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Abstract

We prove that the solution of stochastic differential equations with deterministic diffusion coeffi-
cient admits a Hölder continuous density via a condition on the integrability of the Fourier trans-
form of the drift coefficient. In our result, the integrability is an important factor to determine the
order of Hölder continuity of the density. Explicit examples and some applications are given.
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1 Introduction

Coefficients of a SDE (stochastic differential equation) play an important role in order to deter-
mine the properties of the probability density function of the distribution of the solution of the SDE.
For elliptic SDEs if the coefficients are bounded and have bounded derivatives for any order, the
solution admits a smooth density (see, e.g., [16]). On the other hand, in the case of non-smooth
(especially, discontinuous) coefficients, it is difficult to prove the existence and/or regularity of the
density.

In this article, we consider a d-dimensional SDE of the form dXt = σ(t)dBt + b(Xt)dt, where
{Bt}t≥0 is a d-dimensional Brownian motion, b : Rd → Rd is a bounded function and σ : [0,+∞) →
Rd ×Rd. The main purpose of this article is to prove the existence and the pointwise regularity of
the density of the SDE with non-smooth drift b. Especially, we are interested in the case when b is
discontinuous.

Some related results for this problem have already been obtained. Let us start our discussion
with the case d = 1. In Section 6.5 of [13], for σ = 1 and an explicit discontinuous function b, the
solution of the above SDE admits a density and also an explicit form of the density is given. As this
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Hölder continuity property of singular Drift SDE density

example is quite explicit, one can easily see that this density is not differentiable at the discontinuity
point of b.

In [8], the authors proved that the solution to the following one dimensional SDE:

dXt = σ(Xt)dBt + b(Xt)dt

admits a density on the set {x ∈ R;σ(x) 6= 0}, where σ is α-Hölder continuous with α > 1
2 and b

is at most linear growth. Further improvements have been achieved in [1] weakening the Hölder
continuous hypotheses on the coefficients or in [5] and [6] for other type of stochastic equations.

Their approach is attractive due to its simplicity. The key idea is to consider the following random
vector Zε := Xt0−ε + σ(Xt0−ε)(Bt0 −Bt0−ε) which converges to Xt0 as ε→ 0. Then one uses the fact
that Zε has a smooth density and that Zε is close to Xt0 . The conditions on the coefficients are used
for the latter argument. A careful analysis of their method shows that this argument can not be
straightforwardly used to obtain any further pointwise properties of the density (such as the Hölder
continuity of the density).

As for the regularity of the density, it is shown in [21] that in the particular case that σ = 1

and the drift is an indicator function then the density of the solution process exists and is α-Hölder
continuous for any α ∈ (0, 1

2 ).
In [4], the author shows that if there exists some ball in Rd on which both coefficients are smooth

and σ is uniformly elliptic, then the density is smooth inside a smaller ball. In the case d = 1, [12],
shows that if there exists some open interval on which b is Hölder continuous and σ is uniformly
elliptic and smooth, then the density is Hölder continuous on the interval. In the present article,
the aouthors give a first attempt to overcome the locality of the previous results and establish the
regularity of the density across the boundaries of the domain of regularity of the coefficients. In
this sense, the present work is related to [1]. In [1], the authors prove the existence of densities for
multidimensional SDEs with coefficients that have logarithmic order of Hölder continuity using an
interpolation theory approach.

Our result might be regarded as a second alternative stochastic approach to the study of the
regularity of fundamental solution to parabolic type PDEs (partial differential equations). It is well
known that under suitable regularity conditions, the fundamental solution to a parabolic type PDE
is given by the density function of the solution process to the associated SDE. Unfortunately, little is
known about how to overcome these requirements.

Leaving completely aside the probabilistic setting, in the theory of parabolic equations, there
are many results about the regularity of fundamental solutions to PDEs under weaker conditions on
the coefficients, such as Hölder continuity or even bounded measurable. In [9], we can find some
classical results on the existence and regularity of fundamental solutions of parabolic equations
under global Hölder continuity assumptions on the coefficients of the parabolic equation. Also these
equations can be solved in some Sobolev spaces and by using embedding theorems and taking
modifications, one can obtain that the solution has Hölder continuous derivatives (see e.g. [7],
[14] and [17]). Under our conditions, we do not know any method in order to obtain pointwise
regularity properties which may be also lead to a general probabilistic analysis tool in order to
analyze pointwise properties of the density of solutions of SDEs with discontinuous drift.

Now, we briefly explain our main result. Assume that the drift coefficient b is bounded and
compactly supported. To prove the existence and Hölder continuity property of the density, we
rely on Lévy’s inversion theorem and a corollary which characterizes the Hölder continuity of the
density. Thanks to these results, it is enough to show that the characteristic function of Xt0 has some
polynomial decay at infinity which in turn, implies the pointwise Hölder continuity of the density.
To estimate the decay of the characteristic function of Xt0 , we use the integrability of the Fourier
transform of b. If the Fourier transform of b belongs to some Sobolev space Hγ,p with suitable
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parameters p > 1 and γ > 0, we can show the Hölder continuity of the density up to an order which
depends on these two indices and the amount of noise in the model (for an exact statement, see
Theorem 3.2).

In general, however, if the support of the function b is not compact the Fourier transform may not
exist (in the classical sense) even if b is smooth. In this case, we consider the following truncated
approximation of b. For K > 0, we define a C∞b function ϕK : R → R which satisfies 1[−K,K] ≤
ϕK ≤ 1[−(K+1),K+1]. Then we can show the Hölder continuity of the density by using the function
bK : Rd → Rd defined by bK(x) := (b1(x)ϕK(|x|), · · · , bd(x)ϕK(|x|)), instead of b. In any case, the
Hölder continuity of the density obtained by our method is almost determined by 2γ

p . For the details,
see Section 2 and 3 (in particular, Theorem 3.2).

In our approach, Malliavin calculus plays an important role, but we do not assume any smooth-
ness of the drift term b. So in general, the stochastic process {Xt}t≥0 is not differentiable in the
Malliavin sense. To solve this problem, we use Girsanov’s theorem in order to reduce our study
to the solution of the equation dXt = σ(t)dWt where {Wt}t≥0 is a new Brownian motion under a
new probability measure. Then {Xt}t≥0 has independent increments and is differentiable in the
Malliavin calculus sense under this new probability measure.

However this measure change yields an extra exponential type martingale which is not Malliavin
differentiable. For this reason, we apply stochastic Taylor expansion to this martingale term and
then the characteristic function of Xt0 is represented by an infinite series of expectations of multi-
ple Wiener integrals multiplied with an exponential of Xt0 . By using integration by parts formula in
Malliavin calculus sense, in a time interval where the noise increments are independent of the irreg-
ular drift function b, these summands can be represented as Lebesgue integrals whose integrands
involve the Fourier transforms of bK and the transition probability density function (with respect
to new probability measure) of {Xt}t≥0. These arguments will be carried out on a fixed short time
interval [t0 − τ, t0] and then we will estimate these summands by using the decay of Fourier trans-
form of bK . Finally, to end the argument, we will choose τ and K as a function of the variable of the
characteristic function of Xt0 , say θ, and we will obtain the desired result.

The rest of the paper is organized as follows. In the following section, we introduce the notation
that will be used throughout the article. We state our main result (Theorem 3.2) in Section 3. In Sec-
tion 4 we will exhibit preparatory lemmas which generalize Lévy’s inversion theorem. This lemma
implies that the asymptotic behavior of a characteristic function at infinity determines the regularity
of the density, hence we may just focus our attention on the asymptotic behavior of characteristic
functions (Proposition 4.3). We will prove our main result in Section 5 and give some examples in
Section 6. In Section 7, we will give some concluding remarks. Section 8 will be devoted to the
proofs of some auxiliary lemmas.

