
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 18 (2013), no. 47, 1–17.
ISSN: 1083-6489 DOI: 10.1214/EJP.v18-2422

Fluctuations of martingales and winning
probabilities of game contestants∗

David Aldous† Mykhaylo Shkolnikov‡

Abstract

Within a contest there is some probability Mi(t) that contestant i will be the winner,
given information available at time t, and Mi(t) must be a martingale in t. Assume
continuous paths, to capture the idea that relevant information is acquired slowly.
Provided each contestant’s initial winning probability is at most b, one can easily
calculate, without needing further model specification, the expectations of the ran-
dom variables Nb = number of contestants whose winning probability ever exceeds
b, and Dab = total number of downcrossings of the martingales over an interval [a, b].
The distributions of Nb and Dab do depend on further model details, and we study
how concentrated or spread out the distributions can be. The extremal models for
Nb correspond to two contrasting intuitively natural methods for determining a win-
ner: progressively shorten a list of remaining candidates, or sequentially examine
candidates to be declared winner or eliminated. We give less precise bounds on the
variability of Dab. We formalize the setting of infinitely many contestants each with
infinitesimally small chance of winning, in which the explicit results are more ele-
gant. A canonical process in this setting is the Wright-Fisher diffusion associated
with an infinite population of initially distinct alleles; we show how this process fits
our setting and raise the problem of finding the distributions of Nb and Dab for this
process.
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1 Introduction

Given a probability distribution p = (pi, i ≥ 1) consider a collection of processes
(Mi(t), 0 ≤ t <∞, i ≥ 1) adapted to a filtration (F t) and satisfying
(i) Mi(0) = pi, i ≥ 1;
(ii) for each t > 0 we have 0 ≤Mi(t) ≤ 1 ∀i and

∑
iMi(t) = 1;

(iii) for each i ≥ 1, (Mi(t), t ≥ 0) is a continuous path martingale;
(iv) there exists a random time T < ∞ a.s. such that, for some random I, MI(T ) = 1

and Mj(T ) = 0 ∀j 6= I.

∗Aldous’s research supported by N.S.F Grant DMS-0704159.
†U.C. Berkeley, USA. E-mail: aldous@stat.berkeley.edu
‡E-mail: mshkolni@gmail.com

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v18-2422
mailto:aldous@stat.berkeley.edu
mailto:mshkolni@gmail.com


Martingale fluctuations

Call such a collection a p-feasible process, and call the Mi(·) its component martingales.
To motivate this definition, consider contestants in a contest which will have one winner
at some random future time. Then the probability Mi(t) that contestant i will be the
winner, given information known at time t, must be a martingale as t increases. In this
scenario all the assumptions will hold automatically except for path-continuity, which
expresses the idea that information becomes known slowly.

In view of the fact that continuous-path martingales have long been a central con-
cept in mathematical probability, it seems curious that this particular “contest" setting
has apparently not previously been studied systematically. Moreover the topic is ap-
pealing at the expository level because it can be treated at any technical level. In an
accompanying non-technical article for undergraduates [1] we show data on probabil-
ities (from the Intrade prediction market) for candidates for the 2012 Republican U.S.
Presidential Nomination. The data is observed values of the variables Nb and Dab be-
low, and one can examine the question of whether there was an unusually large number
of candidates that year whose fortunes rose and fell substantially. In this paper, the
proof in section 4 of distributional bounds on Nb is mostly accessible to a student taking
a first course in continuous-time martingales, and subsequent sections slowly become
more technically sophisticated.

The starting point for this paper is the observation that there are certain random
variables associated with a p-feasible process whose expectations do not depend on the
actual joint distribution of the component martingales, and indeed depend very little on
p. For 0 < a < b < 1 consider

Nb := number of i such that sup
t
Mi(t) ≥ b

Da,b := sum over i of the number of downcrossings of Mi(·) over [a, b].

Straightforward uses of the optional sampling theorem (described verbally in [1] as
gambling strategies) establish

Lemma 1.1. If maxi pi ≤ b then for any p-feasible process,

E[Nb] = 1/b, E[Da,b] = (1− b)/(b− a).

In contrast, the distributions of Nb and Da,b will depend on the joint distributions of
the component martingales, and one goal of this paper is to study the extremal possi-
bilities. Here is our result for Nb.

Proposition 1.2. (a) If maxi pi ≤ b then there exists a p-feasible process for which the
distribution of Np

b is supported on the integers b1/bc and d1/be bracketing its mean 1/b.
(b) There exists a family, that is a p-feasible process for each p, such that the distribu-
tions of Np

b satisfy
dist(Np

b )→ Geometric(b) as max
i
pi → 0. (1.1)

(c) Any possible limit distribution for Np
b as maxi pi → 0 has variance at most (1− b)/b2,

the variance of Geometric(b).

Clearly the distribution in (a) is the “most concentrated" possible, and part (c) gives
a sense in which the Geometric(b) distribution is the “most spread out" distribution
possible. The proof will be given in section 4. The construction for (a) formalizes the
idea that we maintain a list of candidates still under consideration, and at each stage
choose one candidate to be eliminated. The construction for (b) formalizes the idea that
we examine candidates sequentially, deciding to declare the current candidate to be the
winner or to be eliminated. Returning briefly to the theme that this topic is amenable to
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Martingale fluctuations

popular exposition, with some imagination one can relate these two alternate ideas to
those used in season-long television shows. Shows like Survivor overtly follow the idea
for (a), whereas the idea for (b) would correspond to a variant of . . . . . . Millionaire in
which contestants were required to try for the million dollar prize and where the season
ends when the prize is won.

We give an analysis of downcrossings Dab in section 5, though with less precise
results. The construction that gave the Geometric limit distribution for Nb in (1.1) also
gives a Geometric limit distribution for Dab (Proposition 5.1). We conjecture this is
the maximum-variance possible limit, but can give only a weaker bound in Proposition
5.3. As for minimum-variance constructions, Proposition 5.4 shows one can construct
feasible processes for which, in the limit as b → 0 with a/b bounded away from 1, the
variance of Dab is bounded by a constant depending only on a/b. The case a/b ≈ 1

remains mysterious, but prompts novel open problems about negative correlations for
Brownian local times – see section 7.

