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I Introduction

Wigner and Arnold have established (c¢f [2], [25]) that the empirical spectral
law of matrices of the Gaussian Unitary Ensemble converges almost surely to
the semi-circular law. To be more precise, let us consider W,,, a n x n Hermitian
Gaussian matrix such that E [exp (itrAW,,)] = exp (—+trA?), where tr denotes
the ordinary trace on matrices; let Aﬁ”), o A™ be its eigenvalues, and fi, =
DI d,(m be its empirical spectral law. Then

Eoj; =N(0,1) and lim j, = SC(0,1) a.s.
n—-+o0o
where SC(0,1) is the standard centered semi-circular distribution. This distri-
bution corresponds to the Gaussian law in the framework of free probability.
For instance, it arises as the asymptotic law in the free central limit theorem.
Moreover, Wigner’s result has been reinterpreted by Voiculescu in the early
nineties, using the concept of asymptotic freeness (cf [24]).

A few years ago, this correspondence between Gaussian and semi-circular
laws has been extended to infinitely divisible laws on R by Bercovici and Pata
(¢f [7]) using the Lévy-Hingin formulas. The so-called Bercovici-Pata bijection
maps any classically infinitely divisible law u to the probability measure A (u),
as characterized by Barndorff-Nielsen and Thorbjgrnsen in [4] by:

+oo
VE <0, iCRA( (i) = ; C*(p)(¢x) exp (—z) da.

In this formula, C*(u) denotes the classical cumulant transform of y, and Ry,
denotes Voiculescu’s R-transform of A(u):

* _ 1
C*(n) =InF, and Ry, = GA(lﬂ) () — 2

where F,, is the Fourier transform of u, and Ga(,) the Cauchy transform of

A(p).

It turns out that A(u) is freely infinitely divisible: for each k there exists
a probability measure v, such that A (u) = v*, where B denotes the free
convolution. The Bercovici-Pata bijection has many interesting features, among
them the fact that A (u) is freely stable if p is stable, and A (p) = SC(0,1) if
w=N(0,1). The reader who is not very familiar with free convolution or the
Bercovici-Pata bijection will find in [3] a most informative exposition of the

subject.

The aim of this paper is to propose a new kind of matrix ensembles; between
classically and freely infinitely divisible laws connected through the Bercovici-
Pata bijection, those ensembles establish a sequence similar to the Gaussian
Unitary Ensemble between the Gaussian and semi-circular laws. More specif-
ically, we will show that, for each integer n and infinitely divisible law u, an
Hermitian random matrix X 7(1“ ) of size n can be produced such that its empirical
spectral law fi,, satisfies

Eofi; = p and lilf fn =A(u) as. (I.1)
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This main result of our paper is stated in theorem III.2. We hope to have
achieved this goal in a rather canonical way, even if X}«LN(O’D) is not equal to
W, but to a slight modification of it. Here are two facts which may justify this
opinion:

1. For infinitely divisible measures with moments of all order, it is easy to
describe the Bercovici-Pata bijection by noting that the classical cumu-
lants of p are equal to the free cumulants of A (). We will define some
kind of matrix cumulants, directly inspired by Lehner’s recent work ([18]),

(1)

n

and with the property that the matrices X, "’ have the same cumulants

as [

2. If p is the Cauchy law, then the classical convolution px and the free
one uH coincide. We will prove a simple but somehow surprising result,
namely that for each n they coincide also with the convolution with respect
to X .

Using these Lévy matrix ensembles as a link between classical and free frame-
works, it is natural to expect to derive free properties from classical ones. For
instance, there is an intimate connection between the moments of a classically
infinitely divisible law and those of its Lévy measure. We shall present here how
this yields an analogous result in the free framework.

The rest of the paper is organised in 4 sections. Section 2 is devoted to the
definition of our matricial laws and their elementary properties. Section 3 states
and proves the main theorem: the almost sure convergence of the empirical
spectral laws. The proof is based on stochastic ingredients; it first establishes
a concentration result and then determines the asymptotic behaviour of the
Cauchy transform of the empirical spectral laws. This approach differs from the
moment method used by Benaych-Georges for studying the same matrices (cf
[5]). Section 4 presents further interesting features of these matrix ensembles,
concerning the cumulants and the Cauchy convolution. And section 5 explains
the application to moments of the Lévy measure.

Acknowledgements. The author would like to thank Jacques Azéma, Flo-
rent Benaych-Georges and Bernard Ycart for many interesting discussions and
suggestions.

II New matrix ensembles

Notations

e The set of Hermitian matrices of size n will be denoted by H,,, the subset
of positive ones by H;.

e The set of the classically infinitely divisible laws on R (resp. H,,) will be
denoted by ZD, (R) (resp. by ZD. (Hy)). The set of the freely infinitely
divisible laws on R will be denoted by ZDg (R).

e The normalised trace on square matrices will be denoted by tr, (with
tr, (Id) = 1).
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II.A Definition

Let X be a real random variable with distribution u € ZD.(R), and ¢® be its
Lévy exponent

E [e“‘x} — e,
By the Lévy-Hingin formula, there exist a unique finite measure a(k# ) and a
unique real 7" such that

_ too ith \ 1+12
tp(“)()\) :wiu))\_F/ (e N 1+t2> 2 o-,(f‘)(dt),

— 00

with the convention that

Jh itA 1—|—t2’ _»
1+t2) 2 li=o 2

Conversely, pu.(v, o) denotes the classically infinitely divisible law determined by
~v and o, and for the sake of simplicity we shall write ¢(7?) instead of @(#=(7:7))

Let V,, be a random vector Haar distributed on the unit sphere Ss,,_1 C C™.
Let us define for every Hermitian matrix A € H,

P(A) = nE W) (Vi AV,))]
= i’yﬁ”)trA
+o0o . 2
it(Va, AV | _ it 1+t*
—1—/_00 <n (E [e } 1) 1+t2trA> O (dt),
with the convention that
. 9 )
n (IE {eit(v”“Av")} — 1) — —Zt trd —1 te = 7w,
1+ ¢2 t2 =0 2

Due to the Lévy-Hingin formula, gp%“ ) is the Lévy exponent of a classically

infinitely divisible measure on H,,, which will be denoted by A,, (). This means:

VA€ Mo, An(p) (exp (itrA-)) = exp il (A)

The following properties are obvious:

Properties I1.1 1. A, (p) is invariant by conjugation with a unitary matriz.

If X" has distribution An(p), then tr X" has distribution W
If p,v € ID.(R), then Ap(p) * Ay (v) = Ap(p* v).
If D, denotes the dilation by ¢, then D A, (1) = Ay, (Depr).

If 1w = b4, then Ay (p) = dar,,, where I, is the identity matriz.

