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Abstract

In this paper we prove that in the high temperature region of the Sherrington-
Kirkpatrick model for a typical realization of the disorder the weighted average of
spins

∑

i≤N tiσi will be approximately Gaussian provided that maxi≤N |ti|/
∑

i≤N t2i is
small.
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1 Introduction.

Consider a space of configurations ΣN = {−1,+1}N . A configuration σ ∈ ΣN is a vector
(σ1, . . . , σN) of spins σi each of which can take the values ±1. Consider an array (gij)i,j≤N of
i.i.d. standard normal random variables that is called the disorder. Given parameters β > 0
and h ≥ 0, let us define a Hamiltonian on ΣN

−HN(σ) =
β√
N

∑

1≤i<j≤N

gijσiσj + h
∑

i≤N

σi, σ = (σ1, . . . , σN ) ∈ ΣN

and define the Gibbs’ measure G on ΣN by

G({σ}) = exp(−HN(σ))/ZN , where ZN =
∑

σ∈ΣN

exp(−HN(σ)).

The normalizing factor ZN is called the partition function. Gibbs’ measure G is a random
measure on ΣN since it depends on the disorder (gij). The parameter β physically represents
the inverse of the temperature and in this paper we will consider only the (very) high
temperature region of the Sherrington-Kirkpatrick model which corresponds to

β < β0 (1.1)

for some small absolute constant β0 > 0. The actual value β0 is not specified here but, in
principal, it can be determined through careful analysis of all arguments of this paper and
references to other papers.

For any n ≥ 1 and a function f on the product space (Σn
N , G

⊗n), 〈f〉 will denote its
expectation with respect to G⊗n

〈f〉 =
∑

Σn
N

f(σ1, . . . , σn)G⊗n({(σ1, . . . , σn)}).

In this paper we will prove the following result concerning the high temperature region (1.1).
Given a vector (t1, . . . , tN) such that

t21 + . . .+ t2N = 1 (1.2)

let us consider a random variable on (ΣN , G) defined as

X = t1σ1 + . . .+ tNσN . (1.3)

The main goal of this paper is to show that in the high temperature region (1.1) the following
holds. If maxi≤N |ti| is small then for a typical realization of the disorder (gij) the random
variable X is approximately Gaussian r.v. with mean 〈X〉 and variance 〈X2〉 − 〈X〉2. By
the “typical realization” we understand that the statement holds on the set of measure
close to one. This result is the analogue of a very classical result for independent random
variables. Namely, given a sequence of independent random variables ξ1, . . . , ξN satisfying
some integrability conditions the random variable ξ1+. . .+ξN will be approximately Gaussian
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if maxi≤N Var(ξi)/
∑

i≤N Var(ξi) is small (see, for example, [5] ). In particular, if σ1, . . . , σN

in (1.3) were i.i.d. Bernoulli random variables then X would be approximately Gaussian
provided that maxi≤N |ti| is small.

It is important to note at this point that the main claim of this paper in some sense
is a well expected result since it is well known that in the high temperature region the
spins become “decoupled” in the limit N →∞. For example, Theorem 2.4.10 in [12] states
that for a fixed n ≥ 1, for a typical realization of the disorder (gij) the distribution G⊗n

becomes a product measure when N → ∞. Thus, in the very essence the claim that X in
(1.3) is approximately Gaussian is a central limit theorem for weakly dependent random
variables. However, the entire sequence (σ1, . . . , σN ) is a much more complicated object than
a fixed finite subset (σ1, . . . , σn), and some unexpected complications arise that we will try
to describe after we state our main result - Theorem 1 below.

Instead of dealing with the random variable X we will look at its symmetrized version
Y = X−X ′, where X ′ is an independent copy of X. If we can show that Y is approximately
Gaussian then, obviously, X will also be approximately Gaussian. The main reason to con-
sider a symmetrized version of X is very simple - it makes it much easier to keep track of
numerous indices in all the arguments below, even though it would be possible to carry out
similar arguments for a centered version X − 〈X〉.

In order to show that for a typical realization (gij) and a small maxi≤N |ti|, Y is ap-
proximately Gaussian with mean 0 and variance 〈Y 2〉 we will proceed by showing that its
moments behave like moments of a Gaussian random variable, i.e.

〈Y l〉 ≈ a(l)〈Y 2〉l/2, (1.4)

where a(l) = Egl, for a standard normal random variable g. Since the moments of the
standard normal random variable are also characterized by the recursive formulas

a(0) = 0, a(1) = 1 and a(l) = (l − 1)a(l − 2),

(1.4) is equivalent to
〈Y l〉 ≈ (l − 1)〈Y 2〉〈Y l−2〉.

Let us define two sequences (σ1(l))l≥0 and (σ2(l))l≥0 of jointly independent random vari-
ables with Gibbs’ distribution G. We will assume that all indices 1(l) and 2(l) are different
and one can think of σ1(l) and σ2(l) as different coordinates of the infinite product space
(Σ∞N , G

⊗∞). Let us define a sequence Sl by

Sl =
N
∑

i=1

tiσ̄
l
i, where σ̄l = σ1(l) − σ2(l). (1.5)

In other words, Sl are independent copies of Y.

The following Theorem is the main result of the paper.

Theorem 1 There exists β0 > 0 such that for β < β0 the following holds. For any natural
numbers n ≥ 1 and k1, . . . , kn ≥ 0 and k = k1 + . . .+ kn, we have

∣

∣E〈
n
∏

l=1

(Sl)
kl〉 −

n
∏

l=1

a(kl)E〈S21〉k/2
∣

∣ = O(max
i≤N

|ti|), (1.6)
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where O(·) depends on β0, n, k but not on N.

Remark. Theorem 1 answers the question raised in the Research problem 2.4.11 in [12].

Theorem 1 easily implies that

E
(

〈
n
∏

l=1

(Sl)
kl〉 −

n
∏

l=1

a(kl)〈S21〉k/2
)2

= O(max
i≤N

|ti|). (1.7)

Indeed,

E
(

〈
n
∏

l=1

(Sl)
kl〉 −

n
∏

l=1

a(kl)〈S21〉k/2
)2

= E〈
n
∏

l=1

(Sl)
kl〉2 − 2

(

n
∏

l=1

a(kl)
)

E〈
n
∏

l=1

(Sl)
kl〉〈S21〉k/2 +

(

n
∏

l=1

a(kl)
)2

E〈S21〉k

For the first and second terms on the right hand side we can use independent copies to
represent the powers of 〈·〉l and then apply Theorem 1. For example,

E〈
n
∏

l=1

(Sl)
kl〉2 = E〈

n
∏

l=1

(Sl)
kl

2n
∏

l=n+1

(Sl)
kl−n〉 =

(

n
∏

l=1

a(kl)
)2

E〈S21〉k +O(max
i
|ti|).

Similarly,

E〈
n
∏

l=1

(Sl)
kl〉〈S21〉k/2 =

(

n
∏

l=1

a(kl)
)

E〈S21〉k +O(max
i
|ti|).

Clearly, combining these equations proves (1.7). Now one can show that for N → ∞ and
maxi≤N |ti| → 0 the characteristic function of (S1, . . . , Sn) can be approximated by the char-
acteristic function of n independent Gaussian random variables with variance 〈S21〉, for (gij)
on the set of measure converging to 1. Given (1.7) this should be a mere exercise and we omit
the details. This, of course, implies that (S1, . . . , Sn) are approximately independent Gaus-
sian random variables with respect to the measure G⊗∞ and, in particular, S1 =

∑

i≤N tiσ̄i

is approximately Gaussian with respect to the measure G⊗2.

