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Abstract

There exist a number of results proving that for certain classes of interacting parti-
cle systems in population genetics, mutual invadability of types implies coexistence.
In this paper we prove a sort of converse statement for a class of one-dimensional
cancellative systems that are used to model balancing selection. We say that a model
exhibits strong interface tightness if started from a configuration where to the left of
the origin all sites are of one type and to the right of the origin all sites are of the
other type, the configuration as seen from the interface has an invariant law in which
the number of sites where both types meet has finite expectation. We prove that this
implies noncoexistence, i.e., all invariant laws of the process are concentrated on the
constant configurations. The proof is based on special relations between dual and
interface models that hold for a large class of one-dimensional cancellative systems
and that are proved here for the first time.
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1 Introduction and main result

In spatial population genetics, one often considers interacting particle systems where
each site in the lattice can be occupied by one of two different types, respresenting
different genetic types of the same species or even different species. It is natural to
conjecture that if each type is able to invade an area that is so far occupied by the other
type only, then coexistence should be possible, i.e., there should exist invariant laws
that are concentrated on configurations in which both types are present. There exist
a number of rigorous results of this nature. In particular, Durrett [Dur02] has proved
a general result of this sort for systems with fast stirring; see also, e.g., [DN97] for
similar results. In a more restricted context, the same idea (mutual invadability implies
coexistence) is also behind the proofs of, e.g., [NP99, Thm 1 (b)] or [CP07, Thm 4].

In this paper, we will prove a converse claim. We will show that for a class of
one-dimensional cancellative systems that treat the two types symmetrically, mutual
non-invadability implies noncoexistence. In particular, this applies to several general-
izations of the standard, one-dimensional voter model that are used to model balancing
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selection (sometimes also called heterozygosity selection or negative frequency depen-
dent selection), which is the effect, observed in many natural populations, that types
that are locally in the minority have a selective advantage, since they are able to use
resources not available to the other type.

Since our general theorem needs quite a bit of preparation to formulate, as a warm-
up and motivation for what will follow, we first describe three particular models that
our result applies to. These models also occur in [SS08]. We refer to that paper for a
more detailed motivation and a proof that they are indeed cancellative systems.

Restricting ourselves to the one-dimensional case, as we will throughout the paper,
let {0, 1}Z be the space of configurations x = (x(i))i∈Z of zeros and ones on Z. We
sometimes identify sets with indicator functions and write |x| = |{i : x(i) = 1}| for the
number of ones in a configuration x. We recall that an interacting particle system (with
two types), in one dimension, is a Markov process X = (Xt)t≥0 with state space {0, 1}Z
that is defined by its local transition rates [Lig85]. Let us say that such an interacting
particle system is type-symmetric if its dynamics are symmetric under a simultaneous
interchanging of all types, that is, the transition x 7→ x′ happens at the same rate as the
transition (1− x) 7→ (1− x′).

The first model that our result applies to is the neutral Neuhauser-Pacala model,
which is a special case of the model introduced in [NP99]. Fix R ≥ 2 and for each
x ∈ {0, 1}Z, let us write

fτ (x, i) :=
1

2R

∑
j∈Z

0<|i−j|≤R

1{x(j)=τ}
(
τ = 0, 1, x ∈ {0, 1}Z, i ∈ Z) (1.1)

for the local frequency of type τ near i. Then the neutral Neuhauser-Pacala model with
competition parameter 0 ≤ α ≤ 1 is the type-symmetric interacting particle system
such that

x(i) flips 0 7→ 1 with rate f1(x, i)
(
f0(x, i) + αf1(x, i)

)
, (1.2)

and similarly for flips 1 7→ 0, by type-symmetry. Similarly, the affine voter model with
competition parameter 0 ≤ α ≤ 1 is the type-symmetric interacting particle system such
that

x(i) flips 0 7→ 1 with rate αf1(x, i) + (1− α)1{f1(x, i) > 0}. (1.3)

The affine voter model interpolates between the threshold voter model (corresponding
to α = 0) studied in, e.g., [CD91, Han99, Lig94] and the usual range R voter model (for
α = 1). The neutral Neuhauser-Pacala model likewise reduces to a range R voter model
for α = 1. Finally, the rebellious voter model, introduced in[SS08], with competition
parameter 0 ≤ α ≤ 1 is the type-symmetric interacting particle system such that

x(i) flips 0↔ 1 with rate 1
2α
(
1{x(i− 1) 6= x(i)} + 1{x(i) 6= x(i+ 1)}

)
+ 1

2 (1− α)
(
1{x(i− 2) 6= x(i− 1)} + 1{x(i+ 1) 6= x(i+ 2)}

)
.