1.1 0-feasible processes

As a second goal of this paper, it seems intuitively clear that the concept of p-feasible
process can be taken to the limit as maxi pi → 0, to represent the idea of starting
with an infinite number of contestants each with only infinitesimal chance of winning.
Informally, we define a 0-feasible process as a process with the properties:

(i) for each t0 > 0, conditional on Mi(t0) = pi, i ≥ 1, the process (Mi(t0 + t), 0 ≤ t <

∞, i ≥ 1) is a p-feasible process;

(ii) supiMi(t)→ 0 a.s. as t ↓ 0.

There is some subtlety in devising a precise definition, which we will give in section
3. The theory developed there will allow us to deduce results for general 0-feasible
processes as limits of results for p-feasible processes under the regime maxi pi → 0, and
also to construct specific 0-feasible processes by splicing together specific p-feasible
processes under the same regime (Proposition 3.6).

By eliminating any dependence on p, results often become cleaner for 0-feasible
processes. For instance Proposition 1.2 becomes

Corollary 1.3. (a) There exists a 0-feasible process such that, for each 0 < b < 1, the
distribution Nb is supported on the integers b1/bc and d1/be bracketing its mean 1/b.
(b) Given 0 < b0 < 1, there exists a 0-feasible process such that, for each b0 ≤ b < 1, Nb
has Geometric(b) distribution.
(c) Moreover for any 0-feasible process and any 0 < b < 1 the variance of Nb is at most
(1− b)/b2, the variance of Geometric(b).

Setting aside the “extremal" questions we have discussed so far, another motivation
for considering the class of 0-feasible processes is that there is one particular such
process which we regard intuitively as the “canonical" choice, and this is the 0-Wright-
Fisher process discussed in section 6. This connection between (a corner of) the large
literature on processes inspired by population genetics and our game contest setting
seems not to have been developed before. In particular, questions about the fluctuation
behavior of the 0-Wright-Fisher process – the distributions of Nb and Dab – arise more
naturally in the contest setting, though it seems hard to get quantitative estimates of
these distributions.
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2 Preliminary observations

2.1 The downcrossing formula

In our setting of a continuous-path martingale M(·) ultimately stopped at 0 or 1,
recall the “fair game formula"

P(M(t) hits b before a |M(0) = x) = x−a
b−a , 0 ≤ a ≤ x ≤ b ≤ 1 (2.1)

from which one can readily derive the well known formula for the expectation of the
number D of downcrossings of M(·) over [a, b]: for 0 ≤ a ≤ b ≤ 1,

E[D|M(0) = x] = x(1−b)
b−a if 0 ≤ x ≤ b (2.2)

= b(1−x)
b−a if b ≤ x ≤ 1. (2.3)

Moreover, starting from b there is a modified Geometric distribution for D:

P(D = 0|M(0) = b) = b−a
1−a

P(D = d|M(0) = b) = 1−b
1−a

(
a(1−b)
b(1−a)

)d−1 (
1− a(1−b)

b(1−a)

)
, d ≥ 1. (2.4)

2.2 The multivariate Wright-Fisher diffusion

Textbooks introducing discrete-time martingales often use as an example (e.g. [7]
Example 10.2.6) the discrete-time Wright-Fisher model for genetic drift of a single al-
lele. Note that throughout what follows, we consider only the case of no mutation and
no selection. It is classical that the infinite population limit of the k-allele model is
the multivariate Wright-Fisher diffusion on the k − 1-dimensional simplex, that is with
generator

1
2

k∑
i,j=1

xi(δij − xj)
∂2

∂xi∂xj
. (2.5)

Each component is a martingale, the one-dimensional diffusion on [0, 1] with drift rate
zero and variance rate x(1 − x). There has been extensive work since the 1970s on
the infinitely-many-alleles case, but this has focussed on the case of positive mutation
rates to novel alleles, in which case the martingale property no longer holds. In our
setting (no mutation and no selection) it is straightforward to show directly (see section
6) that for any p = (pi, i ≥ 1) with countable support there exists what we will call the
p-Wright-Fisher process, the infinite-dimensional diffusion with generator analogous to
(2.5) starting from state p, and that this is a p-feasible process. So we know that p-
feasible processes do actually exist, and these p-Wright-Fisher processes will be useful
ingredients in later constructions. (When p has finite support we could use instead
Brownian motion on the finite-dimensional simplex, whose components are killed at 0

and 1, but this does not extend so readily to the infinite-dimensional setting).
It is convenient to adopt from genetics the phrase fixation time for the time T at

which the winner is determined.

2.3 Constructions using Wright-Fisher

In a Wright-Fisher diffusion we have
∑
iMi(t) ≡ 1, but trivially we can consider a

rescaled Wright-Fisher diffusion for which
∑
iMi(t) is a prescribed constant.

Our constructions of feasible processes typically proceed in stages. Within a stage
we may declare that some component martingales are “frozen" (held constant) and the
others evolve as a rescaled Wright-Fisher process. In particular if only two component
martingales are unfrozen, say at the start S of the stage we have Mi(S) = xi and
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Mj(S) = xj , then during the stage we have a “reflection coupling" with Mi(t) +Mj(t) =

xi + xj , and we can choose to continue the stage until the processes reach xi + xj and
0, or we can choose to stop earlier.

An alternative construction method is to select one component martingale Mi(S) at
the start of the stage, let (Mi(·), 1−Mi(·)) evolve as the two-allele Wright-Fisher process

during the stage, and set Mj(·) =
Mj(S)

1−Mi(S)
× (1 −Mi(·)). We describe this construction

by saying that the processes (Mj(·), j 6= i) are tied.
Both constructions clearly give continuous-path martingale components.

3 0-feasible processes

In section 3.2 we will give one formalization of the notion of a 0-feasible process
introduced informally in section 1.1, and in sections 3.4 and 3.5 we give results allowing
one to relate constructions and properties of 0-feasible processes to those of p-feasible
processes. A reader who is content with the informal description may skip this section,
because our main results in sections 4 and 5 are based on concrete calculations and
constructions with p-feasible processes.

3.1 What is the issue?

The following observation shows that the most naive formalization does not work.