2 Notations and Preliminaries

We introduce the notation that will be used throughout the article.

The symbols N and Z+ denote the set of all positive integers and the set of all non-negative
integers, respectively. b·c denotes the greatest integer function (sometimes also called the floor
function).

Vectors will always be interpreted as column vectors unless stated explicitly. B(x, r) denotes the
open ball centered in x and radius r > 0. In the particular case that x = 0 we use the simplifying
notation B(r) ≡ B(0, r).

Let d ∈ N. The transpose of a matrix A is denoted by tA and its inverse is denoted by A−1. The
norm of a vector x ∈ Rd is denoted by |x|.

1A(x) will denote the indicator function of the set A. f (n) will denote the nth derivative of the
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function f : R → R. Cλ(Rd;Rk) for λ ∈ [0,∞] denotes the space of functions from Rd to Rk (d,
k ∈ N) which are bλc-times differentiable and its bλc-derivative is λ − bλc-Hölder. Sometimes, we
simplify this notation to Cλ when d and k are well understood from the context. Similarly, we define
the space Cλb as the subspace of Cλ of bounded functions with bλc bounded derivatives. Also Cλc the
subspace of Cλ of functions with compact support.

We define the Fourier transform of the function b = (bj)1≤j≤d : Rd → Rd by

F b(θ) := (F bj(θ))1≤j≤d :=

(
1

(2π)d

∫
Rd

bj(x)e−i〈θ,x〉dx

)
1≤j≤d

, θ ∈ R
d.

S (Rd) denotes the space of real valued rapidly decreasing functions on Rd. For φ ∈ S , p > 1 and
γ > 0, we define the Sobolev norm ‖φ‖Hγ,p as

‖φ‖Hγ,p :=

[∫
Rd

(1 + |ξ|2)γ |Fφ(ξ) |p dξ
] 1
p

,

and the Sobolev space Hγ,p as the completion of S (Rd) with respect to the norm ‖ · ‖Hγ,p .
For a function f : Rd → Rd, we define the norm ‖f‖∞ := supx∈Rd |f(x)|.
Through this article, we let ϕ ∈ C∞c (R;R) denote a function which satisfies

1[−1,1] ≤ ϕ ≤ 1[−2,2].

For K > 0, we define the function ϕK : R→ R by

ϕK(x) := ϕ(x+ 1−K)1[K,K+1](x) + ϕ(x− 1 +K)1[−(K+1),−K](x) + 1(−K,K)(x), x ∈ R.

Then for any K > 0, ϕK ∈ C∞c (R;R) satisfies

1[−K,K] ≤ ϕK ≤ 1[−(K+1),K+1].

Moreover, for any n ∈ N, ‖ϕ(n)
K ‖∞ = ‖ϕ(n)‖∞.

For K > 0 and a function b = (bj)1≤j≤d : Rd → Rd, we define bK by

bK(x) := (bK,j)1≤j≤d := (bj(x)ϕK(|x|))1≤j≤d , x ∈ R
d.

Note that the support of bK is contained in B(K + 1) and b(x) = bK(x) for x ∈ B(K). Moreover, if b
is bounded, the Fourier transform of bK exists for each K > 0.

We will also use the integration by parts (or duality formula) of Malliavin Calculus. We refer
the reader to Proposition 1.3.11 in [19] for notations and a precise statement. We will also be
using two probability measures P and Q. Their respective expectations will be denoted by E and E
respectively.

Constants may change values from line to line although in many cases their dependence with
respect to the problem parameters is explicitly stated. In particular, all constants may depend upon
on σ or b in the sense that they depend on the norms used for these two functions and the constants
appearing in the hypothesis which relate to these functions. The constants may also depend on
other parameters in the hypothesis such as d, β, γ, p or T , but they are independent of t0 or n (which
will appear as the expansion index for the Girsanov exponentials) unless explicitly stated.
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3 Main Result

Now we give our assumptions and main result.
Let (Ω,F , {Ft}t≥0,P) be a filtered probability space and {Bt}t≥0 be a d-dimensional {Ft}t≥0

Brownian motion.
Consider the following SDE;

Xt = x0 +

∫ t

0

σ(s)dBs +

∫ t

0

b(Xs)ds, (3.1)

where σ = (σij)1≤i,j≤d : [0, T ] → Rd × Rd and b = (bj)1≤j≤d : Rd → Rd are Borel measurable
functions. We assume that these coefficients satisfy the following conditions

(A1). ‖b‖∞ <∞.

(A2). There exist constants p > 1 and γ > 0 such that for any K > 0, bK ∈ Hγ,p and it satisfies

‖bK‖γ,p := max
1≤j≤d

‖bK,j‖Hγ,p ≤ g(K) and
2γ

p
+ 1 >

d

q
,

where q is the Hölder conjugate of p and g(x) := C (|x|m + 1), x ∈ R, for some positive con-
stants C and m ∈ Z+.

(A3). σ = (σij)1≤i,j≤d ∈ L
2
(
[0, T ];Rd ×Rd

)
and there exists a positive constant c such that 〈θ, a(s)θ〉 ≥

c|θ|2 for all (s, θ) ∈ [0, T ]×Rd, where a := σ tσ.

(A4). For some t0 ∈ (0, T ], there exist constants c ∈ (0,+∞), β ∈ (0, 1] and δ ∈ (0, t0) such that for
any s ∈ [t0 − δ, t0], ∫ t0

s

〈a(u)θ, θ〉du ≥ c|θ|2(t0 − s)β . (3.2)

(A5). There exists a unique weak solution X to the SDE (3.1).

Remark 3.1. For sufficient conditions for existence and uniqueness for the equation (3.1), we refer
the reader to the traditional results in Section 1.2 in [3]. For recent results, we refer to [2], [11],
[15] or [22] between others.

Our main result is the following.

Theorem 3.2. Fix t0 ∈ (0, T ] as in hypothesis (A4). Assume that (A1)-(A5) hold. Then Xt0 admits a
density in the class Cλ for any λ ∈ (0, 2γ

p + 2
β − 1− d).

Remark 3.3. 1. If b 2γ
p + 2

β − 1− dc = 0 in the above theorem, then the density of Xt0 is λ-Hölder
continuous.

2. Note that the parameters γ and pmeasure the regularity of the drift coefficient b. Furthermore,
if (A3) holds then (A4) also holds for all t ∈ (0, T ] with β = 1. If σ(s) is close to +∞ at s = t0
then we may have β < 1. In Section 6.3, we will give an example of σ for which β < 1. The
interest in this case stems from the fact that there is a widespread belief that “more noise
implies more smoothness of the density”. In our case, the amount of noise is measured by the
parameter β. The smaller the value of β, the more noise we have in the model and the more
regularity the density of Xt0 will have.

3. The fact that m in (A2) does not play any role in the final result will be clearly understood from
the proof. In fact, the Gaussian tails of the Wiener process make the effect of m negligible at
the end.
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4 Preparatory Lemmas

To show Theorem 3.2, we use the well known relation between the integrability of characteristic
functions and the regularity of densities.

Theorem 4.1. (Lévy’s inversion theorem) Let (Ω,F ,P) be any probability space, X be a Rd-valued
random vector defined on that space and φ(θ) = E[ei〈θ,X〉] be its characteristic function. If φ ∈
L1(Rd), then fX , the density function of the law of X, exists and is continuous. Moreover, for any
x ∈ Rd, we have

fX(x) =
1

(2π)d

∫
Rd

ei〈θ,x〉φ(θ)dθ.

