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I Introduction

Wigner and Arnold have established (cf [2], [25]) that the empirical spectral
law of matrices of the Gaussian Unitary Ensemble converges almost surely to
the semi-circular law. To be more precise, let us considerWn, a n×n Hermitian
Gaussian matrix such that E [exp (itrAWn)] = exp

(

− 1
n
trA2

)

, where tr denotes

the ordinary trace on matrices; let λ
(n)
1 , . . . , λ

(n)
n be its eigenvalues, and µ̂n =

1
n

∑n
i=1 δλ(n)i

be its empirical spectral law. Then

E ◦ µ̂1 = N (0, 1) and lim
n→+∞

µ̂n = SC(0, 1) a.s.

where SC(0, 1) is the standard centered semi-circular distribution. This distri-
bution corresponds to the Gaussian law in the framework of free probability.
For instance, it arises as the asymptotic law in the free central limit theorem.
Moreover, Wigner’s result has been reinterpreted by Voiculescu in the early
nineties, using the concept of asymptotic freeness (cf [24]).

A few years ago, this correspondence between Gaussian and semi-circular
laws has been extended to infinitely divisible laws on R by Bercovici and Pata
(cf [7]) using the Lévy-Hinçin formulas. The so-called Bercovici-Pata bijection
maps any classically infinitely divisible law µ to the probability measure Λ (µ),
as characterized by Barndorff-Nielsen and Thorbjørnsen in [4] by:

∀ζ < 0, iζRΛ(µ)(iζ) =

∫ +∞

0

C∗(µ)(ζx) exp (−x) dx.

In this formula, C∗(µ) denotes the classical cumulant transform of µ, and RΛ(µ)
denotes Voiculescu’s R-transform of Λ(µ):

C∗(µ) = lnFµ and RΛ(µ) = G−1Λ(µ) (z)−
1

z

where Fµ is the Fourier transform of µ, and GΛ(µ) the Cauchy transform of
Λ (µ).

It turns out that Λ(µ) is freely infinitely divisible: for each k there exists
a probability measure νk such that Λ (µ) = ν¢kk , where ¢ denotes the free
convolution. The Bercovici-Pata bijection has many interesting features, among
them the fact that Λ (µ) is freely stable if µ is stable, and Λ (µ) = SC(0, 1) if
µ = N (0, 1). The reader who is not very familiar with free convolution or the
Bercovici-Pata bijection will find in [3] a most informative exposition of the
subject.

The aim of this paper is to propose a new kind of matrix ensembles; between
classically and freely infinitely divisible laws connected through the Bercovici-
Pata bijection, those ensembles establish a sequence similar to the Gaussian
Unitary Ensemble between the Gaussian and semi-circular laws. More specif-
ically, we will show that, for each integer n and infinitely divisible law µ, an

Hermitian random matrix X
(µ)
n of size n can be produced such that its empirical

spectral law µ̂n satisfies

E ◦ µ̂1 = µ and lim
n→+∞

µ̂n = Λ(µ) a.s. (I.1)
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This main result of our paper is stated in theorem III.2. We hope to have

achieved this goal in a rather canonical way, even if X
(N (0,1))
n is not equal to

Wn, but to a slight modification of it. Here are two facts which may justify this
opinion:

1. For infinitely divisible measures with moments of all order, it is easy to
describe the Bercovici-Pata bijection by noting that the classical cumu-
lants of µ are equal to the free cumulants of Λ (µ). We will define some
kind of matrix cumulants, directly inspired by Lehner’s recent work ([18]),

and with the property that the matrices X
(µ)
n have the same cumulants

as µ.

2. If µ is the Cauchy law, then the classical convolution µ∗ and the free
one µ¢ coincide. We will prove a simple but somehow surprising result,
namely that for each n they coincide also with the convolution with respect

to X
(µ)
n .

Using these Lévy matrix ensembles as a link between classical and free frame-
works, it is natural to expect to derive free properties from classical ones. For
instance, there is an intimate connection between the moments of a classically
infinitely divisible law and those of its Lévy measure. We shall present here how
this yields an analogous result in the free framework.

The rest of the paper is organised in 4 sections. Section 2 is devoted to the
definition of our matricial laws and their elementary properties. Section 3 states
and proves the main theorem: the almost sure convergence of the empirical
spectral laws. The proof is based on stochastic ingredients; it first establishes
a concentration result and then determines the asymptotic behaviour of the
Cauchy transform of the empirical spectral laws. This approach differs from the
moment method used by Benaych-Georges for studying the same matrices (cf
[5]). Section 4 presents further interesting features of these matrix ensembles,
concerning the cumulants and the Cauchy convolution. And section 5 explains
the application to moments of the Lévy measure.

Acknowledgements. The author would like to thank Jacques Azéma, Flo-
rent Benaych-Georges and Bernard Ycart for many interesting discussions and
suggestions.

II New matrix ensembles

Notations

• The set of Hermitian matrices of size n will be denoted by Hn, the subset
of positive ones by H+n .

• The set of the classically infinitely divisible laws on R (resp. Hn) will be
denoted by ID∗ (R) (resp. by ID∗ (Hn)). The set of the freely infinitely
divisible laws on R will be denoted by ID¢ (R).

• The normalised trace on square matrices will be denoted by trn (with
trn(Id) = 1).
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II.A Definition

Let X be a real random variable with distribution µ ∈ ID∗(R), and ϕ(µ) be its
Lévy exponent

E
[

eiλX
]

= eϕ
(µ)(λ).

By the Lévy-Hinçin formula, there exist a unique finite measure σ
(µ)
∗ and a

unique real γ
(µ)
∗ such that

ϕ(µ)(λ) = iγ
(µ)
∗ λ+

∫ +∞

−∞

(

eitλ − 1− itλ

1 + t2

)

1 + t2

t2
σ
(µ)
∗ (dt),

with the convention that
(

eitλ − 1− itλ

1 + t2

)

1 + t2

t2

∣

∣

∣

t=0
= −λ

2

2
.

Conversely, µ∗(γ, σ) denotes the classically infinitely divisible law determined by
γ and σ, and for the sake of simplicity we shall write ϕ(γ,σ) instead of ϕ(µ∗(γ,σ)).

Let Vn be a random vector Haar distributed on the unit sphere S2n−1 ⊂ Cn.
Let us define for every Hermitian matrix A ∈ Hn

ϕ(µ)n (A) = nE
[

ϕ(µ) (〈Vn, AVn〉)
]

= iγ
(µ)
∗ trA

+

∫ +∞

−∞

(

n
(

E
[

eit〈Vn,AVn〉
]

− 1
)

− it

1 + t2
trA

)

1 + t2

t2
σ
(µ)
∗ (dt),

with the convention that

(

n
(

E
[

eit〈Vn,AVn〉
]

− 1
)

− it

1 + t2
trA

)

1 + t2

t2

∣

∣

∣

t=0
= −nE

[

〈Vn, AVn〉2
]

2
.

Due to the Lévy-Hinçin formula, ϕ
(µ)
n is the Lévy exponent of a classically

infinitely divisible measure on Hn, which will be denoted by Λn(µ). This means:

∀A ∈ Hn, Λn(µ) (exp (itrA·)) = expϕ(µ)n (A)

The following properties are obvious:

Properties II.1 1. Λn(µ) is invariant by conjugation with a unitary matrix.

2. If X
(µ)
n has distribution Λn(µ), then trX

(µ)
n has distribution µ∗n.

3. If µ, ν ∈ ID∗(R), then Λn(µ) ∗ Λn(ν) = Λn(µ ∗ ν).

4. If Dc denotes the dilation by c, then DcΛn(µ) = Λn (Dcµ).

5. If µ = δa, then Λn(µ) = δaIn , where In is the identity matrix.

6. If µ is Gaussian (resp. stable, self-decomposable, infinitely divisible) then
so is Λn(µ).
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II.B Explicit realisation

The following proposition describes how to construct a random matrix with
distribution Λn (µ) using µ-distributed random variables:

Proposition II.2 Let us consider a probability measure µ in ID∗(R), a positive
real s, n independent random variables λ1(s), . . . , λn(s) with distribution µ∗s,
and the diagonal matrix L(s) with diagonal entries (λ1(s), . . . , λn(s)). Let U be
an independent random matrix of size n, Haar distributed on the unitary group
U(n), and Ms be the Hermitian matrix UL(s)U ∗. Then Λn(µ) is the weak limit

of the law of
∑p
k=1M

(k)
1
p

when p tends to infinity, with
(

M
(k)
1
p

, k = 1, . . . , p
)

independent replicas of M 1
p
.

We would like to explain how this realisation suggests our main result (cf
(I.1) and theorem III.2), just by letting the dimension n tend to infinity be-
fore letting the number p of replicas tend to infinity. Because of the law of

large numbers, it is obvious that the empirical spectral law of each matrix M
(k)
1
p

converges a.s. to µ∗
1
p ; since these matrices M

(k)
1
p

, k = 1, . . . , p are also conju-

gated by unitary independent matrices, they are (in a way which remains to
be specified) asymptotically free (cf proof of lemma V.4); hence, as n tends

to infinity, the asymptotic law of
∑p
k=1M

(k)
1
p

is likely to be
(

µ∗
1
p

)¢p

; now, let

p tend to infinity; it is an immediate consequence of theorem 3.4 in [7] that

limp→+∞
(

µ∗
1
p

)¢p

= Λ(µ) : this is precisely what is expected to be the limit

of the empirical spectral law associated to Λn(µ) in theorem III.2.