Lemma 3.1. Let I be countable, There does not exist any process (Mi(t), 0 ≤ t <∞, i ∈
I) adapted to a filtration (F t) and satisfying
(i) for each t > 0 we have 0 ≤Mi(t) ≤ 1 ∀i and

∑
iMi(t) = 1;

(ii) for each i, (Mi(t), t ≥ 0) is a martingale;
(iii) supiMi(t)→ 0 a.s. as t ↓ 0.

Proof. The martingale property implies E[Mi(t)] is constant in t. But by (i) and (iii) we
have

lim
t↓0
E[Mi(t)] = 0.

So E[Mi(t)] = 0 for all i and t, contradicting (i).

Another way to see the difficulty is to consider how to formalize the “Survivor" model
mentioned in the Introduction: maintain a list of contestants still under consideration,
and at each stage choose (uniformly at random) one contestant to be eliminated. This
process clearly makes sense (in discete time) for any finite initial number k of con-
testants. We would like to argue “these processes are Kolmogorov-consistent as k in-
creases, and therefore there exists a single process which contains these processes
simultaneously for all initial 2 ≤ k < ∞". But Lemma 3.1 implies there is no way to
define such a process using a countable set I of names of contestants, because then
the conditional probabilities Mi(t) of contestant i being the winner would (after an easy
embedding into continuous time) satisfy the conditions of the lemma.

Our formalization issue is very similar to those arising in the theory of stochastic
fragmentation and coagulation processes [3], where a state of the process is (concep-
tually) an unordered collection of “clusters" whose masses xα sum to 1. Of the three
formalizations described in [4], two could be used in our setting:
(i) ranking (decreasing-ordering) the cluster sizes (xα);
(ii) using an interval-partition (a partition of the unit interval into sub-intervals of lengths
xα).
A third device, using the induced partition on sampled “atoms" and exploiting exchange-
ability, seems not applicable in our setting.
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The formalization we choose below combines ranking and a point process represen-
tation. We defer further discussion until section 3.3.

3.2 A formalization

A probability distribution p with p1 ≥ p2 ≥ p3 ≥ . . . is called ranked; write ∇ for the
space of ranked probability distributions. For a general discrete distribution q = (qj , j ∈
J) write rank(q) for its decreasing ordering, where zero entries are omitted. More
generally, for a collection (Aj , j ∈ J) of objects with the same index set as (qj , j ∈ J),
write rank(Aj , j ∈ J ||q) for the collection re-ordered so that q is ranked (this is not
completely specified if the values qj are not distinct, but the arbitrariness does not
matter for our purposes).

Write C0 for the space of continuous functions f : [0,∞)→ [0, 1] with f(0) = 0. Con-
sider a random point process on C0. That is, a realization of the process is (informally)
an unordered countable set {fα(·)} of functions or (formally) the counting measure as-
sociated with that set. We will use the former notation, which is more intuitive. We
define a 0-feasible process to be a random point process {Mα(·)} on C0 such that

0 ≤Mα(t) ≤ 1;
∑
α

Mα(t) = 1, 0 < t <∞

max
α

Mα(t)→ 0 a.s. as t ↓ 0

and with the following property. For each t0 > 0 and each ranked p,

Conditional on rank(Mα(t0)) = p and on F(t0), the ranked process

rank(Mα(t0 + ·))||{Mα(t0)}) is p-feasible. (3.1)

In words, given t0 we simply label component martingales as 1, 2, 3, . . . in decreasing
order of their values at t0, and we can use this labeling over t0 ≤ t < ∞ to define a
process (Mi(t0 + t), t ≥ 0, i ≥ 1) which we require to be a p-feasible process, where p is
the ranked ordering of (Mα(t0)). For F t we take the natural filtration, generated by the
restriction of the point process to (0, t].

By standard arguments, property (3.1) extends to any stopping time S with 0 < S <

∞:
Conditional on rank(Mα(S)) = p and on F(S), the ranked process

rank(Mα(S + ·))||{Mα(S)}) is p-feasible. (3.2)

In our initial definition of a p-feasible process we assumed the initial configura-
tion p was deterministic. Now define a ⊕-feasible process to be a mixture over p

of p-feasible processes; in other words, a process (Mi(t), i ≥ 1, t ≥ 0) which, condi-
tional on (Mi(0), i ≥ 1) = (pi, i ≥ 1), is a p-feasible process. So the ranked process
rank(Mα(S + ·))||{Mα(S)}) in (3.2), considered unconditionally, is a ⊕-feasible process,
and we describe the relationship (3.2) by saying this ⊕-feasible process is embedded
into the 0-feasible process via the stopping time S. Similarly, any stopping time within
a ⊕-feasible process specifies an embedded ⊕-feasible process.

3.3 Remarks of the formalization

Remark 3.2. Our formalization above is admittedly somewhat ad hoc. An essentially
equivalent formalization would be to assign random U [0, 1] labels Uα to component mar-
tingales, so the state of the process at t is described via the pairs (Uα,Mα(t)) for which
Mα(t) > 0, and this can in turn be described via the probability measure

∑
αMα(t)δUα

or its distribution function. We will use this “random labels" idea in an argument below.
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Remark 3.3. There are several possible choices for the level of generality we might
adopt. The “canonical" examples of the 0-Wright-Fisher process (section 6), and the
“Survivor" process featuring in the proof (section 4) of Corollary 1.3(a), have the prop-
erty that at times t > 0 the process has only finitely many non-zero components, so
we could make this a requirement. But our formalization allows a countable number
of non-zero components. In the other direction, consider the construction of reflecting
Brownian motion R(t) from standard Brownian motion W (t) as

R(t) := W (t)−min
s≤t

W (s)

and run the process until R(·) hits 1. Within our setting, interpret this as saying that
at time t there is one contestant with chance R(t) of winning, the remaining chance
1 − R(t) being split amongst an infinite number of unidentified contestants each with
only infinitesimal chance of winning. Informally this is a 0-feasible process such that

Nb has Geometric(b) distribution for every 0 < b < 1, (3.3)

strengthening the assertion of Corollary 1.3(b), but it does not fit our set-up which
requires the unit mass to be split as a random discrete distribution at times t > 0. In
fact Corollary 4.2 implies that, within our formalization, no 0-feasible process can have
property (3.3). One could perhaps choose a more general formalization, in the spirit of
the interval-partitions used in stochastic coalescence [4], which does allow such “dust",
but we have not pursued that idea.

