method of the moving
frame” from [5]. For this, we require the following assumption on the semigroup (St)t≥0.

Assumption 3.1. We suppose that there exist another separable Hilbert space H, a
C0-group (Ut)t∈R on H and continuous linear operators ` ∈ L(H,H), π ∈ L(H, H) such `
is injective, we have rg(π) = H and ker(π) = rg(`)⊥, and the diagram

H Ut−−−−→ Hx` yπ
H

St−−−−→ H

commutes for every t ∈ R+, that is

πUt` = St for all t ∈ R+. (3.1)

Remark 3.2. According to [5, Prop. 8.7], this assumption is satisfied if the semigroup
(St)t≥0 is pseudo-contractive (one also uses the notion quasi-contractive), that is, there
is a constant ω ∈ R such that

‖St‖ ≤ eωt for all t ≥ 0.

This result relies on the Szőkefalvi-Nagy theorem on unitary dilations (see e.g. [15,
Thm. I.8.1], or [3, Sec. 7.2]). In the spirit of [15], the group (Ut)t∈R is called a dilation
of the semigroup (St)t≥0.

Remark 3.3. The Szőkefalvi-Nagy theorem was also utilized in [8, 7] in order to estab-
lish results concerning stochastic convolution integrals.

In the sequel, for some closed subspace K ⊂ H we denote by ΠK the orthogonal
projection on K.

Lemma 3.4. The following statements are true:

1. We have π` = Id|H .

2. We have `π = Πrg(`) and `π|rg(`) = Id|rg(`).

Proof. The first statement follows from (3.1) with t = 0. For the second statement,
note that rg(`) is closed, because ` is injective. Moreover, by Assumption 3.1 we have
rg(`π) = rg(`) and ker(`π) = ker(π) = rg(`)⊥, showing that `π is the orthogonal projec-
tion on the closed subspace rg(`). Consequently, we also have `π|rg(`) = Id|rg(`).
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Now, we introduce several mappings, namely

Γ : W(H)→W(H), Γ(w) := πU(w −Πrg(`)⊥w(0)),

a : R+ ×W(H)→ H, a(t, w) := U−t`α(t, w),

b : R+ ×W(H)→ L2(U,H), b(t, w) := U−t`σ(t, w),

ᾱ : R+ ×W(H)→ H, ᾱ(t, w) := a(t,Γ(w)),

σ̄ : R+ ×W(H)→ H, σ̄(t, w) := b(t,Γ(w)).

(3.2)

Lemma 3.5. The following statements are true:

1. The mapping Γ is B(W(H))/B(W(H))-measurable.

2. The mapping Γ is Bt(W(H))/Bt(W(H))-measurable for each t ∈ R+.

Proof. Let C ∈ C(H) be a cylinder set of the form

C = {w ∈W(H) : w(t1) ∈ B1, . . . , w(tn) ∈ Bn}

with t1, . . . , tn ∈ R+ and B1, . . . , Bn ∈ B(H) for some n ∈ N. Then we have

Γ−1(C) =

n⋂
k=1

{w ∈W(H) : w(tk)−Πrg(`)⊥w(0) ∈ (πUt)
−1(Bk)} ∈ C′(H).

By Lemma 2.1, the mapping Γ is Bt(W(H))/Bt(W(H))-measurable, showing the first
statement. The second statement is proven analogously.

Lemma 3.6. The following statements are true:

1. ᾱ is B(R+)⊗ B(W(H))/B(H)-measurable and for each t ∈ R+ the mapping ᾱ(t, •)
is Bt(W(H))/B(H)-measurable.

2. σ̄ is B(R+) ⊗ B(W(H))/B(L2(U,H))-measurable and for each t ∈ R+ the mapping
σ̄(t, •) is Bt(W(H))/B(L2(U,H))-measurable.

Proof. Note that the mapping

R+ ×H → H, (t, h) 7→ U−t`h

is continuous, and hence B(R+)⊗B(H)/B(H)-measurable. Therefore, the claimed mea-
surability properties of ᾱ and σ̄ follow from Lemma 3.5 and Assumption 2.2.

By virtue of Lemma 3.6, we may apply the Yamada-Watanabe Theorem from [13],
and obtain:

Theorem 3.7. The SDE (1.2) has a unique strong solution if and only if both of the
following two conditions are satisfied:

1. For each probability measure ν on (H,B(H)) there exists a martingale solution
(Y,W ) to (1.2) such that ν is the distribution of Y (0).