Proof of proposition II.2. We only need to prove the convergence of the
characteristic function

E

[

exp

(

itr

(

A

p
∑

k=1

M
(k)
1
p

))]

= E
[

exp
(

itr
(

AM 1
p

))]p

.

Notice that

E
[

exp
(

itr
(

AM 1
p

))]

= E [exp (itr (AUL (1/p)U∗))]

= E

[

exp

(

i

n
∑

l=1

(U∗AU)l,lλl(1/p)

)]

= E

[

exp

(

1

p

n
∑

l=1

ϕ(µ) ((U∗AU)l,l)

)]

.
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Therefore, noting that ϕ(µ) is locally bounded for an infinitely divisible law µ,
we obtain:

lim
p→+∞

E

[

exp

(

itr

(

A

p
∑

k=1

M
(k)
1
p

))]

= lim
p→+∞

E

[

exp

(

1

p

n
∑

l=1

ϕ(µ) ((U∗AU)l,l)

)]p

= exp

(

E

[

n
∑

l=1

ϕ(µ) ((U∗AU)l,l)

])

= exp
(

nE
[

ϕ(µ) (〈Vn, AVn〉)
])

= exp
(

ϕ(µ)n (A)
)

.

2

Remark. This explicit realisation has been used by Benaych-Georges in [5]
to establish convergence results and to deal with the non-Hermitian case.

II.C Examples

• If µ = N (0, 1), we get:

ϕ(µ)n (A) = −n
2

E
[

〈Vn, AVn〉2
]

= −n
2

E





(

n
∑

l=1

ai|vi|2
)2


 ,

where a1, . . . , an are the eigenvalues of A, and v1, . . . , vn the entries of the
random vector Vn Haar distributed on the unit sphere. Now, using for
instance [14] proposition 4.2.3, we know that:

E
[

|vi|4
]

=
2

n(n+ 1)

E
[

|vi|2|vj |2
]

=
1

n(n+ 1)
if i 6= j.

Therefore, we obtain:

ϕ(µ)n (A) = − 1

2(n+ 1)

n
∑

l=1

a2i−
1

2(n+ 1)

(

n
∑

l=1

ai

)2

= − 1

n+ 1

tr
(

A2
)

2
− 1

n+ 1

(trA)
2

2
.

This implies that Λn(µ) is the distribution of

√

n

n+ 1
Wn +

√

1

n+ 1
gI,

where Wn is the Gaussian random matrix described in the introduction,
and g is a centered reduced Gaussian variable, g and Wn being indepen-
dent.

• If µ is the standard Cauchy distribution

µ(dx) =
1

π(1 + x2)
dx,
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then ϕ(µ)(λ) = −|λ|, and

ϕ(µ)n (A) = −nE [|〈Vn, AVn〉|] = −nE

[∣

∣

∣

∣

∣

n
∑

l=1

ai|vi|2
∣

∣

∣

∣

∣

]

,

the notations being the same as in the previous example. This can be
evaluated using the general method proposed by Shatashvili (cf [22]):

nE [|〈Vn, AVn〉|] =

n
∑

l=1

an−1l |al|
∏

m6=l (al − am)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
a1 a2 · · · an
...

...
...

an−21 an−22 · · · an−2n

an−11 |a1| an−12 |a2| · · · an−1n |an|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
a1 a2 · · · an
...

...
...

an−21 an−22 · · · an−2n

an−11 an−12 · · · an−1n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where a1, . . . , an are the eigenvalues of A. There is a remarkable con-

sequence of this formula: if we denote by X
(µ)
n a random matrix of law

Λn(µ), then we have
(

X
(µ)
n+p(i, j)

)

1≤i,j≤n
= X(µ)

n in law.

Such a property appears usually with a normalisation coefficient; but here
there is none, as if µ were a Dirac mass.

• If µ is the standard Poisson distribution, then ϕ(µ)(λ) = eiλ − 1 and

ϕ(µ)n (A) = nE
[

ei〈Vn,AVn〉 − 1
]

.

Due to the Lévy-Ito decomposition, there is a simple explicit representa-
tion of Λn(µ). Let (X(s), s ≥ 0) be a standard Poisson process, and let
(Vn(p), p ∈ N) be a family of independent unitary Haar distributed ran-
dom vectors, (X(s), s ≥ 0) and (Vn(p), p ∈ N) being independent. Then
Λn(µ) is the law of

X(n)
∑

p=1

Vn(p)Vn(p)
∗.

In [19], Marçenko and Pastur studied a very similar set of randommatrices,
precisely of the form

q
∑

p=1

Vn(p)Vn(p)
∗

with q/n converging when n tends to infinity. It appends that both families
of random matrices have same asymptotic empirical spectral distribution,
the Marçenko-Pastur law or free Poisson law.
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III Convergence to the free Lévy laws

III.A The Bercovici-Pata bijection

Let us consider a real γ and a finite measure σ on R, and let µ ≡ µ∗ (γ, σ)
be the associated classically infinitely divisible law with Lévy exponent ϕ(γ,σ).
Then its image through the Bercovici-Pata bijection is the probability measure
on the real line Λ(µ) such that (cf [7])

∀z ∈ C+, R (Λ (µ)) (z) = γ +

∫ +∞

−∞

z + t

1− tz σ(dt),

where R is Voiculescu’s R-transform. The mapping Λ is a bijection between
classically and freely infinitely divisible laws (cf [7]). Moreover, it has the
following properties which we shall recall for comparison with properties II.1:

Properties III.1 (cf [3], [7])

1. If µ and ν are freely infinitely divisible measures, then Λ(µ) ¢ Λ(ν) =
Λ(µ ∗ ν).

2. If Dc denotes the dilation by c, then DcΛn(µ) = Λ (Dcµ).

3. If µ = δa, then Λ(µ) = δa.

4. If µ is Gaussian (resp. classically stable, classically self-decomposable,
classically infinitely divisible) then Λ(µ) is semi-circular (resp. freely sta-
ble, freely self-decomposable, freely infinitely divisible).

For instance, if µ = N (0, 1), then Λ(µ) = SC(0, 1), as has been already
noticed. If µ is the Cauchy distribution, then Λ(µ) = µ. If µ is the Poisson
distribution with parameter θ, then Λ(µ) is the Marçenko-Pastur distribution

Λ(µ)(dx) = (1− θ)+ δ0(x) +

√

4θ − (x− 1− θ)2

2πθx
1[
(1−

√
θ)
2
,(1+

√
θ)
2
](x)dx.

We can now state the main theorem of the article:

Theorem III.2 For any probability measure µ in ID∗ (R), let X
(µ)
n be a ran-

dom matrix defined on a fixed probability space (Ω,F ,P) and with distribution
Λn (µ). Then its empirical spectral law µ̂n converges weakly almost surely to
Λ (µ) as n tends to infinity.

The proof of this theorem is based on semigroup tools. A Lévy process can
be associated to each matricial Lévy law. Its semigroup is characterised by an
infinitesimal generator with a rather simple explicit form. This will be a key
ingredient.

III.B The infinitesimal generator

Let γ be a real, let σ be a finite measure on R, let µ be the probability measure in
ID∗(R) such that µ = µ∗ (γ, σ). Let Λn (µ) be the associated infinitely divisible

law on Hn. Then there exists a Lévy process (X
(µ)
n (s), s ≥ 0) such that X

(µ)
n (1)
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has distribution Λn (µ) (see e.g. corollary 11.6 in [21]). The corresponding

semigroup will be denoted by P
Λn(µ)
s :

∀A ∈ Hn, PΛn(µ)s (f)(A) = E
[

f
(

X(µ)
n (s) +A

)]

The following formula is a classical result of the theory (see e.g. theorem 31.5
in [21]):

Proposition III.3 The infinitesimal generator A(µ)n associated to the semi-

group (P
Λn(µ)
s , s ≥ 0) has core C20 (Hn,C) - the set of twice continuously differ-

entiable functions vanishing at infinity - and is defined by

∀f ∈ C20 (Hn,C), ∀A ∈ Hn,

A(µ)n (f)(A)

= γdf(A)[In] +

∫ +∞

−∞

(

n (E [f (A+ tVnV
∗
n )]− f(A))−

t

1 + t2
df(A)[In]

)

1 + t2

t2
σ(dt)

= γdf(A)[In] +
σ ({0})
2(n+ 1)





n
∑

i,j=1

d2f(A)[Ei,j ][Ej,i] +

n
∑

i=1

d2f(A)[Ei,i][Ei,i]





+

∫

t∈R∗

(

n (E [f (A+ tVnV
∗
n )]− f(A))−

t

1 + t2
df(A)[In]

)

1 + t2

t2
σ(dt).

Remark. If a function f ∈ L(R,R) is differentiable, and if we extend its
domain to Hn using spectral calculus, then df(A)[In] = f ′(A).

III.C A concentration result

The first step of the proof of theorem III.2 is to establish a concentration result
for the empirical spectral law, which has some interest by himself.