(1.4)
For α = 1, this model reduces to the standard nearest-neighbour voter model.

Let X be a type-symmetric interacting particle system. Then, by type-symmetry, it
is easy to see that the process Y defined by

Yt(i) := 1{Xt(i− 1
2 ) 6= Xt(i+ 1

2 )} (t ≥ 0, i ∈ Z + 1
2 ) (1.5)

(where Z + 1
2 := {i + 1

2 : i ∈ Z}) is a Markov process. We call Y the interface model of
X. We will often say that a site i is occupied by a particle if Yt(i) = 1; otherwise the site
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is empty. Under mild assumptions on the flip rates of X (e.g. finite range), Y is itself an
interacting particle system, where always an even number of sites flip at the same time.
Let 0, 1 ∈ {0, 1}Z denote the configurations that are constantly zero or one, respectively.
If 0 (and hence by type-symmetry also 1) is a trap for the process X, then, under mild
assumptions on the flip rates (e.g. finite range), we have that |Y0| <∞ implies |Yt| <∞
a.s. for all t ≥ 0. In particular, this applies to all models introduced above. It is easy
to see that Y preserves parity, i.e., |Y0| mod(2) = |Yt| mod(2) a.s. for all t ≥ 0. If |Y0|
is finite and odd, then we let lt := inf{i ∈ Z + 1

2 : Yt(i) = 1} denote the position of the
left-most particle and we let

Ŷt(i) := Y (lt + i) (t ≥ 0, i ∈ N) (1.6)

denote the process Y viewed from the left-most particle. Note that Ŷ takes values in
the countable state space Ŝ of all functions ŷ : N→ {0, 1} such that |ŷ| is finite and odd
and ŷ(0) = 1. Let δ0 denote the unique state in Ŝ that contains a single particle. We let
Ŝδ0 denote the set of states in Ŝ that can be reached with positive probability from the
state δ0.

Following terminology first introduced in [CD95], we say that a type-symmetric in-
teracting particle system X exhibits interface tightness if its corresponding interface
model Ŷ viewed from the left-most particle is positive recurrent on Ŝδ0 . In particular,
this implies that the process Ŷ started from Ŷ0 = δ0 spends a positive fraction of its time
in δ0 and is ergodic with a unique invariant law on Ŝδ0 . Let Ŷ∞ be distributed according
to this invariant law. Then, by definition, we will say that X exhibits strong interface
tightness if E[|Ŷ∞|] <∞. Strong interface tightness will be our way of rigorously formu-
lating the idea of ‘noninvadability’, i.e., that neither type is able to penetrate the area
occupied by the other type.

We say that X exhibits coexistence if there exists an invariant law µ such that
µ({0, 1}) = 0, i.e., µ is concentrated on configurations in which both types are present,
and we say that X survives if the process X started with a single one (and all other
sites of type zero) satisfies P[Xt 6= 0 ∀t ≥ 0] > 0. We will prove the following theorem.

Theorem 1.1 (Strong interface tightness implies noncoexistence). Let X be either a
neutral Neuhauser-Pacala model, or an affine voter model, or a rebellious voter model,
with competition parameter 0 < α ≤ 1. Assume that X exhibits strong interface tight-
ness. Then X exhibits noncoexistence.

To put this into context, let us look at what is known, both rigorously and nonrig-
orously, about these models. Numerical simulations for the rebellious voter model,
reported in [SV10], give the following picture. There exists a critical parameter αc ≈
0.510± 0.002 such that the process survives and coexistence holds if and only if α < αc,
while interface tightness holds if and only if α > αc (in particular, at α = αc one has nei-
ther survival, coexistence, nor interface tightness). Moreover, it seems that whenever
interface tightness holds, one has strong interface tightness and in fact the probabil-
ity P[|Ŷ∞| = (2n + 1)] decays exponentially fast in n.1 The behaviour of the neutral
Neuhauer-Pacala model and affine voter model is supposed to be similar.

Most of these numerical ‘facts’ are unproven but for the rebellious voter model it has
been rigorously shown that for α sufficiently close to zero one has coexistence and no
interface tightness [SS08, Thm 4]. It is moreover known that coexistence is equivalent
to survival [SS08, Lemma 2]. It is also known rigorously that the Neuhauser-Pacala
model exhibits coexistence for α sufficiently close to zero [NP99, Thm 1 (b)] and that

1By contrast, for pure voter models of range R ≥ 2, where strong interface tightness has been rigorously
proved, it is known that the length of the interface sup{i ∈ N : Ŷ (i) = 1} has a heavy-tailed distribution with
infinite first moment [B&06, Thm 1.4].
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the affine voter model exhibits coexistence at α = 0 [Lig94]. It is likely this latter result
can be extended to α sufficiently small.