The following corollary of Theorem 4.1 gives us a more precise criterion for the Hölder continuity
of the density. For the proof of this corollary in one dimension, see [12]. The multidimensional
version can be proved in the same way.

Corollary 4.2. Let X be a random vector under the same setting as in Theorem 4.1 and φ be its
characteristic function. Assume that there exist a constant λ > 0 such that∫

Rd

|φ(θ)||θ|λdθ < +∞.

Then the density function of the law of X exists and it belongs to the set Cλ.

Given the above result, we will concentrate on obtaining the asymptotic behavior of the charac-
teristic function at infinity. Under our assumptions, we obtain the following result.

Proposition 4.3. Fix t0 ∈ (0, T ] as in hypothesis (A4) and assume that (A1)-(A5) hold. Then for any
λ < 2γ

p + 2
β − 1, there exists a constant C > 0 such that∣∣∣E [ei〈θ,Xt0 〉]∣∣∣ ≤ C(1 + |θ|)−λ.

Proof of Theorem 3.2: From Corollary 4.2 and Proposition 4.3, it is easy to see that Theorem
3.2 holds. Therefore, in the following section, we will give the proof of Proposition 4.3.

5 Proof of Proposition 4.3

We recall the reader that we are assuming hypotheses (A1)-(A5) throughout this section.

5.1 Measure change

Fix t0 ∈ (0, T ] as in hypothesis (A4) and δ ∈ (0, t0) which satisfy (3.2). Let us fix some τ ∈
(t0−δ, t0). Before estimating the characteristic function of Xt0 , we apply Girsanov’s theorem. Define
the function h as

h(s, x) := tσ(s)−1 · b(x), s ∈ [τ, t0], x ∈ R
d.

Remark 5.1. Note that the assumptions (A1) and (A3) imply that h is bounded.

Define a new probability measure Q as

dQ

dP

∣∣∣∣
Fu

= exp

(
−
∫ u

τ

h(s,Xs)dBs −
1

2

∫ u

τ

|h(s,Xs)|2 ds
)
, u ∈ [τ, t0].
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Then by Girsanov’s theorem,

Wu := Bu −Bτ +

∫ u

τ

h(s,Xs)ds, u ∈ [τ, t0],

is a Brownian motion under the new measure Q.
Define the following processes for u ∈ [τ, t0],

Yu := Xu −Xτ =

∫ u

τ

σ(s)dWs, (5.1)

Zu(z) := exp

(∫ u

τ

h(s, Ys + z)dWs −
1

2

∫ u

τ

|h(s, Ys + z)|2 ds
)
.

First we state some basic properties of Y . Their proof is straightforward.

Lemma 5.2. The process {Ys}τ≤s≤t0 is a Gaussian process with independent increments. Moreover,
for any s, u ∈ [τ, t0] with s < u, Yu− Ys is a centered Gaussian random vector with covariance matrix
given by

∫ s
u
a(v)dv. Therefore the characteristic function of the increments of Y is real valued and

Q (Yu ∈ dx|Ys = y) = ps,u(x− y)dx,

where ps,u is the density function of the law of Yu − Ys.

Next, we explain the role of Z in the calculation of the characteristic function of Xt0 . Recall that
we denote by E and E the expectations under P and Q respectively.

Lemma 5.3. For any θ ∈ Rd and τ ∈ (t0 − δ, t0] we have

E
[
ei〈θ,Xt0 〉

]
= E

[
E
[
ei〈θ,Yt0+z〉Zt0(z)

] ∣∣∣∣
z=Xτ

]
.

Proof. We have

E
[
ei〈θ,Xt0 〉

]
= E

[
ei〈θ,Xt0−Xτ+Xτ 〉

]
= E

[
ei〈θ,Yt0+Xτ 〉 exp

(∫ t0

τ

h(s,Xs)dBs +
1

2

∫ t0

τ

|h(s,Xs)|2 ds
)]

= E

[
ei〈θ,Yt0+Xτ 〉 exp

(∫ t0

τ

h(s, Ys +Xτ )dWs −
1

2

∫ t0

τ

|h(s, Ys +Xτ )|2 ds
)]

.

Taking conditional expectations with respect to Xτ , we have

E

[
ei〈θ,Yt0+Xτ 〉 exp

(∫ t0

τ

h(s, Ys +Xτ )dWs −
1

2

∫ t0

τ

|h(s, Ys +Xτ )|2 ds
)]

= E

[
E
[
ei〈θ,Yt0+z〉Zt0(z)

] ∣∣∣∣
z=Xτ

]
.

From Lemma 5.3, one sees that in order to prove Proposition 4.3 it is enough to find an upper
bound estimate for ∣∣∣E [ei〈θ,Yt0+z〉Zt0(z)

]∣∣∣ ; z, θ ∈ Rd. (5.2)
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Itô’s formula implies that Z satisfies the following linear SDE;

Zu(z) = 1 +

∫ u

τ

Zs(z)dMs,

where

Mu :=

∫ u

τ

h(s, Ys + z)dWs, u ∈ [τ, t0]. (5.3)

Let M (0)
u := 1 and define recursively for n ∈ N,

M (n)
u :=

∫ u

τ

M (n−1)
s dMs, u ∈ [τ, t0]. (5.4)

Then for any N ∈ Z+, we have

E
[
ei〈θ,Yt0+z〉Zt0(z)

]
=

N∑
n=0

In(t0, θ, z) +RN (t0, θ, z), (5.5)

where for n,N ∈ Z+

In(u, θ, z) := E
[
ei〈θ,Yu+z〉M (n)

u

]
, u ∈ [τ, t0], (5.6)

and

RN (t0, θ, z) := E

[
ei〈θ,Yt0+z〉

∫ t0

τ

· · ·
∫ sN−1

τ

ZsN (z)dMsN · · · dMs1

]
. (5.7)

Therefore continuing with the reasoning in (5.2), we need to obtain upper bound estimates for |In|
and |RN |. These estimates are obtained in Propositions 5.4 and 5.6.

5.2 Estimates for In and RN

Recall that when we say that a constant depends on b or σ we mean that they depend on ‖b‖∞
and the constants appearing in hypothesis (A2) or the ellipticity coefficient c appearing in hypothesis
(A3) and (A4) respectively.

5.2.1 Estimate for RN

Proposition 5.4. Assume that (A1) and (A3) hold and t0 satisfies (A4). Then there exists positive
constant CN which depends only on T , N , b and σ such that for any θ, z ∈ Rd

|RN (t0, θ, z)| ≤ CN (t0 − τ)
N
2 .

Proof. The L2-isometry of the stochastic integral applied to (5.7) yields

|RN (t0, θ, z)| ≤ ‖h‖N∞
{∫ t0

τ

· · ·
∫ sN−1

τ

E
[
ZsN (z)2

]
dsN · · · ds1

} 1
2

. (5.8)

Since for any u ∈ [τ, t0] and z ∈ Rd,

E[Zu(z)2] ≤ e(u−τ)‖h‖2∞
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holds, then we have∫ t0

τ

· · ·
∫ sN−1

τ

E[ZsN (z)2]dsN . . . ds1 ≤
∫ t0

τ

· · ·
∫ sN−1

τ

e(sN−τ)‖h‖2∞dsN . . . ds1. (5.9)

We remark that the right hand side of (5.9) is the N -th remainder term of the Maclaurin expansion
of the function e(u−τ)‖h‖2∞ , hence∫ t0

τ

· · ·
∫ sN−1

τ

E
[
ZsN (z)2

]
dsN . . . ds1 ≤

(t0 − τ)N

N !‖h‖2N∞
e(t0−τ)‖h‖2∞ . (5.10)

Substitute (5.10) in (5.8) and define CN := eT‖h‖
2
∞√

N !
. From here, the result follows.