S S o e

If p is Gaussian (resp. stable, self-decomposable, infinitely divisible) then
s0 is Ay ().
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II.B Explicit realisation

The following proposition describes how to construct a random matrix with
distribution A, (u) using p-distributed random variables:

Proposition I1.2 Let us consider a probability measure p in ID.(R), a positive
real s, n independent random variables \1(s),..., A\n(s) with distribution pu*®,
and the diagonal matriz L(s) with diagonal entries (A1(s),..., n(8)). Let U be
an independent random matrix of size n, Haar distributed on the unitary group
U(n), and M be the Hermitian matric UL(s)U*. Then Ay (p) is the weak limit
of the law of Z 1 ) when p tends to infinity, with (M(k) k=1,... )

independent replzcas of M1 .

We would like to explain how this realisation suggests our main result (cf
(I.1) and theorem III.2), just by letting the dimension n tend to infinity be-
fore letting the number p of replicas tend to infinity. Because of the law of

large numbers, it is obvious that the empirical spectral law of each matrix M ik)
P

SR . k :
converges a.s. to u*?; since these matrices Mi )7k: =1,...,p are also conju-

P
gated by unitary independent matrices, they are (in a way which remains to
be specified) asymptotically free (¢f proof of lemma V.4); hence, as n tends
Hp
to infinity, the asymptotic law of > F_, Mik) is likely to be (M*%) ; now, let
P
p tend to infinity; it is an immediate consequence of theorem 3.4 in [7] that
Hp
limy, 4 o0 (,u*%> = A (p) : this is precisely what is expected to be the limit

of the empirical spectral law associated to A, (u) in theorem I11.2.

Proof of proposition II1.2. We only need to prove the convergence of the
characteristic function

[exp ( <Az w))] B o (sr (401,))]”

Notice that

S|

E[exp(itr(AM ))} = Elexp (itr (AUL (1/p)U™))]

= lexp (zi (U*AU )M 1/@)]
=1
= lexp( 2"290 U AU ll))

=1

SE R
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Therefore, noting that ¢ is locally bounded for an infinitely divisible law g,
we obtain:

P
: (k) _
exp (ztr <AZM}J ))] = pEmOOE
k=1
= exp(

nE w Vi, AV, >)D

oo ]
- oo 1)

lim E

p——+00

exp < ng ((U*AU) ll))]

)

w(“) (UTAU)11)
=1

Remark. This explicit realisation has been used by Benaych-Georges in [5]
to establish convergence results and to deal with the non-Hermitian case.

II.C Examples
o If t=N(0,1), we get:

@%M(A):%E[WWAV@ :f—]E (Z%m) :

where aq, ..., a, are the eigenvalues of A, and v, ..., v, the entries of the
random vector V,, Haar distributed on the unit sphere. Now, using for
instance [14] proposition 4.2.3, we know that:

2
= ey
E [jui2lo;]?] = m if i # .

Therefore, we obtain:

U0 (A) = Z Xn: } 2_ L tr(4%) 1 (trd)?
¥n n—l—ll 2n+1 Yl T 2 n+l 2

=1

This implies that A, (u) is the distribution of

n 1
(| ——= Wy + 1/ ——91,
n+1 + n—|—lg

where W, is the Gaussian random matrix described in the introduction,
and ¢ is a centered reduced Gaussian variable, g and W,, being indepen-
dent.

o If i is the standard Cauchy distribution
1

p(de) = mﬁl%
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then (") (\) = —|\|, and

S(4) = —nE [|(Vi, AV,)] = —nE l

n
ZailviIQH ,
=1

the notations being the same as in the previous example. This can be
evaluated using the general method proposed by Shatashvili (¢f [22]):

" a ay|
nE[[(Ve, AVy)l] = T
=1 Hm;él (a‘l - (lm)
1 1 e 1
a1 as “en (o7
a1111—2 a31—2 . a:lz_2
L@l @ el - aya)
1 1 e 1
ai a9 cee an
a?—l ag—l . ag—l
where aq,...,a, are the eigenvalues of A. There is a remarkable con-

sequence of this formula: if we denote by XU a random matrix of law
A, (), then we have

(1) (; ) — x4
(Xn+p(z,]) Lcijen X in law.

Such a property appears usually with a normalisation coefficient; but here
there is none, as if u were a Dirac mass.

e If 41 is the standard Poisson distribution, then p(*)()\) = e'* — 1 and
gogj‘) (A) =nE [eiW’“AV’") — 1] )

Due to the Lévy-Ito decomposition, there is a simple explicit representa-
tion of A, (u). Let (X(s),s > 0) be a standard Poisson process, and let
(Vo(p),p € N) be a family of independent unitary Haar distributed ran-
dom vectors, (X (s),s > 0) and (V,,(p),p € N) being independent. Then
A, (1) is the law of

(n)
> Va@)Valp)
p=1

In [19], Margenko and Pastur studied a very similar set of random matrices,
precisely of the form

> Vap)Va(p)*

p=1
with ¢/n converging when n tends to infinity. It appends that both families
of random matrices have same asymptotic empirical spectral distribution,
the Marcenko-Pastur law or free Poisson law.
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III Convergence to the free Lévy laws

III.A The Bercovici-Pata bijection

Let us consider a real v and a finite measure o on R, and let pu = p, (v,0)
be the associated classically infinitely divisible law with Lévy exponent ¢(7:7).
Then its image through the Bercovici-Pata bijection is the probability measure
on the real line A(u) such that (c¢f [7])

T L4t
1—tz

vze Tt R(A()(x) =7+ / o(dt),

— 00

where R is Voiculescu’s R-transform. The mapping A is a bijection between
classically and freely infinitely divisible laws (¢f [7]). Moreover, it has the
following properties which we shall recall for comparison with properties I1.1:

Properties II1.1 (¢f [3], [7])

1. If p and v are freely infinitely divisible measures, then A(p) B A(v) =
Alpxv).

2. If D, denotes the dilation by ¢, then D.Ay (1) = A (Dep).
3. If = bq, then A(p) = dq.

4. If p is Gaussian (resp. classically stable, classically self-decomposable,
classically infinitely divisible) then A(p) is semi-circular (resp. freely sta-
ble, freely self-decomposable, freely infinitely divisible).

For instance, if p = AN(0,1), then A(u) = SC(0,1), as has been already
noticed. If p is the Cauchy distribution, then A(p) = p. If p is the Poisson
distribution with parameter 8, then A(u) is the Margenko-Pastur distribution

(x—1-10)°
Dy 1[(1—\/5)27(1+\/§)2} ()

A(p)(dz) = (1 —0)" do(z) + \/46 — dx.