Theorem 1 looks very similar to the central limit theorem for the overlap

R1,2 =
1

N

N
∑

i=1

σ1i σ
1
i ,

where σ1, σ2 are two independent copies of σ (see, for example, Theorem 2.3.9 and Section
2.7 in [12]). In fact, in our proofs we follow the main ideas and techniques of Sections 2.4 -
2.7 in [12]. However, the proof of the central limit theorem for X in (1.3) turned out to be by
at least an order of magnitude more technically involved than the proof of the central limit
theorem for the overlap R1,2 (at least we do not know any easier proof). One of the main
reasons why the situation here gets more complicated is the absence of symmetry. Let us try
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to explain this informally. When dealing with the overlaps Ri,j one considers the quantity of
the following type

E〈
∏

i<j

R
ki,j

i,j 〉 (1.8)

and approximates it by other similar quantities using the cavity method. In the cavity method
one approximates the Gibbs’ measure G by the measure with the last coordinate σN inde-
pendent of the other coordinates and this is achieved by a proper interpolation between these
measures. As a result, the average (1.8) is approximated by the Taylor expansion along this
interpolation and at the second order of approximation one gets the terms that have “smaller
complexity” and a term that is the factor of (1.8); one then can solve for (1.8) and proceed
by induction on the “complexity”. The main reason this trick works is the symmetry of the
expression (1.8) with respect to all coordinates of the configurations. Unfortunately, this
does not happen any longer in the setting of Theorem 1 due to the lack of symmetry of X
in the coordinates of σ. Instead, we will have to consider both terms on the left hand side of
(1.6),

E〈
n
∏

l=1

(Sl)
kl〉 and

n
∏

l=1

a(kl)E〈S21〉k/2, (1.9)

and approximate both of them using the cavity method. The technical difficulty of the proof
comes from the fact that at the second order of approximation it is not immediately obvious
which terms corresponding to the two expressions in (1.9) cancel each other up to the correct
error terms and this requires some work. Moreover, in order to obtain the correct error terms,
we will need to make two coordinates σN and σN−1 independent of the other coordinates
and to simplify the computations and avoid using the cavity method on each coordinate
separately we will develop the cavity method for two coordinates. Finally, another difficulty
that arises from the lack of symmetry is that unlike in the case of overlaps Ri,j we were not
able to compute explicitly the expectation 〈X〉 and variance 〈X2〉 − 〈X〉2 in terms of the
parameters of the model.

2 Preliminary results.

We will first state several results from [12] that will be constantly used throughout the paper.
Lemmas 1 through 6 below are either taken directly from [12] or almost identical to some of
the results [12] and, therefore, we will state them without the proof.

Let us consider

gt(σ) =
√
t
(

σN
β√
N

∑

i≤N−1

giNσi

)

+ β
√
1− tz

√
qσN ,

where z is a standard normal r.v. independent of the disorder (gij) and q is the unique
solution of the equation

q = Eth2(βz
√
q + h). (2.1)
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For 0 ≤ t ≤ 1 let us consider the Hamiltonian

−HN,t(σ) =
β√
N

∑

1≤i<j≤N−1

gijσiσj + gt(σ) + h
∑

i≤N

σi (2.2)

and define Gibbs’ measure Gt and expectation 〈·〉t similarly to G and 〈·〉 above, only using
the Hamiltonian −HN,t(σ). For any n ≥ 1 and a function f on Σn

N let us define

νt(f) = E〈f〉t.

The case t = 1 corresponds to the Hamiltonian −HN(σ), and the case t = 0 has a very
special property that the last coordinate σN is independent of the other coordinates which is
the main idea of the cavity method (see [12]). (Cavity method is a classical and fruitful idea
in Physics, but in this paper we refer to a specific version of the cavity method invented by
Talagrand.)

Given indices l, l′, let us define

Rl,l′ =
1

N

N
∑

i=1

σl
iσ

l′

i and R−l,l′ =
1

N

N−1
∑

i=1

σl
iσ

l′

i .

The following Lemma holds.

Lemma 1 For 0 ≤ t < 1, and for all functions f on Σn
N we have

ν ′t(f) = β2
∑

1≤l<l′≤n

νt(fσ
l
Nσ

l′

N(R
−
l,l′ − q))− β2n

∑

l≤n

νt(fσ
l
Nσ

n+1
N (R−l,n+1 − q))

+ β2
n(n+ 1)

2
νt(fσ

n+1
N σn+2

N (R−n+1,n+2 − q)). (2.3)

This is Proposition 2.4.5 in [12].

Lemma 2 There exists β0 > 0 and L > 0 such that for β < β0 and for any k ≥ 1,

ν
(

(R1,2 − q)2k
)

≤
(Lk

N

)k

and ν
(

(R−1,2 − q)2k
)

≤
(Lk

N

)k

. (2.4)

This is Theorem 2.5.1 and Lemma 2.5.2 in [12].

Roughly speaking, this two results explain the main idea behind the key methods of [12]
- the cavity method and the smart path method. The Hamiltonian (2.2) represents a “smart
path” between the measures G and G0, since along this path the derivative ν ′t(f) is small,
because all terms in (2.3) contain a factor Rl,l′ − q which is small due to (2.4). Measure G0

has a special coordinate (cavity) σN that is independent of the other coordinates, which in
many cases makes it easier to analyze ν0(f).

This two lemmas imply the following Taylor expansion for ν(f).
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Lemma 3 For a function f on Σn
N we have

∣

∣

∣
ν(f)−

m
∑

j=0

ν
(j)
0 (f)

j!

∣

∣

∣
≤ K(n)

N (m+1)/2
ν(f 2)1/2. (2.5)

Proof. Proof is identical to Proposition 2.5.3 in [12].

Cavity method with two coordinates. In this paper we will use another case of
the cavity method with two coordinates σN , σN−1 playing the special role. In this new case
we will consider a “smart path” that makes both coordinates σN and σN−1 independent of
other coordinates and of each other. This is done by slightly modifying the definition of
the Hamiltonian (2.2). Since it will always be clear from the context which “smart path”
we are using, we will abuse the notations and use the same notations as in the case of the
Hamiltonian (2.2).

Let us consider

gt(σ) =
√
t
(

σN
β√
N

∑

i≤N−2

giNσi + σN−1
β√
N

∑

i≤N−2

gi(N−1)σi +
β√
N
g(N−1)NσN−1σN

)

+ β
√
1− t(z1

√
qσN + z2

√
qσN−1),

where z1, z2 are standard normal r.v. independent of the disorder (gij).

For 0 ≤ t ≤ 1 let us now consider the Hamiltonian

−HN,t(σ) =
β√
N

∑

1≤i<j≤N−2

gijσiσj + gt(σ) + h
∑

i≤N

σi (2.6)

and define Gibbs’ measure Gt and expectation 〈·〉t similarly to G and 〈·〉 above, only using
the Hamiltonian (2.6.) For any n ≥ 1 and a function f on Σn

N let us define

νt(f) = E〈f〉t.

We will make one distinction in the notations between the cases (2.2) and (2.6). Namely, for
t = 0 in the case of the Hamiltonian (2.6) we will denote

〈f〉00 = 〈f〉t
∣

∣

∣

t=0
and ν00(f) = νt(f)

∣

∣

∣

t=0
. (2.7)

It is clear that with respect to the Gibbs’ measure G0 the last two coordinates σN and σN−1

are independent of the other coordinates and of each other.

Given indices l, l′ let us define

R=l,l′ =
1

N

∑

i≤N−2

σl
iσ

l′

i .

The following lemma is the analogue of Lemma 1 for the case of the Hamiltonian (2.6).
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Lemma 4 Consider νt(·) that corresponds to the Hamiltonian (2.6). Then, for 0 ≤ t < 1,
and for all functions f on Σn

N we have

ν ′t(f) = I+ II+ III (2.8)

where

I = β2
∑

1≤l<l′≤n

νt(fσ
l
Nσ

l′

N(R
=
l,l′ − q))− β2n

∑

l≤n

νt(fσ
l
Nσ

n+1
N (R=l,n+1 − q))

+ β2
n(n+ 1)

2
νt(fσ

n+1
N σn+2

N (R=n+1,n+2 − q)), (2.9)

II = β2
∑

1≤l<l′≤n

νt(fσ
l
N−1σ

l′

N−1(R
=
l,l′ − q))− β2n

∑

l≤n

νt(fσ
l
N−1σ

n+1
N−1(R

=
l,n+1 − q))

+ β2
n(n+ 1)

2
νt(fσ

n+1
N−1σ

n+2
N−1(R

=
n+1,n+2 − q)), (2.10)

III =
1

N
β2

∑

1≤l<l′≤n

νt(fσ
l
Nσ

l′

Nσ
l
N−1σ

l′

N−1)−
1

N
β2n

∑

l≤n

νt(fσ
l
Nσ

n+1
N σl

N−1σ
n+1
N−1)

+
1

N
β2
n(n+ 1)

2
νt(fσ

n+1
N σn+2

N σn+1
N−1σ

n+2
N−1). (2.11)

Proof. The proof repeats the proof of Proposition 2.4.5 in [12] almost without changes.