It is an open problem to prove either noncoexistence or interface tightness for any of
these models for any α < 1.2 (For α = 1, which corresponds to a one-dimensional pure
voter model, noncoexistence and strong interface tightness are known.) The present
result, therefore, unfortunately does not prove anything new for these models, except
that it shows that if by some means one is able to prove strong interface tightness, then
this implies noncoexistence (and of course also interface tightness).

The rest of the paper is organized as follows. In the next section, we formulate
our general result. We introduce a class of one-dimensional cancellative systems that
will be our general framework and point out some interesting relations between their
interface models and their dual models in the sense of cancellative systems duality. In
particular, we show that each one-dimensional, type-symmetric, cancellative system X

has a rather peculiar dual X ′ that is also type-symmetric and cancellative. This sort
of duality was sort of implicit in [SS08] but is for the first time formally written down
here. We then observe that strong interface tightness for X implies the existence of a
harmonic function for X ′ that allows us to prove that this process dies out and hence, by
duality, that noncoexistence holds for X. The final section of the paper contains proofs.

2 Methods and further results

2.1 Cancellative systems

Cancellative systems are a special class of interacting particle systems that are lin-
ear with respect to addition modulo 2. It will be convenient to allow the lattice to be
I = Z or I = Z + 1

2 . It is well-known (though for probabilists perhaps not always at the
front of their minds) that linear spaces can be defined over any field. In particular, we
may view the space {0, 1}I of all functions x : I→ {0, 1} as a linear space over the finite
field {0, 1}, where the latter is equipped with addition modulo 2 (and the usual product).
To distinguish this from the usual addition in R (which we will sometimes also need),
we will use the symbol ⊕ for (componentwise) addition modulo 2.

We equip {0, 1}I with the product topology and let L(I) denote the space of all contin-
uous linear maps A : {0, 1}I → {0, 1}I. The matrix (A(i, j))i,j∈I of such a linear operator
is defined as

A(i, j) := (Aδj)(i) where δj(i) := 1{i=j} (i, j ∈ I). (2.1)

It is not hard to see that the continuity of A is equivalent to the requirement that |{j ∈
I : A(i, j) = 1}| <∞ for all i ∈ I and that

Ax(i) =
⊕
j∈I

A(i, j)x(j) (i ∈ I), (2.2)

where the infinite sum reduces to a finite sum and hence is well-defined. Identifying
sets with indicator functions as we sometimes do, we associate A with the set {(i, j) :

A(i, j) = 1} ⊂ I2. We call Lloc(I) := {A ∈ L(I) : |A| < ∞} (where |A| denotes the
cardinality of A ⊂ I2) the set of local operators on {0, 1}I

Slightly specializing3 from the set-up in [Gri79], we will say that an interacting par-
ticle system on I is cancellative if for each A ∈ Lloc(I), there exists a rate r(A) ≥ 0

2Setting R = 1 in either the neutral Neuhauer-Pacala model or affine voter model yields, up to a trivial
rescaling of time, the disagreement voter model (using terminology from [SS08]), which is known to exhibit
noncoexistence and interface tightness for all 0 ≤ α < 1. For the special case α = 1

2
, moreover strong

interface tightness has been proved in [ALM92, Corollary of Thm 2]. But, as explained in [SS08], this model
has special properties that give few clues on how to prove noncoexistence for any of the other models.

3In [Gri79], a cancellative system is defined by a percolation substructure P(λ;V,W ) where λi,x is the
rate of the i-th alarm clock at a site x ∈ Zd, Vi,x is the set of sites where particles are spontaneously born if
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(possibly zero), such that X makes the transition

x 7→ x⊕Ax with rate r(A). (2.3)

We will always assume that the rates are translation invariant, i.e.,

r(A) = r(Tk(A)) (k ∈ Z) where Tk(A) := {(i+ k, j + k) : (i, j) ∈ A}, (2.4)

For technical convenience, we will also assume that our models are finite range, i.e.,
there exists an R <∞ such that

r(A) = 0 whenever ∃(i, j) ∈ A with |i− j| > R. (2.5)

It follows from standard results (see [Lig85, Thm I.3.9]) that any collection of rates
(r(A))A∈Lloc(I) satisfying (2.4) and (2.5) corresponds to a well-defined {0, 1}I-valued
Markov process X. We refer to [SS08] for the not immediately obvious fact that the
neutral Neuhauser-Pacala model, the affine voter model, and the rebellious voter model
are cancellative systems.