2. Pathwise uniqueness for (1.2) holds.

Now, our idea for the proof of Theorem 1.1 is as follows: The proof that the existence
of a unique mild solution to the SPDE (1.1) implies the two conditions from Theorem 1.1
is straightforward and can be provided as in [13]. For the proof of the converse implica-
tion, we will first show that the conditions from Theorem 1.1 imply the conditions from
Theorem 3.7, see Propositions 3.13 and 3.14. Then, we will apply Theorem 3.7, which
gives us the existence of a unique strong solution to the SDE (1.2), and finally, we will
prove that this implies the existence of a unique mild solution to the SPDE (1.1), see
Proposition 3.16. For the following four results (Lemma 3.8 to Corollary 3.11), we fix a
stochastic basis B = (Ω,F , (Ft)t≥0,P).
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Lemma 3.8. Let η : Ω → H be a F0-measurable random variable, let (X,W ) be a
martingale solution to (1.1) with X(0) = πη, and set

Y := η +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s).

Then (Y,W ) is a martingale solution to (1.2) with Y (0) = η, and we have X = Γ(Y ) up
to indistinguishability.

Proof. By the definition of Y we have Y (0) = η. Moreover, since (X,W ) is a martingale
solution to (1.1) with X(0) = πη, by identity (3.1), Lemma 3.4 and definitions (3.2) we
obtain P–almost surely

X(t) = Stπη +

∫ t

0

St−sα(s,X)ds+

∫ t

0

St−sσ(s,X)dW (s)

= πUt

(
`πη +

∫ t

0

U−s`α(s,X)ds+

∫ t

0

U−s`σ(s,X)dW (s)

)
= πUt

(
Πrg(`)η +

∫ t

0

a(s,X)ds+

∫ t

0

b(s,X)dW (s)

)
= πUt

(
η +

∫ t

0

a(s,X)ds+

∫ t

0

b(s,X)dW (s)−Πrg(`)⊥η

)
= πUt(Y (t)−Πrg(`)⊥Y (0)) = Γ(Y )(t) for all t ∈ R+,

showing that X = Γ(Y ) up to indistinguishability, and therefore, by (3.2) we obtain up
to indistinguishability

Y = η +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s)

= η +

∫ •
0

a(s,Γ(Y ))ds+

∫ •
0

b(s,Γ(Y ))dW (s)

= η +

∫ •
0

ᾱ(s, Y )ds+

∫ •
0

σ̄(s, Y )dW (s),

proving that (Y,W ) is a martingale solution to (1.2) with Y (0) = η.

Corollary 3.9. Let ξ : Ω → H be a F0-measurable random variable, let (X,W ) be a
martingale solution to (1.1) with X(0) = ξ, and set

Y := `ξ +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s).

Then (Y,W ) is a martingale solution to (1.2) with Y (0) = `ξ, and we have X = Γ(Y ) up
to indistinguishability.

Proof. Setting η := `ξ, this follows from Lemmas 3.4 and 3.8.

Lemma 3.10. Let η : Ω→ H be a F0-measurable random variable, let (Y,W ) be a mar-
tingale solution to (1.2) with Y (0) = η, and set X := Γ(Y ). Then (X,W ) is a martingale
solution to (1.1) with X(0) = πη, and we have up to indistinguishability

Y = η +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s).
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Proof. Since (Y,W ) is a martingale solution to (1.2) with Y (0) = η, by definitions (3.2),
Lemma 3.4 and identity (3.1) we obtain P–almost surely

X(t) = Γ(Y )(t) = πUt(Y (t)−Πrg(`)⊥Y (0))

= πUt

(
η +

∫ •
0

ᾱ(s, Y )ds+

∫ •
0

σ̄(s, Y )dW (s)−Πrg(`)⊥η

)
= πUt

(
Πrg(`)η +

∫ •
0

a(s,Γ(Y ))ds+

∫ •
0

b(s,Γ(Y ))dW (s)

)
= πUt

(
`πη +

∫ •
0

U−s`α(s,X)ds+

∫ •
0

U−s`σ(s,X)dW (s)

)
= Stπη +

∫ t

0

St−sα(s,X)ds+

∫ t

0

St−sσ(s,X)dW (s) for all t ∈ R+,

Therefore, (X,W ) is a martingale solution to (1.1) with X(0) = πη. Moreover, by defini-
tions (3.2) we get up to indistinguishability

Y = η +

∫ •
0

ᾱ(s, Y )ds+

∫ •
0

σ̄(s, Y )dW (s)

= η +

∫ •
0

a(s,Γ(Y ))ds+

∫ •
0

b(s,Γ(Y ))dW (s)

= η +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s),

finishing the proof.