Theorem III.4 Let µ be a probability measure in ID∗(R), and let (X
(µ)
n (s), s ≥

0) be the Lévy process associated to distribution Λn (µ). Let us consider a
Lipschitz function f ∈ L(R,R) with finite total variation, and let us define
f (n) = trnf ∈ L(Hn,Hn) by spectral calculus. Then, for all τ, ε > 0, there
exists δε(τ) > 0 such that for each n ≥ 1

P
(∣

∣

∣f (n)
(

X(µ)
n (τ)

)

− E
[

f (n)
(

X(µ)
n (τ)

)]∣

∣

∣ > ε
)

≤ 2e−nδε(τ).

Moreover, δε(τ) is non-increasing in τ .

We need a preliminary lemma:

Lemma III.5 Let f ∈ L(R,R) be a Lipschitz function with finite total varia-
tion. We shall set

‖f‖′∞ = sup
x6=y

∣

∣

∣

∣

f(x)− f(y)
x− y

∣

∣

∣

∣

and ‖f‖′1 = sup
n≥1

x1≤y1≤x2≤···≤yn

n
∑

i=1

|f(yi)− f(xi)|.

640



Then for all A,B ∈ Hn, we have

|trf(A+B)− trf(A)| ≤







rg(B)‖f‖′1

‖B‖1‖f‖′∞

with ‖B‖1 = tr |B|.

If we replace ‖B‖1 by
√

rg(B)‖B‖2, then the second inequality reduces to
the one already established in a similar context by Guionnet and Zeitouni in
lemma 1.2 of [13].

Proof. We only need to prove the lemma for B non-negative of rank one,
then the result follows by an immediate induction. Let λ1 ≤ · · · ≤ λn and
µ1 ≤ · · · ≤ µn be the eigenvalues of A and A+B respectively. Following Weyl’s
well-known inequalities (see e.g. section III.2 of [8]), we have that λ1 ≤ µ1 ≤
λ2 ≤ · · · ≤ λn ≤ µn. Therefore, we get:

|trf(A+B)− trf(A)| =

∣

∣

∣

∣

∣

n
∑

i=1

f(µi)− f(λi)
∣

∣

∣

∣

∣

≤
n
∑

i=1

|f(µi)− f(λi)|

≤















‖f‖′1
∑n
i=1 |µi − λi| · ‖f‖′∞ = |∑n

i=1 µi − λi| · ‖f‖′∞
= |trB| · ‖f‖′∞ = ‖B‖1‖f‖′∞

2

Proof of theorem III.4. We will use semigroup tools to establish the con-
centration property. This method is well-known, see e.g. [16].

We can assume that τ = 1 and E
[

f (n)
(

X
(µ)
n (1)

)]

= 0. Let us define for

any λ ∈ R and s ∈ [0, 1]

φλ(s) = PΛn(µ)s

(

exp
(

λP
Λn(µ)
1−s (f (n))

))

(0).

Notice that

φλ(0) = exp
(

λE
[

f (n)
(

X(µ)
n (1)

)])

= 1 and φλ(1) = E
[

exp
(

λf (n)(X(µ)
n (1)

)]

.
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Since the semigroup (P
Λn(µ)
s , s ≥ 0) and its generator A(µ)n commute, we obtain:

φ′λ(s) = PΛn(µ)s ◦ A(µ)n
(

eλP
Λn(µ)
1−s (f(n))

)

(0)

−PΛn(µ)s

(

λA(µ)n ◦ PΛn(µ)1−s (f (n))eλP
Λn(µ)
1−s (f(n))

)

(0)

= PΛn(µ)s

(

γλd
(

P
Λn(µ)
1−s (f (n))

)

(·) [In] eλP
Λn(µ)
1−s (f(n))

+

∫ +∞

−∞

(

n
(

E
[

eλP
Λn(µ)
1−s (f(n))(·+tVnV ∗n )

]

− eλP
Λn(µ)
1−s (f(n))

)

−λ t

1 + t2
d
(

P
Λn(µ)
1−s (f (n))

)

(·) [In] eλP
Λn(µ)
1−s (f(n))

)

1 + t2

t2
σ(dt)

)

(0)

−PΛn(µ)s

(

γλd
(

P
Λn(µ)
1−s (f (n))

)

(·)[In]eλP
Λn(µ)
1−s (f(n))

+

∫ +∞

−∞

(

n
(

λE
[

P
Λn(µ)
1−s (f (n))(·+ tVnV

∗
n )
]

− λPΛn(µ)1−s (f (n))
)

eλP
Λn(µ)
1−s (f(n))

−λ t

1 + t2
d
(

P
Λn(µ)
1−s (f (n))

)

(·) [In] eλP
Λn(µ)
1−s (f(n))

)

1 + t2

t2
σ(dt)

)

(0)

= PΛn(µ)s

(

n

∫ +∞

−∞
E [Ψ(s, t, Vn, ·)] eλP

Λn(µ)
1−s (f(n)) 1 + t2

t2
σ(dt)

)

(0),

where we set

Ψ(s, t, Vn, ·) = e
λ
(

P
Λn(µ)
1−s (f(n))(·+tVnV ∗n )−P

Λn(µ)
1−s (f(n))

)

−1−λ
(

P
Λn(µ)
1−s (f (n))(·+ tVnV

∗
n )− PΛn(µ)1−s (f (n))

)

Now, due to lemma III.5, we have:

|PΛn(µ)1−s (f (n))(.+ tVnV
∗
n )− PΛn(µ)1−s (f (n))| ≤ 1

n
(‖f‖′1 ∧ |t|‖f‖′∞) .

Therefore, since eu − 1− u ≤ u2

2 e
u for all u ≥ 0, we get:

|Ψ(s, t, Vn, ·)| ≤
λ2

2n2
(

‖f‖′21 ∧ t2‖f‖′2∞
)

e
λ
n
‖f‖′1 .

We can then infer that

φ′λ(s) ≤
λ2

2n
e
λ
n
‖f‖′1φλ(s)C(‖f‖′1, ‖f‖′∞)

for a function C defined by

C(α, β) =

∫ +∞

−∞

(

α2 ∧ t2β2
) 1 + t2

t2
σ(dt).

By integrating φ′λ(s)/φλ(s), the preceding inequality results in:

φλ(1) ≤ exp

(

λ2

2n
e
λ
n
‖f‖′1C(‖f‖′1, ‖f‖′∞)

)

.
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¿From this exponential inequality, we can deduce that, for all ε > 0,

P
(

f (n)
(

X(µ)
n

)

≥ ε
)

≤ E
[

eλf
(n)(X(µ)

n )−λε
]

= φλ(1)e
−λε

≤ exp

(

λ2

2n
e
λ
n
‖f‖′1C(‖f‖′1, ‖f‖′∞)− λε

)

.

But let us remark that

inf
λ∈R

(

λ2

2n
e
λ
n
‖f‖′1C(‖f‖′1, ‖f‖′∞)− λε

)

= −nδε(1),

where δε(1) is defined by

δε(1) = sup
λ∈R

(

−λ
2

2
eλ‖f‖

′
1C(‖f‖′1, ‖f‖′∞) + λε

)

> 0

Hence
P
(

f (n)
(

X(µ)
n

)

≥ ε
)

≤ e−nδε(1).

Furthermore, applying this inequality to −f , we can deduce:

P
(

|f (n)
(

X(µ)
n

)

| ≥ ε
)

≤ 2e−nδε(1).

To conclude the proof, let us notice that

δε(τ) = sup
λ∈R

(

−τ λ
2

2
eλ‖f‖

′
1C(‖f‖′1, ‖f‖′∞) + λε

)

,

which is obviously non-increasing in τ . 2

III.D Proof of theorem III.2

We need two preliminary lemmas:

Lemma III.6 Let µ be a probability measure in ID∗ (R), let X
(µ)
n (s) be a ran-

dom matrix with distribution Λn (µ
∗s), λi(s), i = 1, . . . , n its eigenvalues, and let

(vi, i = 1, . . . , n) be an independent random vector Haar distributed on the unit
complex sphere. Then, for any Lipschitz function f with bounded variations,

lim
n→+∞

sup
s∈[0,1]

E

[∣

∣

∣

∣

∣

n
∑

i=1

|vi|2 f(λi(s))− E

[

n
∑

i=1

|vi|2f(λi(s))
]∣

∣

∣

∣

∣

]

= 0.

This is a consequence of the concentration result of section III.C, and of the
concentration property of the law of (|vi|2, i = 1, . . . , n).

Proof. If ψ ∈ L(Cn,R) is a Lipschitz function, with Lipschitz constant ‖ψ‖′∞,
then (cf e.g. introduction of chapter 1 in [17]),

P (|ψ (v1, . . . , vn)−mψ| > ε) ≤
√

π

2
exp

(

− 2n− 2

2‖ψ‖′2∞
ε2
)

,

643



where mψ is a median of ψ (v1, . . . , vn). From this we can deduce that

|E [ψ (v1, . . . , vn)−mψ]| ≤
∫ +∞

0

P (|ψ (v1, . . . , vn)−mψ| > ε) dε ≤ π

2
√
2n− 2

‖ψ‖′∞.