It is not hard to see that a cancellative system is type-symmetric if and only if its
rates satisfy r(A) = 0 unless

|{j ∈ I : (i, j) ∈ A}| is even for all i ∈ I. (2.6)

Similarly, a cancellative system is parity preserving if and only if its rates satisfy r(A) =

0 unless
|{i ∈ I : (i, j) ∈ A}| is even for all j ∈ I. (2.7)

We let Lts(I) and Lpp(I) denote the sets of all A ∈ Lloc(I) satisfying (2.6) and (2.7),
respectively (where the subscript ts and pp stand for type-symmetry and parity preser-
vation, respectively).

2.2 Dual and interface models

We set
S±(I) :=

{
x ∈ {0, 1}I : lim

i→±∞
x(i) = 0

}
,

Sfin(I) :=
{
x ∈ {0, 1}I : |x| <∞

}
= S−(I) ∩ S+(I).

(2.8)

If X is a cancellative system, then it is not hard to check that

(i) E
[

inf X0

]
> −∞ implies E

[
inf Xt

]
> −∞,

(ii) E
[
|X0|

]
<∞ implies E[|Xt|] <∞,

}
(t ≥ 0), (2.9)

where we notationally identify sets and indicator functions as before, i.e., inf x = inf{i ∈
I : x(i) = 1}. It follows that X0 ∈ S−(I) a.s. implies Xt ∈ S−(I) a.s. for all t ≥ 0 and by
symmetry analogue statements hold for S+(I) and Sfin(I).

We let xy denote the pointwise product of x, y ∈ {0, 1}I and write

‖x‖ :=
⊕
i∈I

x(i) = |x| mod(2)
(
x ∈ Sfin(I)

)
. (2.10)

Let G(I, I) be the set of all pairs (x, y) satisfying any of the following conditions: 1.
x ∈ S−(I) and y ∈ S+(I), or 2. x ∈ S+(I) and y ∈ S−(I), or 3. x ∈ Sfin(I), or 4. y ∈ Sfin(I).
We observe that the bilinear form

G(I, I) 3 (x, y) 7→ ‖xy‖ (2.11)

this alarm clock rings, and Wi,x is a collection of percolation arrows. We will restrict ourselves to the case
that Vi,x = ∅ for all i, x. The matrix 1 ⊕ A (where 1 is the identity matrix) corresponds to the set of arrows
Wi,x in [Gri79].
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is very much like an inner product. In particular, ‖xy‖ = 0 for all y ∈ Sfin(I) implies
x = 0.

Let A†(i, j) := A(j, i) denote the adjoint of a matrix A. It follows from general theory
(see [Gri79, Thm III.1.5]) that the cancellative systemX defined by rates (rX(A))A∈Lloc(I)
is dual to the cancellative system Y ′ defined by the rates

rY ′(A) := rX(A†)
(
A ∈ Lloc(I)

)
, (2.12)

in the sense that

E
[
‖X0Y

′
t ‖
]

= E
[
‖XtY

′
0‖
]

(t ≥ 0) (2.13)

whenever X and Y ′ are independent (with arbitrary initial laws) and (X0, Y0) ∈ G(I, I)
a.s. Note that E[‖X0Y

′
t ‖] = P[|XtY

′
0 | is odd]. By (2.6) and (2.7), Y ′ is parity preserving if

and only if X is type-symmetric. The duality in (2.13) is the analogue of linear systems
duality (see [Lig85, Thm IX.1.25]) with normal addition replaced by addition modulo 2.

We next consider interface models. Let us define an ‘interface operator’ or ‘discrete
differential operator’ ∇ : {0, 1}I → {0, 1}I+ 1

2 by

(∇x)(i) = x(i− 1
2 )⊕ x(i+ 1

2 ) (i ∈ I + 1
2 ). (2.14)

Note that if X = (Xt)t≥0 is a type-symmetric cancellative system on I then Y :=

(∇(Xt))t≥0 is its interface model as in (1.5). Recall the definitions of Lts(I) and Lpp(I)
from (2.6) and (2.7). The next lemma says that the interface model of each type-
symmetric cancellative system is a parity preserving cancellative system, and con-
versely, each parity preserving cancellative system is the interface model of a unique
type-symmetric cancellative system.

Lemma 2.1 (Interface model). There exists a unique bijection Ψ : Lts(I) → Lpp(I + 1
2 )

such that

∇Ax = Ψ(A)∇x
(
x ∈ {0, 1}I

)
. (2.15)

Moreover, if X is a type-symmetric cancellative system on I defined by rates rX(A) with
A ∈ Lts(I), then its interface model is the parity preserving cancellative system on I+ 1

2

with rates defined by

rY (A) := rX
(
Ψ−1(A)

) (
A ∈ Lpp(I + 1

2 )
)
. (2.16)

An explicit formula for Ψ(A) is given in (3.6) below.