Remark 3.4. The existing classes of processes in the literature with somewhat sim-
ilar qualitative behavior – in the theory of stochastic fragmentation and coagulation
processes, or in population genetics inspired processes associated with Kingman’s co-
alescent, are (to our knowledge) explicitly Markovian, in which context the question
becomes determining the entrance boundary of a specific Markov process [2, 5]. Our
setting differs in that we wish to continue making only the “martingale" assumptions
(ii,iii,iv) at the start of the Introduction, and we are seeking to define a class of pro-
cesses.

Remark 3.5. Within a p-feasible process, we refer to a particular component process
(Mi(t), 0 ≤ t <∞) as a martingale component. For a 0-feasible process this terminology
is somewhat misleading, in that the technical issue emphasized in section 3.1 is that we
cannot label the components to make each component process be a martingale over the
entire interval 0 < t < ∞. However, from the definition we can do so over any interval
ε ≤ t <∞.

3.4 A general construction of 0-feasible processes

Given a 0-feasible process and stopping times Sk ↓ 0 a.s., the associated embedded
⊕-feasible processes are embedded within each other, and their initial values (M

(k)
i , i ≥

1) satisfy maxiM
(k)
i → 0 a.s.. The following result formalizes the converse idea: one

can construct a 0-feasible process from a sequence of p-feasible or more generally ⊕-
feasible processes embedded into each other, via Kolmogorov consistency.

Proposition 3.6. Suppose that (µk, k ≥ 1) are probability measures on ∇ and that for
each k there are families (Mk

i (t), i ≥ 1, 0 ≤ t <∞) such that
(i) (Mk

i (0), i ≥ 1) has distribution µk.
(ii) Conditional on (Mk

i (0), i ≥ 1) = p, the process Mk = (Mk
i (t), 0 ≤ t < ∞, i ≥ 1) is

p-feasible.
(iii) For k ≥ 2 there is a stopping time Tk for Mk such that tk := E[Tk] < ∞ and
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rank(Mk
i (Tk), i ≥ 1) has distribution µk−1.

(iv)
∑
k tk <∞.

(v) Mk
1 (0)→p 0 as k →∞.

Then there exists a 0-feasible process {Mα(·)} which is consistent with the families
above, in the following sense. There exist stopping times Sk such that for each k ≥ 1

E[Sk] =
∑
j>k

tj , Sk − Sk+1
d
= Tk+1

and the embedded process rank(Mα(Sk + ·))||{Mα(Sk)}) is distributed as Mk(·).

Proof. By conditions (i)-(iii), for each k ≥ 2 we can represent the process Mk−1 as the
process Mk(Tk + ·); more precisely, we can couple the two processes such that

Mk−1
i (t) = rank(Mk

i (Tk + t)||(Mk
i (Tk), i ≥ 1)). (3.4)

Then by the Kolmogorov consistency theorem we can assume this representation holds
simultaneously for all k. We now attach labels α to the component martingales by the
following inductive scheme. For k = 1, to each of the indices i designating a component
martingale M1

i (·) we associate an independent Uniform(0, 1) label. For k = 2, a com-
ponent martingale M2

i (·) might be zero or non-zero at T2. If non-zero then we copy the
label already associated within M1(·) via the coupling (3.4). If zero the we create a new
independent Uniform(0, 1) label.

Continue for each k this scheme of copying or creating labels. For each label α, the
sample path of that martingale component in the process Mk+1 is obtained from the
sample path in Mk by inserting an extra initial segment. By (iv) the path converges
as k → ∞ to a function Mα(t), 0 ≤ t < ∞, and by (v) we must have Mα(0) = 0. The
remaining properties are straightforward.

3.5 All p-feasible processes embed

Proposition 3.6 enables construction of specific 0-feasible processes. The following
result implies that any p-feasible process can be embedded into some 0-feasible process
– simply splice the 0-feasible process in the proposition to the given p-feasible process
at time S. We will use this fact in the proofs of Corollary 1.3(b) and Proposition 5.4.

Proposition 3.7. Given any ranked p, there exists a 0-feasible process {Mα(·)} and a
stopping time S such that rank( {Mα(S)} ) = p.

For the proof it is convenient to use Brownian-type process instead of Wright-Fisher.
Write

Q(t) :=
∑
i

(Mi(t))
2.

We will use constructions with the property

At each time 0 ≤ t ≤ S, at least one component

martingale Mi(t) is evolving as Brownian motion (3.5)

for a specified stopping time S. That is, our constructions can be written as

dMi(t) = σi(t)dWi(t)

for (dependent) standard Brownian motions Wi(t), and we require that some σi(t)

equals 1. In general Q(t) −
∫ t
0

∑
i σ

2
i (s) ds is a martingale, so the advantage of prop-

erty (3.5) is that Q(t)− t is a submartingale, implying
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Lemma 3.8. Let (Mi(t)) be a p-feasible process satisfying (3.5) for a stopping time S.
Then E[S] ≤ E[Q(S)]−Q(0).

A simple construction satisfying (3.5) is the Brownian reflection coupling of two
component martingales. That is, on 0 ≤ t ≤ S we freeze components other than i, j, and
set

Mi(t)−Mi(0) = Wi(t), Mj(t)−Mj(0) = −Wi(t).

Lemma 3.9. Let I0 be countable, and I1 and I2 be finite, index sets. Let (pi, i ∈ I0 ∪
I1) and (qi, i ∈ I0 ∪ I2) be probability distributions which coincide on I0 and satisfy
maxi∈I1 pi ≤ mini∈I2 qi. Then there exists a p-feasible process {Mα(·)} satisfying (3.5)
such that for some stopping time S we have rank( {Mα(S)} ) = rank(q).

Proof. Freeze permanently the component martingales with i ∈ I0. Pick two arbitrary
indices i′, i∗ in I1 and run the Brownian reflection coupling on these two components
Mi′(t),Mi∗(t) until one component hits zero or mini∈I2 qi. In the latter case, freeze that
component permanently and delete its index from I1 and delete arg mini∈I2 qi from I2.
In the former case, only delete the index from I1. The total number (originally |I1|+ |I2|)
of unfrozen components is now decreased by at least 1. Continue inductively, picking
two components from I1 at each stage. Eventually all components are frozen and the
ranked state is rank(q).