Therefore, we get the following inequality:

P (|ψ (v1, . . . , vn)− E [ψ (v1, . . . , vn)]| > ε) ≤ C exp

(

− n− 1

2‖ψ‖′2∞
ε2
)

,

for some constant C. Now, for any u = (u1, . . . , un) and u′ = (u′1, . . . , u
′
n) on

the unit complex sphere, we have:

∣

∣

∣

∣

∣

n
∑

i=1

|ui|2 f(λi(s))−
n
∑

i=1

|u′i|
2
f(λi(s))

∣

∣

∣

∣

∣

≤
n
∑

i=1

|ui − u′i|·|ui + u′i|·‖f‖∞ ≤ 2‖f‖∞

√

√

√

√

n
∑

i=1

|ui − u′i|
2
.

Therefore, (λ1(s), . . . , λn(s)) being fixed, the function
∑n
i=1 |ui|

2
f(λi(s)) is Lip-

schitz in (u1, . . . , un). Hence,

P

(

∣

∣

∣

∑n
i=1 |vi|

2
f(λi(s))− E

[

∑n
i=1 |vi|

2
f(λi(s))

∣

∣

∣
λ1(s), . . . , λn(s)

]∣

∣

∣
> ε

∣

∣

∣

∣

∣

λ1(s), . . . , λn(s)

)

≤ C exp
(

− n−1
8‖f‖2∞ ε

2
)

and

P

(∣

∣

∣

∣

∣

n
∑

i=1

|vi|2 f(λi(s))− E

[

n
∑

i=1

|vi|2 f(λi(s))
∣

∣

∣λ1(s), . . . , λn(s)

]∣

∣

∣

∣

∣

> ε

)

≤ C exp

(

− n− 1

8‖f‖2∞
ε2
)

.

Notice that E
[

∑n
i=1 |vi|

2
f(λi(s))

∣

∣λ1(s), . . . , λn(s)
]

= 1
n

∑n
i=1 f(λi(s)) = f (n)(X

(µ)
n (s)),

where f (n) is defined as in theorem III.4. From this theorem, there exists
δε(1) > 0 such that for all s ∈ [0, 1]

P
(∣

∣

∣f (n)(X(µ)
n (s))− E

[

f (n)(X(µ)
n (s))

]∣

∣

∣ > ε
)

≤ 2 exp(−nδε(1)).

We can then infer that:

sup
s∈[0,1]

P

(∣

∣

∣

∣

∣

n
∑

i=1

|vi|2 f(λi(s))− E

[

n
∑

i=1

|vi|2 f(λi(s))
]∣

∣

∣

∣

∣

> 2ε

)

≤ sup
s∈[0,1]

P

(∣

∣

∣

∣

∣

n
∑

i=1

|vi|2 f(λi(s))− E

[

n
∑

i=1

|vi|2 f(λi(s))
∣

∣

∣
λ1(s), . . . , λn(s)

]∣

∣

∣

∣

∣

> ε

)

+ sup
s∈[0,1]

P
(∣

∣

∣
f (n)(Xn(s))− E

[

f (n)(Xn(s))
]∣

∣

∣
> ε
)

≤ C exp

(

− n− 1

8‖f‖2∞
ε2
)

+ 2 exp(−nδε(1)).

To conclude the proof, just remark that

E

[∣

∣

∣

∣

∣

n
∑

i=1

|vi|2 f(λi(s))− E

[

n
∑

i=1

|vi|2f(λi(s))
]∣

∣

∣

∣

∣

]

≤ 2ε+ 2‖f‖∞P

(∣

∣

∣

∣

∣

n
∑

i=1

|vi|2 f(λi(s))− E

[

n
∑

i=1

|vi|2 f(λi(s))
]∣

∣

∣

∣

∣

> 2ε

)

.
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¿From this inequality, the result of the lemma can be deduced directly. 2

Lemma III.7 Let us consider a complex ζ ∈ C \ R, the function fζ(x) =
(ζ − x)−1, an Hermitian matrix A with eigenvalues λ1, . . . , λn, a unit vector
V = (vi, i = 1, . . . , n) ∈ Cn, and a real t. Then

trfζ(A+ tV V ∗)− trfζ(A) = t

∑n
i=1

|vi|2
(ζ−λi)2

1− t∑n
i=1

|vi|2
ζ−λi

.

Proof. First notice that we can suppose A to be a diagonal matrix. Then,
due to the resolvant equation, we obtain:

(ζ−A−tV V ∗)−1−(ζ−A)−1 = (ζ−A)−1
(

1− tV V ∗(ζ −A)−1
)−1

tV V ∗(ζ−A)−1.

Now, for t small enough, we have:

(

1− tV V ∗(ζ −A)−1
)−1

= 1 +
∑

i≥1

(

tV V ∗(ζ −A)−1
)i

= 1 + tV V ∗(ζ −A)−1
∑

i≥0

(

tV ∗(ζ −A)−1V
)i

= 1 + tV V ∗(ζ −A)−1 1

1− tV ∗(ζ −A)−1V .

The last equality can be extended to any value of t. Therefore

trfζ(A+ tV V ∗)− trfζ(A) = tr
(

tV ∗(ζ −A)−2
(

1− tV V ∗(ζ −A)−1
)−1

V
)

= tV ∗(ζ −A)−2V 1

1− tV ∗(ζ −A)−1V

= t

n
∑

i=1

|vi|2
(ζ − λi)2

1− t
n
∑

i=1

|vi|2
ζ − λi

.

2

Proof of theorem III.2. Using the notations and definitions of the two previ-

ous lemmas, we are going to prove that the empirical spectral law µ̂n of X
(µ)
n (1)

converges weakly almost surely to Λ (µ). Due to the concentration result of sec-
tion III.C, what remains actually to be established is the convergence of E ◦ µ̂n
to Λ (µ).

Step 1. For any z = a+ib with b > 0, let us define fz(x) = (z−x)−1. We shall

denote by f
(n)
z the functional 1

n
trfz defined on Hn, and by λ

(n)
1 (s), . . . , λ

(n)
n (s)
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the eigenvalues of X
(µ)
n (s). Due to lemma III.7, it is easy to check that

A(µ)n
(

f (n)z

)

(X(µ)
n (s))

= γ
1

n

n
∑

i=1

1
(

z − λ(n)i (s)
)2 +

∫

R
E

[

t+A(s)

1− tA(s)B(s)

∣

∣

∣

∣

∣

λ
(n)
1 (s), . . . , λ(n)n (s)

]

σ(dt)

= −γ∂zf (n)z

(

X(µ)
n (s)

)

+

∫

R
E

[

t+A(s)

1− tA(s)B(s)

∣

∣

∣

∣

∣

λ
(n)
1 (s), . . . , λ(n)n (s)

]

σ(dt),

where A(s) and B(s) are defined by

A(s) =

n
∑

i=1

|vi|2

z − λ(n)i (s)

B(s) =

n
∑

i=1

|vi|2
(

z − λ(n)i (s)
)2

and (v1, . . . , vn) denotes a random vector, Haar distributed on the unit sphere
of Cn.

Set ψ(n)(z, s) = P
Λn(µ)
s (f

(n)
z )(0) = E

[

f
(n)
z

(

X
(µ)
n (s)

)]

. This is the Cauchy

transform of the empirical spectral law of X
(µ)
n (s). Then

∂sψ
(n)(z, s) = E

[

A(µ)n
(

f (n)z

)

(X(µ)
n (s))

]

= −γ∂zψ(n)(z, s) +
∫

R
E
[

t+A(s)

1− tA(s)B(s)

]

σ(dt). (III.1)

Before going any further, it is time to explain intuitively the proof. The
Cauchy transform ψ(z, s) = Λ (µ∗s) (fz) of Λ (µ∗s) is characterised by ψ(z, 0) =
z−1 and (cf [6], or lemma 3.3.9 in [14]):

∂sψ(z, s) = −γ∂zψ(z, s)−
∫

R

t+ ψ(z, s)

1− tψ(z, s)∂zψ(z, s)σ(dt). (III.2)

Let us denote by µ
(∞)
s the (expected) limit law of 1

n

∑n
i=1 δλi(s) as n tends

to infinity, and by ψ(∞)(z, s) = µ
(∞)
s (fz) its Cauchy transform. Then, fol-

lowing lemma III.6, A(s) converges almost surely to ψ(∞)(z, s) and B(s) to
−∂zψ(∞)(z, s). Therefore, if we replace A(s) and B(s) in equation (III.1) by
their limits, we remark that ψ(∞) is expected to satisfy the same equation (III.2)
as ψ. Hence ψ(∞) ought to be equal to ψ and µ∞s equal to Λ (µ∗s).
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Step 2. Following the previous heuristic hint, we would like to evaluate ∂sψ(z, s)−
∂sψ

(n)(z, s) using equations (III.1) and (III.2):

∂sψ(z, s)− ∂sψ(n)(z, s)
= −γ

(

∂zψ(z, s)− ∂zψ(n)(z, s)
)

+
(

∂zψ(z, s)− ∂zψ(n)(z, s)
)

∫

R

t+ ψ(z, s)

1− tψ(z, s)σ(dt)

+∂zψ
(n)(z, s)

∫

R

(

t+ ψ(z, s)

1− tψ(z, s) −
t+ ψ(n)(z, s)

1− tψ(n)(z, s)

)

σ(dt)

+

∫

R

(

t+ ψ(n)(z, s)

1− tψ(n)(z, s)∂zψ
(n)(z, s)− E

[

t+A(s)

1− tA(s)B(s)

])

σ(dt).

