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Insertion and deletion tolerance of point processes∗
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Abstract

We develop a theory of insertion and deletion tolerance for point processes. A pro-
cess is insertion-tolerant if adding a suitably chosen random point results in a point
process that is absolutely continuous in law with respect to the original process. This
condition and the related notion of deletion-tolerance are extensions of the so-called
finite energy condition for discrete random processes. We prove several equivalent
formulations of each condition, including versions involving Palm processes. Certain
other seemingly natural variants of the conditions turn out not to be equivalent. We
illustrate the concepts in the context of a number of examples, including Gaussian
zero processes and randomly perturbed lattices, and we provide applications to con-
tinuum percolation and stable matching.
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1 Introduction

Let Π be a point process on Rd. Point processes will always be assumed to be simple
and locally finite. Let ≺ denote absolute continuity in law; that is, for random variables
X and Y taking values in the same measurable space, X ≺ Y if and only if P(Y ∈ A) = 0

implies P(X ∈ A) = 0 for all measurable A. Let B denote the Borel σ-algebra on Rd

and let L be Lebesgue measure. We say that Π is insertion-tolerant if for every S ∈ B

with L(S) ∈ (0,∞), if U is uniformly distributed on S and independent of Π, then

Π + δU ≺ Π,

where δx denotes the point measure at x ∈ Rd.
Let M denote the space of simple point measures on Rd. The support of a measure

µ ∈M is denoted by
[µ] :=

{
y ∈ Rd : µ({y}) = 1

}
.
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Insertion and deletion tolerance

A Π-point is an Rd-valued random variable Z such that Z ∈ [Π] a.s. A finite subpro-
cess of Π is a point process F such that F(Rd) <∞ and [F ] ⊆ [Π] a.s. We say that Π is
deletion-tolerant if for any Π-point Z we have

Π− δZ ≺ Π.

For S ∈ B we define the restriction µ|S of µ ∈M to S by

µ|S(A) := µ(A ∩ S), A ∈ B.

We will prove the following equivalences for insertion-tolerance and deletion-tolerance.

Theorem 1.1 (Deletion-tolerance). Let Π be a point process on Rd. The following are
equivalent.

(i) The point process Π is deletion-tolerant.

(ii) For any finite subprocess F of Π, we have Π−F ≺ Π.

(iii) For all bounded S ∈ B, we have Π|Sc ≺ Π.

(iv) For all bounded S ∈ B, we have P
(
Π(S) = 0

∣∣ Π|Sc

)
> 0 a.s.

Condition (iv) has appeared previously under the name “Condition (Σ).” It appears
to have been considered first in [17, 22]; for further details see [13] and the references
therein.

Theorem 1.2 (Insertion-tolerance). Let Π be a point process on Rd. The following are
equivalent.

(i) The point process Π is insertion-tolerant.

(ii) For any Borel sets S1, . . . , Sn of positive finite Lebesgue measure, if Ui is a uni-
formly random point in Si, with U1, . . . , Un and Π all independent, then

Π +

n∑
i=1

δUi
≺ Π.

(iii) If (X1, . . . , Xn) is a random vector in (Rd)n that admits a conditional law given Π

that is absolutely continuous with respect to Lebesgue measure a.s., then

Π +

n∑
i=1

δXi
≺ Π.

In fact we will prove a stronger variant of Theorem 1.2, in which (ii),(iii) are replaced
with a condition involving the insertion of a random finite number of points.

We say that a point process is translation-invariant if it is invariant in law under
all translations of Rd. In this case further equivalences are available as follows.

Proposition 1.3. A translation-invariant point process Π on Rd is insertion-tolerant if
and only if there exists S ∈ B with L(S) ∈ (0,∞) such that, if U is uniformly distributed
in S and independent of Π, then Π + δU ≺ Π.

Let Π be a translation-invariant point process with finite intensity; that is,
EΠ([0, 1]d) < ∞. We let Π∗ be its Palm version. See Section 4 or [14, Chapter 11]
for a definition. Informally, one can regard Π∗ as the point process Π conditioned to
have a point at the origin.
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Theorem 1.4. Let Π be a translation-invariant ergodic point process of finite intensity
on Rd and let Π∗ be its Palm version. The following are equivalent.

