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1 Introduction

Continuous-state branching processes (CSBP) are [0,∞]-valued Markov processes
that describe the evolution of the size of a continuous population. They have been
introduced by Jirina [6] and Lamperti [10]. We recall some basic facts on CSBP and
refer to Bingham [2], Grey [3], Kyprianou [7] and Le Gall [11] for details and proofs.
Consider the space D([0,∞), [0,∞]) of càdlàg [0,∞]-valued functions endowed with the
Skorohod’s topology. We denote by Z := (Zt, t ≥ 0) the canonical process on this space.
For all x ∈ [0,∞], we denote by Px the distribution of the CSBP starting from x whose
semigroup is characterised by

∀t ≥ 0, λ > 0, Ex[e−λZt ] = e−xu(t,λ) (1.1)

where for all λ > 0, (u(t, λ), t ≥ 0) is the unique solution of

∂tu(t, λ) = −Ψ(u(t, λ)) , u(0, λ) = λ (1.2)

and Ψ, the so-called branching mechanism of the CSBP, is a convex function of the form

∀u ≥ 0, Ψ(u) = γu+
σ2

2
u2 +

∫
(0,∞)

(e−uh − 1 + uh1{h<1}) ν(dh) (1.3)

where γ ∈ R, σ ≥ 0 and ν is a Borel measure on (0,∞) such that
∫

(0,∞)
(1∧h2)ν(dh) <∞.

The function Ψ entirely characterises the law of the process. The CSBP fulfils the
following branching property: for all x, y ∈ [0,∞] the process starting from x + y has
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QSD of explosive CSBP

the same law as the sum of two independent copies starting from x and y respectively.
Observe that Ψ is also the Laplace exponent of a spectrally positive Lévy process, we
refer to Theorem 1 in [10] for a pathwise correspondence between Lévy processes and
CSBP.

The convexity of Ψ entails that the ratio Ψ(u)/u is increasing. A direct calculation or
Proposition I.2 p.16 [1] shows that it converges to a finite limit as u→∞ iff

(Finite variation) σ = 0 and

∫
(0,1)

hν(dh) <∞ (1.4)

When this condition is verified, the limit of the ratio is necessarily equal to D := γ +∫
(0,1)

hν(dh) and Ψ can be rewritten

∀u ≥ 0, Ψ(u) = Du+

∫
(0,∞)

(e−uh − 1) ν(dh) (1.5)

As t → ∞ the CSBP converges either to 0 or to ∞, which are absorbing states for
the process. Consequently we define the lifetime of the CSBP as the stopping time
T := T0 ∧ T∞ where

(Extinction) T0 := inf{t ≥ 0 : Zt = 0} , (Explosion) T∞ := inf{t ≥ 0 : Zt =∞}

We denote by q := sup{u ≥ 0 : Ψ(u) ≤ 0} ∈ [0,∞] the second root of the convex function
Ψ: it is elementary to check from (1.2) that u(t, q) = q for all t ≥ 0 and that for all λ > 0,
u(t, λ)→ q as t→∞. Hence from (1.1) we get

∀x ∈ [0,∞], Px
(

lim
t→∞

Zt = 0) = 1− Px
(

lim
t→∞

Zt =∞) = e−xq

When Ψ′(0+) > 0 (resp. Ψ′(0+) = 0) the CSBP is said subcritical (resp. critical ),
the convexity of Ψ then implies q = 0 and the process is almost surely absorbed at 0.
Moreover the extinction time T0 is almost surely finite iff∫ +∞ du

Ψ(u)
<∞ (1.6)

Otherwise T0 is almost surely infinite. When Ψ′(0+) ∈ [−∞, 0) the CSBP is said super-
critical and then q ∈ (0,∞]. The CSBP has a positive probability to be absorbed at 0 iff
q ∈ (0,∞). In that case, on the extinction event {T = T0} the finiteness of T0 is gov-
erned by the same criterion as above. On the explosion event {T = T∞}, the explosion
time T∞ is almost surely finite iff ∫

0+

du

−Ψ(u)
<∞ (1.7)

Observe that Ψ′(0+) = −∞ is required (but not sufficient) for this inequality to be
fulfilled. When (1.7) does not hold, T∞ is almost surely infinite on the explosion event.