Let us consider z0 = a0+ ib0 with b0 > 0, and let us introduce (ζ(s), s ≥ 0) such
that

ζ(0) = z0

ζ ′(s) = γ +

∫

R

t+ ψ(ζ(s), s)

1− tψ(ζ(s), s)σ(dt). (III.3)

The mapping

z 7→ γ +

∫

R

t+ ψ(z, s)

1− tψ(z, s)σ(dt)

is locally Lipschitz on C \ R, as composition of locally Lipschitz functions. In-
deed,

∣

∣

∣

∣

∫

R

t+ z

1− tz σ(dt)−
∫

R

t+ z′

1− tz′σ(dt)
∣

∣

∣

∣

≤ |z − z′| · σ(1) 1 + |zz′|
|=(z)=(z′)| ,

(where =(z) = (z − z̄)/2) and

|ψ(z, s)− ψ(z′, s)| ≤ |z − z′| 1

|=(z)=(z′)| .

Therefore, there exists a unique maximal solution to the preceding differential
equation (III.3), since we have supposed =(ζ(0)) = b0 > 0. Now let us remark
that

∂s (ψ (ζ(s), s)) = ∂s(ψ)(ζ(s), s)+∂z(ψ)(ζ(s), s)

(

γ +

∫

R

t+ ψ(ζ(s), s)

1− tψ(ζ(s), s)σ(dt)
)

= 0

following equation (III.2). Hence, we can deduce that for any s ≥ 0 such that
ζ(s) is defined, then

ψ (ζ(s), s) = ψ (ζ(0), 0) =
1

z0
and ζ ′(s) = γ +

∫

R

1 + tz0
z0 − t

σ(dt).

In particular,

= (ζ ′(s)) = −b0
∫

R

1 + t2

(a0 − t)2 + b20
σ(dt).
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This integral vanishes when b0 tends to +∞ uniformly for a0 in a compact set.
Thus, for any b1 > 0 and any compact set F ⊂ R, there exists a threshold S
such that for any a0 in F , any b0 > S and any s in [0, 1], one has:

= (ζ (s)) > b1.

Moreover, we can infer that for any pair (b1, b2) with 0 < b2 < b1, there exists a
compact set K ⊂ C whose interior is non empty, such that for any z0 = a0+ ib0
in K and any s in [0, 1]

= (ζ (s)) > b1,
1

b2
< |= (ψ(ζ(s), s))| = |b0|

a20 + b20
<

1

b1
and |ψ(ζ(s), s)| = 1

√

a20 + b20
<

1

b1
.

For the rest of the proof, we shall suppose this property to be satisfied.

Step 3. We now focus on the evaluation of ψ (ζ(s), s)− ψ(n) (ζ(s), s):

d

ds

(

ψ (ζ(s), s)− ψ(n) (ζ(s), s)
)

= ∂zψ
(n)(ζ(s), s)

∫

R

(

t+ ψ(ζ(s), s)

1− tψ(ζ(s), s) −
t+ ψ(n)(ζ(s), s)

1− tψ(n)(ζ(s), s)

)

σ(dt)

+

∫

R

(

t+ ψ(n)(ζ(s), s)

1− tψ(n)(ζ(s), s)∂zψ
(n)(ζ(s), s)− E

[

t+A(s)

1− tA(s)B(s)

])

σ(dt)

= ∂zψ
(n)(ζ(s), s)

(

ψ(ζ(s), s)− ψ(n)(ζ(s), s)
)

∫

R

1 + t2

(1− tψ(ζ(s), s))
(

1− tψ(n)(ζ(s), s)
)σ(dt)

+

∫

R
E
[

B(s)

(

t+ ψ(n)(ζ(s), s)

1− tψ(n)(ζ(s), s) −
t+A(s)

1− tA(s)

)]

σ(dt)

+

∫

R

t+ ψ(n)(ζ(s), s)

1− tψ(n)(ζ(s), s)E
[

∂zψ
(n)(ζ(s), s)−B(s)

]

σ(dt).

But from inequalities

∣

∣

∣

∣

1

1− tz

∣

∣

∣

∣

≤
∣

∣

∣

∣

z

=(z)

∣

∣

∣

∣

and

∣

∣

∣

∣

t

1− tz

∣

∣

∣

∣

≤ 1

|=(z)| ,

we can establish the following upper bounds:

∣

∣

∣
∂zψ

(n)(ζ(s), s)
∣

∣

∣
≤ 1

= (ζ(s))
2 ≤

1

b21
,

∣

∣

∣

∣

∣

1 + t2

(1− tψ(ζ(s), s))
(

1− tψ(n)(ζ(s), s)
)

∣

∣

∣

∣

∣

≤ 1 +
∣

∣ψ(ζ(s), s)ψ(n)(ζ(s), s)
∣

∣

∣

∣= (ψ(ζ(s), s))=
(

ψ(n)(ζ(s), s)
)∣

∣

≤
1 + 1

b21
1
b2

∣

∣=
(

ψ(n)(ζ(s), s)
)∣

∣

,

∣

∣

∣

∣

t+ ψ(n)(ζ(s), s)

1− tψ(n)(ζ(s), s)

∣

∣

∣

∣

≤ 1 +
∣

∣ψ(n)(ζ(s), s)
∣

∣

2

∣

∣=
(

ψ(n)(ζ(s), s)
)∣

∣

≤
1 + 1

b21
∣

∣=
(

ψ(n)(ζ(s), s)
)∣

∣

,
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∣

∣

∣

∣

B(s)
t+ ψ(n)(ζ(s), s)

1− tψ(n)(ζ(s), s) −
t+A(s)

1− tA(s)

∣

∣

∣

∣

=
∣

∣

∣
A(s)− ψ(n)(ζ(s), s)

∣

∣

∣
·
∣

∣

∣

∣

∣

B(s)
1 + t2

(1− tA(s))
(

1− tψ(n)(ζ(s), s)
)

∣

∣

∣

∣

∣

≤
∣

∣

∣A(s)− ψ(n)(ζ(s), s)
∣

∣

∣ · |B(s)|
∣

∣A(s)ψ(n)(ζ(s), s)
∣

∣+ 1
∣

∣=(A(s))=
(

ψ(n)(ζ(s), s)
)∣

∣

≤
∣

∣

∣
A(s)− ψ(n)(ζ(s), s)

∣

∣

∣

1

b1
∣

∣=
(

ψ(n)(ζ(s), s)
)∣

∣

(

1

b21
+ 1

)

,

the last inequality coming from

|B(s)| =

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

|vi|2
(

z − λ(n)i (s)
)2

∣

∣

∣

∣

∣

∣

∣

≤
n
∑

i=1

∣

∣

∣

∣

∣

∣

∣

|vi|2
(

z − λ(n)i (s)
)2

∣

∣

∣

∣

∣

∣

∣

=
1

|=(z)| |A(s)| .

Going back to ψ (ζ(s), s) − ψ(n) (ζ(s), s), it follows from the preceding bounds
that
∣

∣

∣

∣

d

ds

(

ψ (ζ(s), s)− ψ(n) (ζ(s), s)
)

∣

∣

∣

∣

≤ C
∣

∣=
(

ψ(n)(ζ(s), s)
)∣

∣

∣

∣

∣ψ(ζ(s), s)− ψ(n)(ζ(s), s)
∣

∣

∣

+
D

∣

∣=
(

ψ(n)(ζ(s), s)
)∣

∣

E
[∣

∣

∣
A(s)− ψ(n)(ζ(s), s)

∣

∣

∣

]

+
E

∣

∣=
(

ψ(n)(ζ(s), s)
)∣

∣

E
[∣

∣

∣∂zψ
(n)(ζ(s), s)−B(s)

∣

∣

∣

]

,

where C,D,E do not depend of n nor s. From Gronwall’s lemma, those in-
equalities provide the following bound
∣

∣

∣ψ (ζ(s), s)− ψ(n) (ζ(s), s)
∣

∣

∣ (III.4)

≤
(

D sup
u∈[0,s]

E
[∣

∣

∣A(u)− ψ(n)(ζ(u), u)
∣

∣

∣

]

+ E sup
u∈[0,s]

E
[∣

∣

∣∂zψ
(n)(ζ(u), u)−B(u)

∣

∣

∣

]

)

× 1

infu∈[0,s]
∣

∣=
(

ψ(n)(ζ(u), u)
)∣

∣

exp

(

s
C

infu∈[0,s]
∣

∣=
(

ψ(n)(ζ(u), u)
)∣

∣

)

.

Step 4. We now have to find a lower bound for
∣

∣=
(

ψ(n)(ζ(s), s)
)∣

∣. Let us

consider an interval [0, s] such that infu∈[0,s]
∣

∣=
(

ψ(n)(ζ(u), u)
)∣

∣ > 0 (this is true

in particular for s = 0, because ψ(n)(ζ(0), 0) = 1/z0). Since

ψ(n)(ζ(u), u) = E [A(u)] and ∂zψ
(n)(ζ(u), u) = E [B(u)] ,

we can infer from inequality (III.4) and lemma III.6 that ψ(n) (ζ(s), s) converges
to ψ (ζ(s), s). Let us recall that

inf
u∈[0,1]

|= (ψ (ζ(s), s))| ≥ 1

b2
> 0
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Hence, there exists n0 such that for any n ≥ n0,
∣

∣=
(

ψ(n) (ζ(s), s)
)∣

∣ is larger
than 1

2b2
.