5.2.2 Estimates for the summands In

Now we turn to the estimate of In defined in (5.6). We remark here, that I0 is essentially treated
differently from the other summands (In)n≥1 because that term does not depend upon the drift
coefficient. In fact, for any u ∈ [τ, t0], we can calculate I0 explicitly as follows;

I0(u, θ, z) = E
[
ei〈θ,Yu+z〉

]
= ei〈θ,z〉 exp

(
−
∫ u

τ

〈θ, a(s)θ〉ds
)
.

By the assumptions (A3) and (A4), we see that there exists positive a constant c which depends only
on σ such that for any θ, z ∈ Rd,

|I0(u, θ, z)| ≤

{
e−c(t0−τ)β |θ|2 , u = t0,

e−c(u−τ)|θ|2 , u ∈ [τ, t0).

These estimates are enough for our purposes, but calculations in the proof become very complicated
if we use this exact functional form. Therefore, we use the following rough but manageable estimate
which follows from the basic inequality xae−x ≤ aae−a for x > 0 and a > 0.

Lemma 5.5. Let β ∈ (0, 1] and ρ, ν, T > 0. Then there exists a positive constant C which depends
on β, ρ, ν and T such that for any x > 0, r ≥ βν, x ∈ R and s ∈ (0, T ],

e−ρs
βx2

≤ C

sr(1 + x2)ν
.

From this lemma, we have

|I0(u, θ, z)| ≤


C

(t0−τ)r1 (1+|θ|2)
γ
p

+ 1
β
− 1

2
, u = t0, r1 ≥ βγ

p + 1− β
2 ,

C

(u−τ)r2 (1+|θ|2)
γ
p

+1
2
, u ∈ [τ, t0), r2 ≥ γ

p + 1
2 ,

(5.11)

where C is a positive constant which depends on σ, γ, p, β and T . The reason why there is a
difference in the cases u = t0 and u < t0 is due to the fact that in general there is more noise at t0
than otherwise. In fact, if β = 1, then both estimates are equal.

For n ∈ N, define K ≡ K(z, θ) := |z| +
√

4γp−1d
∑d
i,j=1 ‖σij‖2L2[0,T ] log(1 + |θ|2) and the function

Jn : Rd ×Rd → (0,+∞) as follows;

Jn(z, θ) := g(K(z, θ))n,

where g is the function defined in (A2). Using this function, we have the following estimate for In.
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Hölder continuity property of singular Drift SDE density

Proposition 5.6. Let n ∈ Z+ and r ≥ max{βγp + 1− β
2 ,

γ
p + 1

2}. Then there exists a positive constant

Cn,r which depends only on p, γ, d, T, σ, b, g, n, r and β such that for any θ, z ∈ Rd,

|In(u, θ, z)| ≤


Cn,rJn(z,θ)

(t0−τ)r(1+|θ|2)
γ
p

+ 1
β
− 1

2
, u = t0,

Cn,rJn(z,θ)

(u−τ)r(1+|θ|2)
γ
p

+1
2
, u ∈ [τ, t0).

To prove Proposition 5.6, we need several lemmas. Lemma 5.7 immediately follows from the the
repeated application of the L2-isometry of stochastic integrals to (5.6) together with (5.4) and (5.3).
We prove Lemmas 5.8, 5.9 and 5.10 in the Appendix.

Lemma 5.7. Let n ∈ N and u ∈ [τ, t0]. Then for any θ, z ∈ Rd, we have

|In(u, θ, z)| ≤
∥∥∥M (n)

u

∥∥∥
L2(Ω,Q)

≤ ‖h‖
n
∞T

n
2

√
n!

.

Lemma 5.8. Let n ∈ N and u ∈ [τ, t0]. Then for any θ, z ∈ Rd, we have

In(u, θ, z) = (2π)d
∫ u

τ

Fps,u(θ)E
[
i〈θ, b(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds.

Lemma 5.9. Let ν and µ be positive constants which satisfy ν + µ > d
2 . Assume that n ∈ Z+, C0 > 0

and g is the function defined in (A2). Then we have

∫
Rd

1

(1 + |η − θ|2)ν

g
(
|z|+

√
C0 log(1 + |η|2)

)n
(1 + |η|2)ν+µ

dη ≤ Cng(|z|)n

(1 + |θ|2)ν
,

where Cn is a positive constant which depends only on d, ν, C0, g, n and µ.

Lemma 5.10. Let n ∈ N and s ∈ [τ, t0]. Then for any bounded and compactly supported function
ϑ : Rd → Rd, θ, z ∈ Rd we have

E
[
i〈θ, ϑ(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
=

∫
Rd

i〈θ,Fϑ(η − θ)〉In−1(s, η, z)dη.

Proof of Proposition 5.6. The proof is done by an induction argument on In. Due to (5.11), the
statement is true for n = 0. Assume that n ∈ N and the statement is true for n − 1. We prove now
that the inequality holds for u = t0, that is,

|In(t0, θ, z)| ≤
Cn,rJn(z, θ)

(t0 − τ)r(1 + |θ|2)
γ
p+ 1

β−
1
2

holds. The other case, u < t0, will follow similarly.
By Lemma 5.8, we have

In(t0, θ, z) = (2π)d
∫ t0+τ

2

τ

Fps,t0(θ)E
[
i〈θ, b(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

+ (2π)d
∫ t0

t0+τ
2

Fps,t0(θ)E
[
i〈θ, b(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds.
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Hölder continuity property of singular Drift SDE density

Recall that according to Lemma 5.2, {Ys}τ≤s≤t0 has independent increments, therefore for any s ∈
[τ, t0+τ

2 ] we have

Fps,t0(θ) = Fp
s,
t0+τ

2
(θ)Fp t0+τ

2 ,t0
(θ).

Note that from Lemma 5.2 and (A4) we have that 0 < Fp t0+τ
2 ,t0

(θ) ≤ e−
c(t0−τ)

β

2β
|θ|2 . Hence, from

Lemma 5.8, we have

|In(t0, θ, z)|

≤

∣∣∣∣∣(2π)dFp t0+τ
2 ,t0

(θ)

∫ t0+τ
2

τ

Fp
s,
t0+τ

2
(θ)E

[
i〈θ, b(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

∣∣∣∣∣
+

∣∣∣∣∣(2π)d
∫ t0

t0+τ
2

Fps,t0(θ)E
[
i〈θ, b(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

∣∣∣∣∣
≤ e−

c(t0−τ)
β

2β
|θ|2
∣∣∣∣In( t0 + τ

2
, θ, z

)∣∣∣∣+

∣∣∣∣∣(2π)d
∫ t0

t0+τ
2

Fps,t0(θ)E
[
i〈θ, b(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

∣∣∣∣∣ .
(5.12)

Apply Lemmas 5.5 and 5.7, to obtain that

e−
c(t0−τ)

β

2β
|θ|2
∣∣∣∣In( t0 + τ

2
, θ, z

)∣∣∣∣ ≤ Ĉn

(t0 − τ)r(1 + |θ|2)
γ
p+ 1

β−
1
2

, (5.13)

where Ĉn is some positive constant which depends only on p, γ, T, σ, b, n and β.

