
Electron. Commun. Probab. 18 (2013), no. 78, 1–13.
DOI: 10.1214/ECP.v18-2551
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Spectral measures of powers of random matrices∗

Elizabeth S. Meckes† Mark W. Meckes‡

Dedicated to the memory of Helen Murphy Tepperman.

Abstract

This paper considers the empirical spectral measure of a power of a random matrix
drawn uniformly from one of the compact classical matrix groups. We give sharp
bounds on the Lp-Wasserstein distances between this empirical measure and the uni-
form measure on the circle, which show a smooth transition in behavior when the
power increases and yield rates on almost sure convergence when the dimension
grows. Along the way, we prove the sharp logarithmic Sobolev inequality on the uni-
tary group.
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1 Introduction

The eigenvalues of large random matrices drawn uniformly from the compact clas-
sical groups are of interest in a variety of fields, including statistics, number theory,
and mathematical physics; see e.g. [7] for a survey. An important general phenomenon
discussed at length in [7] is that the eigenvalues of an N ×N random unitary matrix U ,
all of which lie on the circle S1 = {z ∈ C : |z| = 1}, are typically more evenly spread out
than N independently chosen uniform random points in S1. It was found by Rains [15]
that the eigenvalues of UN are exactly distributed as N independent random points in
S1; similar results hold for other compact Lie groups. In subsequent work [16], Rains
found that in a sense, the eigenvalues of Um become progressively more independent
as m increases from 1 to N .

In this paper we quantify in a precise way the degree of uniformity of the eigenvalues
of Um when U is drawn uniformly from any of the classical compact groups U (N),
SU (N), O (N), SO (N), and Sp (2N). We do this by bounding, for any p ≥ 1, the mean
and tails of the Lp-Wasserstein distance Wp between the empirical spectral measure
µN,m of Um and the uniform measure ν on S1 (see Section 4 for the definition of Wp). In
particular, we show in Theorem 11 that

EWp(µN,m, ν) ≤ Cp

√
m
[
log
(
N
m

)
+ 1
]

N
. (1)
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Spectral measures of powers of random matrices

Theorem 13 gives a subgaussian tail bound for Wp(µN,m, ν), which is used in Corollary
14 to conclude that if m = m(N), then with probability 1, for all sufficiently large N ,

Wp(µN,m, ν) ≤ Cp
√
m log(N)

Nmin{1,1/2+1/p} . (2)

In the case m = 1 and 1 ≤ p ≤ 2, (1) and (2) are optimal up to the logarithmic
factor, since the Wp-distance from the uniform measure ν to any probability measure
supported on N points is at least cN−1. When m = N , Rains’s theorem says that µN,N
is the empirical measure of N independent uniformly distributed points in S1, for which
the estimate in (1) of order N−1/2 is optimal (cf. [6]). We conjecture that Theorem 11
and Corollary 14, which interpolate naturally between these extreme cases, are optimal
up to logarithmic factors in their entire parameter space.

In the case that m = 1 and p = 1, these results improve the authors’ earlier results in
[14] (where W1(µN,1, ν) was bounded above by CN−2/3) to what we conjectured there
was the optimal rate; the results above are completely new for m > 1 or p > 1.

The proofs of our main results rest on three foundations: the fact that the eigenval-
ues of uniform random matrices are determinantal point processes, Rains’s representa-
tion from [16] of the eigenvalues of powers of uniform random matrices, and logarithmic
Sobolev inequalities. In Section 2, we combine some remarkable properties of determi-
nantal point processes with Rains’s results to show that the number of eigenvalues of
Um contained in an arc is distributed as a sum of independent Bernoulli random vari-
ables. In Section 3, we estimate the means and variances of these sums, again using
the connection with determinantal point processes. In Section 4, we first generalize the
method of Dallaporta [5] to derive bounds on mean Wasserstein distances from those
data and prove Theorem 11. Then by combining Rains’s results with tensorizable mea-
sure concentration properties which follow from logarithmic Sobolev inequalities, we
prove Theorem 13 and Corollary 14. We give full details only for the case of U (N),
deferring to Section 5 discussion of the modifications necessary for the other groups.

In order to carry out the approach above, we needed the sharp logarithmic Sobolev
inequality on the full unitary group, rather than only on SU (N) as in [14]. It has been
noted previously (e.g. in [10, 1]) that such a result is clearly desirable, but that because
the Ricci tensor of U (N) is degenerate, the method of proof which works for SU (N),
SO (N), and Sp (2N) breaks down. In the appendix, we prove the logarithmic Sobolev
inequality on U (N) with a constant of optimal order.