(i) The point process Π is insertion-tolerant.

(ii) Π + δ0 ≺ Π∗.

Condition (1.1) below appears to be the natural analogue of Theorem 1.4 (ii)
for deletion-tolerance. However, it is only sufficient and not necessary for deletion-
tolerance.

Theorem 1.5. Let Π be a translation-invariant point process of finite intensity on Rd

and let Π∗ be its Palm version. If
Π∗ − δ0 ≺ Π, (1.1)

then Π is deletion-tolerant.

In Section 2, Example 2.3 shows that a deletion-tolerant process need not satisfy
(1.1), while Example 2.6 shows that the natural analogue of Proposition 1.3 fails for
deletion-tolerance. Example 2.3 will also show that boundedness of the set S in The-
orem 1.1 (iii, iv) cannot in general be replaced with the condition that it have finite
volume.

Remark 1.6 (More general spaces). Invariant point processes and their Palm versions
can be defined on more general spaces than Rd. See [2, 12, 15, 18, 19] for more infor-
mation. For concreteness and simplicity, we have chosen to state and prove Theorems
1.1, 1.2, 1.4 and 1.5 in the setting of Rd, but they can easily be adapted to any complete
separable metric space endowed with: a group of symmetries that acts transitively and
continuously on it, and the associated Haar measure. We will make use of this gener-
ality when we discuss Gaussian zero processes on the hyperbolic plane in Proposition
2.15. 3

Next we will illustrate some applications of insertion-tolerance and deletion-
tolerance in the contexts of continuum percolation and stable matchings. We will prove
generalizations of earlier results.

The Boolean continuum percolation model for point processes is defined as follows
(see [21]). Let ‖·‖ denote the Euclidean norm on Rd. For R > 0 and µ ∈M, consider the
set O(µ) := ∪x∈[µ]B(x,R), where B(x,R) :=

{
y ∈ Rd : ‖x− y‖ < R

}
is the open ball of

radius R with center x. We call O(µ) the occupied region. The connected components
of O(µ) are called clusters.

Theorem 1.7 (Continuum percolation). Let Π be a translation-invariant ergodic in-
sertion-tolerant point process on Rd. For any R > 0, the occupied region O(Π) has at
most one unbounded cluster a.s.

The proof of Theorem 1.7 is similar to the uniqueness proofs in [21, Chapter 7] which
in turn are based on the argument of Burton and Keane [1].

Next we turn our attention to stable matchings of point processes (see [9] for back-
ground). Let R and B be (‘red’ and ‘blue’) point processes on Rd with finite intensi-
ties. A one-colour matching scheme for R is a point process M of unordered pairs
{x, y} ⊂ Rd such that almost surely [M] is the edge set of a simple graph ([R], [M]) in
which every vertex has degree exactly one. Similarly, a two-colour matching scheme
forR and B is a point processM of unordered pairs {x, y} ⊂ Rd such that almost surely,
[M] is the edge set of a simple bipartite graph ([R], [B], [M]) in which every vertex has
degree exactly one. In either case we writeM(x) = y if and only if {x, y} ∈ [M]. In the
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one-colour case, we say that a matching scheme is stable if almost surely there do not
exist distinct points x, y ∈ [R] satisfying

‖x− y‖ < min {‖x−M(x)‖, ‖y −M(y)‖} , (1.2)

while in the two-colour case we say that a matching scheme is stable if almost surely
there do not exist x ∈ [R] and y ∈ [B] satisfying (1.2). These definitions arise from the
concept of stable marriage as introduced by Gale and Shapley [5].

It is proved in [9] that stable matching schemes exist and are unique for point pro-
cesses that satisfy certain mild restrictions, as we explain next. Let µ ∈M. We say that
µ has a descending chain if there exist x1, x2, . . . ∈ [µ] with

‖xi−1 − xi‖ > ‖xi − xi+1‖ for all i.