Proof of Proposition 3.7. Define p0 = p and for k ≥ 1 construct pk from p by
(i) retaining entries pi with pi ≤ 2−k;
(ii) replacing other pi by 2j(i) copies of 2−j(i)pi, where j(i) ≥ 1 is the smallest integer
such that 2−j(i)pi ≤ 2−k.
Each pair (pk,pk−1) satisfies the hypothesis of Lemma 3.9. So for each k, writting
µk = δpk and writing Mk and Tk for the pk-feasible process and the stopping time given
by Lemma 3.9, we see that hypotheses (i)-(iii) of Proposition 3.6 are satisfied. Moreover
by Lemma 3.8 we have E[Tk] ≤ qk−1 − qk for qk :=

∑
i(p

k
i )2, implying that hypotheses

(i)-(iii) are also satisfied. The conclusion of Proposition 3.6 now establishes Proposition
3.7.

4 Proofs of distributional bounds on Nb

In this section we will prove Proposition 1.2 and Corollary 1.3, stated in the Intro-
duction.

Proof of Proposition 1.2(a). Fix b. Run a Wright-Fisher process started at p until some
Mi(·) reaches b. Freeze that i and run the remaining processes as rescaled Wright-
Fisher until some other Mj(·) reaches b. Freeze that j and continue. After a finite
number of such stages we must reach a state where all component martingales except
one are frozen at b or at 0, and the remaining one is in [0, b]. Because

∑
iMi(t) ≡ 1 the

number frozen at b must be b1/bc and the remaining martingale must be at 1 − bb1/bc.
Finally, unfreeze and run from this configuration to fixation as Wright-Fisher. Clearly
Nb takes only the values b1/bc and d1/be.

Proof of Corollary 1.3(a). This construction is similar to that above, but is closer to our
earlier informal description “maintain a list of candidates still under consideration, and
at each stage choose one candidate to be eliminated".

For each integer m ≥ 2, we will define a stage which starts with m component
martingales at 1/m, and ends with m−1 of these martingales at 1/(m−1) and the other
frozen at 0. To construct this stage, run as Wright-Fisher until some Mi(·) reaches
1/(m − 1). Freeze that i and run the remaining martingales as rescaled Wright-Fisher
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until some other Mj(·) reaches 1/(m − 1). Freeze that j and continue. Eventually we
must reach a state where m− 1 martingales are frozen at 1/(m− 1) and the remaining
process is 0. This stage takes some random time τm with finite expectation; without
needing to calculate it, we can simply rescale time so that E[τm] = 2−m.

Intuitively, we simply put these stages together, to obtain a 0-feasible process in
which, for each M ≥ 1, at time

∑
m>M τm there are exactly M martingales at 1/M .

Proposition 3.6 formalizes this construction, as it was designed to do. The resulting
0-feasible process satisfies the assertion of the Corollary for each b = 1/M , and then for
general b because Nb is monotone in b.

Proof of Proposition 1.2(b). Fix b. Write p in ranked order p1 ≥ p2 ≥ . . ., and write J for
the first term (if any) such that pJ+1/(1− p1 − . . .− pJ) > b.

We use the “tied" construction from subsection 2.3. Run (M1(·), 1−M1(·)) as Wright-
Fisher started from (p1, 1 − p1) and stopped at S1 := min{t : M1(t) = 0 or 1}, and for
i ≥ 2 set

Mi(t) = pi
1−p1 (1−M1(t)), 0 ≤ t ≤ S1.

So Mi(·) is a martingale on this time interval. Note that if J 6= 1 then no Mi(·) can reach
b before time S1, for i ≥ 2.

If M1(S1) = 1 the process stops. If M1(S1) = 0 then for i ≥ 2 we have Mi(S1) =

pi/(1−p1). For t ≥ S1 run (M2(·), 1−M2(·)) as Wright-Fisher started from ( p2
1−p1 ,

1−p1−p2
1−p1 )

and stopped at S2 := min{t : M2(t) = 0 or 1}, and for i ≥ 3 set

Mi(t) = pi
1−p1−p2 (1−M2(t)), S1 ≤ t ≤ S2.

If J 6= 2 then no Mi(·) can reach b before time S2, for i ≥ 3.
Continue in this way to define processes (Mj(t), Sj−1 ≤ t ≤ Sj) for 1 ≤ j ≤ J , or until

some Mj(·) reaches 1 and the whole process stops. If the process has not stopped by
time SJ , continue in an arbitrary manner, which makes the resulting process p-feasible.
Note that, if Mj(·) reaches b, then with probability exactly b it will reach 1, and that with
probability 1−

∑
j≤J pj the process has not stopped by time SJ .

Write N (J)
b = number of martingales j ≤ J that reach b. We can now apply Lemma

4.1 below to Z = N
(J)
b with qi = 1

b ·
pi

1−p1−...−pi−1
, 1 ≤ i ≤ J and deduce that N (J)

b ≤ Z ′ d
=

Geometric(b) with Z ′ constructed in Lemma 4.1. Then

P(Nb 6= Z ′) ≤ E[|Nb − Z ′|]
≤ E[Z ′ −N (J)

b ] + E[Nb −N (J)
b ]

= b−1(1−
∑
j≤J

pj) + b−1(1−
∑
j≤J

pj)

= 2b−1
∑
j>J

pj .

Hereby, the expectation E[Z ′ − N (J)
b ] can be computed to b−1(1 −

∑
j≤J pj) by noting

that the random variable Z ′ − N
(J)
b is only non-zero if the algorithm of Lemma 4.1

below has not terminated by the J -th step and that given the latter event of probability
(1 −

∑
j≤J pj) the quantity Z ′ − N (J)

b has the Geometric(b) distribution. Finally, as p

varies we have

if max
i
pi → 0 then

∑
j>J(p)

pj → 0

establishing the limit result (1.1).
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Lemma 4.1. Given 0 < b < 1 and probabilities qi, 1 ≤ i ≤ J define a counting process
by: for each i, given not yet terminated,

with probability qib, increment count by 1 and terminate;
with probability qi(1− b), increment count by 1 and continue;
with probability 1− qi, continue.