By quasi-stationary distribution (QSD for short), we mean a probability measure µ
on (0,∞) such that

Pµ(Zt ∈ · |T > t) = µ(·)

When µ is a QSD, it is a simple matter to check that under Pµ the random variable T

has an exponential distribution, the parameter of which is called the rate of decay of
µ. The goal of the present paper is to investigate the QSD associated with a CSBP that
explodes in finite time almost surely.
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1.1 A brief review of the literature: the extinction case

Li [12] and Lambert [8] considered the extinction case T = T0 < ∞ almost surely,
so that Ψ′(0+) ≥ 0 and (1.6) holds, and they studied the CSBP conditioned on non-
extinction. We recall some of their results. When Ψ is subcritical, that is Ψ′(0+) > 0,
there exists a family (µβ; 0 < β ≤ Ψ′(0+)) of QSD where β is the rate of decay of µβ.
These distributions are characterised by their Laplace transforms as follows

∀λ ≥ 0,

∫
(0,∞)

µβ(dr)e−rλ = 1− e−βΦ(λ) where Φ(λ) :=

∫ +∞

λ

du

Ψ(u)
(1.8)

Notice that Φ is well-defined thanks to (1.6). For any β > Ψ′(0+) they proved that there
is no QSD with rate of decay β, and that Equation (1.8) does not define the Laplace
transform of a probability measure on (0,∞). Additionally, the value β = Ψ′(0+) yields
the so-called Yaglom limit:

∀x > 0, Px(Zt ∈ · |T > t) −→
t→∞

µΨ′(0+)(·)

When Ψ is critical, that is Ψ′(0+) = 0, the preceding quantity converges to a trivial limit
for all x > 0 and Equation (1.8) does not define the Laplace transform of a probability
measure on (0,∞). However, under the condition Ψ′′(0+) <∞, they proved the follow-
ing convergence (that extends a result originally due to Yaglom [15] for Galton-Watson
processes)

∀x > 0, z ≥ 0, Px

(Zt
t
≥ z

∣∣T > t
)
−→
t→∞

exp
(
− 2z

Ψ′′(0+)

)
(1.9)

Finally in both critical and subcritical cases, for any given value t > 0 the process
(Zr, r ∈ [0, t]) conditioned on s < T admits a limiting distribution as s → ∞, called the
Q-process. The law of the Q-process is obtained as a h-transform of P as follows

∀x > 0, dQx|Ft :=
Zt e

Ψ′(0)t

x
dPx|Ft

1.2 Main results: the explosive case

We now assume that almost surely the CSBP explodes in finite time. From the results
recalled above, this is equivalent with (1.7) and q = ∞ so that Ψ is convex, decreasing
and non-positive. Hence the ratio Ψ(u)/u cannot converge to +∞ so that necessarily
(1.4) holds, and Ψ can be written as in (1.5). Observe also that in that case the Lévy
process with Laplace exponent Ψ is a subordinator. We set:

Ψ(+∞) := lim
u→∞

Ψ(u) ∈ [−∞, 0)

From (1.5) we deduce that Ψ(+∞) ∈ (−∞, 0) iff ν(0,∞) < ∞ and D = 0. When this
condition holds, we have Ψ(+∞) = −ν(0,∞). Otherwise Ψ(+∞) = −∞.

We start with an elementary remark: conditioning a CSBP on non-explosion does
not affect the branching property. Consequently the law of Zt conditioned on T > t

is infinitely divisible: if it admits a limit as t goes to ∞, the limit has to be infinitely
divisible as well. Our result below shows that Ψ(+∞) plays a rôle analogue to Ψ′(0+)

in the extinction case.

Theorem 1.1. Suppose T = T∞ <∞ almost surely and set

∀λ ≥ 0, Φ(λ) :=

∫ 0

λ

du

Ψ(u)
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For any β > 0 there exists a unique quasi-stationary distribution µβ associated to the
rate of decay β. This probability measure is infinitely divisible and is characterised by

∀λ ≥ 0,

∫
(0,∞)

µβ(dr)e−rλ = e−βΦ(λ) (1.10)

Additionally, the following dichotomy holds true:

(i) Ψ(+∞) ∈ (−∞, 0). The limiting conditional distribution is given by

∀x ∈ (0,∞), lim
t→∞

Px(Zt ∈ · |T > t) = µxν(0,∞)(·)

(ii) Ψ(+∞) = −∞. The limiting conditional distribution is trivial:

∀a, x ∈ (0,∞), lim
t→∞

Px(Zt ≤ a |T > t) = 0

Let us make some comments. Firstly this theorem implies that λ 7→ Φ(λ) is the Laplace
exponent of a subordinator, and so, µβ is the distribution of a Φ-Lévy process taken at
time β. Secondly there is a similarity with the extinction case: the limiting conditional
distribution is trivial iff Ψ(+∞) = −∞ so that the dichotomy on the value Ψ(+∞) is the
explosive counterpart of the dichotomy on the value Ψ′(0+) in the extinction case. Also,
note the similarity in the definition of the Laplace transforms (1.8) and (1.10). However,
there are two major differences with the extinction case: firstly there is no restriction
on the rates of decay. Secondly, even if the limiting conditional distribution is trivial
when Ψ(+∞) = −∞, there exists a family of QSD.