We can now state the main theorem of the article:

Theorem II1.2 For any probability measure p in ID, (R), let X be a ran-
dom matriz defined on a fized probability space (2, F,P) and with distribution
Ay (n). Then its empirical spectral law fi, converges weakly almost surely to
A (p) as n tends to infinity.

The proof of this theorem is based on semigroup tools. A Lévy process can
be associated to each matricial Lévy law. Its semigroup is characterised by an
infinitesimal generator with a rather simple explicit form. This will be a key
ingredient.

III.B The infinitesimal generator

Let v be areal, let o be a finite measure on R, let u be the probability measure in
ID.(R) such that g = p. (7y,0). Let A, (1) be the associated infinitely divisible

law on H,,. Then there exists a Lévy process (X,g") (8),s > 0) such that X,S’L)(l)

639



has distribution A, () (see e.g. corollary 11.6 in [21]). The corresponding
semigroup will be denoted by PSA nlh),

VA€ H,, PIOI(1)(4) =E [ (X0 () + 4)]

The following formula is a classical result of the theory (see e.g. theorem 31.5
in [21]):

Proposition II1.3 The infinitesimal generator .AS{L) associated to the semi-
group (PSA"(’L)7 s> 0) has core C3(Hyn,C) - the set of twice continuously differ-
entiable functions vanishing at infinity - and is defined by

Vf € Cg(Hn,C), VA € H,,

AW (F)(4)
— adrin) + |

— o0

= AL+ 5 S R IEIE + Y BB

+o0 t

142

(n ELf (A +1V,V)] - £(4)) df(A)[In]>

t 1+ t2

+/ (”“E[f (A+tV, V)] = f(4) —df(A)[In]> o).

142

Remark. If a function f € L(R,R) is differentiable, and if we extend its
domain to H,, using spectral calculus, then df (A)[I,] = f'(A).

III.C A concentration result
The first step of the proof of theorem III.2 is to establish a concentration result

for the empirical spectral law, which has some interest by himself.

Theorem II1.4 Let i be a probability measure in TD,(R), and let (Xffb)(s)7 s>
0) be the Lévy process associated to distribution A, (p). Let us consider a
Lipschitz function f € L(R,R) with finite total variation, and let us define
f = tr,f € L(Hn, Hy,) by spectral calculus. Then, for all T,e > 0, there
exists 6.(T) > 0 such that for each n > 1

P (‘ Fo (X,QM(T)) _E { Fo (X,gm (T)):| ‘ > a) < 9ede(n),

Moreover, 6.(T) is non-increasing in 7.

We need a preliminary lemma:

Lemma II1.5 Let f € L(R,R) be a Lipschitz function with finite total varia-
tion. We shall set

TOZTON wna = sw 3016w~ Sl

21<y1 <z < <yp =1

1£ll% = sup
T#yY
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Then for all A, B € H,,, we have
rg(B)|lf1lh

IBIl1lf 1l

trf(A+ B) —trf(A) <

with ||Bl|y = tr|B|.

If we replace ||B||1 by +/rg(B)||B||2, then the second inequality reduces to
the one already established in a similar context by Guionnet and Zeitouni in
lemma 1.2 of [13].

Proof. We only need to prove the lemma for B non-negative of rank one,
then the result follows by an immediate induction. Let A\; < --- < A, and
p1 < -+- <y be the eigenvalues of A and A + B respectively. Following Weyl’s
well-known inequalities (see e.g. section II1.2 of [8]), we have that \; < p; <
Ao < - < Ap < . Therefore, we get:

trf(A+ B) —trf(A)] =

Zf(ﬂz‘) — f(X)
i=1

IN

> 1) = SO0
i

iz i = Ml (1Nl = 12250 i = Al - 1 £ 115
= [trB| - [[fll% = Bl fll%

IN

Proof of theorem II1.4. We will use semigroup tools to establish the con-
centration property. This method is well-known, see e.g. [16].

We can assume that 7 = 1 and E [f(”) (X,(l”)(l)ﬂ = 0. Let us define for
any A € R and s € [0, 1]

dr(s) = PAn(1) (exp (A P f(m))) (0).
Notice that

6:(0) = exp (AE [ (x09(1))] ) = 1 and g2(1) =B [exp (A (X P (1))]
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Since the semigroup (Ps Anl) o > 0) and its generator A commute, we obtain:
Ph(s) = PSA"(“) OA%“) (e,\PlAjgw(f(n))) (0)

) (A AW o pAn() (£ APA"“”(M)) (0)
= Py (7/\0[ (Pll\_ns(ﬂ)(f(n))) () [1,] AP (£
+/+oo (n (E |:e)\P1A1LS(H>(f(n))('+t%lvyj):| _ e}\PlA:LS(M)(f(n))>

A (PG 050 ) ot ) 0

1+t2
_pAa) (’y/\d ( pieln( f(n))) (YL P ¢

- * L n An (1) ¢ £(n)
+/ ( ()\E[ phAn (M)(f(n )(thVnVn)} *)\PlA,nS(l)(f( ))) AP (1)

L (PEO) ] A0 L ) o)

14¢ 12

+00 w00 gy L+ 12
P <n/ E[U(s,t,Va,-)|e APAR () (p(n)y :_ (dt)) (0),

where we set
An (1) (m)y(. x\_ pAn(p) (n)
\IJ(S,t,Vn, ) _ e>‘<P1—sM (FONCHVR V) =P (f )) 1—\ ( A (H)(f(n))( LV, V ) A (H)(f(n)))

Now, due to lemma III.5, we have:

[P (FO) (v, V) — PRI (F)] < = (IlleMtIIIfH’)

2
Therefore, since e* — 1 —u < “76“ for all u > 0, we get:

A2 SN
(s, Vo )| < 2y (112 ARIF2) RV,

We can then infer that

A2
$x(s) < %6"””'1%( s)C(I£F11, 1£11%)

for a function C' defined by

C(a, B) = /_Jm (a® ANE257) lj—fa(dt).

By integrating ¢ (s)/¢a(s), the preceding inequality results in:

or(1) < exp (ien'f'10<||f|1, T >)
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[ From this exponential inequality, we can deduce that, for all € > 0,

P (f(n) <X£#)> > 5‘) E [e”(")(xy(lm)_ks] = oa(l)e™

IN

IA

A2 Ay
exp (5 eF RO 1) - 2o

But let us remark that

AER

2
it (5 cRICAI 1) ~ e ) = -nac(0),

where (1) is defined by

A2 /
5.(1) = sup (——eﬂf'10<||f||’1, 1Al + As) >0
AER 2

Hence
P (fm) ()QH)) > E) < e o),

Furthermore, applying this inequality to —f, we can deduce:
P <|f(n> (Xff‘)) | > 5) < 9¢md(1),

To conclude the proof, let us notice that
A2 I, i
0c(7) = sup { =7 RC(f]1, I flloc) + A )
AR

which is obviously non-increasing in 7. ]

III.D Proof of theorem II1.2

We need two preliminary lemmas:

Lemma II1.6 Let pu be a probability measure in D, (R), let XT(L“)(S) be a ran-
dom matriz with distribution A, (1*%), Ai(s),i = 1,...,n its eigenvalues, and let
(vi,i =1,...,n) be an independent random vector Haar distributed on the unit
complex sphere. Then, for any Lipschitz function f with bounded variations,

> |vi|2f<Ai<s>>] H —0.

i=1

n

> uil® fAi(s) — E

i=1

lim sup E
"m0 se(0,1]

This is a consequence of the concentration result of section III.C, and of the
concentration property of the law of (|v;|?,i =1,...,n).