Let us notice now that

∣

∣

∣
=
(

ψ(n)(ζ(s+ h), s+ h)
)∣

∣

∣
≥
∣

∣

∣
=
(

ψ(n)(ζ(s), s)
)∣

∣

∣
−
∣

∣

∣

∣

∣

∫ s+h

s

∣

∣

∣

∣

d

dt
ψ(n)(ζ(t), t)

∣

∣

∣

∣

dt

∣

∣

∣

∣

∣

.

for all h ≥ 0. It is easy to see that
∣

∣

∣

∣

d

du
ψ(n)(ζ(u), u)

∣

∣

∣

∣

=
∣

∣

∣ζ ′(u)∂zψ
(n)(ζ(u), u) + E

[

A(µ)n
(

f
(n)
ζ(u)

)(

X(µ)
n (u)

)]∣

∣

∣

is uniformly bounded in n and u by some constant c since =(ζ(u)) > b1. This
implies that

∣

∣=
(

ψ(n)(ζ(s+ h), s+ h)
)∣

∣ is larger than 1
4b2

for all h ∈ [0, 1/(4b2c)].

Using repeatedly this trick, one proves that infu∈[0,1]
∣

∣=
(

ψ(n)(ζ(u), u)
)∣

∣ > 0

for all n large enough. Consequently, following (III.4), ψ(n) (ζ(1), 1) converges
to ψ (ζ(1), 1), for all initial point ζ(0) = z0 in K.

Step 5. The set of non-negative measures with total mass less than 1 is
compact for the topology associated to the set C0(R) of continuous functions

vanishing at infinity. Let
(

E ◦
(

1
np

∑np
i=1 δλ(np)i (1)

)

, p ≥ 0
)

be a convergent

sub-sequence of
(

E ◦
(

1
n

∑n
i=1 δλ(n)i (1)

)

, n ≥ 0
)

, with limit ν; then the Cauchy

transform ψ(np)(ζ(1), 1) of E ◦
(

1
np

∑np
i=1 δλ(np)i (1)

)

is convergent to the Cauchy

transform ν
(

fζ(1)
)

of ν. Therefore ν
(

fζ(1)
)

is equal to the Cauchy transform
ψ(ζ(1), 1) of Λ (µ). Let us remark now that

ζ(1) = z0 + γ +

∫

R

1 + tz0
z0 − t

σ(dt)

As z0 = ζ(0) runs over K, ζ(1) runs over a set whose interior is non empty.
Due to the maximum principle, this implies that ν (fz′) = ψ(z′, 1) for all
z′ ∈ C with = (z′) > 0. Hence, ν is equal to Λ (µ). This gives that there is

only one accumulation point for the sequence
(

E ◦
(

1
n

∑n
i=1 δλ(n)i (1)

)

, n ≥ 1
)

,

hence this sequence is convergent w.r.t. the topology associated to C0(R).
Since this topology coincides with the weak topology, we can conclude that
(

E ◦
(

1
n

∑n
i=1 δλ(n)i (1)

)

, n ≥ 1
)

converges weakly to Λ (µ).

Using the concentration result in theorem III.4, and the Borel-Cantelli lemma,

it is now easy to check 1
n

∑n
i=1 fz

(

λ
(n)
i (1)

)

converges a.s. to Λ (µ) (fz) for all

z in a fixed dense denumerable set in C. Following same arguments as before,

this implies that
(

µ̂n = 1
n

∑n
i=1 δλ(n)i (1)

, n ≥ 1
)

converges weakly a.s. to Λ (µ).
2

IV Some other properties

IV.A Matrix cumulants

If a probability measure µ in ID∗(R) has moments of all orders, so has Λ (µ).
Moreover, there is a simple characterisation of the relation between µ and Λ (µ),
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first remarked by Anshelevich in [1]. If we denote by
(

c∗p, p ≥ 1
)

and
(

c¢p , p ≥ 1
)

the classical and the free cumulants respectively, then

∀p ≥ 1, c∗p (µ) = c¢p (Λ (µ)) .

Our aim in this section is to show that this property can be extended to Λn(µ).
We first need to define matrix cumulants, and in so doing we shall be inspired
by a recent paper by Lehner. In 1975, Good remarked that

c∗p(µ) =
1

p
E

[(

p
∑

k=1

X(k)ei
2πk
p

)p]

where the X(k), k = 1, . . . , p are i.i.d. random variables with distribution µ (cf
[11]). Lehner has established the corresponding formula for the free case (cf
[18]):

c¢p (µ) =
1

p
τ

[(

p
∑

k=1

X(k)ei
2πk
p

)p]

,

where the X(k), k = 1, . . . , p are free random variables with distribution µ.
This suggests the following definition of a matrix cumulant of order p for a
distribution µ on Hn which is invariant by unitary conjugation:

c(n)p (µ) =
1

p
E

[

trn

(

p
∑

k=1

X(k)ei
2πk
p

)p]

where the X(k), k = 1, . . . , p are i.i.d. random matrices with distribution µ.

Remark. Unlike the classical and free cases, these matrix cumulants do not
characterise µ, nor its empirical spectral law.

Proposition IV.1 Let µ be a probability measure in ID∗ (R) with moments of
all orders. Then

∀n, p ≥ 1, c∗p(µ) = c(n)p (Λn (µ)) = c¢p (Λ (µ)) .

Proof of proposition IV.1. The explicit realization of law Λn (µ) (cf section
II.B) could have been used with some combinatorics, but it is easier to adapt
the simple proof of Good’s result due to Groeneveld and van Kampen (cf [12]).
Recall that

µ (exp(iλ·)) = exp
(

ϕ(µ) (λ)
)

= exp





∑

q≥1

iqλq

q!
c∗q(µ)



 .
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Let us consider p random matrices X
(k)
n , k = 1, . . . , p i.i.d. with distribution

Λn(µ). We can then infer that

E

[

exp

(

itr

(

A

p
∑

k=1

X(k)
n ei

2πk
p

))]

=

p
∏

k=1

E
[

exp
(

iei
2πk
p tr

(

AX(1)
n

))]

=

p
∏

k=1

exp
(

ϕ(µ)n

(

iei
2πk
p A

))

=

p
∏

k=1

exp
(

nE
[

ϕ(µ)
(

iei
2πk
p 〈Vn, AVn〉

)])

=

p
∏

k=1

exp



n
∑

q≥1

iqei
2πk
p
q

q!
c∗q(µ)E [〈Vn, AVn〉q]





= exp



n
∑

q≥1

iq

q!
c∗q(µ)E [〈Vn, AVn〉q]

(

p
∑

k=1

ei
2πk
p
q

)



 ,

where Vn is a unitary uniformly distributed random vector on Cn. Now
∑p
k=1 e

i 2πk
p
q =

p if q is a multiple of p, and it vanishes otherwise. Therefore

E

[

exp

(

itr

(

A

p
∑

k=1

X(k)
n ei

2πk
p

))]

= exp



np
∑

q≥1

ipq

pq!
cpq(µ)E [〈Vn, AVn〉pq]



 .

But, denoting by ai,j the entries of the matrix A, we obtain:

ip

p!
E

[

tr

(

p
∑

k=1

X(k)
n ei

2πk
p

)p]

=
∑

i1,...,ip=1,...,n

∂ai1,i2 ◦ · · · ◦ ∂aip,i1 ∣∣
∣

A=0

E

[

exp

(

itr

(

A

p
∑

k=1

X(k)
n ei

2πk
p

))]

=
∑

i1,...,ip=1,...,n

∂ai1,i2 ◦ · · · ◦ ∂aip,i1 ∣∣
∣

A=0

exp



np
∑

q≥1

ipq

pq!
c∗pq(µ)E [〈Vn, AVn〉pq]





= np
ip

p!
c∗p(µ)

∑

i1,...,ip=1,...,n

∂ai1,i2 ◦ · · · ◦ ∂aip,i1E [〈Vn, AVn〉p]

= np
ip

p!
c∗p(µ)

∑

i1,...,ip=1,...,n

E
[

|vi1 |2 . . . |vip |2
]

= np
ip

p!
c∗p(µ).

In other terms, we have established that

c(n)p (Λn (µ)) =
1

p
E

[

trn

(

p
∑

k=1

X(k)
n ei

2πk
p

)p]

= c∗p(µ).

2
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IV.B The Cauchy matrix

The Cauchy distribution is a meeting point between classical and free probabil-
ities. It is 1-stable in both cases, and it has the same convolution kernel. Let
us develop the latter point. Let C be a real even Cauchy variable with param-
eter ε, and let U be another random variable. Then for each Borelian bounded
function f , we have

E [f(C + U)|U ] = Pε (f) (U)

whether C and U are independent or free, if E [·|U ] denotes the orthogonal
projector onto L2(U) and Pε the convolution kernel such that Pε (f) (x) =
∫

R f(x− y) ε
π(ε2+y2)dy.

Due to this property, the Cauchy distribution is very useful for regularizing
in free probability, since ordinary free convolution kernels are much more com-
plicated (cf [9]). The question arised whether there were a family of “Cauchy”
matrices with the same property, being a link between the classical case (in
one dimension) and the free case (in infinite dimension). This is the original
motivation of our introduction of the new matrix ensembles Λn(µ).