The second term of the right hand side of (5.12) can be estimated as follows∣∣∣∣∣(2π)d
∫ t0

t0+τ
2

Fps,t0(θ)E
[
i〈θ, b(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

∣∣∣∣∣
≤

∣∣∣∣∣(2π)d
∫ t0

t0+τ
2

Fps,t0(θ)E
[
i〈θ, bK(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

∣∣∣∣∣ (5.14)

+

∣∣∣∣∣(2π)d
∫ t0

t0+τ
2

Fps,t0(θ)E
[
i〈θ, b(Ys + z)− bK(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

∣∣∣∣∣ .
Now we turn to the estimate of the first term on the right hand side of the inequality (5.14). From

Lemma 5.10 with ϑ = bK , we have∣∣∣∣∣(2π)d
∫ t0

t0+τ
2

Fps,t0(θ)E
[
i〈θ, bK(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

∣∣∣∣∣
=

∣∣∣∣∣(2π)d
∫ t0

t0+τ
2

Fps,t0(θ)

∫
Rd

i〈θ,F bK(η − θ)〉In−1(s, η, z)dηds

∣∣∣∣∣
≤ (2π)d|θ|

∫ t0

t0+τ
2

e−c(t0−s)
β |θ|2

∫
Rd

|F bK(η − θ)||In−1(s, η, z)|dηds. (5.15)
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Hölder continuity property of singular Drift SDE density

From the assumption (A2) and Hölder’s inequality with 1
p + 1

q = 1, we have that for any s ∈ [ t0+τ
2 , t0],∫

Rd

|F bK(η − θ)||In−1(s, η, z)|dη

=

∫
Rd

(1 + |η − θ|2)
γ
p |F bK(η − θ)|(1 + |η − θ|2)−

γ
p |In−1(s, η, z)|dη

≤ ‖bK‖p,γ

{∫
Rd

1

(1 + |η − θ|2)
γq
p

|In−1(s, η, z)|qdη

} 1
q

.

Now, the inductive hypothesis and Lemma 5.9 with ν + µ := (γp + 1
2 )q > d

2 imply that for any

s ∈ [ t0+τ
2 , t0],

‖bK‖p,γ

{∫
Rd

1

(1 + |η − θ|2)
γq
p

|In−1(s, η, z)|qdη

} 1
q

≤ Cn−1,r‖bK‖p,γ
(s− τ)r

{∫
Rd

1

(1 + |η − θ|2)
γq
p

Jn−1(z, η)

(1 + |η|2)( γp+ 1
2 )q

dη

} 1
q

≤ Cn,r‖bK‖p,γg(|z|)n−1

(t0 − τ)r(1 + |θ|2)
γ
p

(5.16)

holds, where Cn,r is some positive constant which depends only on p, γ, d, T, σ, g, n, r and β. More-
over, from the assumption (A2) we see that ‖bK‖p,γ ≤ g(K). Since the function g is monotone
increasing on [0,+∞) and the inequality K ≥ |z| holds, then we have

‖bK‖p,γg(|z|)n−1 ≤ g(K)n = Jn(z, θ). (5.17)

Now, the inequalities (5.15)−(5.17) yield that

(2π)d|θ|
∫ t0

t0+τ
2

e−c(t0−s)
β |θ|2

∫
Rd

|F bK(η − θ)||In−1(s, η, z)|dηds

≤ Cn,rJn(z, θ)

(t0 − τ)r(1 + |θ|2)
γ
p

|θ|
∫ t0

t0+τ
2

e−c(t0−s)
β |θ|2ds.

Lemma 8.1 (introduced and proved in Section 8.4) and the assumption (A2) imply that

Cn,rJn(z, θ)

(t0 − τ)r(1 + |θ|2)
γ
p

|θ|
∫ t0

t0+τ
2

e−c(t0−s)
β |θ|2ds ≤ Cn,rJn(z, θ)

(t0 − τ)r(1 + |θ|2)
γ
p+ 1

β−
1
2

(5.18)

holds with some positive constant Cn,r which depends only on p, γ, d, T, σ, g, n, r and β. This finishes
our estimation of the first term on the right hand side of (5.14).

For the second term in the right hand side of (5.14), applying Hölder’s inequality and Jensen’s
inequality we have∣∣∣∣∣(2π)d

∫ t0

t0+τ
2

Fps,t0(θ)E
[
i〈θ, b(Ys + z)− bK(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds

∣∣∣∣∣
≤ (2π)d|θ|

∫ t0

t0+τ
2

e−c(t0−s)
β |θ|2 ‖b(Ys + z)− bK(Ys + z)‖L2(Ω,Q)

∥∥∥M (n−1)
s

∥∥∥
L2(Ω,Q)

ds. (5.19)
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Hölder continuity property of singular Drift SDE density

By Lemma 5.7, we have that ∥∥∥M (n−1)
s

∥∥∥
L2(Ω,Q)

≤ ‖h‖
n−1
∞ T

n−1
2√

(n− 1)!
. (5.20)

Now, we estimate the first L2(Ω,Q)-norm term in (5.19). By the definition of bK , we have

|b(x)− bK(x)| ≤ ‖b‖∞1(K,∞)(|x|)

for any x ∈ Rd. Therefore, for any K > 0, the following inequality holds.

‖b(Ys + z)− bK(Ys + z)‖L2(Ω,Q) ≤ ‖b‖∞
√
Q (|Ys + z| ≥ K). (5.21)

To estimate this tail probability, we use a classical result for tail probabilities of Gaussian random
vectors. In fact, since Ys is a centered Gaussian random vector with covariance matrix

Aτ,s :=

∫ s

τ

a(u)du,

and according to Proposition 6.8 in [20], we have that

Q (|Ys + z| ≥ K) ≤ Q (|Ys| ≥ K − |z|) ≤ 2d exp

(
− (K − |z|)2

2d
∑d
i,j=1 ‖σij‖2L2[τ,s]

)
.

Therefore as ‖σij‖2L2[τ,s] ≤ ‖σij‖
2
L2[0,T ] and the definition of K, we obtain that

Q (|Ys + z| ≥ K) ≤ 2d
(
1 + |θ|2

)− 2γ
p (5.22)

for any s ∈ [ τ+t0
2 , t0].

Now, from (5.21) and (5.22), we have that

‖b(Ys + z)− bK(Ys + z)‖L2(Ω,Q) ≤ ‖b‖∞
√

Q (|Ys + z| ≥ K) ≤ Cb,d
(
1 + |θ|2

)− γp , (5.23)

where Cb,d := ‖b‖∞
√

2d. Therefore, from the inequalities (5.20) and (5.23) and the range of the
integral below, there exists some positive constant C̃n which depends only on d, T, σ, b and n such
that

(2π)d
∫ t0

t0+τ
2

e−c(t0−s)
β |θ|2 |θ|‖b(Ys + z)− bK(Ys + z)‖L2(Ω,Q)‖M (n−1)

s ‖L2(Ω,Q)ds (5.24)

≤ C̃n
(
1 + |θ|2

)− γp |θ|∫ t0

t0+τ
2

e−c(t0−s)
β |θ|2ds.