Proof. If ¢ € L(C™, R) is a Lipschitz function, with Lipschitz constant ||9||.,
then (¢f e.g. introduction of chapter 1 in [17]),

s 2n — 2
Py (v1,...,0,) —my| > € g,/—exp(—é:Q),
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where my, is a median of ¢ (v1,...,v,). From this we can deduce that

+oo
IE[w(v1,-~-,vn)—m¢]|§/o P9 (01, 0n) —my[ > e) de < 2\/—Ilwlloo

Therefore, we get the following inequality:

P (14 (01, ., 00) ~E[ (01, .., 0n)]| > &) < Cexp (—2”1;”1) ,

for some constant C. Now, for any v = (u1,...,u,) and v’ = (u},...,u}) on

the unit complex sphere, we have:
n n
()] <D s = s + - flloo < 20 Fllowy | D Jui = .
i=1 i=1

e Z|u’| F

Therefore, (A1(s), ..., A (s)) being fixed, the function >, lui|® f(Ai(s)) is Lip-
schitz in (u1,...,uy,). Hence,

P<\z$_1 [0l Fi(5) = B [0y [l FO() () An(s)]| > ¢
< Cexp (—ﬁg)

and

( Z \v1| f(A ‘)\1 )\n(s)] > E) < Cexp (—ﬁg) .

Notice that E [ [6if” f(i(5)[Aa(s), - Au(s)] = £ 2y Fils) = S (X (5)),
where f(™ is defined as in theorem II1.4. From this theorem, there exists
d-(1) > 0 such that for all s € [0,1]

P (£ x(s) ~E[1 (X (5))]| > £) < 2exp(—né.(1)).

We can then infer that:

A1(s), .. .,/\n(s)>

sup P ( > luil* f(s)) — E lz |Uz‘2f(>\z‘(8))1 > 25)

s€[0,1] =1 i=1

< sup P Zm\ F(A E[ZW FA ‘)\1 )\n(s)] >5>
+ sup P ([£0(X, s ))—]E[f(")(Xn | >s)

s€[0,1]
-1
< Cexp (—;Waz) + 2exp(—nd.(1)).

To conclude the proof, just remark that

Zlvi\Qf(Ms)) l il £ (A m
12 FOA lme ]

< 26 42| fllooP

>25>.
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(From this inequality, the result of the lemma can be deduced directly. O

Lemma III.7 Let us consider a complex ( € C\ R, the function fc(z) =
(¢ —2)7, an Hermitian matriz A with eigenvalues A1, ..., \n, a unit vector
V=w,i=1,...,n) € C", and a real t. Then

2
n i
Zi:l %

Proof. First notice that we can suppose A to be a diagonal matrix. Then,
due to the resolvant equation, we obtain:

(C—A—tVVH) I ((—A) ' = (C-A) (1 —-tVV*(( - A)—l)‘1 tVV*(¢=A)~L.
Now, for ¢t small enough, we have:

Q-tvviC -4 = 14+ (Vv - AT
1+ ﬂ_/V*(C — AT (V¢ - A)‘lV)i

i>0

1
1—tV*(¢— AV’

1+tVVH(¢— A)7!

The last equality can be extended to any value of t. Therefore

S (A+ V) —tefe(A) = o (V¢ A2 1=V - )T TY)
1
-tV (- A1V

= V(-4

Proof of theorem II1.2. Using the notations and definitions of the two previ-
ous lemmas, we are going to prove that the empirical spectral law fi,, of X )(1)
converges weakly almost surely to A (i). Due to the concentration result of sec-
tion III.C, what remains actually to be established is the convergence of E o fi,,
to A ().

Step 1. For any z = a+ib with b > 0, let us define f,(z) = (z—x)~!. We shall
denote by fz(n) the functional Ltrf, defined on H,, and by /\gn)(s), .. ,/\%n)(s)
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the eigenvalues of X,(L”)(s). Due to lemma II1.7, it is easy to check that

A (£ (X9 (s))

=7 > m + / E fjt—ﬁ%B(s) QIO AS%)] o(dt)
= 0.0 (X)) + [ B %B@ A (s), o A <s>] o(dt)

where A(s) and B(s) are defined by

and (vy,...,v,) denotes a random vector, Haar distributed on the unit sphere
of C™.
Set (™) (z,5) = PSA"(“)(fé"))(O) =E [fz(n) (X,(L”)(s))} This is the Cauchy

transform of the empirical spectral law of Xy(l” )(s) Then

0™ (2,5) = E[AP (F7) (X0(s))]

= *’Yazz/ﬂ")(z,s)Jr/IE { L+ As)

&[5 otan. @y

Before going any further, it is time to explain intuitively the proof. The
Cauchy transform ¢ (z,s) = A (1*°) (f,) of A (u*®) is characterised by ¢(z,0) =
271 and (c¢f [6], or lemma 3.3.9 in [14]):

t+9(z )

1— tw(z, S) 621/)(2, S)U(dt)~ (IH?)

0u0(215) = —0.0(:.5) - [
Let us denote by p'™ the (expected) limit law of L 37" 4y () as n tends

to infinity, and by () (z,s) = ugoo) (f.) its Cauchy transform. Then, fol-
lowing lemma IT1.6, A(s) converges almost surely to ¢(°)(z,s) and B(s) to
—0,1)(>°)(z,5). Therefore, if we replace A(s) and B(s) in equation (ITI.1) by
their limits, we remark that (> is expected to satisfy the same equation (III.2)
as 1. Hence 9(>) ought to be equal to ¢ and u2° equal to A (u**).
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Step 2. Following the previous heuristic hint, we would like to evaluate 959 (z, s)—
D51 (2, s) using equations (IT1.1) and (IT1.2):

Bs(z,8) — 051 (2, 5)
S (azu)(z, s) — 0.9 (2, S))
+ (azzp(z, 5) — 8,9z, 5)) /}R%

n t+(zs) 9" (z5)
+0.9 )(2,8)/]R (1 —t(z,s) 1t¢(”)(2,5)> 7

o(dt)