The following theorem characterises the Q-process associated with an explosive
CSBP. Let Ft be the sigma-field generated by (Zr, r ∈ [0, t]), for any t ∈ [0,∞).

Theorem 1.2. We assume that T = T∞ <∞ almost surely. For each x > 0, there exists
a distribution Qx on D([0,∞), [0,∞)) such that for any t ≥ 0

lim
s→∞

Px(· |T > s)|Ft = Qx(·)|Ft

Furthermore, Qx is the law of the ΨQ-CSBP where

ΨQ(u) = Du

The Q-process appears as the Ψ-CSBP from which one has removed all the jumps: only
the deterministic part remains, see also the forthcoming Proposition 3.1. Notice that
the Q-process cannot be defined through a h-transform of the CSBP: actually the distri-
bution of the Q-process on D([0, t], [0,∞)) is not even absolutely continuous with respect
to that of the Ψ-CSBP, except when the Lévy measure ν is finite.

When Ψ(+∞) = −∞, Theorem 1.1 shows that the process conditioned on non-
explosion converges to a trivial limit. In the next theorem, under the assumption that
the branching mechanism is regularly varying at 0 we propose a rescaling of the CSBP
conditioned on non-explosion such that it converges to a non-trivial limit. Recall that
we call slowly varying function at 0 any continuous map L : (0,∞) → (0,∞) such that
for any a ∈ (0,∞), L(au)/L(u)→ 1 as u ↓ 0.

Theorem 1.3. Suppose that Ψ(u) = −u1−αL(u) with L a slowly varying function at 0

and α ∈ (0, 1), and assume that Ψ(+∞) = −∞. Consider any function f : [0,∞)→ (0,∞)

satisfying Ψ
(
f(t)−1

)
f(t) ∼ Ψ(u(t, 0+)) as t→∞. Then the following convergence holds

true:
∀x, λ ∈ (0,∞), Ex

[
e−λZt/f(t)

∣∣ t < T
]
−→
t→∞

e−xλ
α/α
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Observe that the limit displayed by this theorem is the Laplace transform of the QSD
associated with Ψ(u) = −u1−α.

Example 1.4. When Ψ(u) = −k u1−α with k > 0 and α ∈ (0, 1), we have f(t) ∼
(αkt)(1−α)/α2

as t → ∞. When Ψ(u) = −c u − k u1−α with k, c > 0 and α ∈ (0, 1), we
have f(t) ∼ (k/c)(1−α)/α2

ect/α as t→∞.

The proof of Theorem 1.3 is inspired by calculations of Slack in [14] where it is shown
that any critical Galton-Watson process with a regularly varying generating function
can be properly rescaled so that, conditioned on non-extinction, it converges towards
a non-trivial limit. For completeness we also adapt the result of Slack to critical CSBP
conditioned on non-extinction.

Proposition 1.5. Suppose that Ψ(u) = u1+αL(u) with L a slowly varying function at 0

and α ∈ (0, 1]. Assume that T = T0 < ∞ almost surely. Fix any function f : [0,∞) →
(0,∞) verifying f(t) ∼ u(t,∞) as t→∞. Then we have the following convergence

∀x, λ ∈ (0,∞), Ex
[
e−λZtf(t) | t < T

]
−→
t→∞

1−
(
1 + λ−α

)−1/α

We recover in particular the finite variance case (1.9) of Lambert and Li. Our result
also covers the so-called stable branching mechanisms Ψ(u) = u1+α with α ∈ (0, 1].

Organisation of the paper. We start with a study of continuous-time Galton-Watson
processes (which are the discrete-state counterparts of CSBP): we provide a complete
description of the QSD when this process explodes in finite time almost surely and com-
pare the results with the continuous-state case. In the third section we prove Theorems
1.1, 1.2 and 1.3. Finally in the fourth section we prove Proposition 1.5.