Lemma 5 There exists β0 > 0 and L > 0 such that for β < β0 and for any k ≥ 1,

ν00

(

(R=1,2 − q)2k
)

≤ Lν
(

(R=1,2 − q)2k
)

≤
(Lk

N

)k

. (2.12)

The second inequality is similar to (2.4) and it follows easily from it since |R1,2−R=1,2| ≤ 2/N
(see, for example, the proof of Lemma 2.5.2 in [12]). The first inequality follows easily from
Lemma 4 (see, for example, Proposition 2.4.6 in [12]).

Lemma 3 above also holds in the case of the Hamiltonian (2.6).

Lemma 6 For a function f on Σn
N we have

∣

∣

∣
ν(f)−

m
∑

j=0

ν
(j)
00 (f)

j!

∣

∣

∣
≤ K(n)

N (m+1)/2
ν(f 2)1/2. (2.13)
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The proof is identical to the proof of Proposition 2.5.3 in [12].

To prove Theorem 1 we will need several preliminary results.

First, it will be very important to control the size of the random variables Sl and we
will start by proving exponential integrability of Sl.

Theorem 2 There exist β0 > 0 and L > 0 such that for all β ≤ β0, and for all k ≥ 1

ν
(

(

N
∑

i=1

tiσ̄i

)2k
)

≤ (Lk)k. (2.14)

The statement of Theorem 2 is, obviously, equivalent to

ν
(

exp
(

L−1
(

N
∑

i=1

tiσ̄i

)2
))

≤ L,

for large enough L.

Proof. The proof mimics the proof of Theorem 2.5.1 in [12] (stated in Lemma 2 above).

We will prove Theorem 2 by induction over k. Our induction assumption will be the
following: there exist β0 > 0 and L > 0 such that for all β ≤ β0, all N ≥ 1, all sequences
(t1, . . . , tN) such that

∑N
i=1 t

2
i = 1 and 0 ≤ l ≤ k, we have

ν
(

(

N
∑

i=1

tiσ̄i

)2l
)

≤ (Ll)l. (2.15)

Let us start by proving this statement for k = 1. We have

ν
(

(

N
∑

i=1

tiσ̄i

)2
)

≤ 4
N
∑

i=1

t2i +
∑

i6=j

titjν(σ̄iσ̄j) ≤ 4 + (
N
∑

i=1

ti)
2ν(σ̄1σ̄N) ≤ 4 +Nν(σ̄1σ̄N).

Thus we need to prove that ν(σ̄1σ̄N) ≤ LN−1, for some absolute constant L > 0. (2.5)
implies that

|ν(σ̄1σ̄N)− ν0(σ̄1σ̄N)− ν ′0(σ̄1σ̄N)| ≤ LN−1.

We will now show that ν0(σ̄1σ̄N) = 0 and ν ′0(σ̄1σ̄N) = O(N−1). The fact that ν0(σ̄1σ̄N) = 0 is
obvious since for measure G⊗20 the last coordinates σ1N , σ

2
N are independent of the first N −1

coordinates and ν0(σ̄1σ̄N) = ν0(σ̄1)ν0(σ
1
N − σ2N) = 0. To prove that ν ′0(σ̄1σ̄N) = O(N−1) we

use Lemma 1 which in this case implies that

ν ′0(σ̄1σ̄N) = β2ν0(σ̄1σ̄Nσ
1
Nσ

2
N(R

−
1,2 − q))− 2β2ν0(σ̄1σ̄Nσ

1
Nσ

3
N(R

−
1,3 − q))

− 2β2ν0(σ̄1σ̄Nσ
2
Nσ

3
N(R

−
2,3 − q)) + 3β2ν0(σ̄1σ̄Nσ

3
Nσ

4
N(R

−
3,4 − q))

= β2ν0(σ̄1(σ
2
N − σ1N)(R

−
1,2 − q))− 2β2ν0(σ̄1(σ

3
N − σ1Nσ

2
Nσ

3
N)(R

−
1,3 − q))

− 2β2ν0(σ̄1(σ
1
Nσ

2
Nσ

3
N − σ3N)(R

−
2,3 − q)) + 3β2ν0(σ̄1(σ

1
N − σ2N)σ

3
Nσ

4
N(R

−
3,4 − q))
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Since for a fixed disorder (r.v. gij and z) the last coordinates σi
N , i ≤ 4 are independent of

the first N − 1 coordinates and independent of each other, we can write

ν ′0(σ̄1σ̄N) = β2E
(

〈σ̄1(R−1,2 − q)〉0〈σ2N − σ1N〉0 − 2〈σ̄1(R−1,3 − q)〉0〈σ3N − σ1Nσ
2
Nσ

3
N〉0

−2〈σ̄1(R−2,3 − q)〉0〈σ1Nσ2Nσ3N − σ3N〉0 + 3〈σ̄1(R−3,4 − q)〉0〈σ1N − σ2N〉0〈σ3Nσ4N〉0
)

.

First of all, the first and the last terms are equal to zero because 〈σ1N − σ2N〉0 = 0. Next, by
symmetry

〈σ̄1(R−1,3 − q)〉0 = 〈(σ11 − σ21)(R
−
1,3 − q)〉0 = 〈(σ21 − σ11)(R

−
2,3 − q)〉0 = −〈σ̄1(R−2,3 − q)〉0.

Therefore, we get

ν ′0(σ̄1σ̄N) = −4β2E
(

〈σ̄1(R−1,3 − q)〉0〈σ3N − σ1Nσ
2
Nσ

3
N〉0
)

= −4β2ν0(σ̄1(R−1,3 − q))ν0(σ
3
N − σ1Nσ

2
Nσ

3
N).

It remains to show that ν0(σ̄1(R
−
1,3 − q)) = O(N−1). In order to avoid introducing new

notations we notice that it is equivalent to proving that ν(σ̄1(R1,3 − q)) = O(N−1). Indeed,
if we are able to prove that

∀β ≤ β0 ∀N ≥ 1 ν(σ̄1(R1,3 − q)) = O(N−1) (2.16)

then making a change of variables N → N − 1, β → β− = β
√

1− 1/N < β0, and q → q−,
where q− is the solution of (2.1) with β substituted with β−, we would get

ν0(σ̄1(R
−
1,3 − q−)) = O((N − 1)−1) = O(N−1).

Lemma 2.4.15 in [12] states that for β ≤ β0, |q − q−| ≤ LN−1 and, therefore, the above
inequality would imply that ν0(σ̄1(R

−
1,3 − q)) = O(N−1). To prove (2.16) we notice that by

symmetry ν(σ̄1(R1,3 − q)) = ν(σ̄N(R1,3 − q)), and we apply (2.5) which in this case implies
that

|ν(σ̄N(R1,3 − q))− ν0(σ̄N(R1,3 − q))| ≤ L√
N
ν((R1,3 − q)2)1/2 ≤ L

N
,

where in the last inequality we used (2.4). Finally,

ν0(σ̄N(R1,3 − q)) = −qν0(σ̄N) +
1

N
ν0(σ̄Nσ

1
Nσ

3
N) + ν0(σ̄NR

−
1,3)) =

1

N
ν0(σ̄Nσ

1
Nσ

3
N) = O(N−1).

This finishes the proof of (2.15) for k = 1. It remains to prove the induction step. One can
write

ν
(

(

N
∑

i=1

tiσ̄i

)2k+2
)

=
N
∑

i=1

tiν
(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

. (2.17)

Let us define νi(·) in the same way we defined ν0(·) only now the i-th coordinate plays the
same role as the N -th coordinate played for ν0. Using Proposition 2.4.7 in [12] we get that
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for any τ1, τ2 > 1 such that 1/τ1 + 1/τ2 = 1,

∣

∣

∣
ν
(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

− νi

(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)∣

∣

∣

≤ Lβ2ν
(

(

N
∑

i=1

tiσ̄i

)τ1(2k+1)
)1/τ1

ν(|R1,2 − q|τ2)1/τ2 . (2.18)

Let us take τ1 = (2k + 2)/(2k + 1) and τ2 = 2k + 2. By (2.4) we can estimate

ν
(

|R1,2 − q|τ2
)1/τ2

≤ L

√

τ2
N

= L

√

2k + 2

N
. (2.19)

Next, we can write

ν
(

(

N
∑

i=1

tiσ̄i

)τ1(2k+1)
)1/τ1

= ν
(

(

N
∑

i=1

tiσ̄i

)(2k+2)
)

ν
(

(

N
∑

i=1

tiσ̄i

)(2k+2)
)−1/(2k+2)

. (2.20)

If for some β and N

ν
(

(

N
∑

i=1

tiσ̄i

)(2k+2)
)

≤ (k + 1)k+1

then for this parameters the induction step is not needed since this inequality is pre-
cisely what we are trying to prove. Thus, without loss of generality, we can assume that

ν
(

(
∑N

i=1 tiσ̄i

)(2k+2)
)

≥ (k + 1)k+1, which implies that

ν
(

(

N
∑

i=1

tiσ̄i

)(2k+2)
)−1/(2k+2)

≤ 1√
k + 1

.