Let us consider zo = ag+iby with by > 0, and let us introduce (¢(s), s > 0) such
that

¢0) = =
s) = v+ /}R %a(dw. (I11.3)

_ t—i—w(z,s)g
: 7+/R17tw(z,s) ()

is locally Lipschitz on C \ R, as composition of locally Lipschitz functions. In-
deed,

~ |3
»
~—

The mapping

t+z t+ 2 , 14 |z2]
— <lz—2| o(1)— 1= 1
/R 1 —tza(dt) /R 1-— tz/a(dt)’ < lz =2 )|S(z)%(2’)|7

(where $(z) = (2 — 2)/2) and
1

S(2)S(=)

[¥(z,8) — (&, 8)] < |z = 2]

Therefore, there exists a unique maximal solution to the preceding differential
equation (IT1.3), since we have supposed (¢(0)) = by > 0. Now let us remark
that

t+9(¢(s),9)
1= tp(C(s), 5)

following equation (III.2). Hence, we can deduce that for any s > 0 such that
¢(s) is defined, then

By (4 (C(5), 8)) = DL (0)(C(5), 8) 40 (B) (< (s), 8) (7 - [ o(dt>) 0

1+tz
Zo—t

(C(5),5) =1 ((0),0) = — and ¢'(s) :”/R

o(dt).
20

In particular,
1+¢2
(93 / [
) = b | o).
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This integral vanishes when by tends to +oo uniformly for ag in a compact set.
Thus, for any b; > 0 and any compact set I’ C R, there exists a threshold S
such that for any ag in F', any by > S and any s in [0, 1], one has:

(¢ (s)) > br.

Moreover, we can infer that for any pair (by,be) with 0 < by < by, there exists a
compact set K C C whose interior is non empty, such that for any zg = ag +1ibg
in K and any s in [0, 1]

|bo| 1 1 1
< — and = < —.
a0+b2 b al W)( ( ) )| \/m bl

1
S(¢(s)) > b1, b < 1S ((¢(s), ) =
For the rest of the proof, we shall suppose this property to be satisfied.

Step 3. We now focus on the evaluation of 1 ({(s),s) — 1™ (((s), s):

%(wm )= (C(s), >)
Y LE(C(s)s) (), 8) )
- o O T~ Tt @

| (ff Zfiil’i (535:?) oot 5[ 12 0]

1+t2

= 04 (C(s),8) (¥(C(s), ) = B (C(s), >)/ — 1 (C(s),5)

+/IE [B(S) < t+¢<n)(<(s),s EA(s )(1] » ) (1=t (C(s), 5))
R
)

11—t (C(s),s) 1—tA(s

t+ M (((s),5) n
+ [ e o >< (),5) = B(s)] o(dt).
But from inequalities
1 z t 1
’1—tz S‘%(z) and ’1—tz SEOk
we can establish the following upper bounds:
DI £ G S
L _ L)) 5|
(1= t(C(s),8) (L=t (C(s),8)) |~ [ (0(¢(5),9) S (M(((s),9))]
) 1+ 3
T IS @™(L(s),9))|
L)) | L+ T
L—tp™(C(s),s)| S (@™(C(s),9)| ~ | (@™ (C(5),9))

648



g EEYE(s)s)  tt Als)
1- tp((((s),s) 1—tA(s)

= |A(s) =" (¢(s), 5) -'B(S)

1+t
(1- tA(S)) (1=t (¢(s),9))

§4M@—¢W@@xﬁowwnp

< A(s) = " (((s), 5) | 1= 1 <b1%+1>’

the last inequality coming from

n

Going back to 9 (C(s),s) — (™ (¢(s), s), it follows from the preceding bounds
that

d c

7 (€09 = €00)| < ey [ — o)
D
NECRIEom H48‘¢w““*@H

FE
mwwmm<»>ME[

where C, D, E do not depend of n nor s. From Gronwall’s lemma, those in-
equalities provide the following bound

0.0 (C(s).5) ~ B(s)||

[ (Cs). ) =¥ (C(5), )

(I11.4)

< (D sup E[’A(u)—w(")(g(u),u)u +E sup E[

u€l0,s] u€l0,s]

@wm@w»w—Bwﬂ>

1 C
if 00 S (GO (Clw),w)] (SinfueULﬂ|€r(¢ﬂn><<(u),u>)|> '

X

Step 4. We now have to find a lower bound for | (v ™ (((s),5)) |. Let us
consider an interval [0, s] such that inf,co ) |S (v ™ (¢ (w), u))| >0
in particular for s = 0, because ¥(™ (¢(0),0) = 1/zp). Since

(¢ (u),u) = E[A(w)] and 8.4 (((u),u) = E [B(u)],

we can infer from inequality (IT1.4) and lemma IT1.6 that (™ ({(s), s) converges
to ¥ ({(s), s). Let us recall that

(this is true

. 1
it B 2 5 >0
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Hence, there exists ng such that for any n > ng, |% (1/)(”) (C(s),s))| is larger

than —211)2.
Let us notice now that
s+h d (n)
—p\" t),t)| dt|.
/S dt¢ (C( )7 )

S (8Os 4w+ )| =[S ($0C(s),9)) | -

for all h > 0. It is easy to see that

d%w(g(u),u) ()2 (¢ () w) + E [AL (£()) (X9 )]

is uniformly bounded in n and u by some constant ¢ smce $(¢(u)) > by. This
implies that | (¢ (((s + h),s + h))| is larger than 4b for all h € [0,1/(4bac)].

Using repeatedly this trick, one proves that inf e[ 1] }\y (7,[1( (C(u),u))| >0

(u)
for all n large enough. Consequently, following (II1.4), (™ (¢(1), 1) converges
to 1 ({(1),1), for all initial point ¢(0) = 2z in K.

Step 5. The set of non-negative measures with total mass less than 1 is
compact for the topology associated to the set Co(R) of continuous functions

vanishing at infinity. Let (Eo (é S §A<np)(1)) D> 0) be a convergent
sub-sequence of (]E o (% Py (5)\@)(1)) ,n > 0), with limit v; then the Cauchy
transform (") (((1),1) of Eo (i e o

- is convergent to the Cauchy
P

AP (1)
transform v ( fg(l)) of v. Therefore v ( fg(l)) is equal to the Cauchy transform
¥(€(1),1) of A (u). Let us remark now that

14tz
(=204 [
R Zo—t

o(dt)

As zp = ¢(0) runs over K, (1) runs over a set whose interior is non empty.
Due to the maximum principle, this implies that v (f,) = ¥(z/,1) for all
z' € C with $(2’) > 0. Hence, v is equal to A (u). This gives that there is
only one accumulation point for the sequence (E o (% > (5>\<n,)(1)) ,n > 1),
hence this sequence is convergent w.r.t. the topology associated to Cy(R).
Since this topology coincides with the weak topology, we can conclude that
(]E o (% Dy (5>\<n>(1)) ,n > 1) converges weakly to A (u).