2 A miraculous representation of the eigenvalue counting func-
tion

As discussed in the introduction, a fact about the eigenvalue distributions of matri-
ces from the compact classical groups which we use crucially is that they are determi-
nantal point processes. For background on determinantal point processes the reader
is referred to [11]. The basic definitions will not be repeated here since all that is
needed for our purposes is the combination of Propositions 1 and 5 with Proposition
2 and Lemma 6 below. The connection between eigenvalues of random matrices and
determinantal point processes has been known in the case of the unitary group at least
since [8]. For the other groups, the earliest reference we know of is [12]. Although the
language of determinantal point processes is not used in [12], Proposition 1 below is
essentially a summary of [12, Section 5.2]. We first need some terminology.

Given an eigenvalue eiθ, 0 ≤ θ < 2π, of a unitary matrix, we refer to θ as an eigen-
value angle of the matrix. Each matrix in SO (2N + 1) has 1 as an eigenvalue, each
matrix in SO− (2N + 1) has −1 as an eigenvalue, and each matrix in SO− (2N + 2) has
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both −1 and 1 as eigenvalues; we refer to all of these as trivial eigenvalues. Here
SO− (N) = {U ∈ O (N) : detU = −1}, which is considered primarily as a technical
tool in order to prove our main results for O (N). The remaining eigenvalues of matri-
ces in SO (N) or Sp (2N) occur in complex conjugate pairs. When discussing SO (N),
SO− (N), or Sp (2N), we refer to the eigenvalue angles corresponding to the nontrivial
eigenvalues in the upper half-circle as nontrivial eigenvalue angles. For U (N), all the
eigenvalue angles are considered nontrivial.

Proposition 1. The nontrivial eigenvalue angles of uniformly distributed random ma-
trices in any of SO (N), SO− (N), U (N), Sp (2N) are a determinantal point process, with
respect to uniform measure on Λ, with kernels as follows.

KN (x, y) Λ

SO (2N) 1 +

N−1∑
j=1

2 cos(jx) cos(jy) [0, π)

SO (2N + 1) ,SO− (2N + 1)

N−1∑
j=0

2 sin

(
(2j + 1)x

2

)
sin

(
(2j + 1)y

2

)
[0, π)

U (N)

N−1∑
j=0

eij(x−y) [0, 2π)

Sp (2N) ,SO− (2N + 2)

N∑
j=1

2 sin(jx) sin(jy) [0, π)

Proposition 1 allows us to apply the following result from [11]; see also Corollary
4.2.24 of [1].

Proposition 2. Let K : Λ×Λ→ C be a kernel on a locally compact Polish space Λ such
that the corresponding integral operator K : L2(µ)→ L2(µ) defined by

K(f)(x) =

∫
K(x, y)f(y) dµ(y)

is self-adjoint, nonnegative, and locally trace-class with eigenvalues in [0, 1]. For D ⊆ Λ

measurable, let KD(x, y) = 1D(x)K(x, y)1D(y) be the restriction of K to D. Suppose
that D is such that KD is trace-class; denote by {λk}k∈A the eigenvalues of the corre-
sponding operator KD on L2(D) (A may be finite or countable) and denote by ND the
number of particles of the determinantal point process with kernel K which lie in D.
Then

ND
d
=
∑
k∈A

ξk,

where “
d
=” denotes equality in distribution and the ξk are independent Bernoulli random

variables with P[ξk = 1] = λk and P[ξk = 0] = 1− λk.

In order to treat powers of uniform random matrices, we will make use of the fol-
lowing elegant result of Rains. For simplicity of exposition, we will restrict attention for
now to the unitary group, and discuss in Section 5 the straightforward modifications
needed to treat the other classical compact groups.

Proposition 3 (Rains, [16]). Let m ≤ N be fixed. If ∼ denotes equality of eigenvalue
distributions, then

U (N)
m ∼

⊕
0≤j<m

U

(⌈
N − j
m

⌉)
.
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That is, if U is a uniform N ×N unitary matrix, the eigenvalues of Um are distributed as
those of m independent uniform unitary matrices of sizes

⌊
N
m

⌋
:= max

{
k ∈ N | k ≤ N

m

}
and

⌈
N
m

⌉
:= min

{
k ∈ N | k ≥ N

m

}
, such that the sum of the sizes of the matrices is N .