Corollary 3.11. Let ξ : Ω → H be a F0-measurable random variable, let (Y,W ) be
a martingale solution to (1.2) with Y (0) = `ξ, and set X := Γ(Y ). Then (X,W ) is a
martingale solution to (1.1) with X(0) = ξ, and we have up to indistinguishability

Y = `ξ +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s).

Proof. Setting η := `ξ, this follows from Lemmas 3.4 and 3.10.

The following auxiliary result provides us with a standard extension which we re-
quire for the proof of Proposition 3.13.

Lemma 3.12. Let (X ′,W ′) be a martingale solution to (1.1) on a stochastic basis B′

and let ν be a probability measure on (H,B(H)). Then, there exist a stochastic basis B,
a martingale solution (X,W ) to (1.1) on B such that the distributions of X(0) and X ′(0)

coincide, and a F0-measurable random variable η : Ω→ H such that ν is the distribution
of η.

Proof. We define the stochastic basis B as

Ω := Ω′ ×H,

F := F ′ ⊗ B(H)
P′⊗ν

,

Ft :=
⋂
ε>0

σ(F ′t+ε ⊗ B(H),N ), t ≥ 0,

P := P′ ⊗ ν,

where N denotes all P′ ⊗ ν–nullsets in F ′ ⊗ B(H). Then the random variable

ν : Ω→ H, η(ω′, h) := h
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is F0-measurable and has the distribution ν. We define the H-valued processes

X(ω′, h) := X ′(ω′) and W (ω′, h) := W ′(ω′).

Then W is a standard R∞-Wiener process, because W ′ is a standard R∞-Wiener pro-
cess. The independence of the increments with respect to the new filtration (Ft)t≥0 is
shown as in the proof of [12, Prop. 2.1.13]. Moreover, the distributions of X(0) and
X ′(0) coincide, and the pair (X,W ) is a martingale solution to (1.1), because (X ′,W ′)

is a martingale solution to (1.1).

Proposition 3.13. Suppose for each probability measure µ on (H,B(H)) there exists
a martingale solution (X,W ) to (1.1) such that µ is the distribution of X(0). Then, for
each probability measure ν on (H,B(H)) there exists a martingale solution (Y,W ) to
(1.2) such that ν is the distribution of Y (0).

Proof. Let ν be a probability measure on (H,B(H)). Then the image measure µ :=

νπ is a probability measure on (H,B(H)). By assumption, there exists a martingale
solution (X ′,W ′) to (1.1) on a stochastic basis B′ such that µ is the distribution of
X ′(0). According to Lemma 3.12, there exist a stochastic basis B, a martingale solution
(X,W ) on B such that µ is the distributions of X(0), and a F0-measurable random
variable η : Ω→ H such that ν is the distribution of η. We set

Y := η +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s).

By Lemma 3.8, the pair (Y,W ) is a martingale solution to (1.1) with Y (0) = η.

Proposition 3.14. If pathwise uniqueness for (1.1) holds, then pathwise uniqueness
for (1.2) holds, too.

Proof. Let (Y,W ) and (Y ′,W ) be two martingale solutions to (1.2) on the same stochas-
tic basis B such that P(Y (0) = Y ′(0)) = 1. We set X := Γ(Y ) and Y ′ := Γ(Y ′). By
Lemma 3.10, the pairs (X,W ) and (X ′,W ) are two martingale solutions to (1.1) with
X(0) = πY (0) and X ′(0) = πY ′(0), and we have up to indistinguishability

Y = Y (0) +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s),

Y ′ = Y ′(0) +

∫ •
0

a(s,X ′)ds+

∫ •
0

b(s,X ′)dW (s).

This gives us

P(X(0) = X ′(0)) = P(πY (0) = πY ′(0)) = 1.

Since pathwise uniqueness for (1.1) holds, we deduce that X = X ′ up to indistinguisha-
bility. This implies up to indistinguishability

Y = Y (0) +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s)

= Y ′(0) +

∫ •
0

a(s,X ′)ds+

∫ •
0

b(s,X ′)dW (s) = Y ′,

proving that pathwise uniqueness for (1.2) holds.

The following auxiliary result is required for the proof of Proposition 3.16.
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Lemma 3.15. Let ν be an arbitrary probability measure on (H,B(H)). We define the
image measure ν := µ` on (H,B(H)). Then the mapping

(`, Id) : H ×W0(Ū)→ H×W0(Ū)

is B(H)⊗ B(W0(Ū))
µ⊗PQ

/B(H)⊗ B(W0(Ū))
ν⊗PQ

-measurable.