2 The discrete case

A discrete-state branching process (Zt, t ≥ 0) is a continuous-time Markov process
taking values in Z+ ∪{+∞} that verifies the branching property (we refer to Chapter V
of Harris [4] for the proofs of the following facts). It can be seen as a Galton-Watson pro-
cess with offspring distribution ξ where each individual has an independent exponential
lifetime with parameter c > 0. Let us denote by φ(λ) =

∑∞
k=0 λ

kξ(k), ∀λ ∈ [0, 1] the gen-
erating function of the Galton-Watson process. We denote by Pn the law on the space
D([0,∞),Z+∪{+∞}) of Z starting from n ∈ Z+∪{+∞}, and En the related expectation
operator. The semigroup of the DSBP is characterised via the Laplace transform (see
Chapter V.4 of [4])

∀r ∈ (0, 1),∀t ∈ [0,∞), En
[
rZt

]
= F (t, r)n where

∫ F (t,r)

r

dx

c (φ(x)− x)
= t (2.1)

Let τ be the lifetime of Z, that is, the infimum of the extinction time τ0 and the explosion
time τ∞. Taking the limits r ↓ 0 and r ↑ 1 in (2.1) one gets

Pn(τ0 ≤ t) = F (t, 0+)n , Pn(τ∞ < t) = 1− F (t, 1−)n

In this section, we assume that there is explosion in finite time almost surely. Results
of Chapters V.9 and V.10 of [4] then entail that the smallest solution of the equation
φ(x) = x equals 0 (and so ξ(0) = 0) and that

∫
1−

dx
c (φ(x)−x) is finite. This allows to define

Φ(r) :=

∫ r

1

dx

c (φ(x)− x)
, r ∈ (0, 1] (2.2)
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Clearly r 7→ Φ(r) is the inverse map of t 7→ F (t, 1−), that is for all t ≥ 0,Φ
(
F (t, 1−)

)
= t.

We say that a measure µ on N = {1, 2, . . .} is a quasi-stationary distribution (QSD) for Z
if

Pµ(Zt ∈ · | τ > t) = µ(·)

From the Markov property, we deduce that τ has an exponential distribution under Pµ,
the parameter of which is called the rate of decay of µ.

Theorem 2.1. Suppose there is explosion in finite time almost surely. Let β0 := c (1 −
ξ(1)). There is a unique quasi-stationary distribution µβ associated with the rate of
decay β if and only if β is of the form nβ0, with n ∈ N. It is characterised by its Laplace
transform ∑

k

µβ({k})rk = e−βΦ(r), ∀r ∈ (0, 1] (2.3)

For any initial condition n ∈ N we have

lim
t→∞

Pn(Zt ∈ · | τ > t ) = µnβ0
(·)

Let us make some comments. First there exists only a countable family of QSD. This
is due to the restrictive condition that our process takes values in Z+ ∪ {∞}. Also,
observe the similarity with Theorem 1.1: indeed a DSBP can be seen as a particular
CSBP starting from an integer and whose branching mechanism is the Laplace exponent
of a compound Poisson process with integer-valued jumps. In particular ν({k}) = c ξ(k+

1) for all integer k ≥ 1. Hence the quantity c(1 − ξ(1)) in the DSBP case corresponds
to ν(0,∞) in the CSBP case. Finally we mention that the Q-process associated with an
explosive DSBP is the constant process, that is, the DSBP with the trivial generating
function F (t, r) = r. This fact can be proved using calculations similar to those in the
proof below or it can be deduced from Theorem 1.2 and the remarks above.

Proof. We start with the proof of the uniqueness of the QSD for a given rate of decay
β > 0. Let µ be a QSD and let β > 0 be its rate of decay. Then we have for all t ≥ 0

e−βt = Pµ(τ > t) =
∑
k

µ({k})Pk(τ > t) =
∑
k

µ({k})F (t, 1−)k

Since F (Φ(r), 1−) = r we get

∀r ∈ (0, 1], e−βΦ(r) =
∑
k

µ({k})rk

which ensures the uniqueness of the QSD for a given rate of decay. We now prove that
whenever β=nβ0 with n ∈ N, the last expression is indeed the Laplace transform of a
probability measure on N.

∀n ∈ N, En[rZt |τ > t] =
En[rZt ; τ > t]

Pn(τ > t)
=

(
F (t, r)

F (t, 1−)

)n
(2.4)

By 0 ≤ F (t, r) ≤ F (t, 1−)→ 0 as t→∞, φ(x) = ξ(1)x+O(x2) as x ↓ 0 and (2.2) we get

Φ(r) =

∫ F (t,r)

F (t,1−)

dx

c(φ(x)− x)
∼

t→∞

∫ F (t,r)

F (t,1−)

dx

cx(ξ(1)− 1)
= − 1

β0
log

F (t, r)

F (t, 1−)

We deduce that the r.h.s. of (2.4) converges to exp(−Φ(r)nβ0) as t → ∞. From this
convergence and the fact that Φ(1−) = 0, we deduce that r 7→ exp(−Φ(r)nβ0) is the
Laplace transform of a probability measure say µnβ0

on Z+. As Φ(0+) = +∞, we deduce
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that this probability measure does not charge 0. Also, observe that µβ0
({1}) > 0. Indeed

for all r ∈ (0, 1) we have Φ′(r) = −(β0r)
−1 − G(r) where G is bounded near 0. Since

µβ0
({1}) = − limr↓0 β0Φ′(r)e−β0Φ(r), the strict positivity follows.