Corollary 4. Let 1 ≤ m ≤ N , and let U ∈ U (n) be uniformly distributed. For θ ∈ [0, 2π),

denote by N (m)
θ the number of eigenvalue angles of Um which lie in [0, θ). Then N (m)

θ is
equal in distribution to a sum of independent Bernoulli random variables. Consequently,
for each t > 0,

P
[∣∣∣N (m)

θ − EN (m)
θ

∣∣∣ > t
]
≤ 2 exp

(
−min

{
t2

4σ2
,
t

2

})
, (3)

where σ2 = VarN (m)
θ .

Proof. By Proposition 3, N (m)
θ is equal to the sum of m independent random variables

Xi, 1 ≤ i ≤ m, which count the number of eigenvalue angles of smaller-rank uniformly
distributed unitary matrices which lie in the interval. Propositions 1 and 2 together
imply that each Xi is equal in distribution to a sum of independent Bernoulli random
variables, which completes the proof of the first claim. The inequality (3) then follows
immediately from Bernstein’s inequality [19, Lemma 2.7.1].

3 Means and variances

In order to apply (3), it is necessary to estimate the mean and variance of the eigen-
value counting functionN (m)

θ . As in the proof of Corollary 4, this reduces by Proposition
3 to considering the case m = 1. Asymptotics for these quantities have been stated in
the literature before, e.g. in [18], but not with the uniformity in θ which is needed below,
so we indicate one approach to the proofs. A different approach yielding very precise
asymptotics was carried out by Rains [15] for the unitary group; we use the approach
outlined below because it generalizes easily to all of the other groups and cosets.

For this purpose we again make use of the fact that the eigenvalue distributions of
these random matrices are determinantal point processes. It is more convenient for
the variance estimates to use here an alternative representation to the one stated in
Proposition 1 (which is more convenient for verifying the hypotheses of Proposition 2
and for the mean estimates). First define

SN (x) :=

{
sin
(
Nx
2

)
/ sin

(
x
2

)
if x 6= 0,

N if x = 0.

The following result essentially summarizes [12, Section 5.4]. (Note that in the unitary
case, the kernels given in Propositions 1 and 5 are not actually equal, but they generate
the same process).

Proposition 5. The nontrivial eigenvalue angles of uniformly distributed random ma-
trices in any of SO (N), SO− (N), U (N), Sp (2N) are a determinantal point process, with
respect to uniform measure on Λ, with kernels as follows.
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KN (x, y) Λ

SO (2N)
1

2

(
S2N−1(x− y) + S2N−1(x+ y)

)
[0, π)

SO (2N + 1) ,SO− (2N + 1)
1

2

(
S2N (x− y)− S2N (x+ y)

)
[0, π)

U (N) SN (x− y) [0, 2π)

Sp (2N) ,SO− (2N + 2)
1

2

(
S2N+1(x− y)− S2N+1(x+ y)

)
[0, π)

The following lemma is easy to check using Proposition 2. For the details of the
variance expression, see [9, Appendix B].

Lemma 6. Let K : I × I → R be a continuous kernel on an interval I representing
an orthogonal projection operator on L2(µ), where µ is the uniform measure on I. For
a subinterval D ⊆ I, denote by ND the number of particles of the determinantal point
process with kernel K which lie in D. Then

END =

∫
D

K(x, x) dµ(x)

and

VarND =

∫
D

∫
I\D

K(x, y)2 dµ(x) dµ(y).

Proposition 7. 1. Let U be uniform in U (N). For θ ∈ [0, 2π), let Nθ be the number
of eigenvalues angles of U in [0, θ). Then

ENθ =
Nθ

2π
.

2. Let U be uniform in one of SO (2N), SO− (2N + 2), SO (2N + 1), SO− (2N + 1), or
Sp (2N). For θ ∈ [0, π), let Nθ be the number of nontrivial eigenvalue angles of U
in [0, θ). Then ∣∣∣∣ENθ − Nθ

π

∣∣∣∣ < 1.

Proof. The equality for the unitary group follows from symmetry considerations, or
immediately from Proposition 5 and Lemma 6.

In the case of Sp (2N) or SO− (2N + 2), by Proposition 1 and Lemma 6,

ENθ =
1

π

∫ θ

0

N∑
j=1

2 sin2(jx) dx =
Nθ

π
− 1

2π

N∑
j=1

sin(2jθ)

j
.