Proof. Let B ∪N ∈ B(H)⊗ B(W0(Ū))
ν⊗PQ

be an arbitrary measurable set with a Borel
set B ∈ B(H)⊗ B(W0(Ū)) and a ν ⊗ PQ–nullset N ⊂ H×W0(Ū). Then we have

(`, Id)−1(B) ∈ B(H)⊗ B(W0(Ū)),

because (`, Id) is B(H) ⊗ B(W0(Ū))/B(H) ⊗ B(W0(Ū))-measurable. For arbitrary Borel
sets C ∈ B(H) and D ∈ B(W0(Ū)) we have

(µ⊗ PQ)(`,Id)(C ×D) = (µ⊗ PQ)((`, Id)−1(C ×D)) = (µ⊗ PQ)(`−1(C)×D)

= µ(`−1(C)) · PQ(D) = µ`(C) · PQ(D) = ν(C) · PQ(D) = (ν ⊗ PQ)(C ×D),

showing that

(µ⊗ PQ)(`,Id) = ν ⊗ PQ.

There exists a set N ′ ∈ B(H) ⊗ B(W0(Ū)) satisfying N ⊂ N ′ and (ν ⊗ PQ)(N ′) = 0. We
obtain

(µ⊗ PQ)((`, Id)−1(N ′)) = (µ⊗ PQ)(`,Id)(N ′) = (ν ⊗ PQ)(N ′) = 0,

showing that (`, Id)−1(N) is a µ⊗ PQ–nullset. Consequently, we have

(`, Id)−1(B ∪N) = (`, Id)−1(B) ∪ (`, Id)−1(N) ∈ B(H)⊗ B(W0(Ū))
µ⊗PQ

,

proving that (`, Id) is B(H)⊗ B(W0(Ū))
µ⊗PQ

/B(H)⊗ B(W0(Ū))
ν⊗PQ

-measurable.

Proposition 3.16. If the SDE (1.2) has a unique strong solution, then the SPDE (1.1)
has a unique mild solution.

Proof. Suppose the SDE (1.2) has a unique mild solution. Then, there exists a mapping
G ∈ Ê(H) such that the three conditions from Definition 2.11 are fulfilled. In detail, the
following conditions are satisfied:

• G : H ×W0(Ū) → W(H) is a mapping such that for every probability measure ν
on (H,B(H)) there exists a map

Gν : H×W0(Ū)→W(H),

which is B(H)⊗ B(W0(Ū))
ν⊗PQ

/B(W(H))-measurable, such that for ν–almost all
y ∈ H we have

G(y, w) = Gν(y, w) for PQ–almost all w ∈W0(Ū). (3.3)

• For all y ∈ H and t ∈ R+ the mapping

W0(Ū)→W(H), w 7→ G(y, w)

is Bt(W0(Ū))
PQ

/Bt(W(H))-measurable, where Bt(W0(Ū))
PQ

denotes the comple-
tion with respect to PQ in B(W0(Ū)).
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• For every standard R∞-Wiener process W on a stochastic basis B and any F0-
measurable random variable η : Ω → H the pair (Y,W ), where Y := G(η, W̄ ), is a
martingale solution to (1.2) with P(Y (0) = η) = 1.

• For any martingale solution (Y,W ) to (1.2) we have up to indistinguishability

Y = GPY (0)(Y (0), W̄ ).

We define the mapping

F : H ×W0(Ū)→W(H), F (x,w) := Γ(G(`x, w)),

which is B(H)⊗ B(W0(Ū))
µ⊗PQ

/B(W(H))-measurable by virtue of Lemmas 3.5 and
3.15. Let us prove that F ∈ Ê(H). For this purpose, let µ be an arbitrary probabil-
ity measure on (H,B(H)). We define the image measure ν := µ`. Then ν is a probability
measure on (H,B(H)). Furthermore, we define the mapping

Fµ : H ×W0(Ū)→W(H), Fµ(x,w) := Γ(Gν(`x, w)).

There is a ν–nullset N ⊂ H such that for all y ∈ N c identity (3.3) is satisfied. The set
`−1(N) ⊂ H is a µ–nullset. Indeed, there is a set N ′ ∈ B(H) satisfying N ⊂ N ′ and
ν(N ′) = 0. We obtain

µ(`−1(N ′)) = µ`(N ′) = ν(N ′) = 0,

showing that `−1(N) ⊂ H is a µ–nullset. Let x ∈ `−1(N)c = `−1(N c) be arbitrary. Then
we have `x ∈ N c, and hence