Theorem IV.2 Let µε be the even Cauchy distribution with parameter ε

µε(dx) =
ε

π(ε2 + x2)
dx

and let Cn be a random Hermitian matrix of law Λn (µε). Then, for each Her-
mitian matrix A and each real Borelian bounded function f , we have

E [f(A+ Cn)] = Pε(f)(A).

Lemma IV.3 Let M = (Mi,j)
n
i,j=1 be a square matrix of size n, such that

M = A+ iB for some A ∈ Hn and B ∈ H+n . Then

=
(

det(M)

det(M (1,1))

)

> 0,

where M (1,1) denotes (Mi,j)
n
i,j=2.

Proof. The eigenvalues of M have a positive imaginary part. Hence M is in-
versible, and the eigenvalues of M−1 have a negative imaginary part. Therefore

det(M (1,1))

det(M)
=
(

M−1)
1,1

=
(

1 0 · · · 0
)

M−1











1
0
...
0











has a negative imaginary part, which proves the lemma. 2

Lemma IV.4 Let λ1, . . . , λn be n real independent even Cauchy random vari-
ables with parameter 1, let Λ be the diagonal matrix with λ1, . . . , λn as diagonal
entries, and let U be an independent random matrix Haar distributed on U(n).
Then

E
[

(A+ iB − cUΛU∗)−1
]

= (A+ iB + i|c|I)−1

for all A ∈ Hn, B ∈ H+n , and c ∈ R.
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Proof. This is an elementary consequence of the following result: if =(z) > 0,
then we have

E
[

1

z − cλ1

]

=
1

z + i|c| .

More generally, if f(X) is a rational fonction with numerator’s degree less
or equal to denominator’s degree, and whose singularities are all in C+ =
{z ∈ C/=(z) > 0}, then

E [f (λ1)] = f(−i).
Let us introduce

R(U, λ1, . . . , λn) = (A+ iB − cUΛU∗)−1 = U (U∗AU + iU∗BU − cΛ)−1 U∗.
For symmetry reasons, we can assume c > 0. Define M = U ∗AU + iU∗BU −
cΛ∨1,1 where Λ∨1,1 is the diagonal matrix whose upper left entry has been can-
celled. Then the entries of (A+ iB − cUΛU ∗)−1 are rational fonctions in λ1,
with det (A+ iB − cUΛU∗) = det(M) − cλ1 det(M

(1,1)) as denominator, and

with pole 1
c

det(M)
det(M(1,1))

, whose imaginary part is positive, following lemma IV.3.

We can then infer that:

E [R(U, λ1, . . . , λn)|U, λ2, . . . , λn] = R(U,−i, λ2, . . . , λn).
Repeating this argument, we can deduce

E [R(U, λ1, . . . , λn)] = E [R(U,−i, . . . ,−i)]
= E

[

U (U∗AU + iU∗BU + icI)
−1
U∗
]

= (A+ iB + icI)
−1
.

2

Using the same tricks, we can establish the following generalisation of the
previous lemma:

Lemma IV.5 Let Λ1, . . . ,Λm be independent replicas of the preceding matrix
Λ, let U1, . . . , Um be independent random matrices Haar distributed on U(n), let
A1, . . . , Aq be Hermitian matrices, let B1, . . . , Bq be positive Hermitian matrices,
and let αj,k, j = 1, . . . ,m; k = 1, . . . , q be reals. Then

E







q
∏

k=1



Ak + iBk −
m
∑

j=1

αj,kUjΛjU
∗
j





−1




=

q
∏

k=1



Ak + iBk + i

m
∑

j=1

|αj,k|I





−1

.

Proof of theorem IV.2. Due to linearity and density arguments, we only
need to check the desired property for the function fz(x) = 1

z−x . We can
suppose =(z) > 0. Now, due to lemma IV.4, with its notations, we have for all
Hermitian matrix A

E









zI −A− ε

m

m
∑

j=1

UjΛjU
∗
j





−1




= (zI −A+ iεI)

−1
.

Therefore, since Cn is the limit in law of ε 1
m

∑m
j=1 UjΛjU

∗
j when m→ +∞ (cf

section II.B), we can deduce that:

E [fz(A+ Cn)] = E
[

(zI −A− Cn)−1
]

= ((z + iε)I −A)−1 = Pε(fz)(A).

2
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V Application: moments of the Lévy laws

Using matrix ensembles, it is tempting to try to transport classical properties
to the free framework. We shall present here a simple example, dealing with the
relation between the generalised moments of a probability measure µ in ID∗(R)
and those of its associated Lévy measure. Let us first recall Kruglov’s standard
result:

Definition. A function g: R+ → R+ is said to be sub-multiplicative if there
exists a non-negative real K such that

∀x, y ∈ R, g (|x+ y|) ≤ Kg (|x|) g (|y|) .

Examples include 1 + xβ with β > 0, expx, ln(e+ x), and so on.

Theorem V.1 (cf [15] or section 25 of [21]) Let µ be a probability measure in
ID∗(R), and let g be a sub-multiplicative locally bounded function. Then

∫

|x|>1
g (|x|)σ(µ)∗ (dx) < +∞⇐⇒

∫

g (|x|)µ(dx) < +∞.

Our aim is to adapt the proof given in [21], and, using the Lévy matrices, to
establish a similar, although partial, result for the free infinitely divisible laws.
But we shall first introduce a new definition. Remark that a function g is sub-
multiplicative if and only if there exists K in R+ such that for any probability
measures µ and ν we have

µ ∗ ν (g (| · |)) ≤ Kµ (g (| · |)) ν (g (| · |)) .

This may suggest the following definition:

Definition. A function g: R+ → R+ is said to be freely sub-multiplicative if
there exists a non-negative real K such that for any probability measures µ and
ν we have

µ¢ ν (g (| · |)) ≤ Kµ (g (| · |)) ν (g (| · |)) .
Of course, if g is freely sub-multiplicative, then it is sub-multiplicative (take

µ, ν = δx, δy).

Proposition V.2 Functions 1 + xβ with β > 0, expx and ln(e+ x) are freely
sub-multiplicative.

Lemma V.3 A function g: R+ → R+ is freely sub-multiplicative if there exists
K in R+ such that for any probability measures µ and ν with bounded support
we have

µ¢ ν (g (| · |)) ≤ Kµ (g (| · |)) ν (g (| · |)) .
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Proof. Let µ,ν be probability measures, and define µA(·) = µ (·| [−A,A]) and
νA(·) = ν (·| [−A,A]) for A > 0 large enough. Due to the monotone conver-
gence theorem, limA→+∞ µA (g (| · |)) = µ (g (| · |)) and limA→+∞ νA (g (| · |)) =
ν (g (| · |)). Since µA (resp. νA) converges weakly to µ (resp. ν) as A tends to
infinity, so does µA ¢ νA to µ ¢ ν (cf theorem 4.13 in [6]). Dealing with the
fact that g is not bounded presents no difficulty, which allows us to conclude
the proof. 2

Lemma V.4 A function g is freely sub-multiplicative if there exists K in R+
such that

∀n ≥ 1, ∀A,B ∈ Hn, E [trn (g (|A+ UBU∗|))] ≤ Ktrn (g (|A|)) trn (g (|B|)) ,

where |M | denotes
√
M2 and U is a random matrix which is Haar distributed

on U(n).

Proof. Let µ (resp. ν) be a probability measure with bounded support, and
let (An, n ≥ 1) (resp. (Bn, n ≥ 1)) be a family of uniformly bounded Hermitian
matrices whose empirical spectral law converges to µ (resp. ν). Then

lim
n→+∞

trn (g (|An|)) = µ (g (| · |)) and lim
n→+∞

trn (g (|Bn|)) = ν (g (| · |)) .

Moreover, due to Voiculescu’s results ([24]), which have been recently improved
by Xu ([26]) and Collins ([10]), if (Un, n ≥ 1) ∈∏n≥1 U(n) is a family of unitary
Haar distributed random matrices, then (An, UnBnU

∗
n) are asymptotically free.

This implies that

lim
n→+∞

E [trn (g (|An + UnBnU
∗
n|))] = µ¢ ν (g (| · |)) .

The desired result of the lemma is now obvious. 2

Lemma V.5 A function g is freely sub-multiplicative if there exists K in R+
such that

∀n ≥ 1, ∀A,B ∈ Hn, trn (g (|A+B|)) ≤ Ktrn (g (|A|) g (|B|)) .

Proof. We only need to prove that inequality in lemma V.4 holds; this is a
direct consequence of the two following facts:

1. g (|UBU∗|) = g (U |B|U∗) = Ug (|B|)U∗ for any unitary matrix U ;

2. E [tr(AUBU∗)] = 1
n
tr(A)tr(B) if U is Haar distributed on U(n).

2

Proof of proposition V.2. We only need to prove that inequality in lemma
V.5 is satisfied by the functions listed in the proposition. Let A,B ∈ Hn.
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• The inequality:

tr
(

e|A+B|
)

≤ tr
(

eA+B
)

+ tr
(

e−A−B
)

is obvious. Let λ1 ≤ · · ·λn and µ1 ≤ · · · ≤ µn be the eigenvalues of
A + B and |A| + |B| respectively. Since |A| + |B| − A − B is a non-
negative matrix, we infer from already mentioned Weyl’s inequalities that
λ1 ≤ µ1, . . . , λn ≤ µn. Therefore tr

(

eA+B
)

is less or equal to tr
(

e|A|+|B|
)

;

of course, same inequality holds for tr
(

e−A−B
)

. Now, using the Golden-

Thompson inequality (cf chapter 8 of [23]), which states that tr
(

eC+D
)

≤
tr
(

eCeD
)

for any Hermitian matrices C and D, we deduce:

tr
(

e|A+B|
)

≤ 2tr
(

e|A|e|B|
)

Hence, function expx is freely sub-multiplicative.