Define a0 = 0 and aj =
∑j
k=1 sin(2kθ). Then by summation by parts,

N∑
j=1

sin(2jθ)

j
=
aN
N

+

N−1∑
j=1

aj
j(j + 1)

.

Trivially, |aN | ≤ N . Now observe that

aj = Im

[
e2iθ

j−1∑
k=0

e2ikθ

]
= Im

[
e2iθ e

2ijθ − 1

e2iθ−1

]
= Im

[
ei(j+1)θ sin(jθ)

sin(θ)

]
=

sin((j + 1)θ) sin(jθ)

sin(θ)
.
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Since aj is invariant under the substitution θ 7→ π− θ, it suffices to assume that 0 < θ ≤
π/2. In that case sin(θ) ≥ 2θ/π, and so

N−1∑
j=1

|aj |
j(j + 1)

≤ π

2θ

 ∑
1≤j≤1/θ

θ2 +
∑

1/θ<j≤N−1

1

j(j + 1)

 ≤ π

2θ
(θ + θ) = π.

All together, ∣∣∣∣ENθ − Nθ

π

∣∣∣∣ ≤ 1 + π

2π
.

The other cases are handled similarly.

As before, we restrict attention from now on to the unitary group, deferring discus-
sion of the other cases to Section 5.

Proposition 8. Let U be uniform in U (N). For θ ∈ [0, 2π), let Nθ be the number of
eigenvalue angles of U in [0, θ). Then

VarNθ ≤ logN + 1.

Proof. If θ ∈ (π, 2π), then Nθ
d
= N − N2π−θ, and so it suffices to assume that θ ≤ π. By

Proposition 5 and Lemma 6,

VarNθ =
1

4π2

∫ θ

0

∫ 2π

θ

SN (x− y)2 dx dy =
1

4π2

∫ θ

0

∫ 2π−y

θ−y

sin2
(
Nz
2

)
sin2

(
z
2

) dz dy

=
1

4π2

[∫ θ

0

z sin2
(
Nz
2

)
sin2

(
z
2

) dz +

∫ 2π−θ

θ

θ sin2
(
Nz
2

)
sin2

(
z
2

) dz +

∫ 2π

2π−θ

(2π − z) sin2
(
Nz
2

)
sin2

(
z
2

) dz

]

=
1

2π2

[∫ θ

0

z sin2
(
Nz
2

)
sin2

(
z
2

) dz +

∫ π

θ

θ sin2
(
Nz
2

)
sin2

(
z
2

) dz

]
.

For the first integral, since sin
(
z
2

)
≥ z

π for all z ∈ [0, θ], if θ > 1
N , then∫ θ

0

z sin2
(
Nz
2

)
sin2

(
z
2

) dz ≤
∫ 1

N

0

(πN)2z

4
dz +

∫ θ

1
N

π2

z
dz = π2

(
1

8
+ log(N) + log(θ)

)
.

If θ ≤ 1
N , there is no need to break up the integral and one simply has the bound

(πNθ)2

8 ≤ π2

8 . Similarly, if θ < 1
N , then∫ π

θ

θ sin2
(
Nz
2

)
sin2

(
z
2

) dz ≤
∫ 1

N

θ

θ(πN)2

4
dz +

∫ π

1
N

π2θ

z2
dz

=
π2θN

4
(1−Nθ) + π2Nθ − πθ ≤ 5π2

4
;

if θ ≥ 1
N , there is no need to break up the integral and one simply has a bound of π2.

All together,

VarNθ ≤ log(N) +
11

16
.

Corollary 9. Let U be uniform in U (N) and 1 ≤ m ≤ N . For θ ∈ [0, 2π), let N (m)
θ be the

number of eigenvalue angles of Um in [0, θ). Then

EN (m)
θ =

Nθ

2π
and VarN (m)

θ ≤ m
(

log

(
N

m

)
+ 1

)
.
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Proof. By Proposition 3, N (m)
θ is equal in distribution to the total number of eigenvalue

angles in [0, θ) of each of U0 . . . , Um−1, where U0, . . . , Um−1 are independent and Uj is

uniform in U
(⌈

N−j
m

⌉)
; that is,

N (m)
θ

d
=

m−1∑
j=0

Nj,θ,

where the Nj,θ are the independent counting functions corresponding to U0, . . . , Um−1.
The bounds in the corollary are thus automatic from Propositions 7 and 8. (Note

that the N/m in the variance bound, as opposed to the more obvious dN/me, follows
from the concavity of the logarithm.)