Hence, from (5.24) and (8.4), there exists some constant C̃n which depends only on d, T, σ, b, n

and β such that

(2π)d
∫ t0

t0+τ
2

e−c(t0−s)
β |θ|2 |θ|‖b(Ys + z)− bK(Ys + z)‖L2(Ω,Q)‖M (n−1)

s ‖L2(Ω,Q)ds

≤ C̃n
(
1 + |θ|2

)− γp− 1
β+ 1

2 . (5.25)

Now from the inequalities (5.13), (5.25) and (5.18), we see that

|In(t0, θ, z)| ≤
Cn,rJn(z, θ)

(t0 − τ)r(1 + |θ|2)
γ
p+ 1

β−
1
2

holds with some positive constant Cn,r which depends only on p, γ, d, T, σ, b, g, n, r and β.
On the other hand, the estimate for |In(u, θ, z)| with u ∈ [τ, t0) can be obtained using the same

argument as above with β = 1 and u instead of t0.
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Hölder continuity property of singular Drift SDE density

Remark 5.11. Inspecting the proof, one realizes that given the estimate in (5.15), one can not
improve the present estimate in terms of the power of 1 + |θ|2.

5.3 Proof of Proposition 4.3

Now we prove Proposition 4.3. Let τ ∈ [t0 − δ, t0). From Lemma 5.3 and (5.5), we see that

∣∣∣E [ei〈θ,Xt0 〉]∣∣∣ =

∣∣∣∣∣E
[
E
[
ei〈θ,Yt0+z〉Zt0(z)

] ∣∣∣∣
z=Xτ

]∣∣∣∣∣ ≤
N∑
n=0

E [|In(t0, θ,Xτ )|] + sup
z∈Rd

|RN (t0, θ, z)|

holds for any N ∈ Z+. From (5.11) and Propositions 5.6 and 5.4 we see that

N∑
n=0

E [|In(t0, θ,Xτ )|] + sup
z∈Rd

|RN (t0, θ, z)| ≤
N∑
n=0

Cn,rE [Jn(Xτ , θ)]

(t0 − τ)r(1 + |θ|2)
γ
p+ 1

β−
1
2

+ CN (t0 − τ)
N
2 .

By the definition of Jn, the hypotheses (A1) and (A3) yield that there exists some positive constant
Cn which depends only on p, γ, d, T, σ, b, n, g and β such that E[|Xτ |n] ≤ Cn and

E [Jn(Xτ , θ)] ≤ Cn
(

1 +
√

log(1 + |θ|2)
)nm

.

So that we have

N∑
n=0

Cn,rE [Jn(Xτ , θ)]

(t0 − τ)r(1 + |θ|2)
γ
p+ 1

β−
1
2

+ CN (t0 − τ)
N
2 ≤

N∑
n=0

Cn,r

(
1 +

√
log(1 + |θ|2)

)nm
(t0 − τ)r(1 + |θ|2)

γ
p+ 1

β−
1
2

+ CN (t0 − τ)
N
2 .

Remark here, that this inequality holds for any τ ∈ [t0−δ, t0) and the constants Cn,r are independent
of τ, θ and Xτ .

Let λ ∈ (0, 2γ
p + 2

β − 1). Take a positive number ε such that

ε <
1

r

(
γ

p
+

1

β
− 1

2
− λ

2

)
and N ∈ N big enough such that N > λ

ε . Then for large enough |θ|, we can take τ = t0 − (1 + |θ|2)−ε

and hence we have

N∑
n=0

Cn,r(1 + log(1 + |θ|2))
nm
2

(t0 − τ)r(1 + |θ|2)
γ
p+ 1

β−
1
2

+ CN (t0 − τ)
N
2 ≤ C(1 + |θ|2)−

λ
2 ,

where C is some positive constant which depends only on p, γ, d, T, σ, b, g,N, ε, r and β. Moreover,
since any characteristic function is bounded by one, the above estimate holds for any θ. This com-
pletes the proof of Proposition 4.3. �

6 Examples and Applications

In this section, we will discuss some applications and an explicit example of non-differentiable
densities. We will also give an example of irregular drift coefficient b which satisfies our hypothesis
and introduce an example of diffusion coefficient σ which shows the meaning of β which appeared
in Theorem 3.2 in the case β < 1.
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Hölder continuity property of singular Drift SDE density

6.1 Relation between the Hölder Continuity of the Density and the Fourier Transform of
the Drift Coefficient

For this subsection, consider the following condition (A2′);

(A2′). Suppose that b : Rd → Rd satisfies the following inequality for some α > 0 and any K > 0;

|F bK(θ)| ≤ g(K)

(1 + |θ|)d−1+α
,

where g is the function defined in (A2).

Assume that γ > 0 and p > 1 satisfy the inequalities (d− 1 +α)p− 2γ > d and (d− 1)p− 2γ < d which
correspond respectively to the integrability condition in the norm Hγ,p and the condition on (γ, p)

appearing in hypothesis (A2). Then (A2′) implies (A2).
A basic analysis of these two inequalities in the coordinates (p, γ) shows that⋃

(p,γ)∈Γ

(
0,

2γ

p
+

2

β
− 1− d

)
⊃
(

0, α+
2

β
− 2

)
,

where Γ is the subset of R2 defined by

Γ := {(p, γ) ∈ (1,+∞)× (0,+∞); (A2) holds with p and γ} .

Since β ∈ (0, 1] and α is positive, the above interval is not empty. Hence, Theorem 3.2 gives us the
following result.

Corollary 6.1. Fix t0 ∈ (0, T ] as in (A4). Assume that (A1), (A3), (A4), (A5) and (A2′) hold. Then
Xt0 admits a Cλ density, where λ ∈ (0, α+ 2

β − 2).

6.1.1 Example: Indicator Function of the Unit Ball

Now we introduce a concrete example of an irregular drift coefficient b which satisfies the assump-
tion (A2′). Define the function b = (bj)1≤j≤d as

bj(x) = 1B(1)(x).

Then its Fourier transform F b can be calculated explicitly as follows;

F b(θ) = (F bj(θ))1≤j≤d =

(
J d

2
(2π|θ|)

|θ| d2

)
1≤j≤d

,

where J d
2

is the Bessel function of order d
2 . It is known that for each d ≥ 1, the asymptotic behavior

of J d
2
(|θ|) at |θ| = 0 is O(|θ| d2 ) and at +∞ is O

(
|θ|− 1

2

)
(see Appendix B in [10]). Here O denotes

Landau symbol.
Hence there exists some positive constant C such that

|F b(θ)| ≤ C

(1 + |θ|) d+1
2

. (6.1)

This estimate implies that (A2′) holds for α = 3−d
2 . In order to have that α > 0 we need to impose

that d ≤ 2. Then, the solution of (3.1) has a continuous density and for any λ ∈ (0, 3−d
2 ), it is λ-Hölder

continuous. A slight generalization of the above argument gives the following result.
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Corollary 6.2. Let X denote the unique weak solution to the following SDE

Xt = x+

∫ t

0

σ(s)dBs +

∫ t

0

d∑
i=1

aiei1B(xi,ri)(Xs)ds, t ∈ [0, T ].

Here σ is a Borel measurable function which satisfies the assumptions (A3) and (A4) with β = 1,
ai ∈ R, xi ∈ Rd, ri > 0, i = 1, ..., d and {ei; i = 1, ..., d} denotes the canonical base of Rd.

Further assume that d ≤ 2. Then Xt has a density which belongs to the space Cλ for λ ∈ (0, 3−d
2 )

for any t ∈ (0, T ].

Remark 6.3. 1. Corollary 3.3 in [18] shows us that we can find many more irregular drift func-
tions which satisfy the inequality (6.1).

2. It is also possible to treat the case of the indicator function of a cube. The techniques are
similar although the arguments have to be redone even from the statement of Theorem 3.2 as
the calculations have to be carried out coordinate-wise. Therefore we will treat this case in
another article.