Fix β > 0. We now assume that r 7→ e−βΦ(r) is the Laplace transform of a probability
measure on N say µβ. Denote by m ∈ N the smallest integer such that µβ({m}) > 0.
Then we have for all r ∈ (0, 1]

e−βΦ(r) = µβ({m})rm +
∑
k>m

µβ({k})rk = (e−β0Φ(r))
β
β0

=
(
µβ0

({1})r +
∑
k>1

µβ0
({k})rk

) β
β0

This implies that µβ({m})rm ∼ (µβ0
({1})r)

β
β0 as r ↓ 0 and so, m = β

β0
∈ N. Consequently

(2.3) is the Laplace transform of a probability measure on N iff β is of the form nβ0.

3 Quasi-stationary distributions and Q-process in the explosive
case

Consider a branching mechanism Ψ of the form (1.3). It is well-known and can
be easily checked from (1.1) that for any t ≥ 0 the law of Zt under Px is infinitely
divisible. Consequently u(t, ·) is the Laplace exponent of a (possibly killed) subordinator
(see Chapter 5.1 [7]). Thanks to the Lévy-Khintchine formula, there exist at, dt ≥ 0 and
a Borel measure wt on (0,∞) with

∫
(0,∞)

(1 ∧ h)wt(dh) <∞ such that

∀λ ≥ 0, u(t, λ) = at + dtλ+

∫
(0,∞)

(1− e−λh)wt(dh) (3.1)

Note that at = u(t, 0+) is positive iff the CSBP has a positive probability to explode in
finite time. In the genealogical interpretation, the measure wt gives the distribution of
the clusters of individuals alive at time t who share a same ancestor at time 0, while the
coefficient dt corresponds to the individuals at time t who do not share their ancestor
at time 0 with other individuals. For further use, we write the integral version of (1.2):

∀t ≥ 0,∀λ ∈ [0,∞)\{q},
∫ λ

u(t,λ)

du

Ψ(u)
= t (3.2)

The following result shows that the drift dt is left unchanged when replacing Ψ by ΨQ

of Theorem 1.2: this means that the Q-process is obtained by removing all the clusters
in the population.

Proposition 3.1. When Ψ fulfils (1.4) then dt = e−Dt for all t ≥ 0. Otherwise dt = 0 for
all t > 0.

Proof. Corollary p.1049 in [13] entails that dt = 0 for all t > 0 whenever σ > 0 or∫
(0,1)

hν(dh) = ∞. We now assume the converse, namely that Ψ fulfils (1.4) so that

Ψ(u)/u → D as u → ∞. A direct computation shows that dt = limλ→∞ u(t, λ)/λ. Then
for any t ≥ 0, λ > 0

log
(u(t, λ)

λ

)
=

∫ t

0

∂su(s, λ)

u(s, λ)
ds = −

∫ t

0

Ψ(u(s, λ))

u(s, λ)
ds (3.3)

If q ∈ (0,∞), then for all λ > q and all 0≤ s≤ t we have q < u(t, λ) ≤ u(s, λ) ≤ λ thanks
to (1.2) and by (3.2) we deduce that u(t, λ) ↑ ∞ as λ → ∞. If q = ∞, then for all λ > 0
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and all 0≤ s≤ t we have λ ≤ u(s, λ) ≤ u(t, λ) thanks to (1.2) and obviously u(t, λ) ↑ ∞
as λ→∞. Since Ψ(u)/u ↑ D as u→∞ the dominated convergence theorem applied to
(3.3) yields that log(u(t, λ)/λ)→ −Dt as λ→∞.

Until the end of the section, we assume that Ψ verifies (1.7) and that q = ∞. Con-
sequently under Px, Z explodes in finite time almost surely and at = u(t, 0+) > 0 for all
t > 0. An elementary calculation entails

∀t ≥ 0, x > 0, Px(T > t) = e−x at

We introduce for all λ ≥ 0, Φ(λ) :=
∫ 0

λ
du/Ψ(u). This non-negative, increasing function

admits a continuous inverse, namely the function t 7→ at. Also, thanks to Equation (3.2)
we deduce the identities

∀t, λ ≥ 0, Φ(u(t, λ)) = t+ Φ(λ) , u(t, λ) = u(t+ Φ(λ), 0+) (3.4)