4 Wasserstein distances

In this section we prove bounds and concentration inequalities for the spectral mea-
sures of fixed powers of uniform random unitary matrices. The method generalizes the
approach taken in [5] to bound the distance of the spectral measure of the Gaussian
unitary ensemble from the semicircle law.

Recall that for p ≥ 1, the Lp-Wasserstein distance between two probability measures
µ and ν on C is defined by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
|w − z|p dπ(w, z)

)1/p

,

where Π(µ, ν) is the set of all probability measures on C× C with marginals µ and ν.

Lemma 10. Let 1 ≤ m ≤ N and let U ∈ U (N) be uniformly distributed. Denote by eiθj ,
1 ≤ j ≤ N , the eigenvalues of Um, ordered so that 0 ≤ θ1 ≤ · · · ≤ θN < 2π. Then for
each j and u > 0,

P

[∣∣∣∣θj − 2πj

N

∣∣∣∣ > 4π

N
u

]
≤ 4 exp

[
−min

{
u2

m
(
log
(
N
m

)
+ 1
) , u}] . (4)

Proof. For each 1 ≤ j ≤ N and u > 0, if j + 2u < N then

P

[
θj >

2πj

N
+

4π

N
u

]
= P

[
N (m)

2π(j+2u)
N

< j

]
= P

[
j + 2u−N (m)

2π(j+2u)
N

> 2u

]
≤ P

[∣∣∣∣N (m)
2π(j+2u)

N

− EN (m)
2π(j+2u)

N

∣∣∣∣ > 2u

]
.

If j + 2u ≥ N then

P

[
θj >

2πj

N
+

4π

N
u

]
= P [θj > 2π] = 0,

and the above inequality holds trivially. The probability that θj <
2πj
N −

4π
N u is bounded

in the same way. Inequality (4) now follows from Corollaries 4 and 9.

Theorem 11. Let µN,m be the spectral measure of Um, where 1 ≤ m ≤ N and U ∈
U (N) is uniformly distributed, and let ν denote the uniform measure on S1. Then for
each p ≥ 1,

EWp(µN,m, ν) ≤ Cp

√
m
[
log
(
N
m

)
+ 1
]

N
,

where C > 0 is an absolute constant.
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Proof. Let θj be as in Lemma 10. Then by Fubini’s theorem,

E

∣∣∣∣θj − 2πj

N

∣∣∣∣p =

∫ ∞
0

ptp−1P

[∣∣∣∣θj − 2πj

N

∣∣∣∣ > t

]
dt

=
(4π)pp

Np

∫ ∞
0

up−1P

[∣∣∣∣θj − 2πj

n

∣∣∣∣ > 4π

N
u

]
du

≤ 4(4π)pp

Np

[∫ ∞
0

up−1e−u
2/m[log(N/m)+1] du+

∫ ∞
0

up−1e−u du

]
=

4(4π)p

Np

[(
m

[
log

(
N

m

)
+ 1

])p/2
Γ
(p

2
+ 1
)

+ Γ(p+ 1)

]

≤ 8Γ(p+ 1)

(
4π

N

√
m

[
log

(
N

m

)
+ 1

])p
.

Observe that in particular,

Var θj ≤ C
m
[
log
(
N
m

)
+ 1
]

N2
.

Let νN be the measure which puts mass 1
N at each of the points e2πij/N , 1 ≤ j ≤ N .

Then

EWp(µN,m, νN )p ≤ E

 1

N

N∑
j=1

∣∣∣eiθj − e2πij/N
∣∣∣p
 ≤ E

 1

N

N∑
j=1

∣∣∣∣θj − 2πj

N

∣∣∣∣p


≤ 8Γ(p+ 1)

(
4π

N

√
m

[
log

(
N

m

)
+ 1

])p
.

It is easy to check that Wp(νN , ν) ≤ π
N , and thus

EWp(µN,m, ν) ≤ EWp(µN,m, νN ) +
π

N
≤ (EWp(µN,m, νN )p)

1
p +

π

N
.

Applying Stirling’s formula to bound Γ(p+ 1)
1
p completes the proof.

In the case that m = 1 and p ≤ 2, Theorem 11 could now be combined with Corol-
lary 2.4 and Lemma 2.5 from [14] in order to obtain a sharp concentration inequality
for Wp(µN,1, ν). However, for m > 1 we did not prove an analogous concentration in-
equality for Wp(µN,m, ν) because the main tool needed to carry out the approach taken
in [14], specifically, a logarithmic Sobolev inequality on the full unitary group, was not
available. The appendix to this paper contains the proof of the necessary logarithmic
Sobolev inequality on the unitary group (Theorem 15) and the approach to concentra-
tion taken in [14], in combination with Proposition 3, can then be carried out in the
present context.