3. We remark that the case d = 1, b(x) = 1(−∞,0)(x)− 1(0,∞)(x), σ ≡ 1 has been treated in Section
6.5 of [13]. The density of Xt has an explicit form due to the particular form of b. One can
therefore compute the derivative of the density and prove that it is discontinuous at 0. This
result is included in Corollary 6.1 for α = 1 and β = 1.

6.2 An SDE with Non-deterministic Diffusion Coefficient

Let d = 1 and {Xt}0≤t≤T be the solution of the following SDE;

Xt =

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds, t ∈ [0, T ], (6.2)

where σ ∈ C2
b (R;R) is uniformly elliptic, b(x) = 1(a,b)(x), x ∈ R and −∞ ≤ a < b ≤ ∞. Note that for

(6.2), the hypothesis (A5) holds (see [3]).

Since we have only treated the deterministic diffusion coefficient case, Theorem 3.2 can not be
applied directly. However, using the Lamperti transform, we may obtain the Hölder continuity result
for the density of Xt.

Let

F (x) :=

∫ x

0

dy

σ(y)
, x ∈ R.

Since σ ∈ C2
b (R;R) is uniformly elliptic, F is invertible and belongs to C2

b (R;R). We denote by F−1

the inverse function of F which is a twice differentiable function with bounded derivatives.

Define Yt := F (Xt) for t ∈ [0, T ]. Then using Itô’s formula, Yt can be represented as

Yt = Bt +

∫ t

0

(
b

σ
− σ′

2

)
(Xs)ds

= Bt +

∫ t

0

(
b

σ
− σ′

2

)(
F−1(Ys)

)
ds,

where σ′ denotes the derivative of σ.
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For this SDE, (A3) and (A4) clearly hold with β = 1 and since σ ∈ C2
b is uniformly elliptic. Fur-

thermore (A1) also holds clearly. Moreover, one can show that there exists some positive constant
C such that ∣∣∣∣F ((

b

σ
− σ′

2

)
◦
(
F−1

)
ϕK

)∣∣∣∣ ≤ CK

1 + |θ|
.

In fact, the above result is obtained by considering separately the Fourier transforms of b
σ ◦ F

−1ϕK

and σ′

2 ◦ F
−1ϕK . For the second, one applies integration by parts once and then the following two

facts: σ ∈ C2
b and that ϕK is supported in [−K − 1,K + 1]. For the first, one considers two subcases:

in the case that |a|, |b| < ∞ and then K = max{|a|, |b|} will suffice together with an integration
by parts. Otherwise, if |a| or |b| are ∞ then the calculation is similar as the first case (applying
integration by parts once).

Therefore, (A2′) in Section 6.1 holds with α = 1. Hence, we see that Yt has a continuous density
qt for each t ∈ (0, T ]. Moreover, qt is λ-Hölder continuous for any λ ∈ (0, 1). For t ∈ (0, T ], define

pt(x) :=
qt(F (x))

σ(x)
.

Then by the change of variables theorem, it is easy to see that pt is the density function of Xt and
has the same Hölder continuity as that of qt. Summarizing the above, we have the following result

Corollary 6.4. Consider the SDE (6.2). If σ ∈ C2
b is uniformly elliptic and b(x) = 1(a,b)(x) where

−∞ ≤ a < b ≤ ∞ then for each t ∈ (0, T ], Xt admits the density pt which belongs to the space Cλ for
any λ ∈ (0, 1) and any t ∈ (0, T ].

One may extend the above example to the multi-dimensional case in the situations where the
Doss formula (see [13], Section 5.2, Proposition 2.2.1) can be applied.

6.3 An example of an exploding noise which generates more regularity

We introduce an example of a diffusion coefficient σ for which β < 1 and t0 = T in (3.2). Let
ρ ∈ (0, 1

2 ). Define

σ(s) =

{ 1
(T−s)ρ Id; s ∈ [0, T ),

Id; s = T,
(6.3)

where Id is an identity matrix of Rd ×Rd. Then for any s ∈ (0, T ], we have∫ T

s

〈a(u)θ, θ〉du =
|θ|2(T − s)1−2ρ

1− 2ρ
.

This implies that we can take β = 1− 2ρ at T in (3.2).
This example can be understood as a case, where there is sufficient noise near T in order to

increase the regularity of the density.

Corollary 6.5. Consider the one dimensional SDE

Xt = x+

∫ t

0

σ(s)dBs +

∫ t

0

b(Xs)ds, t ∈ [0, T ]

where σ is given by (6.3) and b satisfies (A1) and (A2). Then assumptions (A3) and (A4) are satisfied
with β = 1 − 2ρ and therefore the density of XT exists and it belongs to the space Cλ for any
λ < 2γ

p + 2
β − 1− d.
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Remark 6.6. 1. We remark that hypothesis (A5) is satisfied due to a classical limit argument. In
fact, for any interval [0, t] with t < T one has weak existence and uniqueness of solutions. Then
it is not difficult to see that the limit in law of Xt as t→ T exists.

2. As claimed in the introduction and in Remark 3.3.2. as ρ gets closer to 1
2 , β gets closer to 0

and therefore the density has more derivatives.

7 Some Conclusions and Final Comments

We have seen that if the Fourier transform of the drift term exists then its integrability (or decay
at infinity) may be the determining factor in the regularity of the density. We have shown that
some representative examples can be studied with our results. In particular, we believe that the
irregularity of the drift coefficient plays also an important role in determining the regularity of the
density.

For d ≥ 2, we can also consider marginal densities of Xt0 . Our main result tells us that they are
smoother than the joint density of Xt0 . For example, assume that (A2′) in section 6.1 holds with
α > 0. If we take θ = (θ1, 0, . . . , 0) then

φ(θ1) := E
[
eiθ1X

1
t0

]
= E

[
ei〈θ,Xt0 〉

]
,

where X1
t0 is the first component of Xt0 . Hence |θ1|η|φ(θ1)| belongs to L1(R) for any η ∈ (0, d − 1 +

α+ 2
β −2). Since d ≥ 2, α > 0 and β ≤ 1, we see that d−1+α+ 2

β −2 ≥ 1+α. Therefore the marginal

density of X1
t0 is differentiable even if the joint density is not. Therefore a deeper investigation on

this matter is needed.

8 Appendix 1: Proofs of Auxiliary Lemmas

We recall the reader that we are assuming hypotheses (A1)-(A5) throughout this section.

8.1 Proof of Lemma 5.8

Proof. Let n ∈ N, θ, z ∈ Rd and u ∈ [τ, t0], where t0 satisfies the assumption (A4). By the definitions
of In, (5.6), M (n) and (5.4), we have that

In(u, θ, z) = E
[
ei〈θ,Yu+z〉M (n)

u

]
= E

[
ei〈θ,Yu+z〉

∫ u

τ

M (n−1)
s h(s, Ys + z)dWs

]
.

Since the Skorokhod integral for adapted process coincides with its Itô integral (see Proposition
1.3.11 in [19]), the duality relation (see Definition 1.3.1 in [19]) and (5.1) yield

E

[
ei〈θ,Yu+z〉

∫ u

τ

M (n−1)
s h(s, Ys + z)dWs

]
= E

[∫ u

τ

i〈θ, b(Ys + z)〉ei〈θ,Yu+z〉M (n−1)
s ds

]
.