Using the concentration result in theorem II1.4, and the Borel-Cantelli lemma,
it is now easy to check £ 3" | f. (/\Z(-n)(l)) converges a.s. to A (u) (f,) for all
z in a fixed dense denumerable set in C. Following same arguments as before,
chis implies that (ﬂn = % S 5/\5n>(1),n > 1) converges weakly a.s. to A (u).

IV Some other properties

IV.A Matrix cumulants

If a probability measure p in ZD,(R) has moments of all orders, so has A ().
Moreover, there is a simple characterisation of the relation between p and A (p),
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first remarked by Anshelevich in [1]. If we denote by (cj,p > 1) and (c;',a, p>1)
the classical and the free cumulants respectively, then

Vp=1, ¢ (p)=c,; (Ap).

Our aim in this section is to show that this property can be extended to A, (u).
We first need to define matrix cumulants, and in so doing we shall be inspired
by a recent paper by Lehner. In 1975, Good remarked that

p p
k=1

where the X®) k= 1,...,p are i.i.d. random variables with distribution p (cf
[11]). Lehner has established the corresponding formula for the free case (cf

[18)): )
&z :17' 3 (k) 125
(e |

where the X®) k& = 1,...,p are free random variables with distribution .
This suggests the following definition of a matrix cumulant of order p for a
distribution p on H, which is invariant by unitary conjugation:

P
1 P ok
cl(,") (n) = ]—QE ltrn (Z X(k)eﬂpk> ]

k=1

where the X®) &k =1,...,p are i.i.d. random matrices with distribution .

Remark. Unlike the classical and free cases, these matrix cumulants do not
characterise p, nor its empirical spectral law.

Proposition IV.1 Let u be a probability measure in ID, (R) with moments of
all orders. Then

Vnp =1, () = ) (A (1)) = ¢ (A ().

Proof of proposition IV.1. The explicit realization of law A,, () (¢f section
II.B) could have been used with some combinatorics, but it is easier to adapt
the simple proof of Good’s result due to Groeneveld and van Kampen (c¢f [12]).
Recall that

w(exp(iX-)) = exp (4,0(“) (/\)) = €xp Z iqq#c;(ﬂ)

g>1
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Let us consider p random matrices Xflk),k =1,...

A, (p). We can then infer that

oo s (5 05 )

,p ii.d. with distribution

Il
s

B [exp (ie" 5 tr (4xV))]
)

o (5 9 15 1,0

>
Il
—

I
i~

>
Il
—

I
E‘U

k=1
P 27k
zqel v 4
= H exp [n ) E [(Va, AV,,) )]
k=1 q>1
P S 27k
= exp nz—c E [(Vi, AV,,)9] (Zezpq> ,
14 k=1

where V/, is a unitary uniformly distributed random vector on C™. Now > 7 _; 5 =
p if g is a multiple of p, and it vanishes otherwise. Therefore

o)) -

=exp | np Z

q>1

(Vs AV )P]

Cpq

But, denoting by a; ; the entries of the matrix A, we obtain:

p p
o(3oae )|
k=1

27rk
i1peensip=1eeesm 4o
= Z iyig ©°0 0 aaip=i1 €xp npz q! P(I V"7AV >P¢Z]
i1yemsip=1,...m Aso =1
o,
= np—,cp(ﬂ) Z aail,i2 0--+0 8aip,i1E [<V7l7 AVTL>p]
P i1,..,0p=1,..,n
1s-ee5tp (AR}
P iP
= np—cy(n) Z E [Jvg, ... v, [*] = np—c, (k).
p! = p!
Lyeens ip=1,..., n
In other terms, we have established that
p P
omk .
cz(,") (An (1) try, (Z XMt > ] = cp(p).
k=1
O
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IV.B The Cauchy matrix

The Cauchy distribution is a meeting point between classical and free probabil-
ities. It is 1-stable in both cases, and it has the same convolution kernel. Let
us develop the latter point. Let C be a real even Cauchy variable with param-
eter ¢, and let U be another random variable. Then for each Borelian bounded
function f, we have

E[f(C+U)U] = P:(f)(U)

whether C' and U are independent or free, if E[-|U] denotes the orthogonal
projector onto L?(U) and P. the convolution kernel such that P. (f)(x) =
Je F @ —Y) sz -

Due to this property, the Cauchy distribution is very useful for regularizing
in free probability, since ordinary free convolution kernels are much more com-
plicated (¢f [9]). The question arised whether there were a family of “Cauchy”
matrices with the same property, being a link between the classical case (in
one dimension) and the free case (in infinite dimension). This is the original
motivation of our introduction of the new matrix ensembles A, (u).

Theorem IV.2 Let p. be the even Cauchy distribution with parameter €
€
dr) = ———d
peldr) = —oa e

and let C,, be a random Hermitian matriz of law A, (ue). Then, for each Her-
mitian matriz A and each real Borelian bounded function f, we have

E[f(A+Cn)] = P(f)(A).

Lemma IV.3 Let M = (M, ;)};_, be a square matriz of size n, such that
M = A+ iB for some A € H,, and B € H,}. Then

det(M)
| ——~— 0
N <det<M<M>>) -

where MMV denotes (M; )7 o

Proof. The eigenvalues of M have a positive imaginary part. Hence M is in-
versible, and the eigenvalues of M ~! have a negative imaginary part. Therefore

1
det(M 1) 1 |0
_—_— = M7 = ]_ 0 M 0 Mﬁ

det(M) ( ) 1,1 ( )

0
has a negative imaginary part, which proves the lemma. O
Lemma IV.4 Let A\1,..., A, be n real independent even Cauchy random vari-
ables with parameter 1, let A be the diagonal matriz with A1, ..., A, as diagonal

entries, and let U be an independent random matriz Haar distributed on U(n).
Then
E|(A+iB—cUANU*) "' | = (A4 iB+i|cI)™"

orall A€ H,, BcH}', and c € R.
[

n’
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Proof. This is an elementary consequence of the following result: if 3(z) > 0,

then we have ) )
E = .
[z—c)\l} z + ilc|

More generally, if f(X) is a rational fonction with numerator’s degree less
or equal to denominator’s degree, and whose singularities are all in C; =
{z € C/S(z) > 0}, then

E[f ()] = f(=9).