We say that µ is non-equidistant if for all x, y, u, v ∈ [µ] such that {x, y} 6= {u, v} and
x 6= y we have ‖x − y‖ 6= ‖u − v‖. The following facts are proved in [9, Proposition
9]. Suppose that R is a translation-invariant point process on Rd with finite inten-
sity that almost surely is non-equidistant and has no descending chains. Then there
exists a one-colour stable matching scheme which is an isometry-equivariant factor
of R; this matching scheme may be constructed by a simple procedure of iteratively
matching, and removing, mutually-closest pairs of R-points; furthermore, any two one-
colour stable schemes agree almost surely [9, Proposition 9]. In this case we refer
to the above-mentioned scheme as the one-colour stable matching scheme. Similarly,
in the two-colour case, let R and B be point processes on Rd of equal finite intensity,
jointly invariant and ergodic under translations, and suppose that R + B is a simple
point process that is almost surely non-equidistant and has no descending chains. Then
there exists an almost surely unique two-colour stable matching scheme, which is an
isometry-equivariant factor and may be constructed by iteratively matching mutually-
closest R / B pairs.

Homogeneous Poisson process are non-equidistant and have no descending chains
(see [7]). Descending chains are investigated in detail in [3], where it is shown in
particular that they are absent in many well-studied point processes.

In this paper, our interest in stable matching lies in the typical distance between
matched pairs. Let M be the one-colour stable matching scheme for R. Consider the
distribution function

F (r) :=
(
ER([0, 1)d)

)−1
E#

{
x ∈ [R] ∩ [0, 1)d : ‖x−M(x)‖ ≤ r

}
. (1.3)

As in [9], let X be a random variable with probability measure P∗ and expectation
operator E∗ such that P∗(X ≤ r) = F (r) for all r ≥ 0. One may interpret X as the
distance from the origin to its partner under the Palm version of (R,M) in which we
condition on the presence of an R-point at the origin; see [9] for details. For the two-
colour stable matching scheme of point processes R,B we define X, P∗, and E∗ in the
same way.

Theorem 1.8 (One-colour stable matching). Let R be a translation-invariant ergodic
point process on Rd with finite intensity that almost surely is non-equidistant and has
no descending chains. IfR is insertion-tolerant or deletion-tolerant, then the one-colour
stable matching scheme satisfies E∗Xd =∞.

Theorem 1.9 (Two-colour stable matching). Let R and B be independent translation-
invariant ergodic point processes on Rd with equal finite intensity such that the point
process R + B is non-equidistant and has no descending chains. If R or B is deletion-
tolerant or insertion-tolerant, then the two-colour stable matching scheme satisfies
E∗Xd =∞.
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Theorems 1.8 and 1.9 strengthen the earlier results in [9] in the following ways. In
[9], Theorem 1.8 is proved in the case of homogeneous Poisson processes, but the same
proof is valid under the condition thatR is both insertion-tolerant and deletion-tolerant.
Similarly, in [9], Theorem 1.9 is proved in the Poisson case, but the proof applies when-
ever R or B is insertion-tolerant. Related results appear also in [8, Theorems 32,33].

The following complementary bound is proved in [9] for Poisson processes, but again
the proof given there applies more generally as follows.

Theorem 1.10 ([9, Theorem 5]). Let R be a translation-invariant er-
godic non-equidistant point process on Rd with no descending chains,
and unit intensity. The one-colour stable matching scheme satisfies
P∗(X > r) ≤ Cr−d for all r > 0, for some constant C = C(d) that does not
depend on R.

Thus, Theorems 1.8 and 1.10 provide strikingly close upper and lower bounds on
X for the one-colour stable matching schemes of a wide range of point processes. For
two-colour stable matching, even in the case of two independent Poisson processes, the
correct power law for the tail of X is unknown in dimensions d ≥ 2; for d = 1 the bounds
E∗X

1
2 =∞ and P∗(X > r) ≤ Cr− 1

2 hold. See [9] for details.
The rest of the paper is organized as follows. In Section 2 we present examples.

In Section 3 we prove some of the simpler results including Theorems 1.1 and 1.2.
Despite the similarities between insertion-tolerance and deletion-tolerance, the proof
of Theorem 1.2 relies on the following natural lemma, whose analogue for deletion-
tolerance is false (see Example 2.5).

Lemma 1.11 (Monotonicity of insertion-tolerance). Let Π be a point process on Rd and
let S ∈ B have finite nonzero Lebesgue measure. If Π is insertion-tolerant, and U is
uniformly distributed in S and independent of Π, then Π + δU is insertion-tolerant.