Let Z be the value of the counting process after step J or at time T (the termination

time, if any), whichever occurs first. Then there exists Z ′
d
= Geometric(b) such that

Z ≤ Z ′.

Proof. Augment the process by setting qi = 1, i > J and follow the algorithm for all
i ≥ 1. The process must now terminate at some a.s. finite time T ′, at which time
the value Z ′ of the counting process has exactly Geometric(b) distribution. Indeed,
it suffices to consider only those values of i for which the count is incremented. For
every such step, the conditional probability of incrementing the count and terminating
is b, whereas the conditional probability of incrementing the count and continuing is
(1 − b) and such events are conditionally independent for different steps. Since Z ′

counts the number of such steps until the process terminates, it has the Geometric(b)
distribution.

Proof of Proposition 1.2(c). Fix b and for k ≥ 1 let Sk ≤ ∞ be the first time at which
k distinct component martingales have reached b. If Nb ≥ k, then at time Sk one
martingale takes value b, the other k − 1 that previously reached b take some values
Z1, . . . , Zk−1, and the remaining martingales take some values Mj(Sk) < b. The chance
that such a remaining martingale subsequently reaches b equals Mj(Sk)/b, and so, on
{Nb ≥ k},

E[Nb − k|FSk ] = b−1
∑
j

Mj(Sk) = b−1

1− b−
k−1∑
j=1

Zj

 ≤ 1− b
b

. (4.1)

So
E[(Nb − k)+] ≤ 1−b

b P(Nb ≥ k)

and summing over k ≥ 1 gives

E
[
Nb(Nb−1)

2

]
≤ 1−b

b E[Nb] = 1−b
b2 .

Finally,
var(Nb) = 2E[Nb(Nb−1)2 ] + E[Nb]− (ENb)

2 ≤ 1−b
b2 .

For later use (section 5) note that to have equality in the final display above we
need equality in (4.1), implying each Zj = 0, that is the martingale components that
previously reached b have all reached zero. We deduce

Corollary 4.2. If, for a p-feasible process, Nb has Geometric(b) distribution, then there
is no time at which more than one component martingale is in [b, 1].

Proof of Corollary 1.3(c). This follows from Proposition 1.2(c) and the definition (3.1) of
0-feasible process via embedded p-feasible processes.

Proof of Corollary 1.3(b). Given b0, consider the vector p of Geometric probabilities
with

pi = b0(1− b0)i−1, i ≥ 1. (4.2)
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Recall the construction in the proof of Proposition 1.2(b) and the definition of the quan-
tity J at the beginning of that proof. For the initial configuration of (4.2) we find J =∞.
Therefore, it must hold Nb = Z ′ with Z ′ being defined as in that same proof. Conse-
quently, Nb has the Geometric(b) distribution. So it is enough to show that there exists
a 0-feasible process and a stopping time at which the values of the component martin-
gales are p. But Proposition 3.7 shows this is true for every p.

5 Distributional bounds on downcrossings

In this section we state and prove results about the variability of Dab, the total
number of downcrossings over [a, b].

5.1 The large spread setting

Proposition 5.1. Given b0 > 0, there exists a 0-feasible process such that Dab + 1 has
Geometric( b−a1−a ) distribution, for each b0 ≤ b < 1 and 0 < a < b.

The corresponding result (cf. Proposition 1.2(b)) holds for p-feasible processes in
the limit as maxi pi → 0.

Proof. As in the proof of Corollary 1.3(b), we may start with the Geometric(b0) distribu-
tion p at (4.2) and use the construction in the proof of Proposition 1.2(b). Every time a
martingale component reaches b, the other components must be at positions

(1− b) b0(1− b0)i−1, i ≥ 1.

Similarly, each time the component completes a downcrossing of [a, b] the other compo-
nents must be at positions

(1− a) b0(1− b0)i−1, i ≥ 1.

The event that there are no further downcrossings is the event that, after the next
time some component reaches b, it then reaches 1 before a, and this has probability
(b− a)/(1− a) by (2.1). So

P(Dab = i|Dab ≥ i) = (b− a)/(1− a), i ≥ 1.

By the same argument P(Dab = 0) = (b− a)/(1− a).

The variance of the Geometric( b−a1−a ) distribution can be written as

(
1−b
b−a

)2
+ 1−b

b−a . (5.1)

It is natural to guess, analogous to Corollary 1.3(c), that this is an upper bound on the
variance of Dab in any 0-feasible process.

Conjecture 5.2. For any 0-feasible process,

var(Dab) ≤
(

1−b
b−a

)2
+ 1−b

b−a .

The following result establishes a weaker bound. One can check that in the a ↑ b
limit this bound is first order asymptotic to ( 1−b

b−a )2, which coincides with the first order
asymptotics in (5.1).
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Proposition 5.3. For any 0-feasible process and any 0 < a < b < 1,

var(Dab) ≤

((
1− b
b− a

+ 2
(1− b)2

(b− a)2
+ µ

)1/2

+ µ1/2

)2

− (1− b)2

(b− a)2

where µ := min((2− b)/b2, 1/a2).

Proof. Fix 0 < a < b < 1 and consider an arbitrary 0-feasible process. Call a particular
component martingale at a particular time active if it is potentially part of a downcross-
ing of [a, b]. That is, the martingale is initially inactive; it becomes active if and when
it first reaches b; it becomes inactive if and when it next reaches a; and so on. So a
martingale at x is always active if x > b, is always inactive if x < a, but may be active
or inactive if a < x < b.

Given that a particular martingale is currently at x, the mean number of future
downcrossing completions equals, by (2.2, 2.3)

x(1−b)
b−a if inactive; (1−x)b

b−a if active.

Analogously to the proof of Proposition 1.2(c), consider the time Sk at which the k’th
downcrossing has been completed. On {Sk <∞},

(b− a)E[Dab − k|FSk ] = (1− b)
∑

i inactive

Mi(Sk) + b
∑

i active

(1−Mi(Sk))

and because
∑
iMi(·) = 1 this becomes

b+ (b− a)E[Dab − k|FSk ] =
∑

i inactive

Mi(Sk) +
∑

i active

b.