Combining this with (2.18), (2.19) and (2.20) we get

ν
(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

≤ νi

(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

+
Lβ2√
N
ν
(

(

N
∑

j=1

tjσ̄j

)(2k+2)
)

.

Plugging this estimate into (2.17) we get

ν
(

(

N
∑

i=1

tiσ̄i

)2k+2
)

≤
N
∑

i=1

tiνi

(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

+
N
∑

i=1

ti
Lβ2√
N
ν
(

(

N
∑

i=1

tiσ̄i

)(2k+2)
)

≤
N
∑

i=1

tiνi

(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

+ Lβ2ν
(

(

N
∑

i=1

tiσ̄i

)(2k+2)
)

,

since (1.2) implies that
∑

ti ≤
√
N. If Lβ2 ≤ 1/2, this implies that

ν
(

(

N
∑

i=1

tiσ̄i

)2k+2
)

≤ 2
N
∑

i=1

tiνi

(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

. (2.21)
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One can write,

νi

(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

= νi

(

σ̄i

(

(

N
∑

j=1

tjσ̄j

)2k+1 −
(

∑

j 6=i

tjσ̄j

)2k+1
))

,

since νi

(

σ̄i

(
∑

j 6=i tjσ̄j

)2k+1
)

= 0. Using the inequality

|x2k+1 − y2k+1| ≤ (2k + 1)|x− y|(x2k + y2k)

we get

νi

(

σ̄i

(

N
∑

j=1

tjσ̄j

)2k+1
)

≤ 4(2k + 1)ti

[

νi

(

(

∑

j 6=i

tjσ̄j

)2k
)

+ νi

(

(

N
∑

j=1

tjσ̄j

)2k
)]

. (2.22)

First of all, by induction hypothesis (2.15) we have

νi

(

(

∑

j 6=i

tjσ̄j

)2k
)

≤ (Lk)k,

since this is exactly (2.15) for parameters N − 1, β− = β
√

1− 1/N, and since
∑

j 6=i t
2
j ≤ 1.

Next, by Proposition 2.4.6 in [12] we have

νi

(

(

N
∑

j=1

tjσ̄j

)2k
)

≤ Lν
(

(

N
∑

j=1

tjσ̄j

)2k
)

≤ (Lk)k,

where in the last inequality we again used (2.15). Thus, (2.21) and (2.22) imply

ν
(

(

N
∑

i=1

tiσ̄i

)2k+2
)

≤ 16(2k + 1)
N
∑

i=1

t2i (Lk)
k ≤ 32(k + 1)(Lk)k ≤ (L(k + 1))k+1,

for L large enough. This completes the proof of the induction step and Theorem 2.

Remark. Theorem 2 and Lemmas 2 and 5 will be often used implicitly in the proof of
Theorem 1 in the following way. For example, if we consider a sequence Sl defined in (1.5)
then by Hölder’s inequality (first with respect to 〈·〉 and then with respect to E) one can
write

ν
(

(R1,2−q)(R2,3−q)S21S62
)

≤ ν
(

(R1,2−q)4
)1/4

ν
(

(R2,3−q)4
)1/4

ν
(

S81
)1/4

ν
(

S121
)1/4

= O(N−1),

where in the last equality we applied Theorem 2 and Lemma 2. Similarly, when we consider
a function that is a product of the factors of the type Rl,l′ − q or Sl, we will simply say that
each factor Rl,l′ − q contributes O(N−1/2) and each factor Sl contributes O(1).
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The following result plays the central role in the proof of Theorem 1. We consider a
function

φ =
n
∏

l=1

(Sl)
ql ,

where Sl are defined in (1.5) and where ql are arbitrary natural numbers, and we consider
the following quantity

ν
(

(Rl,l′ − q)(Rm,m′ − q)φ
)

.

We will show that this quantity essentially does not depend on the choice of pairs (l, l′)
and (m,m′) or, more accurately, it depends only on their joint configuration. This type of
quantities will appear when one considers the second derivative of ν

(

φ
)

, after two applications
of Lemma 1 or Lemma 4, and we will be able to cancel some of these terms up to the smaller
order approximation.

Lemma 7 There exists β0 > 0 such that for β < β0 the following holds. Consider four
pairs of indices (l, l′), (m,m′), (p, p′) and (r, r′) such that none of them is equal to (1(j), 2(j))
for j ≤ n. Then, if either (l, l′) 6= (m,m′) and (p, p′) 6= (r, r′) or (l, l′) = (m,m′) and
(p, p′) = (r, r′) then

ν
(

(Rl,l′ − q)(Rm,m′ − q)φ
)

− ν
(

(Rp,p′ − q)(Rr,r′ − q)φ
)

= O(max |ti|N−1), (2.23)

where O(·) depends on n, β0,
∑

l≤n ql but not on N.

Proof. The proof is based on the following observation. Given (l, l′) consider

Tl,l′ = N−1(σl − b) · (σl′ − b), Tl = N−1(σl − b) · b, T = N−1b · b− q, (2.24)

where b = 〈σ〉 = (〈σi〉)i≤N . One can express Rl,l′ − q as

Rl,l′ − q = Tl,l′ + Tl + Tl′ + T. (2.25)

The joint behavior of these quantities (2.24) was completely described in Sections 6 and
7 of [12]. Our main observation here is that under the restrictions on indices made in the
statement of Lemma 7 the function φ will be “almost” independent of these quantities and
all proofs in [12] can be carried out with some minor modifications. Let us consider the case
when (l, l′) 6= (m,m′) and (p, p′) 6= (r, r′). Using (2.25) we can write (Rl,l′ − q)(Rm,m′ − q) as
the sum of terms of the following types:

Tl,l′Tm,m′ , Tl,l′Tm, Tl,l′T, TlTm, TlT and TT.

Similarly, we can decompose (Rp,p′ − q)(Rr,r′ − q). The terms on the left hand side of (2.23)
containing a factor TT will obviously cancel out. Thus, we only need to prove that any
other term multiplied by φ will produce a quantity of order O(max |ti|N−1). Let us consider,
for example, the term ν(Tl,l′Tm,m′φ). To prove that ν(Tl,l′Tm,m′φ) = O(max |ti|N−1) we will
follow the proof of Proposition 2.6.5 in [12] with some necessary adjustments. Let us consider
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indices i(1), i(2), i(3), i(4) that are not equal to any of the indices that appear in Tl,l′ , Tm,m′

or φ. Then we can write,

ν(Tl,l′Tm,m′φ) = ν
(

N−1(σl − σi(1)) · (σl′ − σi(2))N−1(σm − σi(3)) · (σm′ − σi(4))φ
)

= N−1

N
∑

j=1

ν
(

(σl
j − σ

i(1)
j ) · (σl′

j − σ
i(2)
j )(Rm,m′ −Rm,i(4) −Rm′,i(3) +Ri(3),i(4))φ

)

.(2.26)

Let us consider one term in this sum, for example,

ν
(

(σl
N − σ

i(1)
N ) · (σl′

N − σ
i(2)
N )(Rm,m′ −Rm,i(4) −Rm′,i(3) +Ri(3),i(4))φ

)

. (2.27)

If we define

R−l,l′ =
1

N

N−1
∑

i=1

σl
iσ

l′

i , S−l =
N−1
∑

i=1

tiσ̄
l
i, φ

− =
n
∏

l=1

(S−l )
ql ,

then we can decompose (2.27) as

ν
(

(σl
N − σ

i(1)
N )(σl′

N − σ
i(2)
N )(R−m,m′ −R−m,i(4) −R−m′,i(3) +R−i(3),i(4))φ

−
)