We have just seen that every type-symmetric cancellative systemX gives in a natural
way rise to two (in most cases different) parity preserving cancellative systems: its dual
Y ′ in the sense of (2.13) and its interface model Y as in (1.5). Now, by Lemma 2.1, Y ′

is itself the interface model of some type-symmetric cancellative system X ′ and Y is
the dual of some type-symmetric cancellative system X ′′, so it seems as if continuing in
this way, one could in principle generate infinitely many different models. It turns out
that this is not the case, however. As the next lemma shows, we have X ′ = X ′′ and the
process stops here.

Lemma 2.2 (Duals and interface models). Let Ψ : Lts(I)→ Lpp(I+ 1
2 ) be as in Lemma 2.1.

Then

Ψ(A)† = Ψ−1(A†)
(
A ∈ Lts(I)

)
. (2.17)

Lemma 2.2, together with formulas (2.12) and (2.16), shows that for any type-
symmetric cancellative system X, there exists another type-symmetric cancellative sys-
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tem X ′ as well as parity preserving cancellative systems Y and Y ′ such that the follow-
ing commutative diagram holds:

Y ′ X ′

X Y
interface

interface

dual dual

(2.18)

An example of such a commutative diagram was given in [SS08], but as far as we know,
the general case is proved for the first time here. If X and X ′ are as in (2.18), then X

and X ′ are in fact themselves dual in the following sense.

Lemma 2.3 (Duality of type-symmetric cancellative systems). LetX be a type-symmetric
cancellative system as in (2.3)–(2.5) and let X ′ be the dual of the interface model of X,
or equivalently (by Lemma 2.2), let X be the dual of the interface model of X ′. Then X
and X ′ are dual in the sense that

E
[
H(Xt, X

′
0)
]

= E
[
H(X0, X

′
t)
]

(t ≥ 0) (2.19)

wheneverX andX ′ are independent and satisfy (X0, X
′
0) ∈ G(I, I+ 1

2 ) a.s. (with G(I, I+ 1
2 )

defined analogously to G(I, I)), and H(x, x′) is the duality function

H(x, x′) := ‖(∇x)x′‖ = ‖x(∇x′)‖. (2.20)

Using the graphical representation of cancellative systems [Gri79], the duality in
(2.19) can be made into a strong pathwise duality. (For this concept, and more general
theory of Markov process duality, see [JK12].)

Remark 1 A special property of the rebellious voter model, that in fact motivated its
introduction in [SS08], is that it is self-dual with respect to the duality in (2.19).

Remark 2 It is possible for a cancellative system to be both type-symmetric and parity
preserving. In particular, this applies to the symmetric exclusion process Y , which is
part of a commutative diagram of the form:4

Z Y X

X Y Z

interfaceinterface

interface interface

dualdualdual

(2.21)

Remark 3 It is interesting to speculate how much of the above goes through if {0, 1} is
replaced by a more general finite field. It seems that at least the duality formula (2.13)
holds more generally.

Remark 4 If X,X ′, Y and Y ′ are as in (2.18), then also Y and Y ′ are dual to each other,
in a sense. If X and X ′ are voter models and Y and Y ′ are systems of annihilating
random walks, then this is a form of non-crossing duality similar to the duality of the
Brownian web.

4Here X has pure ‘disagreement’ dynamics (see footnote 2). Its dual Z is an annihilating particle model,
known as the double branching annihilating process, where particles with a certain rate give birth to two
new particles, situated on their neighbouring positions.
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2.3 A harmonic function

If X and X ′ are type-symmetric cancellative systems that are dual in the sense of
(2.19), then it is not hard to show that coexistence of X is equivalent to survival of X ′.
In fact, this is just [SS08, Lemma 1(a)], translated into our present notation (compare
also formula (3.15) below). Our strategy for proving Theorem 1.1 will be to show that
strong interface tightness for X implies extinction of X ′.

It is well-known that a duality between two Markov processes translates invariant
measures of one process into harmonic functions of the other process. Mimicking a
trick used in [SS11], we will apply this to the infinite, translation-invariant measure

µ :=
∑
i∈I+ 1

2

P
[
(Ŷ∞ + i) ∈ ·

]
, (2.22)

where Ŷ∞ is distributed according to the invariant law of the interface model of X
viewed from the left-most particle and Ŷ∞ + i denotes the configuration obtained from
Ŷ∞ by shifting all particles by i. (In set-notation, Ŷ∞ + i = {j + i : j ∈ Ŷ∞}.) It is not
hard to see that µ is indeed an invariant measure of the interface model Y of X. We will
not directly use this fact, but it provides the idea for the following lemma.