The following lemma, which generalizes part of [14, Lemma 2.3], provides the nec-
essary Lipschitz estimates for the functions to which the concentration property will be
applied.

Lemma 12. Let p ≥ 1. The map A 7→ µA taking an N ×N normal matrix to its spectral
measure is Lipschitz with constant N−1/max{p,2} with respect to Wp. Thus if ρ is any
fixed probability measure on C, the map A 7→ Wp(µA, ρ) is Lipschitz with constant
N−1/max{p,2}.
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Proof. If A and B are N × N normal matrices, then the Hoffman–Wielandt inequality
[3, Theorem VI.4.1] states that

min
σ∈ΣN

N∑
j=1

∣∣λj(A)− λσ(j)(B)
∣∣2 ≤ ‖A−B‖2HS , (5)

where λ1(A), . . . , λN (A) and λ1(B), . . . , λN (B) are the eigenvalues (with multiplicity, in
any order) of A and B respectively, and ΣN is the group of permutations on N letters.
Defining couplings of µA and µB given by

πσ =
1

N

N∑
j=1

δ(λj(A),λσ(j)(B))

for σ ∈ ΣN , it follows from (5) that

Wp(µA, µB) ≤ min
σ∈ΣN

 1

N

N∑
j=1

∣∣λj(A)− λσ(j)(B)
∣∣p1/p

≤ N−1/max{p,2} min
σ∈ΣN

 N∑
j=1

∣∣λj(A)− λσ(j)(B)
∣∣21/2

≤ N−1/max{p,2} ‖A−B‖HS .

Theorem 13. Let µN,m be the empirical spectral measure of Um, where U ∈ U (N) is
uniformly distributed and 1 ≤ m ≤ N , and let ν denote the uniform probability measure
on S1. Then for each t > 0,

P

Wp(µN,m, ν) ≥ C

√
m
[
log
(
N
m

)
+ 1
]

N
+ t

 ≤ exp

[
−N

2t2

24m

]

for 1 ≤ p ≤ 2 and

P

Wp(µN,m, ν) ≥ Cp

√
m
[
log
(
N
m

)
+ 1
]

N
+ t

 ≤ exp

[
−N

1+2/pt2

24m

]

for p > 2, where C > 0 is an absolute constant.

Proof. By Proposition 3, µN,m is equal in distribution to the spectral measure of a
block-diagonal N × N random matrix U1 ⊕ · · · ⊕ Um, where the Uj are independent
and uniform in U

(⌊
N
m

⌋)
and U

(⌈
N
m

⌉)
. Identify µN,m with this measure and define

the function F (U1, . . . , Um) = Wp(µU1⊕···⊕Um , ν); the preceding discussion means that
if U1, . . . , Um are independent and uniform in U

(⌊
N
m

⌋)
and U

(⌈
N
m

⌉)
as necessary, then

F (U1, . . . , Um)
d
= Wp(µN,m, ν).

Applying the concentration inequality in Corollary 17 of the appendix to the function
F gives that

P
[
F (U1, . . . , Um) ≥ EF (U1, . . . , Um) + t

]
≤ e−Nt

2/24mL2

,

where L is the Lipschitz constant of F , and we have used the trivial estimate
⌊
N
m

⌋
≥ N

2m .
Inserting the estimate of EF (U1, . . . , Um) from Theorem 11 and the Lipschitz estimates
of Lemma 12 completes the proof.
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Corollary 14. Suppose that for each N , UN ∈ U (N) is uniformly distributed and 1 ≤
mN ≤ N . Let ν denote the uniform measure on S1. There is an absolute constant C
such that given p ≥ 1, with probability 1, for all sufficiently large N ,

Wp(µN,mN , ν) ≤ C
√
mN log(N)

N

if 1 ≤ p ≤ 2 and

Wp(µN,mN , ν) ≤ Cp
√
mN log(N)

N
1
2 + 1

p

if p > 2.

Proof. In Theorem 13 let tN = 5

√
mN log(N)

N for p ∈ [1, 2] and tN = 5

√
mN log(N)

N
1
2
+ 1
p

for p > 2,

and apply the Borel–Cantelli lemma.

We observe that Corollary 14 makes no assumption about any joint distribution of
the matrices {UN}N∈N; in particular, they need not be independent.