+N−1ν
(

(σl
N − σ

i(1)
N )(σl′

N − σ
i(2)
N )(σm

N − σ
i(3)
N )(σm′

N − σ
i(4)
N )φ−

)

+tNR1 + t2NR2 +O(t3N + tNN
−1), (2.28)

where R1 is the sum of terms of the following type

Rj
1 = ν

(

(σl
N − σ

i(1)
N )(σl′

N − σ
i(2)
N )(σ

1(j)
N − σ

2(j)
N )(R−m,m′ −R−m,i(4) −R−m′,i(3) +R−i(3),i(4))φ

−
j

)

,

where φ−j =
∏n

l=1(S
−
l )

ql/S−j , and R2 is the sum of terms of the following type

Rj,k
2 = ν

(

(σl
N − σ

i(1)
N )(σl′

N − σ
i(2)
N )(σ

1(j)
N − σ

2(j)
N )(σ

1(k)
N − σ

2(k)
N )

× (R−m,m′ −R−m,i(4) −R−m′,i(3) +R−i(3),i(4))φ
−
j,k

)

,

where φ−j,k =
∏n

l=1(S
−
l )

ql/(S−j S
−
k ). First of all,

|Rj,k
2 | ≤ Lν

(

(R−1,2 − q)2
)1/2

ν
(

(φ−j,k)
2
)1/2

= O(N−1/2),

using Theorem 2 and Lemma 2. To bound Rj
1 we notice that ν0(R

j
1) = 0, and, moreover,

ν ′0(R
j
1) = O(N−1), since by (2.3) each term in the derivative will have another factor R−l,l′−q.

Therefore, using (2.5) we get
ν(Rj

1) = O(N−1).

The second term in (2.28) will have order O(N−3/2) since

ν0
(

(σl
N − σ

i(1)
N )(σl′

N − σ
i(2)
N )(σm

N − σ
i(3)
N )(σm′

N − σ
i(4)
N )φ−

)

= 0

and one can again apply (2.5). Thus the last two lines in (2.28) will be of order

O(t3N + t2NN
−1/2 + tNN

−1 +N−3/2).
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To estimate the first term in (2.28) we apply Proposition 2.6.3 in [12] which in this case
implies

ν
(

(σl
N − σ

i(1)
N )(σl′

N − σ
i(2)
N )(R−m,m′ −R−m,i(4) −R−m′,i(3) +R−i(3),i(4))φ

−
)

= Lβ2ν
(

(Rl,l′ −Rl,i(2) −Rl′,i(1) +Ri(1),i(2))(R
−
m,m′ −R−m,i(4) −R−m′,i(3) +R−i(3),i(4))φ

−
)

+O(N−3/2).

Now, using the similar decomposition as (2.27), (2.28) one can easily show that

ν
(

(Rl,l′ −Rl,i(2) −Rl′,i(1) +Ri(1),i(2))(R
−
m,m′ −R−m,i(4) −R−m′,i(3) +R−i(3),i(4))φ

−
)

= ν
(

(Rl,l′ −Rl,i(2) −Rl′,i(1) +Ri(1),i(2))(Rm,m′ −Rm,i(4) −Rm′,i(3) +Ri(3),i(4))φ
)

+O(N−3/2 + tNN
−1) = ν(Tl,l′Tm,m′φ) +O(N−3/2 + tNN

−1).

Thus, combining all the estimates the term (2.27) becomes

ν
(

(σl
N − σ

i(1)
N ) · (σl′

N − σ
i(2)
N )(Rm,m′ −Rm,i(4) −Rm′,i(3) +Ri(3),i(4))φ

)

= Lβ2ν(Tl,l′Tm,m′φ) +O(t3N + t2NN
−1/2 + tNN

−1 +N−3/2).

All other terms on the right-hand side of (2.26) can be written in exactly the same way, by
using the cavity method in the corresponding coordinate and, thus, (2.26) becomes

ν(Tl,l′Tm,m′φ) =
N
∑

j=1

N−1
(

Lβ2ν(Tl,l′Tm,m′φ) +O(t3j + t2jN
−1/2 + tjN

−1 +N−3/2)
)

= Lβ2ν(Tl,l′Tm,m′φ) +O(max |ti|N−1).

For small enough β, e.g. Lβ2 ≤ 1/2 this implies that ν(Tl,l′Tm,m′φ) = O(max |ti|N−1). To
prove (2.23) in the case when (l, l′) 6= (m,m′) and (p, p′) 6= (r, r′), it remains to estimate
all other terms produces by decomposition (2.25) and this is done by following the proofs of
corresponding results in the Section 2.6 of [12].

The case when (l, l′) = (m,m′) and (p, p′) = (r, r′) is slightly different. The decomposi-
tion of (Rl,l′ − q)2 using (2.25) will produce new terms ν(T 2l,l′φ) and ν(T 2l φ), which are not
small but up to the terms of order O(max |ti|N−1) will be equal to the corresponding terms
produces by the decomposition of (Rp,p′ − q)2. To see this, once again, one should follow the
proofs of the corresponding results in the Section 2.6 of [12] with minor changes.

3 Proof of Theorem 1

Theorem 1 is obvious if at least one kl is odd since in this case the left hand side of (1.6)
will be equal to 0. We will assume that all kl are even and, moreover, at least one of them is
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greater than 2, say k1 ≥ 4. Since a(l) = (l−1)a(l−2), in order to prove (1.6) it is, obviously,
enough to prove

∣

∣E〈
n
∏

l=1

(Sl)
kl〉 − (k1 − 1)E〈(S0)2(S1)k1−2

n
∏

l=2

(Sl)
kl〉
∣

∣ = O(max
i≤N

|ti|). (3.1)

We will try to analyze and compare the terms on the left hand side. Let us write

n
∏

l=1

(Sl)
kl =

N
∑

i=1

tiσ̄
1
i (S1)

k1−1

n
∏

l=2

(Sl)
kl (3.2)

and

(S0)
2(S1)

k1−2

n
∏

l=2

(Sl)
kl =

N
∑

i=1

tiσ̄
0
i (S0)(S1)

k1−2

n
∏

l=2

(Sl)
kl . (3.3)

¿From now on we will carefully analyze terms in (3.2) in several steps and at each step we
will notice that one of two things happens:

(a) The term produced at the same step of our analysis carried out for (3.3) is exactly
the same up to a constant k1 − 1;

(b) The term is “small” meaning that after combining all the steps one would get
something of order O(max |ti|).

Obviously these observations will imply (3.1).

Let us look at one term in (3.2) and (3.3), for example,

σ̄1N(S1)
k1−1

n
∏

l=2

(Sl)
kl and σ̄0N(S0)(S1)

k1−2

n
∏

l=2

(Sl)
kl . (3.4)

If we define S−l by the equation
Sl = S−l + tN σ̄

l
N ,

then,

σ̄1N(S1)
k1−1

n
∏

l=2

(Sl)
kl = σ̄1N(S

−
1 + tN σ̄

1
N)

k1−1

n
∏

l=2

(S−l + tN σ̄
l
N)

kl

= σ̄1N(S
−
1 )

k1−1

n
∏

l=2

(S−l )
kl + (k1 − 1)tN(σ̄

1
N)

2(S−1 )
k1−2

n
∏

l=2

(S−l )
kl

+tN

n
∑

l=2

klσ̄
1
N σ̄

l
N(S

−
1 )

k1−1(S−l )
kl−1

∏

j 6=1,l

(S−j )
kj +O(t2N)

= I + tN II + tN III +O(t2N).
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and

σ̄0N(S0)(S1)
k1−2

n
∏

l=2

(Sl)
kl = σ̄0N(S

−
0 + tN σ̄

0
N)(S

−
1 + tN σ̄

1
N)

k1−2

n
∏

l=2

(S−l + tN σ̄
l
N)

kl

= σ̄0N(S
−
0 )(S

−
1 )

k1−2

n
∏

l=2

(S−l )
kl + tN(σ̄

0
N)

2(S−1 )
k1−2

n
∏

l=2

(S−l )
kl

+tN

(

n
∑

l=2

klσ̄
0
N σ̄

l
N(S

−
1 )

k1−2(S−l )
kl−1

∏

j 6=1,l

(S−j )
kj

+(k1 − 2)σ̄0N σ̄
1
N(S

−
1 )

k1−3

n
∏

j 6=2

(S−j )
kj

)

+O(t2N)

= IV + tNV+ tNVI +O(t2N).