Lemma 2.4 (Harmonic function). LetX andX ′ be type-symmetric cancellative systems
defined by rates as in (2.3)–(2.5), on I and I + 1

2 respectively, that are dual in the sense

of (2.19). Assume that strong interface tightness holds for X and let Ŷ∞ be distributed
according to the invariant law of the interface model of X viewed from the left-most
particle. Then

h(x) :=
∑
i∈I+ 1

2

E
[
‖(Ŷ∞ + i)x‖

] (
x ∈ Sfin(I + 1

2 )
)

(2.23)

defines a harmonic function h : Sfin(I + 1
2 ) → [0,∞) for the process X ′, i.e., for each

deterministic initial state X ′0 = x′ ∈ Sfin(I + 1
2 ), the process M = (Mt)t≥0 defined by

Mt := h(X ′t) (t ≥ 0) (2.24)

is a martingale with respect to the filtration generated by X ′. Moreover, defining con-
stants 0 < c ≤ C <∞ by c := P[|Ŷ∞| = 1] and C := E[|Ŷ∞|], one has that

c|x| ≤ h(x) ≤ C|x|
(
x ∈ Sfin(I + 1

2 )
)
. (2.25)

We note that if X is a nearest-neighbour voter model, then X ′ is also a nearest-
neighbour voter model and Ŷ∞ = δ0 a.s. Now the harmonic function h from Lemma 2.4
is just h(x) = |x|, which is a well-known harmonic function for X ′. Numerical simula-
tions in [SV10] suggest that for the rebellious voter model, as α is lowered from the
pure voter case α = 1, the function h defined in (2.23) changes smoothly as a function
of α and can even be smoothly extended across the critical point.

Since the process Mt = h(X ′t) in (2.24) is a nonnegative martingale, it converges
a.s. We will show that this implies extinction for X ′ under the additional assumption
that the dynamics of X (and hence also X ′) have a nearest-neighbour voter component.
This latter assumption is made for technical convenience and can be relaxed; it seems
however not easy to formulate simple, sufficient, yet general conditions on the dynamics
of X that allow one to conclude from the convergence of h(X ′t) that X ′ get extinct a.s.
From the a.s. extinction of X ′ we obtain in fact a little more than just noncoexistence
for X.
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Theorem 2.5 (Strong interface tightness implies clustering). Let X be a type-symmet-
ric cancellative system on Z defined by translation invariant, finite range rates as in
(2.3)–(2.5). Assume that the dynamics of X have a nearest-neighbour voter component,
i.e.,

r({(0, 0), (0, 1)}) ∨ r({(0, 0), (−1, 0)}) > 0, (2.26)

and that X exhibits strong interface tightness. Then, for the process started in an
arbitrary initial law,

P[Xt(i) = Xt(i+ 1)] −→
t→∞

1 (i ∈ Z). (2.27)

The behaviour in (2.27) is called clustering and well-known for one-dimensional pure
voter models. For pure voter models, if the initial law of X0 is translation invariant, one
has moreover that

P[Xt ∈ · ] =⇒
t→∞

pδ0 + (1− p)δ1 with p := E[X0(0)], (2.28)

where⇒ denotes weak convergence of probability laws on {0, 1}Z. More generally, if X
satisfies the assumptions of Theorem 2.5 and also X ′ exhibits interface tightness, then
using duality it is not hard to check that (2.28) holds with

p := E
[
‖X0Ŷ

′
∞‖
]
, (2.29)

where Ŷ ′∞ is independent of X0 and distributed according to the invariant law of the
dual of X viewed from its left-most particle. We note that in [ALM92], clustering is
proved for a variation of the range R voter model that is not a cancellative system and
for which no dual is known. The authors show that also for this model, the probability p
in (2.28) depends in a nontrivial way on the initial law, and determine its asymptotics if
X0 is a product measure with low density.

3 Proofs

3.1 Duality and interface models

In this section we prove the lemmas from Section 2.2.
We equip S−(I) with the stronger topology such that xn → x if and only if xn(i)→ x(i)

for each i ∈ I and inf xn → inf x (with notation as in (2.9)), and we let L−(I) denote the
space of all linear maps A : S−(I) → S−(I) that are continuous with respect to this
stronger topology. It is not hard to see that A ∈ L−(I) if and only if its matrix, defined
as in (2.1), satisfies

sup{j ∈ I : A(i, j) = 1 for some i ≤ k} <∞,

inf{i ∈ I : A(i, j) = 1 for some j ≥ k} > −∞
(3.1)

for all k ∈ I. Note that for A ∈ L−(I) and x ∈ S−(I), the infinite sum in (2.2) reduces to
a finite sum and hence is well-defined. We define L+(I) analogously. We observe that
L−(I) ∩ L+(I) ⊂ L(I) and that A ∈ L−(I) if and only if A† ∈ L+(I). One has