3.1 Proof of Theorem 1.1

First we compute the necessary form of the QSD. Fix β > 0 and suppose that µβ is a
QSD with rate of decay β. We get for all t ≥ 0

e−βt = Pµβ (T > t) =

∫
(0,∞)

µβ(dr)e−r at

Letting t = Φ(λ) for any λ ≥ 0 we obtain

e−βΦ(λ) =

∫
(0,∞)

µβ(dr)e−rλ

Consequently there is at most one QSD corresponding to the rate of decay β. Now
suppose that the preceding formula defines a probability distribution on (0,∞) then the
following calculation ensures that it is quasi-stationary:

∀λ > 0, Eµβ
[
e−λZt |T > t

]
=

Eµβ
[
e−λZt ; T > t

]
Pµβ (T > t)

=
Eµβ

[
e−λZt

]
Pµβ (T > t)

=

∫
(0,∞)

µβ(dr)e−r u(t,λ)

e−βt

= e−β
(

Φ(u(t,λ))−t
)

= e−βΦ(λ) = Eµβ [e−λZ0 ]

We now assume Ψ(+∞) ∈ (−∞, 0) and we prove that λ 7→ e−βΦ(λ) is indeed the Laplace
transform of a probability measure µβ on (0,∞). Let x := β/ν(0,∞), for all λ > 0 we
have

Ex
[
e−λZt |T > t

]
=
Ex
[
e−λZt ; T > t

]
Px(T > t)

= exp
(
− x
(
u(t, λ)− at

))
From (3.2) and the definition of Φ we get that∫ at

u(t,λ)

du

Ψ(u)
= Φ(λ)

Using again (3.2) and the fact that Ψ is non-positive, we get that at →∞ and u(t, λ)→∞
as t→∞. Since Ψ(u)→ −ν(0,∞) as u→∞, one deduces that∫ at

u(t,λ)

du

Ψ(u)
∼

t→∞

u(t, λ)− at
ν(0,∞)

and therefore
Ex
[
e−λZt |T > t

]
−→
t→∞

e−Φ(λ) x ν(0,∞)
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Since Φ(λ) → 0 as λ ↓ 0, we deduce that λ 7→ e−Φ(λ) x ν(0,∞) = e−βΦ(λ) is the Laplace
transform of a probability measure on [0,∞). Moreover, it does not charge 0 since
Φ(λ)→∞ as λ→∞.
We now suppose Ψ(+∞) = −∞. An easy adaptation of the preceding arguments en-
sures that for any x, λ > 0

Ex[e−λZt |T > t] −→
t→∞

0

Hence the limiting distribution is trivial: it is a Dirac mass at infinity. However, let us
prove that λ 7→ e−βΦ(λ) is indeed the Laplace transform of a probability measure µβ on
(0,∞). For every ε > 0, define the branching mechanism

Ψε(u) :=

∫
(0,∞)

(e−hu − 1)(1{h>ε}ν(dh) +
1

ε
δ−Dε(dh)) =

1

ε
(eDεu − 1) +

∫
(ε,∞)

(e−hu − 1) ν(dh)

Observe that for any u ≥ 0, Ψε(u) ↓ Ψ(u) as ε ↓ 0. Thus by monotone convergence we
deduce that

∀λ ≥ 0,

∫ 0

λ

du

Ψε(u)
−→
ε↓0

∫ 0

λ

du

Ψ(u)

The first part of the proof applies to Ψε, and therefore the l.h.s. of the preceding equa-
tion is the Laplace exponent taken at λ of an infinitely divisible distribution on (0,∞).
Since the r.h.s. vanishes at 0 and goes to ∞ at ∞, it is the Laplace exponent of an
infinitely divisible distribution on (0,∞). �

3.2 Proof of Theorem 1.2

Fix t ≥ 0. Since we are dealing with non-decreasing processes and since the asserted
limiting process is continuous, the convergence of the finite-dimensional marginals suf-
fices to prove the theorem (see for instance Th VI.3.37 in [5]). By Proposition 3.1, we
know that uQ(t, λ) = λe−Dt is the function related to ΨQ via (1.2). Hence we only
need to prove that for all n ≥ 1, all n-uplets 0 ≤ t1 ≤ . . . ≤ tn ≤ t and all coefficients
λ1, . . . , λn > 0 we have

lim
s→∞

− 1

x
logEx[e−λ1Zt1−...−λnZtn |T > t+ s] = λ1dt1 + . . .+ λndtn (3.5)

Thanks to an easy recursion, we get

− 1

x
logEx[e−λ1Zt1−...−λnZtn |T > t+ s]

= u

(
t1, λ1 + u

(
t2−t1, λ2 + . . .+ u

(
tn−tn−1, λn + u(t+ s− tn, 0+)