F (x,w) = Γ(G(`x, w)) = Γ(Gν(`x, w)) = Fµ(x,w)

for PQ–almost all w ∈W0(Ū). Consequently, we have F ∈ Ê(H).
Now, we shall prove that the mapping F satisfies the three conditions from Defini-

tion 2.11. For all x ∈ H and t ∈ R+ the mapping

W0(Ū)→W(H), w 7→ F (x,w)

is Bt(W0(Ū))
PQ

/Bt(W(H))-measurable due to Lemma 3.5.
Let W be a standard R∞-Wiener process on a stochastic basis B, and let ξ : Ω → H

be a F0-measurable random variable. Then the pair (Y,W ), where Y := G(`ξ, W̄ ), is a
martingale solution to (1.2) with P(Y (0) = `ξ) = 1. By Corollary 3.11, the pair (X,W ),
where X := F (ξ, W̄ ) = Γ(Y ), is a martingale solution to (1.1) with P(X(0) = ξ) = 1.

Finally, let (X,W ) be a martingale solution to (1.1) and set

Y := `X(0) +

∫ •
0

a(s,X)ds+

∫ •
0

b(s,X)dW (s).

By Corollary 3.9, the pair (Y,W ) is a martingale solution to (1.1) with P(Y (0) = `X(0)) =

1, and we have X = Γ(Y ) up to indistinguishability. Denoting by ν the distribution of
Y (0), we have up to indistinguishability

Y = Gν(Y (0), W̄ ).

Furthermore, denoting by µ the distribution of X(0), we obtain

ν = PY (0) = P`X(0) = (PX(0))` = µ`.

ECP 18 (2013), paper 24.
Page 11/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2392
http://ecp.ejpecp.org/


The Yamada-Watanabe theorem for SPDEs

We deduce that up to indistinguishability

X = Γ(Y ) = Γ(Gν(Y (0), W̄ ))

= Γ(Gν(`X(0), W̄ )) = Fµ(X(0), W̄ ).

Consequently, the mapping F fulfills the three conditions from Definition 2.11, proving
that the SPDE (1.1) has a unique mild solution.

Now, the proof of Theorem 1.1 is a direct consequence: If the SPDE (1.1) has a
unique mild solution, then arguing as in [13] shows that the two conditions from Theo-
rem 1.1 are fulfilled. Conversely, if these two conditions are satisfied, then combining
Propositions 3.13, 3.14, Theorem 3.7 and Proposition 3.16 shows that the SPDE (1.1)
has a unique mild solution.

4 An example

In this section, we shall illustrate Theorem 1.1 and consider SPDEs of the type

dX(t) = (AX(t) +B(t,X(t)) + F (t,X(t)))dt+
√
QdWt, (4.1)

which have been studied in [1], with a Hölder continuous mappingB. We fix a finite time
horizon T > 0, an orthonormal basis (en)n∈N of H and suppose (as in [1, Section 1.1])
that the following conditions are satisfied:

• A is selfadjoint, with compact resolvent, and there is a non-decreasing sequence
(αn)n∈N ⊂ (0,∞) such that Aen = −αnen for all n ∈ N.

• For the mapping B : [0, T ]×H → H there exist constants LB ,MB > 0 and α ∈ (0, 1]

such that

‖B(t, x)−B(t, y)‖ ≤ LB‖x− y‖α for all x, y ∈ H and t ∈ [0, T ],

‖B(t, x)‖ ≤MB for all x ∈ H and t ∈ [0, T ].

• For the mapping F : [0, T ]×H → H there exists a constant LF > 0 such that

‖F (t, x)− F (t, y)‖ ≤ LF ‖x− y‖ for all x, y ∈ H and t ∈ [0, T ].

• Q : H → H is a nonnegative, selfadjoint, bounded operator such that TrQ <∞ or∑
n∈N

‖Bn‖α
αn

<∞, where Bn = 〈B, en〉 and

‖Bn‖α = sup
t∈[0,T ]
x∈H

‖Bn(t, x)‖+ sup
t∈[0,T ]

x,y∈H with x 6=y

‖Bn(t, x)−Bn(t, y)‖
‖x− y‖α

.

• Qt :=
∫ t
0
SsQS

∗
sds is a trace class operator for each t > 0.

• St(H) ⊂ Q1/2
t (H) for each t > 0.

• We have
∫ T
0
‖Q−1/2t St‖1+θdt <∞ for some θ ≥ max{α, 1− α}.

Furthermore, in order to ensure the existence of martingale solutions, we suppose that
St is a compact operator for each t > 0. Then, as indicated in [1], strong existence holds
true. Indeed, by [6, Theorem 3.14] we have the existence of martingale solutions, and
by [1, Theorem 7] pathwise uniqueness holds true. Hence, according to Theorem 1.1,
the SPDE (4.1) has a unique mild solution.
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