The number of active martingales at time Sk is at most N (k)
b := number of martingales

that reached b before time Sk. So the right side cannot be larger than the value taken
when min(N

(k)
b , 1/a) active martingales take values just above a and the remaining value

of 1 − amin(N
(k)
b , 1/a) is distributed among the inactive martingales. This gives the

upper bound

b+ (b− a)E[Dab − k|FSk ] ≤ 1− amin(N
(k)
b , 1/a) + bmin(N

(k)
b , 1/a) on {Sk <∞}.

The event {Sk < ∞} is the event {Dab ≥ k}, so taking expectations and rearranging
gives

E[(Dab − k)+] ≤ 1−b
b−a P(Dab ≥ k) + E[min(N

(k)
b , 1/a)1{Dab≥k}].

Because N (k)
b ≤ Nb, summing over all k ≥ 1 gives

1
2E[Dab(Dab − 1)] ≤ 1−b

b−a E[Dab] + E[min(Nb, 1/a)Dab]. (5.2)

Apply the Cauchy-Schwarz inequality to the second summand on the right side and use
E[Dab] = 1−b

b−a to conclude

E[D2
ab] ≤

1− b
b− a

+ 2
(1− b)2

(b− a)2
+ 2E

[
min(Nb, 1/a)2

]1/2
E
[
D2
ab

]1/2
. (5.3)

Next, for positive constants C1, C2 we have the elementary implication

if 0 ≤ a ≤ C1 + 2C2

√
a then

√
a ≤

√
C1 + C2

2 + C2.
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In our situation, this gives

√
E[D2

ab] ≤
(

1− b
b− a

+ 2
(1− b)2

(b− a)2
+ E

[
min(Nb, 1/a)2

])1/2

+ E
[

min(Nb, 1/a)2
]1/2

.

Using first Jensen’s inequality and then the result (Corollary 1.3(c)) that var(Nb) ≤
(1− b)/b2, we see

E[min(Nb, 1/a)2] ≤ min(E[N2
b ], 1/a2) ≤ min((2− b)/b2, 1/a2)

from which the inequality in the proposition readily follows.

5.2 The small spread setting

Proposition 1.2(a) showed that the spread of Nb could be very small. To see that the
case of Dab must be somewhat different, recall that for a martingale component which
reaches b, its number of downcrossings has the modified Geometric distribution (2.4)
with mean b(1− b)/(b− a). So if we fix b and consider limits in distribution as a ↑ b, we
must obtain a limit of the form

b− a
b(1− b)

Dab →d

Nb∑
i=1

ξi

where each ξi has Exponential(1) distribution. And although there will be some compli-
cated dependence between (Nb, ξ1, ξ2, . . .) it is clear that the limit cannot be a constant,
and therefore in any p-feasible process the variance of Dab as a ↑ b must grow at least
as order (b−a)−2. We will not consider that case further here (but see an open problem
in section 7), instead turning to the case where a/b is bounded away from 1. Here, in a
0-feasible process, E[Dab] grows as order 1/b as b ↓ 0. The next result shows there exist
0-feasible processes for which the variance of Dab remains O(1).

The idea behind the construction is to exploit reflection coupling. For instance, start-
ing with 2m components at b, a reflection coupling moves the process to a configuration
with m components at a and m at 2b− a while adding m downcrossings; one can extend
this kind of construction to make the process pass through a deterministic sequence of
configurations while adding a deterministic number of downcrossings.

Proposition 5.4. For each 0 ≤ α < 1 there exists a constant C(α) <∞ such that: given
0 < ak < bk → 0 with ak/bk → α, there exist 0-feasible processes such that

lim sup
k

var(Dak,bk) ≤ C(α). (5.4)

Proof. Fix k, set (a, b) = (ak, bk) and with an abuse of notation write α = ak/bk. By
Proposition 3.7 we may assume we have a p0-feasible process, where p0 has finite
support and its components are in (0, b).

The proof makes repeated use of the following kind of construction. Specify an in-
terval [a0, b0], freeze martingale components initially outside that interval, run the other
components as a rescaled Wright-Fisher process and freeze them upon reaching a0 or
b0 (typically there will be one component ending within (a0, b0)). Note this construc-
tion has a particular “deterministic" property, that in the final random configuration
(Mi(t), i ≥ 1) the ranked (decreasing ordered) values rank(Mi(t), i ≥ 1) are non-random,
determined by the (ranked) initial values. This holds because

∑
iMi(t) = 1.

The central idea of the proof is the following lemma.
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Lemma 5.5. Write K = K(α) = 6b 1
1−αc − 1. There exists a p0-feasible process which

reaches a configuration p1 with at most one martingale with value in (b, 1] and at most
K martingales taking values in (0, b], having accomplished a deterministic number of
downcrossings before that time.

Proof. We construct the process in stages. At the start of each stage, we consider the
first case in the list below which holds, and do the construction specified below for that
case. If no case holds then stop; note the property “at most K martingales taking values
in (0, b]" will then be satisfied.

Case 1. There are at least 1 + b 1
1−αc martingales at b;

Case 2. There are at least 2b 1
1−αc+ 1 active martingales in (a, b);

Case 3. There are at least 2b 1
1−αc+ 1 inactive martingales in (a, b);

Case 4. There are at least b 1
1−αc martingales in (0, a].

Construction in case 1. We let the martingales at b evolve according to the appro-
priately rescaled Wright-Fisher diffusion, while freezing all other martingales, and then
freeze the evolving martingales that reach level a. At least b 1

1−αcmartingales will reach
level a, and exactly one will be above b. Once all martingales are frozen, we let those
at a evolve as the rescaled Wright-Fisher diffusion until they reach 0 or b. Finally, if ini-
tially there were martingales above b, then we let all the martingales above b evolve as
the appropriate Wright-Fisher diffusion and freeze those that reach b. This procedure
adds a deterministic number of downcrossings (all in the first step), and leaves exactly
one martingale above b.

Construction in cases 2 and 3. In case 2 we let the active martingales in (a, b) evolve
until they either reach a or b and freeze them at that time. All except one of these
martingales reach a or b, so either at least b 1

1−αc + 1 martingales end at b, or at least

b 1
1−αc martingales end at a, adding a deterministic number of downcrossings. So the

ending configuration will fit case 1 or case 4. In case 3 we do the same but with the
inactive martingales instead; no additional downcrossings are added.