‖x(Ay)‖ = ‖(A†x)y‖
(
x ∈ S−(I), y ∈ S+(I), A ∈ L+(I)

)
, (3.2)

and the same holds if A ∈ L−(I) ∩ L+(I) and (x, y) ∈ G(I, I).
We define the spaces L(I, I+ 1

2 ) and L±(I, I+ 1
2 ) of continuous linear maps from {0, 1}I

to {0, 1}I+
1
2 or from S±(I) to S±(I + 1

2 ) analogous to L(I) and L±(I), respectively. Recall
the definition of the interface operator ∇ from (2.14). It is straightforward to check the
following facts.
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Lemma 3.1 (Differential operator). The map ∇ : S±(I) → S±(I + 1
2 ) is a bijection with

inverse ∇−1
± ∈ L±(I + 1

2 , I) given by

∇−1
− (i, j) = 1{i>j} and ∇−1

+ (i, j) = 1{i<j} (i ∈ I, j ∈ I + 1
2 ). (3.3)

One has ∇† = ∇ and (∇−1
− )† = ∇−1

+ .

Remark 1 If one defines right and left discrete derivatives as ∇leftx(i) := x(i+ 1)⊕ x(i)

and ∇rightx(i) := x(i) ⊕ x(i − 1), then (∇right)
† = ∇left. The main reason why we work

with half-integers is that we want the operator ∇ to look as much as possible like a
self-adjoint operator. (Note that since ∇ maps S±(I) into the different space S±(I + 1

2 ),
it is not strictly speaking self-adjoint.) Half-integers are also quite natural in view of the
interpretation of ∇ as an interface operator.

Remark 2 We observe from (3.3) and (2.2) that

∇−1
− x(i) = 1{x(j) = 1 for an odd number of sites j < i},

and a similar formula holds for ∇−1
+ . Let

Seven(I) :=
{
x ∈ Sfin(I) : |x| is even

}
and Sodd(I) :=

{
x ∈ Sfin(I) : |x| is odd

}
. (3.4)

Then ∇ : Sfin(I)→ Seven(I+ 1
2 ) is a bijection with inverse ∇−1

− = ∇−1
+ on Seven(I+ 1

2 ). On
the other hand, ∇−1

− x = ∇−1
+ x⊕ 1 for x ∈ Sodd(I + 1

2 ).

Proof of Lemmas 2.1 and 2.2. For A ∈ Lpp(I + 1
2 ), we define Ψ−1(A) by

Ψ−1(A) := ∇−1
− A∇ = ∇−1

+ A∇
(
A ∈ Lpp(I + 1

2 )
)
. (3.5)

Note that since A( · , j) ∈ Seven(I) for each j ∈ I + 1
2 , in view of Remark 2 below

Lemma 3.1, we have ∇−1
− A(i, j) = ∇−1

+ A(i, j) for each i, j, so the two formulas for
Ψ−1(A) coincide. Since∇(i, · ) ∈ Seven(I) for each i ∈ I+ 1

2 , we have that Ψ−1(A) ∈ Lts(I).
Next, for A ∈ Lts(I), we set

Ψ(A) :=
(
Ψ−1(A†)

)†
= (∇−1

∓ A†∇)† = ∇A∇−1
± , (3.6)

where we have used that by Lemma 3.1, ∇† = ∇ and (∇−1
∓ )† = ∇−1

± . Since A ∈ Lts(I) if
and only if A† ∈ Lpp(I), this clearly defines a map Ψ : Lts(I)→ Lpp(I + 1

2 ). Now

Ψ(Ψ−1(A))x = ∇∇−1
± A∇∇−1

± x = Ax = ∇−1
± ∇A∇−1

± ∇x = Ψ−1(Ψ(A))x
(
x ∈ S±(I+ 1

2 )
)
,

(3.7)
which proves that Ψ and Ψ−1 are each other’s inverses. Moreover,

Ψ(A)∇x = ∇A∇−1
± ∇x = ∇Ax

(
x ∈ S±(I)

)
. (3.8)

Since each x ∈ {0, 1}I can be written as x = x−⊕x+ with x± ∈ S±(I), this proves (2.15).
Since the map∇ : {0, 1}I → {0, 1}I+ 1

2 is surjective, Ψ(A) is in fact uniquely characterized
by (2.15).

The fact that the interface model of X is the parity-preserving cancellative system
with rates as in (2.16) is immediate from (2.3) and (2.15). Lemma 2.2 follows from
(3.6).