Section 4 deals with Theorems 1.4 and 1.5. In Sections 5 and 6 we prove the results
concerning continuum percolation and stable matchings. Section 7 provides proofs
relating to some of the more elaborate examples from Section 2.

2 Examples

First, we give examples of (translation-invariant) point processes that possess vari-
ous combinations of insertion-tolerance and deletion-tolerance. We also provide exam-
ples to show that certain results concerning insertion-tolerance do not have obvious
analogues in the setting of deletion-tolerance. Second, we give examples to show that
the conditions in the results concerning continuum percolation and stable matching are
needed. Finally, we provide results on perturbed lattice processes and Gaussian zeros
processes on the Euclidean and hyperbolic planes.

2.1 Elementary examples

Example 2.1 (Poisson process). The homogeneous Poisson point process Π on Rd is
both insertion-tolerant and deletion-tolerant. This follows immediately from Theorem
1.4 (ii) and Theorem 1.5 and the relation

Π∗
d
= Π + δ0.

It is also easy to give an direct proof of insertion-tolerance and to prove deletion-
tolerance via Theorem 1.1 (iii). 3

For S ⊆ Rd and x ∈ Rd, write x+ S := {x+ z : z ∈ S}.
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Example 2.2 (Randomly shifted lattice). Let U be uniformly distributed in [0, 1]d. Con-
sider the point process given by [Λ] := U +Zd. Clearly, Λ is translation-invariant. Since
no ball of radius 1/4 can contain more than one Λ-point, by Theorem 1.2 (ii), Λ is not
insertion-tolerant. Also the cube [0, 1]d must contain Λ-points, so by Theorem 1.1 (iii), Λ

is not deletion-tolerant. 3

Example 2.3 (Randomly shifted site percolation). Let {Yz}z∈Zd be i.i.d. {0, 1}-valued
random variables with EY0 = p ∈ (0, 1). Consider the random set

W :=
{
z ∈ Zd : Yz = 1

}
.

Let U be uniformly distributed in [0, 1]d and independent of W . From Theorem 1.1
(iii), it is easy to see that Λ given by [Λ] := U + W is deletion-tolerant. Clearly, as in
Example 2.2, Λ is not insertion-tolerant. Moreover, it is easy to verify that almost surely
[Λ] ∩Zd = ∅, but [Λ∗] ⊂ Zd. Thus (1.1) is not satisfied.

The unshifted process Φ given by [Φ] = W is also deletion-tolerant, but if S is any set
of finite volume containing the axis R× {0}d−1, then Φ|SC 6≺ Φ. Thus in Theorem 1 (iii,
iv) the boundedness condition on S cannot be replaced with finite volume. However,
the randomly shifted process Λ does satisfy Λ|SC ≺ Λ for S as above. See the discussion
following the proof of Theorem 1.1 in Section 3. 3

Example 2.4 (Superposition of a Poisson point process with a randomly shifted lattice).
Let Π be a Poisson point process on Rd and let Λ be a randomly shifted lattice (as in
Example 2.2) that is independent of Π. Consider the point process Γ := Π + Λ. The
insertion-tolerance of Π is inherited by Γ, but Γ is no longer deletion-tolerant. As in
Example 2.2, [0, 1]d must contain Γ-points. 3

Example 2.5 (Non-monotonicity of deletion-tolerance). We show that in contrast with
Lemma 1.11, deleting a point from a deletion-tolerant process may destroy deletion-
tolerance. Let (Ni)i∈Z be i.i.d., taking values 0, 1, 2 each with probability 1/3, and let
Π have exactly Ni points in the interval [i, i + 1), for each i ∈ Z, with their locations
chosen independently and uniformly at random in the interval. It is easy to verify that
Π is deletion-tolerant using Theorem 1.1 (iii).

Consider the Π-point Z defined as follows. If the first integer interval [i, i + 1) to
the right of the origin that contains at least one Π-point contains exactly two Π-points,
then let Z be the point in this interval that is closest to the origin; otherwise, let Z
be the closest Π-point to the left of the origin. The point process Π′ = Π − δZ has
the property that the first interval to the right of the origin that contains any Π-points
contains exactly one Π-point.