Construction in case 4. We let the martingales in (0, a] evolve until they reach 0 or
b and freeze them at that time. At least one of them must reach 0, and no additional
downcrossings are added.

The sequence of stages must end, because: in each case 4 stage at least one martin-
gale is stopped at 0, and each case 1 stage creates at least one downcrossing, so there
can be only a finite number of such stages; and each case 2 or 3 stage is followed by
such a stage.

Moreover each stage is “deterministic", in the previous sense that the ranked con-
figuration at the end of the stage is determined by the ranked configuration at the start,
and therefore the ranked configuration p1 at the termination of the entire construction
is non-random, determined by the initial configuration p0. This implies the total number
of downcrossings is deterministic, because the number within each stage is determined
by that stage’s starting configuration. As already mentioned, p1 has the property “at
most K martingales taking values in (0, b]" by the termination condition. The number
of martingale components taking values in (b, 1] is at most 1, because each case 1 stage
ends that way and the other cases do not allow components to exceed level b.

In view of Lemma 5.5, to complete the proof of the proposition it suffices to show
(5.4) for some p1-feasible process with p1 as in Lemma 5.5. In fact we can take an
arbitrary such process. The point is that (as noted earlier) the number of downcrossings
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Dab has a representation of the form

Dab =

N∗∑
i=1

Gi

where N∗ is the number of martingale components that hit b, and each Gi has the mod-
ified Geometric distribution (2.4). Without any knowledge of the dependence between
(N∗, G1, G2, . . .), the fact N∗ ≤ K + 1 implies

var(Dab) ≤ E[D2
ab] ≤ (K + 1)2E[G2

1].

It is easy to check that E[G2
1] is bounded in the limit as b → 0 with a/b → α < 1, and

(5.4) follows.

6 The 0-Wright-Fisher process

Write ∆ for the (unranked) infinite simplex {(pi, 1 ≤ i < ∞) : pi ≥ 0,
∑
i pi = 1}.

As mentioned in section 2.2, for each p ∈ ∆ there exists the p-Wright-Fisher process,
a process with sample paths in C([0,∞),∆) and initial state p, which is the infinite-
dimensional diffusion with generator analogous to (2.5) starting from state p, and that
this is a p-feasible process. This has a straightforward construction: given p ∈ ∆, set
pn = (p1, . . . , pn−1,

∑
m≥n pm), so the pn-process exists as a finite-dimensional diffusion.

But there is a natural coupling between the pn−1- and the pn-processes in which the
first n− 2 coordinate processes coincide, and appealing to Kolmogorov consistency for
the infinite sequences of processes we immediately obtain the p-process.

Intuitively, we want to think of the 0-Wright-Fisher process as a suitable limit of the
(1/n, 1/n, . . . , 1/n)-Wright-Fisher processes as n → ∞. But in fact the limit in distribu-
tion, in the compactified space ∆ = {(pi, 1 ≤ i < ∞) : pi ≥ 0,

∑
i pi ≤ 1}, is the process

which is identically (0, 0, 0, . . .). The foundational 1981 paper of Ethier and Kurtz [6]
shows that a non-trivial limit X(t) = (Xi(t), i ≥ 1) starting from (0, 0, 0, . . .) does exist if
we work in the ranked infinite simplex ∇; more precisely the limit process has sample
paths in C([0,∞),∇) for the compactifed ranked simplex ∇, but for t > 0 takes values
in ∇.

That process is in some senses the process we want, but that formalization does not
suffice for our purposes because it does not keep track of the identities of components
as t varies. That is, we want the 0-feasible process {Mα(t)} for which

X(t) = rank({Mα(t)}) with a separate ranking for each t. (6.1)

The component processes Xi(·) are not martingales and we cannot define quantities
like Nb and Dab in terms of X. Note that by Lemma 3.1 we cannot represent X(t) as
rank(M(t)) for any process in C([0,∞),∆) with martingale components.

Fortunately we can fit the 0-Wright-Fisher process into our abstract set-up by com-
bining the existence of the process X(t) with our Proposition 3.6. Take times sk ↓ 0 and
let µk be the distribution of X(sk). Then there is a ⊕-feasible Wright-Fisher process
Mk with initial distribution µk, and existence of the ranked Wright-Fisher process X

implies that consistency condition (iii) of Proposition 3.6 holds with Tk = sk−1 − sk, and
the conclusion of that proposition is that a 0-feasible process satisfying (6.1) exists.

6.1 Distributions associated with the 0-Wright-Fisher process

Problem 6.1. What are the distributions ofNb andDab for the 0-Wright-Fisher process?
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We remark that, if one only wanted to compute var(Nb), it would be sufficient to
determine the limiting behavior of the quantity

P(sup
t
M1(t) ≥ b, sup

t
M2(t) ≥ b|M1(0) = x, M2(0) = y) (6.2)

in the limit x, y ↓ 0, where M1, M2 are the first two components of a 3-allele Wright-
Fisher diffusion. We also note that the quantity (6.2) coincides with the classical solu-
tion of the PDE 1

2x(1−x)fxx+ 1
2y(1−y)fyy−xy fxy = 0 on [0, b]× [0, b] with the boundary

conditions f(x, 0) = f(0, y) = 0, f(x, b) = x/b, f(b, y) = y/b, provided that such a solution
exists. We were not able to solve the PDE explicitly, so that even the question of finding
var(Nb) is an open problem.

7 Final remarks and open problems

We have already stated open problem 6.1 and Conjecture 5.2. The discussion at the
start of section 5.2 concerning constructions where Dab has small spread suggests the
following closely analogous question concerning Brownian motions.

Problem 7.1. For each 1 ≤ i ≤ k let (Bi(t), 0 ≤ t) be standard Brownian motion w.r.t.
the same filtration, killed upon first hitting −1, and let Li be the total local time of Bi(·)
at 0. How small can the ratio var[

∑k
i=1 Li]/ var[L1] be?

We do not know any relevant work, though Jim Pitman (personal communication)
observes that for k = 2 one can indeed have negative correlation between L1 and L2.
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