First of all, ν0(III) = ν0(VI) = 0 and, therefore, applying (2.5)

tNν(III) = O(tNN
−1/2) and ν(VI) = O(tNN

−1/2).

Next, again using (2.5)

tNν(II) = tNν0(II) + tNO(N−1/2)

= tN(k1 − 1)ν0((σ̄
1
N)

2)ν0((S
−
1 )

k1−2

n
∏

l=2

(S−l )
kl) +O(tNN

−1/2)

and

tNν(V) = tNν0(V) + tNO(N−1/2)

= tNν0((σ̄
1
N)

2)ν0((S
−
1 )

k1−2

n
∏

l=2

(S−l )
kl) +O(tNN

−1/2).

Thus the contribution of the terms II and V in (3.1) will cancel out - the first appearance of
case (a) mentioned above.

The terms of order O(t2N+tNN
−1/2) when plugged back into (3.2) and (3.3) will produce

N
∑

i=1

tiO(t2i + tiN
−1/2) = O(max

i≤N
|ti|+N−1/2) = O(max

i≤N
|ti|). (3.5)

Here we, of course, assume that similar analysis is carried out for the i-th term in (3.2) and
(3.3) with the only difference that the ith coordinate plays the special role in the definition
of ν0.

We now proceed to analyze the terms I and IV. If we define S=l by the equation

S−l = S=l + tN−1σ̄
l
N−1,
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then,

I = σ̄1N(S
−
1 )

k1−1

n
∏

l=2

(S−l )
kl = σ̄1N(S

=
1 )

k1−1

n
∏

l=2

(S=l )
kl

+tN−1(k1 − 1)R0 + tN−1R1 + t2N−1(R21 +R22 +R23) + t3N−1R3 +O(t4N−1).

where

R0 = σ̄1N σ̄
1
N−1(S

=
1 )

k1−2

n
∏

l=2

(S=l )
kl

R1 =
n
∑

l=2

klσ̄
1
N σ̄

l
N−1(S

=
1 )

k1−1(S=l )
kl−1

∏

j 6=1,l

(S=l )
kl ,

R21 =

(

k1 − 1

2

)

σ̄1N(σ̄
1
N−1)

2(S=1 )
k1−3

n
∏

l=1

(S=l )
kl ,

R22 =
n
∑

l=2

(

kl
2

)

σ̄1N(σ̄
l
N−1)

2(S=1 )
k1−1(S=l )

kl−2

n
∏

j 6=1,l

(S=j )
kl ,

and where R23 is the sum of terms of the following type

σ̄1N σ̄
l
N−1σ̄

l′

N−1

n
∏

j=1

(S=j )
qj , 1 ≤ l 6= l′ ≤ n

for some (not important here) powers ql, and where R3 is the sum of terms of the following
type

σ̄1N σ̄
l
N−1σ̄

l′

N−1σ̄
l′′

N−1

n
∏

j=1

(S=j )
qj , 1 ≤ l, l′, l′′ ≤ n.

Similarly,

IV = σ̄0N(S
−
0 )(S

−
1 )

k1−2

n
∏

l=2

(S−l )
kl = σ̄0N(S

=
0 )(S

=
1 )

k1−2

n
∏

l=2

(S=l )
kl

+tN−1R̄0 + tN−1R̄1 + t2N−1(R̄21 + R̄22 + R̄23) + t3N−1R̄3 +O(t4N−1).

where

R̄0 = σ̄0N σ̄
0
N−1(S

=
1 )

k1−2

n
∏

l=2

(S=l )
kl

R̄1 = σ̄0N σ̄
1
N−1S

=
0 (S

=
1 )

k1−3
∏

j 6=0,1

(S=l )
kl +

n
∑

l=2

klσ̄
0
N σ̄

l
N−1S

=
0 (S

=
1 )

k1−2(S=l )
kl−1

∏

j 6=0,1,l

(S=l )
kl ,

R̄21 =

(

k1 − 2

2

)

σ̄0N(σ̄
1
N−1)

2(S=0 )(S
=
1 )

k1−4

n
∏

l=2

(S=l )
kl ,
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R̄22 =
n
∑

l=2

(

kl
2

)

σ̄0N(σ̄
l
N−1)

2(S=0 )(S
=
1 )

k1−2(S=l )
kl−2

n
∏

j 6=0,1,l

(S=j )
kl ,

and where R̄23 is the sum of terms of the following type

σ̄0N σ̄
l
N−1σ̄

l′

N−1

n
∏

j=0

(S=j )
qj , 0 ≤ l 6= l′ ≤ n

for some (not important here) powers ql, and where R̄3 is the sum of terms of the following
type

σ̄0N σ̄
l
N−1σ̄

l′

N−1σ̄
l′′

N−1

n
∏

j=0

(S=j )
qj , 0 ≤ l, l′, l′′ ≤ n.

(Step 1). First of all since ν0(R3) = 0, we have ν(R3) = O(N−1/2) and t3N−1ν(R3) =
O(t3N−1N

−1/2). Next let us show that ν(R23) = O(N−1). Indeed, one need to note that
ν00(R23) = 0, and using Lemma 4, ν ′00(R23) = O(N−1) since each term produced by (2.9)
will have a factor 〈σ̄l

N−1〉00 = 0, each term produced by (2.10) will have a factor 〈σ̄1N〉00 = 0,
and each term produced by (2.11) has factor N−1. Thus it remains to use (2.13) to show
that ν(R23) = O(N−1).

Similarly, one can show that ν(R̄3) = O(N−1/2) and ν(R̄23) = O(N−1).

(Step 2). Let us show now that ν(R1) = O(N−3/2). Let us consider one individual term

R1l = σ̄1N σ̄
l
N−1(T

=
1 )

k1−1(T=l )kl−1
∏

j 6=1,l

(T=l )kl .

Obviously, ν00(R1l) = 0. To show that ν ′00(R1l) = 0, let us first note that the terms produced
by (2.9) will contain a factor 〈σ̄l

N−1〉00 = 0, the terms produced by (2.10) will contain a
factor 〈σ̄1N〉00 = 0, and the terms produced by (2.11) will contain a factor 〈(S=1 )k1−1〉00 = 0,
since k1 − 1 is odd and S=1 is symmetric. For the second derivative we will have different
types of terms produced by a combination of (2.9), (2.10) and (2.11). The terms produced
by using (2.11) twice will have order O(N−2); the terms produced by using (2.11) and either
(2.10) or (2.9) will have order O(N−3/2), since the factor R=l,l′ − q will produce N−1/2; the
terms produced by (2.9) and (2.9), or by (2.10) and (2.10) will be equal to 0 since they will
contain factors 〈σ̄l

N−1〉00 = 0 and 〈σ̄1N〉00 = 0 correspondingly. Finally, let us consider the
terms produced by (2.9) and (2.10), e.g.

ν00
(

R1lσ
m
Nσ

m′

N (R=m,m′ − q)σp
N−1σ

p′

N−1(R
=
p,p′ − q)

)

.

It will obviously be equal to 0 unless m, p ∈ {1(1), 2(1)} and m′, p′ ∈ {1(l), 2(l)} since,
otherwise, there will be a factor 〈σ̄1N〉00 = 0 or 〈σ̄l

N〉00 = 0. All non zero terms will cancel
due to the following observation. Consider, for example, the term

ν00
(

R1lσ
1(1)
N σ

1(l)
N (R=1(1),1(l) − q)σ

2(1)
N−1σ

2(l)
N−1(R

=
2(1),2(l) − q)

)

= ν00
(

σ
1(l)
N − σ

1(1)
N σ

2(1)
N σ

1(l)
N

)

×

ν00
(

σ
1(1)
N−1σ

1(2)
N−1σ

2(l)
N−1 − σ

2(l)
N

)

ν00
(

(R=1(1),1(l) − q)(R=2(1),2(l) − q)(T=1 )
k1−1(T=l )kl−1

∏

j 6=1,l

(T=l )kl
)

,
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which corresponds to m = 1(1),m′ = 1(l), p = 2(1) and p′ = 2(l). There will also be a similar
term that corresponds to m = 2(1),m′ = 1(l), p = 1(1) and p′ = 2(l) (indices m and p are
changed)

ν00
(

R1lσ
2(1)
N σ

1(l)
N (R=2(1),1(l) − q)σ

1(1)
N−1σ

2(l)
N−1(R

=
1(1),2(l) − q)

)

= ν00
(

σ
1(1)
N σ

2(1)
N σ

1(l)
N − σ

1(l)
N

)

×

ν00
(

σ
2(l)
N − σ

1(1)
N−1σ

1(2)
N−1σ

2(l)
N−1

)

ν00
(

(R=2(1),1(l) − q)(R=1(1),2(l) − q)(T=1 )
k1−1(T=l )kl−1

∏

j 6=1,l

(T=l )kl
)

.