)
. . .
))
− u(t+ s, 0+)

To prove (3.5), we proceed via a recurrence on n. We check the case n = 1. Recall that
u(t, λ)/λ→ dt as λ→∞. Then the concavity of λ→ u(t, λ) (that can be directly checked
from (3.1)) implies that ∂λu(t, λ) → dt as λ → ∞. Writing u(t + s, 0+) = u

(
t1, u(t + s −

t1, 0+)
)
, the preceding arguments and the fact that u(t + s − t1, 0+) = at+s−t1 → ∞ as

s→∞ entail

u
(
t1, λ1 + u(t+ s− t1, 0+)

)
− u(t+ s, 0+)→ λ1dt1 as s→∞

Suppose now that the result holds at rank n−1 ≥ 1, that is, (3.5) holds true for all
(n−1)-uplets of times and coefficients. In particular

u
(
t2 − t1, λ2 + . . .+ u

(
tn − tn−1, λn + u(t+ s− tn, 0+)

)
. . .
)
− u(t+ s− t1, 0+)

∼
s→∞

λ2dt2−t1 + . . .+ λndtn−t1
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Therefore the argument of the case n=1 applies and shows that

u

(
t1, λ1 + u

(
t2 − t1, λ2 + . . .+ u

(
tn − tn−1, λn + u(t+ s− tn, 0+)

)
. . .
))
− u(t+ s, 0+)

∼
s→∞

λ1dt1 + λ2dt1dt2−t1 + . . .+ λndt1dtn−t1

which is the desired result since dr+r′ = drdr′ for all r, r′ ≥ 0 by Proposition 3.1. �

3.3 Proof of Theorem 1.3

Recall the notation at = u(t, 0+) and that at → ∞ as t → ∞. Since u 7→ Ψ(u)/u is
strictly increasing from −∞ to D, there exists a positive function f such that

Ψ
(
f(t)−1

)
f(t) ∼ Ψ(at)

as t → ∞. Since Ψ(at) → −∞ as t → ∞, necessarily f(t) → ∞. Fix λ, x ∈ (0,∞). For
any t ∈ (0,∞), we have

− 1

x
logEx[e−λZt/f(t) | t < T ] = u(t, λ f(t)−1)− at

We rely on two lemmas, whose proofs are postponed to the end of the subsection.

Lemma 3.2. As u ↓ 0, we have Φ(u) ∼ u/(−αΨ(u)).

Since f(t)→ +∞ as t→∞ the lemma implies

Ψ(at)Φ(λ f(t)−1) ∼
t→∞

− Ψ(at)λ

αf(t)Ψ(λ f(t)−1)

Since L is slowly varying at 0+, we deduce that Ψ(λ f(t)−1) ∼ λ1−αΨ(f(t)−1) as t→∞.
Thus the very definition of f entails

Ψ(at)Φ(λ f(t)−1) ∼
t→∞

−λαα−1 (3.6)

Lemma 3.3. The following holds true as t→∞∫ at

u(t,λ f(t)−1)

dv

Ψ(v)
∼
∫ at

u(t,λ f(t)−1)

dv

Ψ(at)

From the latter lemma, we deduce

u(t, λ f(t)−1)− at ∼
t→∞

−Ψ(at)

∫ at

u(t,λ f(t)−1)

dv

Ψ(v)
= −Ψ(at)Φ(λ f(t)−1)

∼
t→∞

λαα−1

where we use (3.6) at the second line. The theorem is proved. �
Proof of Lemma 3.2. Recall the definition of Φ. An integration by parts yields that for
all u ∈ [0,∞)

Φ(u) = − u

Ψ(u)
+

∫ 0

u

1

Ψ(v)

vΨ′(v)

Ψ(v)
dv

Recall from Theorem 2 in [9] that vΨ′(v)/Ψ(v)→ 1−α as v ↓ 0. Therefore an elementary
calculation ends the proof. �
Proof of Lemma 3.3. For all t ∈ [0,∞), at ≤ u(t, λ f(t)−1). We write∫ u(t, λ f(t)−1)

at

dv

Ψ(v)
−
∫ u(t, λ f(t)−1)

at

dv

Ψ(at)
=

∫ u(t, λ f(t)−1)

at

Ψ(at)−Ψ(v)

Ψ(v)Ψ(at)
dv
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The convexity of Ψ implies that for all v ∈ [at, u(t, λ f(t)−1)] we have

0 ≤ Ψ(at)−Ψ(v) ≤ −Ψ′(at)
(
v − at

)
(3.7)