• Following Hölder-McCarthy inequalities (cf theorems 2.7 and 2.8 in [20]),

tr|A+B|β ≤ K
(

tr|A|β + tr|B|β
)

where K = 1 if β ∈]0, 1] and K = 2β−1 if β ∈ [1,+∞[. This yields

trn
(

I + |A+B|β
)

≤ K
(

1 + trn|A|β + trn|B|β
)

≤ Ktrn
((

I + |A|β
) (

I + |B|β
))

.

Therefore, function 1 + xβ is freely sub-multiplicative.

• Let U ∈ U(n) such that A+B = U |A+B|. From Rotfel’d inequality (cf
corollary 8.7 [23]), we can infer that

det (I + |A+B|) = det (I + U∗A+ U∗B|)
≤ det (I + |U∗A|) det (I + |U∗B|)
= det (I + |A|) det (I + |B|) .

Applying the logarithm to this inequality we can deduce that

tr (ln (I + |A+B|)) ≤ tr (ln (I + |A|) + ln (I + |B|)) .

Consequently,

trn (ln (eI + |A+B|)) = 1 + trn

(

ln

(

I +
1

e
|A+B|

))

≤ 1 + trn

(

ln

(

I +
1

e
|A|
)

+ ln

(

I +
1

e
|B|
))

≤ trn

((

I + ln

(

I +
1

e
|A|
))(

I + ln

(

I +
1

e
|B|
)))

= trn (ln (eI + |A|) ln (eI + |B|)) .

¿From which we can conclude that function ln(e+x) is freely sub-multiplicative.

2
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Remark. Despite these examples, we believe that free sub-multiplicativity is
strictly stronger than (ordinary) sub-multiplicativity.

We shall now introduce the main theorem of this section.

Theorem V.6 Let ν be a probability measure in ID¢ (R), and g be a freely
sub-multiplicative locally bounded function. Then

∫

g (|x|)σ(ν)
¢

(dx) < +∞ =⇒
∫

g (|x|) ν(dx) < +∞.

Remark. Hiai and Petz have already established that ν has compact support

if and only if σ
(ν)
¢

has (cf theorem 3.3.6 in [14]).

Lemma V.7 Let ν be a probability measure in ID¢(R) such that the support

of σ
(ν)
¢

is bounded. Then, for all c > 0, ν (exp (c| · |)) is finite.

Proof. Consider µ = Λ−1 (ν) ∈ ID∗(R). We shall prove that for all c > 0
there exists C > 0 such that

∀n ≥ 1, Λn (µ) [trn exp (c| · |)] < C.

Letting n go into infinity, this indeed implies the desired result since Λn (µ)◦trn
converges to ν.

Since we have

trn (exp (c|A|)) ≤ trn (exp (cA)) + trn (exp (−cA))

for any Hermitian matrix A, we only need to prove that Λn (µ) [exp (c·)] is
uniformly bounded in n. Define

ψn(s) = E
[

trn

(

exp
(

cX(µ)
n (s)

))]

,

where (X
(µ)
n (s), s ≥ 0) denotes the Lévy process associated to Λn(µ). It follows

from lemmas 25.6, 25.7 and from the proof of theorem 25.3 in [21], that ψn is
locally bounded. Therefore ψn can be differentiated to obtain

ψ′n(s) = E
[

A(µ)n (trn ◦ exp(c·))
(

X(µ)
n (s)

)]

= E
[

cγtrn

(

exp
(

cX(µ)
n (s)

))]

+

∫ α

−α
E
[

tr exp
(

cX(µ)
n (s) + ctVnV

∗
n

)

− tr
(

exp
(

cX(µ)
n (s)

))

− ct

1 + t2
trn

(

exp
(

cX(µ)
n (s)

))

]

1 + t2

t2
σ
(ν)
¢

(dt),

where α is such that σ
(ν)
¢

([−α, α]) = 1. Now, following Golden-Thompson
inequalities (cf proof of proposition V.2), we can infer that

E
[

tr exp
(

cX(µ)
n (s) + ctVnV

∗
n

)]

≤ E
[

tr exp
(

cX(µ)
n (s)

)

exp (ctVnV
∗
n )
]

= E
[

trn exp
(

cX(µ)
n (s)

)]

E [tr exp (ctVnV
∗
n )] ,
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since (X
(µ)
n (s), VnV

∗
n ) and (X

(µ)
n (s), U(VnV

∗
n )U) have same distribution, if U is

an independent unitary random matrix which is Haar distributed (cf proof of
lemma V.5). Therefore

ψ′n(s) ≤ cγψn(s) + ψn(s)

∫ α

−α

(

E [tr exp (ctVnV
∗
n )]− trI − ct

1 + t2

)

1 + t2

t2
σ
(ν)
¢

(dt)

= ψn(s)

(

cγ +

∫ α

−α

(

E
[

tr
(

I + VnV
∗
n (e

ct − 1)
)]

− trI − ct

1 + t2

)

1 + t2

t2
σ
(ν)
¢

(dt)

)

= ψn(s)

(

cγ +

∫ α

−α

(

ect − 1− ct

1 + t2

)

1 + t2

t2
σ
(ν)
¢

(dt)

)

.

Noting that ψn(0) = 1, we can deduce that

∀s ≥ 0, ψn(s) ≤ exp

(

s

(

cγ +

∫ α

−α

(

ect − 1− ct

1 + t2

)

1 + t2

t2
σ
(ν)
¢

(dt)

))

,

from which we conclude that ψn(1) is indeed uniformly bounded in n. 2

Proof of theorem V.6. We shall adapt the proof of theorem 25.3 in [21].
Let us first define ν0 and ν1 by

Rν0 = γ′ +
∫ 1

−1

t+ z

1− tz σ
(ν)
¢

(dt)

Rν1 =

∫

|t|>1

(

t+ z

1− tz +
1

t

)

σ
(ν)
¢

(dt) =

∫

|t|>1

t

1− tz
1 + t2

t2
σ
(ν)
¢

(dt),

where γ′ is such that ν0 ¢ ν1 = ν. Then

ν (g (| · |)) = ν0 ¢ ν1 (g (| · |)) ≤ Kν0 (g (| · |)) ν1 (g (| · |)) . (V.1)

Since g is a sub-multiplicative locally bounded function, there exist b and c such
that g(x) ≤ bec|x| for all x in R (cf lemma 25.5 [21]). Therefore, due to lemma
V.7, ν0 (g (| · |)) is finite.

Consider now µ1 = Λ−1(ν1) ∈ ID∗ (R). Then it is a consequence of the

already mentioned theorem 3.4 of [7] that ν1 is the weak limit of

(

µ
∗ 1
p

1

)¢p

as

p tends to infinity.
Since g is freely sub-multiplicative, we have:

(

µ
∗ 1
p

1

)¢p

(g (| · |)) ≤ Kp−1
(

µ
∗ 1
p

1 (g (| · |))
)p

.

But, since the Fourier transform of µ1 is equal to

µ1
(

eiλ·
)

= exp

(

∫

|t|>1

(

eiλt − 1
) 1 + t2

t2
σ
(ν)
¢

(dt)

)

,

µ1 is a compound Poisson distribution, and one gets (cf theorem 4.3 in [21]):

µ
∗ 1
p

1 (g (| · |)) = e−
∫

|t|>1
1
p
1+t2

t2
σ
(ν)

¢
(dt)

×
∞
∑

m=0

1

m!

∫

|t1|>1
· · ·
∫

|tm|>1
g (|t1 + · · ·+ tm|)

m
∏

j=1

(

1

p

1 + t2j
t2j

σ
(ν)
¢

(dtj)

)

.

659



Now, g is freely sub-multiplicative, therefore sub-multiplicative. This gives

µ
∗ 1
p

1 (g (| · |)) ≤ e−
∫

|t|>1
1
p
1+t2

t2
σ
(ν)

¢
(dt)

∞
∑

m=0

1

m!

Km−1

pm

(

∫

|t|>1
g (|t|) 1 + t2

t2
σ
(ν)
¢

(dt)

)m

≤ 1

K
exp

(

K

p

∫

|t|>1
g (|t|) 1 + t2

t2
σ
(ν)
¢

(dt)

)

≤ 1

K
exp

(

2K

p
σ
(ν)
¢

(g (| · |))
)

.

Hence, it holds that

(

µ
∗ 1
p

1

)¢p

(g (| · |)) ≤ 1

K
exp

(

2Kσ
(ν)
¢

(g (| · |))
)

.

Letting p go into infinity, we deduce that

ν1 (g (| · |)) ≤
1

K
exp

(

2Kσ
(ν)
¢

(g (| · |))
)

,

which concludes the proof with inequality (V.1). 2
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