These two terms will cancel since the product of the first two factors is unchanged and,
making the change of variables 1(1)→ 2(1), 2(1)→ 1(1) in the last factor we get (note that
T=1 → −T=1 )

ν00
(

(R=2(1),1(l) − q)(R=1(1),2(l) − q)(T=1 )
k1−1(T=l )kl−1

∏

j 6=1,l

(T=l )kl
)

= ν00
(

(R=1(1),1(l) − q)(R=2(1),2(l) − q)(−T=1 )k1−1(T=l )kl−1
∏

j 6=1,l

(T=l )kl
)

= −ν00
(

(R=1(1),1(l) − q)(R=2(1),2(l) − q)(T=1 )
k1−1(T=l )kl−1

∏

j 6=1,l

(T=l )kl
)

.

Using (2.13) we finally get that ν(R1) = O(N−3/2).

Similarly, one can show that ν(R̄1) = O(N−3/2).

(Step 3). Next, we will show that

ν(R21)− (k1 − 1)ν(R̄21) = O(N−1) (3.6)

and
ν(R22)− (k1 − 1)ν(R̄22) = O(N−1). (3.7)

We will prove only (3.6) since (3.7) is proved similarly. Since ν00(R21) = ν00(R̄21) = 0 it is
enough to prove that

(

k1 − 1

2

)

ν ′00
(

σ̄1N(σ̄
1
N−1)

2(S=1 )
k1−3

n
∏

l=2

(S=l )
kl
)

= (k1 − 1)

(

k1 − 2

2

)

ν ′00
(

σ̄0N(σ̄
1
N−1)

2(S=0 )(S
=
1 )

k1−4

n
∏

l=2

(S=l )
kl
)

+O(N−1). (3.8)

On both sides the terms produced by (2.10) will be equal to 0, the terms produced by (2.11)
will be of order O(N−1), thus, it suffices to compare the terms produced by (2.9). For the
left hand side the terms produced by (2.9) will be of the type

ν00
(

σ̄1Nσ
m
Nσ

m′

N (σ̄1N−1)
2(R=m,m′ − q)(S=1 )

k1−3

n
∏

l=2

(S=l )
kl
)
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and will be equal to 0 unless m ∈ {1(1), 2(1)} and m′ 6∈ {1(1), 2(1)}. For a fixed m′ consider
the sum of two terms that correspond to m = 1(1) and m = 2(1), i.e.

ν00
(

(σm′

N − σ
1(1)
N σ

2(1)
N σm′

N )(σ̄1N−1)
2(R=1(1),m′ − q)(S=1 )

k1−3

n
∏

l=2

(S=l )
kl
)

+ν00
(

(σ
1(1)
N σ

2(1)
N σm′

N − σm′

N )(σ̄1N−1)
2(R=2(1),m′ − q)(S=1 )

k1−3

n
∏

l=2

(S=l )
kl
)

= ν00
(

(σm′

N − σ
1(1)
N σ

2(1)
N σm′

N )
)

ν00
(

(σ̄1N−1)
2
)

ν00
(

(R=1(1),m′ −R=2(1),m′)(S
=
1 )

k1−3

n
∏

l=2

(S=l )
kl
)

= cν00
(

(R=1(1),m′ −R=2(1),m′)(S
=
1 )

k1−3

n
∏

l=2

(S=l )
kl
)

.

For m′ ∈ {1(2), 2(2), . . . , 1(n), 2(n)} this term will have a factor β2, and for m′ = 2n + 1
it will have a factor −β2(2n). Similarly, the derivative on the right hand side of (3.8) will
consist of the terms of type

cν00
(

(R=1(0),m′ −R=2(0),m′)(S
=
0 )(S

=
1 )

k1−4

n
∏

l=2

(S=l )
kl
)

.

For m′ ∈ {1(1), 2(1), . . . , 1(n), 2(n)} this term will have a factor β2, and for m′ = 2n + 3 it
will have a factor −β2(2n+ 2). We will show next that for any m′ and m′′,

ν00
(

(R=1(1),m′ −R=2(1),m′)(S
=
1 )

k1−3

n
∏

l=2

(S=l )
kl
)

= (k1 − 3)ν00
(

(R=1(0),m′′ −R=2(0),m′′)(S
=
0 )(S

=
1 )

k1−4

n
∏

l=2

(S=l )
kl
)

+O(N−1). (3.9)

This implies, for example, that all terms in the derivatives are ”almost” independent of the
index m′. This will also imply (3.8) since, given arbitrary fixed m′, the left hand side of (3.8)
will be equal to

(k1−3)
(

k1 − 1

2

)

cβ2
(

(2n−2)−(2n)
)

ν00
(

(R=1(0),m′−R=2(0),m′)(S=0 )(S=1 )k1−4

n
∏

l=2

(S=l )
kl
)

+O(N−1)

and the right hand side of (3.8) will be equal to

(k1−1)
(

k1 − 2

2

)

cβ2
(

(2n)−(2n+2)
)

ν00
(

(R=1(0),m′−R=2(0),m′)(S=0 )(S=1 )k1−4

n
∏

l=2

(S=l )
kl
)

+O(N−1),

which is the same up to the terms of order O(N−1). For simplicity of notations, instead of
proving (3.9) we will prove

ν
(

(R1(1),m′ −R2(1),m′)(S1)
k1−3

n
∏

l=2

(Sl)
kl
)

= (k1 − 3)ν
(

(R1(0),m′′ −R2(0),m′′)(S0)(S1)
k1−4

n
∏

l=2

(Sl)
kl
)

+O(N−1). (3.10)
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Let us write the left hand side as

ν
(

(R1(1),m′ −R2(1),m′)(S1)
k1−3

n
∏

l=2

(Sl)
kl
)

= N−1

N
∑

i=1

ν(Ui),

where

Ui = (σ
1(1)
i − σ

2(1)
i )σm′

i (S1)
k1−3

n
∏

l=2

(Sl)
kl = σ̄1i σ

m′

i (S1)
k1−3

n
∏

l=2

(Sl)
kl .

and consider one term in this sum, for example, ν(UN). Using (2.5), one can write

ν(UN) = ν0(UN) + ν ′0(UN) +O(N−1)

and
ν ′(UN) = ν ′0(UN) +O(N−1),

since each term in the derivative already contains a factor R−l,l′ − q. Thus,

ν(UN) = ν0(UN) + ν ′(UN) +O(N−1).

Similarly,
ν(Ui) = νi(Ui) + ν ′(Ui) +O(N−1),

where νi is defined the same way as ν0 only now ith coordinated plays the same role as Nth
coordinate plays for ν0(= νN). Therefore,

ν
(

(R1(1),m′ −R2(1),m′)(S1)
k1−3

n
∏

l=2

(Sl)
kl
)

= N−1

N
∑

i=1

νi(Ui)

+ν ′
(

(R1(1),m′ −R2(1),m′)(S1)
k1−3

n
∏

l=2

(Sl)
kl
)

+O(N−1) = N−1

N
∑

i=1

νi(Ui) +O(N−1),

again using (2.13) and (2.12) and writing R1(1),m′ −R2(1),m′ = (R1(1),m′ − q)− (R2(1),m′ − q).
Similarly one can write,

ν
(

(R1(0),m′′ −R2(0),m′′)(S0)(S1)
k1−4

n
∏

l=2

(Sl)
kl
)

= N−1

N
∑

i=1

νi(Vi) +O(N−1),

where

Vi = (σ
1(0)
i − σ

2(0)
i )σm′′

i (S0)(S1)
k1−4

n
∏

l=2

(Sl)
kl .