Let us introduce
R(U M, ..., \n) = (A+iB = cCUAU*) ™" = U (UAU +iU*BU — cA) ' U™

For symmetry reasons, we can assume ¢ > 0. Define M = U*AU + i{U*BU —
cAVit where AVit is the diagonal matrix whose upper left entry has been can-
celled. Then the entries of (A +iB — cUAU*)™" are rational fonctions in Ay,
with det (A +iB — cUAU*) = det(M) — ¢\ det(M 1) as denominator, and
with pole %%, whose imaginary part is positive, following lemma IV.3.

We can then infer that:
E[R(U, A1y, )|U, A, .oy An] = R(U, —i, Mg, ..., A).
Repeating this argument, we can deduce
E[R(U,A1,...,\n)] = E[RU, —i,...,—1)]
= E|U@U*AU +iU*BU + icI)™" U*] = (A+iB +icl)"" .
O

Using the same tricks, we can establish the following generalisation of the
previous lemma:

Lemma IV.5 Let Ay,..., A, be independent replicas of the preceding matriz
A, let Uy, ..., Uy, be independent random matrices Haar distributed on U(n), let
Aq, ..., Aq be Hermitian matrices, let By, . .., By be positive Hermitian matrices,
and let o, j=1,...,m;k=1,...,q be reals. Then

—1 —1
q q m

E H Ak—i—in—ZOéj,kUjAjUf = H Ak+in+iZ|O‘j,k|l
k=1 j=1 k=1 j=1

Proof of theorem IV.2. Due to linearity and density arguments, we only
need to check the desired property for the function f,(z) = Zim. We can

suppose (z) > 0. Now, due to lemma IV.4, with its notations, we have for all
Hermitian matrix A

—1
19 Ui % . —1
E zIfAfaZUjAjUj = (2] — A+iel)™".

Jj=1

Therefore, since C,, is the limit in law of e - Z;n:l U;A;Us when m — +oo (cf
section II.B), we can deduce that:

Elf(A+Cp)] =E [(zI = A= Co) 7| = ((z + i) = 4)™" = P.(f2)(A).
O
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V Application: moments of the Lévy laws

Using matrix ensembles, it is tempting to try to transport classical properties
to the free framework. We shall present here a simple example, dealing with the
relation between the generalised moments of a probability measure p in ZD.(R)
and those of its associated Lévy measure. Let us first recall Kruglov’s standard
result:

Definition. A function g: Ry — R, is said to be sub-multiplicative if there
exists a non-negative real K such that

Vr,y €R, g(lz+yl) < Kg(lz) g (yl) .

Examples include 1 + 2° with 3 > 0, exp x, In(e + z), and so on.

Theorem V.1 (c¢f [15] or section 25 of [21]) Let u be a probability measure in
ID.(R), and let g be a sub-multiplicative locally bounded function. Then

[ alah e o) < +oc = [ g n(de) < +x.
Jz[>1

Our aim is to adapt the proof given in [21], and, using the Lévy matrices, to
establish a similar, although partial, result for the free infinitely divisible laws.
But we shall first introduce a new definition. Remark that a function g is sub-
multiplicative if and only if there exists K in R4 such that for any probability
measures p and v we have

prv(g(-1) < Ku(g(-D)vig(-1)-

This may suggest the following definition:

Definition. A function g: Ry — R, is said to be freely sub-multiplicative if
there exists a non-negative real K such that for any probability measures yu and
v we have

pBr(g(-D) <EKEp(g(-Nvig-1)-

Of course, if g is freely sub-multiplicative, then it is sub-multiplicative (take
W,V =05, 0,).

Proposition V.2 Functions 1 + 2 with 3 > 0, expx and In(e + ) are freely
sub-multiplicative.

Lemma V.3 A function g: Ry — Ry is freely sub-multiplicative if there exists
K in Ry such that for any probability measures p and v with bounded support
we have

pBrg(-N)<Kulg(-Nvigd-)-
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Proof. Let p,v be probability measures, and define pa(-) = (-] [—A4, 4]) and
va(-) = v(-|[-4,A]) for A > 0 large enough. Due to the monotone conver-

gence theorem, lima— o0 ta (9 (| - ) = p (g (|- ])) and lima— 00 va (g (| - 1)) =
v(g(|-]). Since pa (resp. va) converges weakly to p (resp. v) as A tends to
infinity, so does pa Brva to pB v (c¢f theorem 4.13 in [6]). Dealing with the
fact that g is not bounded presents no difficulty, which allows us to conclude
the proof. a

Lemma V.4 A function g is freely sub-multiplicative if there exists K in Ry
such that

Vn =1, VA B€Hn, Eltry(g(A+UBU))| < Ktry (g (|A])) trn (9 (1B)),

where | M| denotes VM? and U is a random matriz which is Haar distributed
onU(n).

Proof. Let u (resp. v) be a probability measure with bounded support, and
let (An,n > 1) (resp. (Bp,n > 1)) be a family of uniformly bounded Hermitian
matrices whose empirical spectral law converges to p (resp. v). Then

lim tr, (9 ([4a])) = p(g (|- 1)) and  lim tr, (g(|Bal)) =v(g(]-1))-

n—-+oo

Moreover, due to Voiculescu’s results ([24]), which have been recently improved
by Xu ([26]) and Collins ([10]), if (Up,n > 1) € [],,~; U(n) is a family of unitary
Haar distributed random matrices, then (A,,, U, B, U}) are asymptotically free.
This implies that

lim E[tr, (9 (|An +UnBaUps )] = p8Brv(g(]-1))-

n—-+00

The desired result of the lemma is now obvious. O

Lemma V.5 A function g is freely sub-multiplicative if there exists K in Ry
such that

Vn>1, VA, B€Hy, tr,(g9(A+ B|) < Ktrn (g (|A]) g (B)-

Proof. We only need to prove that inequality in lemma V.4 holds; this is a
direct consequence of the two following facts:

1. g(JUBU*|) =g (U|B|U*) = Ug(|B|) U* for any unitary matrix U;
2. E[tr(AUBU*)] = Ltr(A)tr(B) if U is Haar distributed on U(n).

Proof of proposition V.2. We only need to prove that inequality in lemma
V.5 is satisfied by the functions listed in the proposition. Let A, B € H,,.
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e The inequality:
tr (e|A+B‘) < tr (6A+B) + tr (e*A*B)

is obvious. Let A\; < --- A, and p; < --- < pu, be the eigenvalues of
A+ B and |A| 4 |B| respectively. Since |A| + |B| — A — B is a non-
negative matrix, we infer from already mentioned Weyl’s inequalities that
M < p1,. .3 A < pin. Therefore tr (eA+B) is less or equal to tr (e'AH"B‘);
of course, same inequality holds for tr (e_A_B ) Now, using the Golden-
Thompson inequality (¢f chapter 8 of [23]), which states that tr (e“T) <
tr (e“e”) for any Hermitian matrices C' and D, we deduce:

tr (e‘AJrB') < 2tr (e‘A‘e‘Bl)
Hence, function exp x is freely sub-multiplicative.
e Following Holder-McCarthy inequalities (¢f theorems 2.7 and 2.8 in [20]),
tr|A + BJ? < K (tr|A]° + tr| B|°)
where K = 1if 3 €]0,1] and K = 2571 if 8 € [1, +oo[. This yields
tr, (I +|A+B|%) < K (1+tr,|A]” +tr,|B|?)
< Ktr, ((I+141°) (I+1B|%)).