As a final note, Rains’s Proposition 3 above shows that, in the case m = N , µN,m is
the empirical measure of N i.i.d. points on S1. By another result of Rains [15], the same
is true when m > N . In particular, in all the above results the restriction m ≤ N may
be removed if m is simply replaced by min{m,N} in the conclusion.

5 Other groups

The approach taken above can be completed in essentially the same way for SO (N),
SO− (N) and Sp (2N), so that all the results above hold in those cases as well, with only
the precise values of constants changed.

In [16], Rains proved that the eigenvalue distributions for these groups (or rather,
components, in the case of SO− (N)) can be decomposed similarly to the decomposi-
tion described in Proposition 3, although the decompositions are more complicated in
those cases (mostly because of parity issues). The crucial fact, though, is that the de-
composition is still in terms of independent copies of smaller-rank (orthogonal) groups
and cosets. This allows for the representation of the eigenvalue counting function in all
cases as a sum of independent Bernoulli random variables (allowing for the application
of Bernstein’s inequality) and as a sum of independent copies of eigenvalue counting
functions for smaller-rank groups. In particular the analogue of Corollary 4 holds and it
suffices to estimate the means and variances in the case m = 1. The analogue of Propo-
sition 8 for the other groups can be proved similarly using Proposition 5 and Lemma
6.

With those tools and Proposition 7 on hand, the analogue of Theorem 11 can be
proved in the same way, with a minor twist. One can bound as in the proof of Theorem
11 the distance between the empirical measure associated to the nontrivial eigenvalues
and the uniform measure on the upper-half circle. Since the nontrivial eigenvalues
occur in complex conjugate pairs and there are at most two trivial eigenvalues, one gets
essentially the same bound for the distance between the empirical spectral measure and
the uniform measure on the whole circle.

Finally, logarithmic Sobolev inequalities — and hence concentration results analo-
gous to Corollary 17 — for the other groups are already known via the Bakry–Émery
criterion, cf. [1, Section 4.4], so that the analogue of Theorem 13 follows as for the
unitary group.

For the special unitary group SU (N), all the results stated above hold exactly as
stated for the full unitary group, cf. the proof of [14, Lemma 2.5]. Analogous results
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for the full orthogonal group O (N) follow from the results for SO (N) and SO− (N) by
conditioning on the determinant, cf. the proofs of Theorem 2.6 and Corollary 2.7 in [14].

Appendix: the log-Sobolev constant of the unitary group

In this section we prove a logarithmic Sobolev inequality for the unitary group with a
constant of optimal order. As a consequence, we obtain a sharp concentration inequal-
ity, independent of k, for functions of k independent unitary random matrices.

Recall the following general definitions for a metric space (X, d) equipped with a
Borel probability measure µ. The entropy of a measurable function f : X → [0,∞) with
respect to µ is

Entµ(f) :=

∫
f log(f) dµ−

(∫
f dµ

)
log

(∫
f dµ

)
.

For a locally Lipschitz function g : X → R,

|∇g| (x) := lim sup
y→x

|g(y)− g(x)|
d(y, x)

.

We say that (X, d, µ) satisfies a logarithmic Sobolev inequality (or log-Sobolev inequality
for short) with constant C > 0 if, for every locally Lipschitz f : X → R,

Entµ(f2) ≤ 2C

∫
|∇f |2 dµ. (6)

Theorem 15. The unitary group U (N), equipped with its uniform probability measure
and the Hilbert–Schmidt metric, satisfies a logarithmic Sobolev inequality with constant
6/N .

If the Riemannian structure on U (N) is the one induced by the usual Hilbert–
Schmidt inner product on matrix space, then the geodesic distance is bounded above
by π/2 times the Hilbert–Schmidt distance on U (N) (see e.g. [4, Lemma 3.9.1]). Thus
Theorem 15 implies that U (N) equipped with the geodesic distance also satisfies a
log-Sobolev inequality, with constant 3π2/2N .

It is already known that every compact Riemannian manifold, equipped with the
normalized Riemannian volume measure and geodesic distance, satisfies a log-Sobolev
inequality with some finite constant [17]. For applications like those in this paper to
a sequence of manifolds such as {U (N)}∞N=1, however, the order of the constant as N
grows is crucial. The constant in Theorem 15 is best possible up to a constant factor;
this can be seen, for example, from the fact that one can recover the sharp concentra-
tion of measure phenomenon on the sphere from Corollary 17 below.