Suppose that t 7→ u(t, λ f(t)−1)−at is bounded for large times. The fact that Ψ′(v)/Ψ(v)

goes to 0 as v →∞ together with (3.7) then entail

0 ≤
∫ u(t, λ

f(t)
)

at

Ψ(at)−Ψ(v)

Ψ(v)Ψ(at)
dv ≤ −

(
u
(
t,

λ

f(t)

)
− at

)Ψ′(at)

Ψ(at)

∫ u(t, λ
f(t)

)

at

dv

Ψ(v)

≤
t→∞

o
(∫ u(t, λ

f(t)
)

at

dv

Ψ(v)

)
which in turn proves the lemma. We are left with the proof of the boundedness of
t 7→ u(t, λ f(t)−1)− at for large times. Fix k ∈ (−D,∞). Since Ψ′(v) ↑ D as v →∞, for t
large enough we get from (3.7) that Ψ(v) ≥ Ψ(at)−k(v−at) for all v ∈ [ at, u(t, λ f(t)−1)].
A simple calculation then yields

0 ≤ 1

k
log
(

1− ku(t, λ f(t)−1)− at
Ψ(at)

)
≤
∫ at

u(t,λ f(t)−1)

dv

Ψ(v)
= Φ(λf(t)−1)

Using log(1 + v) ≥ v/2 for v small and since Φ
(
λf(t)−1

)
→ 0, we get for t large enough

0 ≤ −u(t, λ f(t)−1)− at
2 Ψ(at)

≤ Φ(λf(t)−1)

From (3.6), we deduce that t 7→ u(t, λ f(t)−1)− at is bounded for large times. �

4 Proof of Proposition 1.5

The proof is inspired by that of Theorem 1 in [14] but for completeness we give all
the details. Recall that Ψ(u) = u1+αL(u) with L slowly varying at 0 and α ∈ (0, 1) and
that T0 < ∞ almost surely: consequently q = 0 and (1.6) holds true. Recall (3.2). We
set for all t ≥ 0, v(t) := u(t,+∞) which is finite by (1.6). Observe that v is decreasing
from +∞ to 0. Grey p. 672 [3] proved that

∀t ≥ 0, x > 0, Px
(
t ≥ T

)
= e−xv(t) (4.1)

Since Ψ(u)/u→∞ as u→∞ we get for all r > 0

v(r)

rΨ(v(r))
=

1

r

∫ r

0

∂s

( v(s)

Ψ(v(s))

)
ds =

1

r

∫ r

0

∂sv(s)
Ψ
(
v(s)

)
− v(s)Ψ′

(
v(s)

)
Ψ
(
v(s)

)2 ds

=
1

r

∫ r

0

(v(s)Ψ′
(
v(s)

)
Ψ
(
v(s)

) − 1
)
ds

where we use the identity ∂sv(s) = −Ψ
(
v(s)

)
at the second line. Since Ψ is regularly

varying at 0, Theorem 2 in [9] entails that uΨ′(u)/Ψ(u)→ 1+α as u ↓ 0. Taking the limit
r →∞ in the above identity, one gets

v(r)αL(v(r)) ∼ 1

α r
as r →∞ (4.2)

Since v is a bijection from (0,∞) onto itself, for any t ∈ (0,∞) there exists a unique
s(t) = s ∈ (0,∞) such that v(s) = λf(t). From the assumption f(t) ∼ v(t) as t → ∞, we

ECP 18 (2013), paper 57.
Page 11/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2508
http://ecp.ejpecp.org/


QSD of explosive CSBP

deduce that s→∞ as t→∞. We use (4.2) and the slowness of the variation of L to get
as t→∞

t

s
∼ v(s)αL(v(s))

v(t)αL(v(t))
∼ λαf(t)αL(λf(t))

f(t)αL(f(t))
∼ λα

Hence λαs ∼ t as t→∞. Using ∂rv(r) = −Ψ
(
v(r)

)
and (4.2), we obtain for all t > 0

log
(v(t+ s)

v(t)

)
=

∫ t+s

t

∂rv(r)

v(r)
dr = −

∫ t+s

t

v(r)αL
(
v(r)

)
dr ∼

t→∞
− 1

α
log(1 + λ−α)

Using the above results, (4.1) and the identity u(t, λf(t))=u(t, v(s))=v(t+ s) we get for
all t > 0

Ex

[
e−λZtf(t)

∣∣ t < T
]

=
Ex

[
e−λZtf(t)

]
− Px(t ≥ T)

Px(t < T)
=
e−xu(t,λf(t)) − e−x v(t)

1− e−x v(t)

∼
t→∞

1− v(t+ s)

v(t)
∼

t→∞
1− (1 + λ−α)−1/α

This ends the proof. �
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