If we can finally show that

νi(Ui) = (k1 − 3)νi(Vi) +O(t2i ),
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this will prove (3.10) and (3.8). For example, if we consider ν0(UN),

ν0(UN) = ν0
(

σ̄1Nσ
m′

N (S1)
k1−3

n
∏

l=2

(Sl)
kl

)

= ν0
(

σ̄1Nσ
m′

N (S−1 + tN σ̄
1
N)

k1−3

n
∏

l=2

(S−l + tN σ̄
l
N)

kl

)

= ν0(σ̄
1
N)ν0(σ

m′

N )ν0
(

(S−1 )
k1−3

n
∏

l=2

(S−l )
kl

)

+(k1 − 3)tNν0((σ̄
1
N)

2)ν0(σ
m′

N )ν0
(

(S−1 )
k1−4

n
∏

l=2

(S−l )
kl

)

+tN

n
∑

l=2

ν0(σ̄
1
N σ̄

l
N)ν0(σ

m′

N )ν0
(

(S−1 )
k1−3(S−l )

kl−1

n
∏

j 6=1,l

(S−j )
kl

)

+O(t2N)

= (k1 − 3)tNν0((σ̄
1
N)

2)ν0(σ
m′

N )ν0
(

(S−1 )
k1−4

n
∏

l=2

(S−l )
kl

)

+O(t2N),

since all other terms are equal to 0. Similarly, one can easily see that

ν0(VN) = tNν0((σ̄
1
N)

2)ν0(σ
m′

N )ν0
(

(S−1 )
k1−4

n
∏

l=2

(S−l )
kl

)

+O(t2N).

This finishes the proof of (3.8).

The comparison of R22 and R̄22 can be carried out exactly the same way.

(Step 4). The last thing we need to prove is that

ν(R0)− ν(R̄0) = O(max
i
|ti|N−1) (3.11)

or, in other words,

ν
(

σ̄1N σ̄
1
N−1(S

=
1 )

k1−2

n
∏

l=2

(S=l )
kl
)

− ν
(

σ̄0N σ̄
0
N−1(S

=
1 )

k1−2

n
∏

l=2

(S=l )
kl
)

= O(max
i
|ti|N−1).

First of all, clearly, ν00(R0) = ν00(R̄0) = 0. Next we will show that

ν ′00(R0)− ν ′00(R̄0) = 0. (3.12)

The terms produced by (2.9) and (2.10) will be equal to 0, because they will contain either
the factor 〈σ̄1N〉00 = 0 (〈σ̄0N〉00 = 0 ) or the factor 〈σ̄1N−1〉00 = 0 (〈σ̄0N−1〉00 = 0). The terms of
ν ′00(R0) produced by (2.11) will be of the type

N−1ν00(σ̄
1
Nσ

m
Nσ

m′

N )ν00(σ̄
1
N−1σ

m
N−1σ

m′

N−1)ν00
(

(S=1 )
k1−2

n
∏

l=2

(S=l )
kl
)

and they will be different from 0 only if m ∈ {1(1), 2(1)} and m′ 6∈ {1(1), 2(2)}. For m ∈
{1(1), 2(1)} and m′ ∈ {1(2), 2(2), . . . , 1(n), 2(n)} these terms will have a factor β2, and for
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m ∈ {1(1), 2(1)} and m′ = 2n + 1 these terms will have a factor −(2n)β2. Similarly, the
terms of ν ′00(R̄0) produced by (2.11) will be of the type

N−1ν00(σ̄
0
Nσ

p
Nσ

p′

N)ν00(σ̄
0
N−1σ

p
N−1σ

p′

N−1)ν00
(

(S=1 )
k1−2

n
∏

l=2

(S=l )
kl
)

and they will be different from 0 only if p ∈ {1(0), 2(0)} and p′ 6∈ {1(0), 2(0)}. For p ∈
{1(0), 2(0)} and p′ ∈ {1(1), 2(1), . . . , 1(n), 2(n)} these terms will have a factor β2, and for
p ∈ {1(0), 2(0)} and p′ = 2n + 3 these terms will have a factor −(2n + 2)β2. For m = 1(1)
(or m = 2(1)) and a corresponding p = 1(0) (or p = 2(0)) the non zero terms above will be
equal, so when we add up the factors over m′ and p′ we get

β2((2n− 2)− 2n− (2n) + (2n+ 2)) = 0.

This shows that ν ′00(R0)− ν ′00(R̄0) = 0.

Next we will show that

ν ′′00(R0)− ν ′′00(R̄0) = O(max
i
|ti|N−1). (3.13)

The second derivative will have different types of terms produced by an iterated application
of (2.9), (2.10) and (2.11). The terms produced by using (2.11) twice will have order O(N−2);
the terms produced by using (2.11) and either (2.10) or (2.9) will have order O(N−3/2), since
the factor R=l,l′ − q will contribute N−1/2

via the application of (2.12); the terms produced by (2.9) and (2.9), or by (2.10) and
(2.10) will be equal to 0 since they will contain a factor 〈σ̄1N−1〉00 = 0 or 〈σ̄1N〉00 = 0 corre-
spondingly. Finally, let us consider the terms produced by (2.9) and (2.10). For ν ′′00(R0) they
will be of the type

ν00
(

R0σ
m
Nσ

m′

N (R=m,m′ − q)σp
N−1σ

p′

N−1(R
=
p,p′ − q)

)

= ν00(σ̄
1
Nσ

m
Nσ

m′

N )ν00(σ̄
1
N−1σ

p
N−1σ

p′

N−1)ν00
(

(R=m,m′ − q)(R=p,p′ − q)(S=1 )
k1−2

n
∏

l=2

(S=l )
kl
)

and will be equal to 0 unless m, p ∈ {1(1), 2(1)} and m′, p′ 6∈ {1(1), 2(1)}. For ν ′′00(R̄0) the
terms will be of the type

ν00
(

R̄0σ
m
Nσ

m′

N (R=m,m′ − q)σp
N−1σ

p′

N−1(R
=
p,p′ − q)

)

= ν00(σ̄
0
Nσ

m
Nσ

m′

N )ν00(σ̄
0
N−1σ

p
N−1σ

p′

N−1)ν00
(

(R=m,m′ − q)(R=p,p′ − q)(S=1 )
k1−2

n
∏

l=2

(S=l )
kl
)

and will be equal to 0 unless m, p ∈ {1(0), 2(0)} and m′, p′ 6∈ {1(0), 2(0)}. Now, to show
(3.13) one only needs to apply (2.23) and notice that for each case in Lemma 7 (i.e. for
(m,m′) = (p, p′) or (m,m′) 6= (p, p′)) there will be equal number of positive and negative
terms that will cancel each other out up to the terms of order O(maxi |ti|N−1). The count
of this terms is done similarly to what we did in the proof of (3.12) and we omit it. Finally,
(3.12) and (3.13) imply (3.11) via the application of (2.13).
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Now we can combine Steps 1 through 4 to get that

ν(I)− (k1 − 1)ν(IV) = ν
(

σ̄1N(S
=
1 )

k1−1

n
∏

l=2

(S=l )
kl
)

− (k1 − 1)ν
(

σ̄0N(S
=
0 )(S

=
1 )

k1−2

n
∏

l=2

(S=l )
kl
)

+O(t4N−1 + t3N−1N
−1/2 + t2N−1N

−1 + tN−1max
i
|ti|N−1).

We notice that the first two terms on the right hand side

ν
(

σ̄1N(S
=
1 )

k1−1

n
∏

l=2

(S=l )
kl
)

− (k1 − 1)ν
(

σ̄0N(S
=
0 )(S

=
1 )

k1−2

n
∏

l=2

(S=l )
kl
)

are absolutely similar to ν(I) − (k1 − 1)ν(IV), with the only difference that S−l is now S=l .
Thus we can proceed by induction to show that

ν(I)− (k1 − 1)ν(IV) =
N−1
∑

j=1

O(t4j + t3jN
−1/2 + t2jN

−1 + tj max
i
|ti|N−1).

We can now add up the contributions of the terms I and IV (and terms similar to (3.4)
arising from (3.2) and (3.3)) in the left hand side of (3.1) to get

∑

i≤N

∑

j 6=i

tiO(t4j + t3jN
−1/2 + t2jN

−1 + tj max
l
|tl|N−1) = O(max

l
|tl|),

which is a simple calculus exercise, provided that
∑

i≤N t2i = 1. This, together with (3.5),
completes the proof of (3.1) and the proof of Theorem 1.
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