Now Fubini’s theorem and the independent increment property of Y (see Lemma 5.2) yield

E

[∫ u

τ

i〈θ, b(Ys + z)〉ei〈θ,Yu+z〉M (n−1)
s ds

]
=

∫ u

τ

E
[
i〈θ, b(Ys + z)〉ei〈θ,Yu+z〉M (n−1)

s

]
ds

=

∫ u

τ

E
[
ei〈θ,Yu−Ys〉

]
E
[
i〈θ, b(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
ds.

Finally, calculating E[ei〈θ,Yu−Ys〉] via the transition density ps,u and noting that ps,u is symmetric (see
Lemma 5.2), we see that

E
[
ei〈θ,Yu−Ys〉

]
= (2π)dFps,u(θ).
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8.2 Proof of Lemma 5.9

Proof. Let d ∈ N, z, θ ∈ Rd and n ∈ Z+. Assume that ν and µ be positive constants which satisfy
that ν + µ > d

2 and fix through the proof any ε ∈ (0,min{ν + µ− d
2 , µ}).

By the definition of g (see (A2)) we have

g
(
|z|+

√
C0 log(1 + |η|2)

)n
≤ 2(m−1)nCn

{
1 + |z|m +

(
C0 log(1 + |η|2)

)m
2

}n
.

From this estimate, we see that there exists some positive constant C̃n which depends only on
ε,m, d, n and C0 such that

sup
η∈Rd

g
(
|z|+

√
C0 log(1 + |η|2)

)n
(1 + |η|2)ε

≤ C̃ng(|z|)n.

Hence we have∫
Rd

1

(1 + |η − θ|2)ν

g
(
|z|+

√
C0 log(1 + |η|2)

)n
(1 + |η|2)ν+µ

dη ≤ C̃ng(|z|)n
∫
Rd

1

(1 + |η − θ|2)ν
1

(1 + |η|2)ν+µ−ε dη.

Therefore, to prove Lemma 5.9, it is enough to show that there exists a positive constant C such
that ∫

Rd

1

(1 + |η − θ|2)ν
1

(1 + |η|2)ν+µ−ε dη ≤
C

(1 + |θ|2)ν
. (8.1)

To begin with, we divide the integral in two integrals on the sets Γ := {η ∈ Rd; |η − θ| ≥ |θ|2 } and Γc.
After that we estimate each integral. Now we estimate the integral on Γ. By the definition of Γ, we
see that ∫

Γ

1

(1 + |η − θ|2)ν
1

(1 + |η|2)ν+µ−ε dη ≤
1

(1 + |θ|2
4 )ν

∫
Rd

1

(1 + |η|2)ν+µ−ε dη.

Since ν + µ − ε > d
2 , the above integral is finite and hence there exists some positive constant C

which depends only on ν, µ, ε and d such that∫
Γ

1

(1 + |η − θ|2)ν
1

(1 + |η|2)ν+µ−ε dη ≤
C

(1 + |θ|2)ν
. (8.2)

Now we estimate the integral on Γc. Since µ− ε > 0 and |η| > |θ|
2 holds for any η ∈ Γc, we have∫

Γc

1

(1 + |η − θ|2)ν
1

(1 + |η|2)ν+µ−ε dη

≤ 1

(1 + |θ|2
4 )ν

∫
Γc

1

(1 + |η − θ|2)ν
1

(1 + |η|2)µ−ε
dη.

Define the set B := {η ∈ Rd; |η − θ| > |η|} and then we obtain that∫
Γc

1

(1 + |η − θ|2)ν
1

(1 + |η|2)µ−ε
dη

=

∫
Γc∩B

1

(1 + |η − θ|2)ν
1

(1 + |η|2)µ−ε
dη +

∫
Γc∩Bc

1

(1 + |η − θ|2)ν
1

(1 + |η|2)µ−ε
dη

≤
∫

Γc∩B

1

(1 + |η|2)ν+µ−ε dη +

∫
Γc∩Bc

1

(1 + |η − θ|2)ν+µ−ε dη

≤ 2

∫
Rd

1

(1 + |η|2)ν+µ−ε dη.

EJP 19 (2014), paper 77.
Page 19/22

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2609
http://ejp.ejpecp.org/


Hölder continuity property of singular Drift SDE density

Therefore we have ∫
Γc

1

(1 + |η − θ|2)ν
1

(1 + |η|2)ν+µ−ε dη ≤
2C

(1 + |θ|2)ν
, (8.3)

where C is the same constant which appeared in (8.2).

The estimates (8.2) and (8.3) imply (8.1) and this completes the proof.

8.3 Proof of Lemma 5.10

We turn to the proof of Lemma 5.10.

Proof. Let n ∈ N, θ, z ∈ Rd and s ∈ [τ, t0] be as in the statement of the Lemma 5.10. Define

E[M (n−1)
s ](y) := E[M (n−1)

s |Ys = y].

Then we have

E
[
i〈θ, ϑ(Ys + z)〉ei〈θ,Ys+z〉M (n−1)

s

]
=

∫
Rd

i〈θ, ϑ(y + z)〉ei〈θ,y+z〉E[M (n−1)
s ](y)pτ,s(y)dy.

Apply the Fourier inversion theorem for ϑ(y + z), in order to obtain∫
Rd

i〈θ, ϑ(y + z)〉ei〈θ,y+z〉E[M (n−1)
s ](y)pτ,s(y)dy

=

d∑
j=1

iθj

∫
Rd

(∫
Rd

ei〈y+z,ξ〉Fϑj(ξ)dξ
)
ei〈θ,y+z〉E[M (n−1)

s ](y)pτ,s(y)dy.

Now, Fubini’s theorem yields

d∑
j=1

iθj

∫
Rd

(∫
Rd

ei〈y+z,ξ〉Fϑj(ξ)dξ

)
ei〈θ,y+z〉E[M (n−1)

s ](y)pτ,s(y)dy

=

d∑
j=1

iθj

∫
Rd

Fϑj(ξ)

(∫
Rd

ei〈ξ+θ,y+z〉E[M (n−1)
s ](y)pτ,s(y)dy

)
dξ.

Note that ∫
Rd

ei〈ξ+θ,y+z〉E[M (n−1)
s ](y)pτ,s(y)dy = E

[
ei〈ξ+θ,Ys+z〉M (n−1)

s

]
= In−1(s, ξ + θ, z),

we see that

d∑
j=1

iθj

∫
Rd

Fϑj(ξ)

(∫
Rd

ei〈ξ+θ,y+z〉E[M (n−1)
s ](y)pτ,s(y)dy

)
dξ

=

∫
Rd

i〈θ,Fϑ(ξ)〉In−1(s, ξ + θ, z)dξ.

Now the change of variables with η = θ + ξ yields our desired equality.
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8.4 Proof of a tail estimate

Lemma 8.1. There exists a positive constant C which depends only on β ∈ (0, 1] and T such that

|θ|
∫ t0

t0+τ
2

e−|θ|
2(t0−s)βds ≤ C(1 + |θ|2)

1
2−

1
β . (8.4)

Proof. The change of variables with u = |θ|
2
β (t0 − s) and t0 ≤ T implies that

|θ|
∫ t0

t0+τ
2

e−|θ|
2(t0−s)βds = |θ|1−

2
β

∫ (t0−τ)|θ|
2
β

2

0

e−u
β

du ≤ |θ|1−
2
β

∫ T |θ|
2
β

0

e−u
β

du.

We now obtain the rate at which the last term converges to zero as |θ| tends to infinity because∫ T |θ| 2β
0

e−s
β

ds is uniformly bounded as a function of |θ|. When |θ| ≤ 1, the bound in (8.4) can be

obtained as the integral converges to zero at the rate |θ|
1
β .
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