The key to the proof of Theorem 15 is the following representation of uniform mea-
sure on the unitary group.

Lemma 16. Let θ be uniformly distributed in
[
0, 2π

N

]
and let V ∈ SU (N) be uniformly

distributed, with θ and V independent. Then eiθV is uniformly distributed in U (N).

Proof. Let X be uniformly distributed in [0, 1), K uniformly distributed in {0, . . . , N−1},
and V uniformly distributed in SU (N) with (X,K, V ) independent. Consider

U = e2πiX/Ne2πiK/NV.

On one hand, it is easy to see that (X + K) is uniformly distributed in [0, N ], so

that e2πi(X+K)/N is uniformly distributed on S1. Thus U
d
= ωV for ω uniform in S1
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and independent of V . It is then straightforward to see that U ∈ U (N) is uniformly
distributed (cf. the proof of [14, Lemma 2.5]).

On the other hand, if IN is the N ×N identity matrix, then e2πiK/NIN ∈ SU (N). By

the translation invariance of uniform measure on SU (N) this implies that e2πiK/NV
d
=

V , and so e2πiX/NV
d
= U .

Proof of Theorem 15. First, for the interval [0, 2π] equipped with its standard metric
and uniform measure, the optimal constant in (6) for functions f with f(0) = f(2π) is
known to be 1, see e.g. [20]. This fact completes the proof — with a better constant
than stated above — in the case N = 1, since U (1) = S1; we assume from now on that
N ≥ 2. By reflection, the optimal constant for general locally Lipschitz functions on
[0, π] is also 1. It follows by a scaling argument that the optimal logarithmic Sobolev

constant on
[
0, π
√

2√
N

)
is 2/N .

By the Bakry–Émery Ricci curvature criterion [2], SU (N) satisfies a log-Sobolev
inequality with constant 2/N when equipped with its geodesic distance, and hence also
when equipped with the Hilbert–Schmidt metric (see Section 4.4 and Appendix F of [1]).
By the tensorization property of log-Sobolev inequalities in Euclidean spaces (see [13,

Corollary 5.7]), the product space
[
0, π
√

2√
N

)
× SU (N), equipped with the L2-sum metric,

satisfies a log-Sobolev inequality with constant 2/N as well.

Define the map F :
[
0, π
√

2√
n

)
× SU (N) → U (N) by F (t, V ) = e

√
2it/
√
NV . By Lemma

16, the push-forward via F of the product of uniform measure on
[
0, π
√

2√
N

)
with uniform

measure on SU (N) is uniform measure on U (N). Moreover, this map is
√

3-Lipschitz:∥∥∥e√2it1/
√
NV1 − e

√
2it2/

√
NV2

∥∥∥
HS
≤
∥∥∥e√2it1/

√
NV1 − e

√
2it1/

√
NV2

∥∥∥
HS

+
∥∥∥e√2it1/

√
NV2 − e

√
2it2/

√
NV2

∥∥∥
HS

= ‖V1 − V2‖HS +
∥∥∥e√2it1/

√
NIN − e

√
2it2/

√
NIN

∥∥∥
HS

≤ ‖V1 − V2‖HS +
√

2 |t1 − t2|

≤
√

3

√
‖V1 − V2‖2HS + |t1 − t2|2.

Since the map F is
√

3-Lipschitz, its image U (N) with the (uniform) image measure
satisfies a logarithmic Sobolev inequality with constant (

√
3)2 2

N = 6
N .

Corollary 17. Given N1, . . . , Nk ∈ N, denote by M = U (N1)× · · ·U (Nk) equipped with
the L2-sum of Hilbert–Schmidt metrics. Suppose that F : M → R is L-Lipschitz, and
that {Uj ∈ U (Nj) : 1 ≤ j ≤ k} are independent, uniform random unitary matrices. Then
for each t > 0,

P
[
F (U1, . . . , Uk) ≥ EF (U1, . . . , Uk) + t

]
≤ e−Nt

2/12L2

,

where N = min{N1, . . . , Nk}.

Proof. By Theorem 15 and the tensorization property of log-Sobolev inequalities [13,
Corollary 5.7], M satisfies a log-Sobolev inequality with constant 6/N . The stated con-
centration inequality then follows from the Herbst argument (see, e.g., [13], Theorem
5.3).
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The lack of dependence on k is a crucial feature of the inequality in Corollary 17;
unlike logarithmic Sobolev inequalities, concentration inequalities themselves do not
tensorize without introducing a dependence on k.
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