Proof of Lemma 2.3. Immediate from Lemmas 2.1 and 2.2 and cancellative systems
duality (2.13). Note that the two formulas for the duality function H coincide by
Lemma 3.1.
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3.2 Noncoexistence

Proof of Lemma 2.4. We start by observing that

h(x) ≤
∑
i∈I+ 1

2

E
[
|x(Ŷ∞+i)|

]
=
∑
i∈I+ 1

2

E
[∑
j∈x
|δj(Ŷ∞+i)|

]
= E

[∑
j∈x
|Ŷ∞|

]
= |x|E

[
|Ŷ∞|

]
(3.9)

for all x ∈ Sfin(I+ 1
2 ), where, as we have done before, we notationally identify x with the

set {i : x(i) = 1}, and the second equality is obtained by moving the sum over i inside
the expectation. Similarly

h(x) ≥
∑
i∈I+ 1

2

E
[
‖x(Ŷ∞ + i)‖1{Ŷ∞=δ0}

]
= P[Ŷ∞ = δ0] |x|. (3.10)

Since E
[
|Ŷ∞|

]
<∞ and P[Ŷ∞ = δ0] > 0 by the assumption of strong interface tightness,

formulas (3.9) and (3.10) imply (2.25).
The upper bound of (2.25), together with (2.9), show that if E

[
|X ′0|] < ∞, then

E[h(X ′t)] < ∞ for all t ≥ 0. Let Y = (Yt)t≥0 be the interface model of X, started in
the initial law P[Y0 ∈ · ] := P[Ŷ∞ ∈ · ] if I + 1

2 = Z and P[Y0 ∈ · ] := P[(Ŷ∞ + 1
2 ) ∈ · ]

if I + 1
2 = Z + 1

2 , and independent of X ′. Then by duality (2.13), letting lt denote the
position of the left-most particle of Yt, we see that

E
[
h(X ′t)

]
=
∑
i∈Z

E
[
‖X ′t(Y0+i)‖

]
=
∑
i∈Z

E
[
‖X ′0(Yt+i)‖

]
= E

[∑
i∈Z
‖X ′0(Yt+i−lt)‖

]
= E

[
h(X ′0)

]
,

(3.11)
which proves (in combination with the Markov property of X ′) that h(X ′t) is a martin-
gale.

Proof of Theorem 2.5. It is straightforward to check that the one-sided nearest neigh-
bour voter model, in which sites with rate one copy the type on their left, is dual, in the
sense of the duality in (2.19), to a one-sided nearest neighbour voter model in which
sites with rate one copy the type on their right. Therefore, if the dynamics of X have a
(left or right) nearest-neighbour voter component, then the the dynamics of X ′ have a
(right or left) nearest-neighbour voter component. From this, it is easy to see that the
probability that the process X ′ started in x gets extinct

q(x) := Px
[
∃t ≥ 0 s.t. X ′t = 0] (3.12)

can be uniformly bounded from below in the sense that

inf{q(x) : |x| ≤ K} > 0 ∀K <∞. (3.13)

Formula (3.13) is our sole reason for assuming that the dynamics of X has a (left or
right) nearest-neighbour voter component; if this can be established by some other
means then the conclusions of Theorem 2.5 remain valid.

Extinction of X ′ now follows from a standard argument: Letting (Ft)t≥0 denote the
filtration generated by X ′, we have by the Markov property and the a.s. continuity of
the conditional expectation with respect to increasing sequences of σ-fields that

q(X ′t) = P
[
∃s ≥ 0 s.t. X ′s = 0

∣∣Ft] −→
t→∞

1{∃s≥0 s.t. X′
s=0} a.s. (3.14)

In particular, q(X ′t) → 0 a.s. on the event that X ′ does not get extinct, which by (3.13)
implies that |X ′t| → ∞ a.s. By the lower bound in (2.25), it follows that h(X ′t) → ∞
a.s. on the event that X ′ does not get extinct. But Lemma 2.4 says that h(X ′t) is a
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nonnegative martingale, so h(X ′t) → ∞ has zero probability and hence the same must
be true for the event that X ′ does not get extinct.

It follows that the interface model Y ′ of X ′ started in Y ′0 = δi+δi+1 also gets trapped
in 0 a.s., so by the fact that Y ′ is dual to X in the sense of (2.13), we find that

P
[
Xt(i) 6= Xt(i+ 1)

]
= E

[
‖Xt(δi + δi+1)‖

]
= E

[
‖X0Y

′
t ‖
]
≤ P[Y ′t 6= 0] −→

t→∞
0. (3.15)

Proof of Theorem 1.1. Immediate from Theorem 2.5 and the fact that the neutral Neu-
hauser-Pacala model, the affine voter model, and the rebellious voter model are can-
cellative systems, which is proved in [SS08].
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