Therefore, function 1 4 z is freely sub-multiplicative.

o Let U € U(n) such that A+ B = U|A + B|. From Rotfel’d inequality (cf
corollary 8.7 [23]), we can infer that

det (I +|A+ BJ) det (I +U*A+ U*BJ)
det (I 4+ |U*A|)det (I + |U*B|)

det (I + |A|)det (I +|BJ).

IN

Applying the logarithm to this inequality we can deduce that

tr(ln(I 4+ |[A+ B|) < tr(In(I + |A]) +In(I + |B])).

etny (i (1 2 1)
1+ tr, (ln (I+ £|A> +1n <I+ §B>)
tr,, <<I+ln (I+ 2|A|)> (I—Hn (I+ EIBI>>>

= tr, (In(el +|A])In(el +|BY))).

Consequently,

tr, (In (el +|A + B|))

IN

IA

(From which we can conclude that function In(e+z) is freely sub-multiplicative.

d
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Remark. Despite these examples, we believe that free sub-multiplicativity is
strictly stronger than (ordinary) sub-multiplicativity.

We shall now introduce the main theorem of this section.

Theorem V.6 Let v be a probability measure in IDg (R), and g be a freely
sub-multiplicative locally bounded function. Then

/g(|x|)oé§)(d$) < +o00 = /g(|x|) v(dz) < +o0.
Remark. Hiai and Petz have already established that v has compact support
if and only if créay) has (¢f theorem 3.3.6 in [14]).
Lemma V.7 Let v be a probability measure in TDg(R) such that the support

of O'éé/) is bounded. Then, for all ¢ > 0, v (exp (c| - |)) is finite.

Proof. Consider 4 = A~!(v) € ID,(R). We shall prove that for all ¢ > 0
there exists C' > 0 such that

Vn>1, A (p)[trpexp(c|-])] < C.

Letting n go into infinity, this indeed implies the desired result since A,, (u) otry,
converges to v.

Since we have
tr, (exp (c|A|)) < tr, (exp (cA)) + try, (exp (—cA))

for any Hermitian matrix A, we only need to prove that A, (u)[exp (¢)] is
uniformly bounded in n. Define

Yn(s) =E [trn (exp (chl“)(s)))} )
where (X,(f‘)(s), s > 0) denotes the Lévy process associated to A, (). It follows

from lemmas 25.6, 25.7 and from the proof of theorem 25.3 in [21], that ), is
locally bounded. Therefore v,, can be differentiated to obtain

Uals) = E[AY (b, 0 exp(e)) (X(s))]
E [c'ytrn (exp (CX,,(I#) (s)))}

+ /a E {tr exp (CXT(L")(S) + ctVnV;f) —tr (exp ((:X,(L")(s)))

_14c-—tt2tr" (exp (CXT({‘)(S)))} L —;tQ Uégu) (dt),

where « is such that aéé/ ) ([~a,a]) = 1. Now, following Golden-Thompson
inequalities (¢f proof of proposition V.2), we can infer that

E {tr exp (CXT()H)(S) + ctVan:)} < E {tr exp (chﬁ(s)) exp (ctVnV;)]

= E {trn exp (CX#L)(S))} E [trexp (ctV,, V)],
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since (X,(L”)(s), V. V.¥) and (X,(L”)(s)7 U(V,V.})U) have same distribution, if U is
an independent unitary random matrix which is Haar distributed (c¢f proof of
lemma V.5). Therefore

[0}

2
P(s) < evn(s) + n(s) /_a (E [trexp (ctV,V,})] — trl — %) 1 —ti;t Uéé’)
@ vl e t o\ 1+¢2

= Yn(s) (w+ [a (IE [tr (I + V. Vi (et —1))] — tel — litz> —

“ . ct \1+t2

Noting that 1, (0) = 1, we can deduce that

« 2
ct @ \1+t° o)
Vs >0, 1n(s) <exp (s <07+/_a (e —1- 1+t2) PR (dt) ) ),

from which we conclude that (1) is indeed uniformly bounded in n. a

Proof of theorem V.6. We shall adapt the proof of theorem 25.3 in [21].
Let us first define vy and 11 by

1
t+z
R, =+ dt
° 7+/,11—tngE( )
t+z 1\ / t 1412 )
R, = = dt) = dt),
' /|t>1<1_tz+t)gm( ) >1 1 —tz 2 7a ()

where +' is such that vg Hv; = v. Then

vg(l-1)=wBurg(-) <Kvlg(-D)rvg(-1)- (V.1)

Since g is a sub-multiplicative locally bounded function, there exist b and ¢ such
that g(x) < be’®! for all 2 in R (¢f lemma 25.5 [21]). Therefore, due to lemma
V.7, v9(g(]-])) is finite.

Consider now 1 = A~!(v1) € ID, (R). Then it is a consequence of the

1\ Hp
already mentioned theorem 3.4 of [7] that v is the weak limit of <u;”> as

p tends to infinity.
Since g is freely sub-multiplicative, we have:

(ui%)mp - =8 (w60 )

But, since the Fourier transform of p; is equal to

, , 1+t2 (,
1 (e“\') = exp (/ (e’)‘t — 1) :_2 O’éﬁ)(dt)> )
[t]>1

p1 is a compound Poisson distribution, and one gets (¢f theorem 4.3 in [21]):

2
1145 50 (dt)

wt(g(-1) = e Jis15 2

X

m=0 7j=1 J
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(dt)

)

- 1/ / (118
— g(ltr 4+ +tm - oM (dt;) ) .
Zm! 151 |51 (‘ 1 |)H<p +2 Eﬂ( J)



Now, g is freely sub-multiplicative, therefore sub-multiplicative. This gives

; 0o m—1 2 m
_-f\t\>1 l#oégy)(dt) LK / 1+¢ ()
e a ) g (It]) og (dt)
zomb ™ s 2 F

=
—
=
—
S
fa
N
~
A

1 K 1+ ¢ )

< —exp —/ g(|t o dt
. (p [ ) o
1 2K )

< oo (el ().

Hence, it holds that

A\ 1 )
(k7)) < oo (20 - 1)

Letting p go into infinity, we deduce that

n(g( D) < % exp (250 (9(1-1))

which concludes the proof with inequality (V.1). O
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