Let Z ′ be the first Π′-point to the right of the origin. The process Π′′ := Π′ − δZ′ has
the property that with non-zero probability the first interval to the right of the origin
that contains any Π′′-points contains exactly two Π′′-points. Thus Π′ is not deletion-
tolerant.

If desired, the above example can be made translation-invariant by applying a ran-
dom shift U as before. 3

Example 2.6 (One set S satisfying Π|Sc ≺ Π does not suffice for deletion-tolerance).
Let Λ be a randomly shifted lattice in d = 1 (as in Example 2.2) and let Π be a Poisson
point process on R of intensity 1 that is independent of Λ. Let Y := ∪x∈[Π]B(x, 5),
and consider Γ := Λ|Y c . Let Z be the first Γ-point to the right of the origin such that
Z + i ∈ [Γ] for all integers i with |i| ≤ 20. Clearly, Γ− δZ 6≺ Γ and thus Γ is not deletion-
tolerant. On the other hand, since Π is insertion-tolerant, Γ|B(0,5)c ≺ Γ. (Note the
contrast with Proposition 1.3 for insertion-tolerance.) 3
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2.2 Continuum percolation and stable matching

Example 2.7 (A point process that is neither insertion-tolerant nor deletion-tolerant
and has infinitely many unbounded clusters). Let {Yz}z∈Z be i.i.d. {0, 1}-valued random
variables with EY0 = 1

2 . Let

W :=
{

(x1, x2) ∈ Z2 : Yx2 = 1
}

and let U be uniformly distributed in [0, 1]2 and independent of W . Consider the point
process Λ with support U + W . Thus Λ is a randomly shifted lattice with columns ran-
domly deleted. As in Example 2.2, Λ is neither insertion-tolerant nor deletion-tolerant.
In the continuum percolation model with parameter R = 2, the occupied region O(Λ)

has infinitely many unbounded clusters. 3

Example 2.8 (A point process that is not insertion-tolerant, but is deletion-tolerant
and has infinitely many unbounded clusters). Let Λ be a randomly shifted super-critical
site percolation in d = 2, as in Example 2.3. Let {Λi}i∈Z be independent copies of Λ.
Let {Yz}z∈Z be i.i.d. {0, 1}-valued random variables independent of Λ with EY0 = 1

2 .
Consider the point process Γ with support

[Γ] =
⋃

i∈Z:Yi=1

[Λi]× {i} .

Thus Γ is a point process in R3, obtained by stacking independent copies of Λ. Clearly,
the point process Γ is deletion-tolerant, but not insertion-tolerant. With R = 2, the
occupied region O(Γ) has infinitely many unbounded clusters. 3

Example 2.9 (One-colour matching for two perturbed lattices). Let W = {Wi}i∈Zd and
Y = {Yi}i∈Zd be all i.i.d. random variables uniformly distributed in B(0, 1/4). Let U be
uniformly distributed in [0, 1]d and independent of W,Y . LetR be the point process with
support

[R] = U +
{
i+Wi, i+ Yi : i ∈ Zd

}
.

It is easy to verify that R is neither insertion-tolerant nor deletion-tolerant, and that
R has no descending chains and is non-equidistant. The one-colour stable matching
scheme satisfies ‖x − M(x)‖ < 1

2 for all x ∈ [R] (in contrast with the conclusion in
Theorem 1.8). 3

Example 2.10 (Two-colour matching for randomly shifted lattices). LetR and B be two
independent copies of the randomly shifted lattice Z in d = 1 as defined in Example 2.2.
Although R + B is not non-equidistant, it is easy to verify that there is an a.s. unique
two-colour stable matching scheme for R and B, and it satisfies ‖x−M(x)‖ < 1

2 for all
x ∈ [R]. 3

2.3 Perturbed lattices and Gaussian zeros

The proofs of the results stated below are given in Section 7.

Example 2.11 (Perturbed lattices). Let {Yz}z∈Zd be i.i.d. Rd-valued random variables.
Consider the point process Λ given by

[Λ] :=
{
z + Yz : z ∈ Zd

}
.

Note that Λ is invariant and ergodic under shifts of Zd. It is easy to see that (for
all dimensions d) if Y0 has bounded support, then Λ is neither insertion-tolerant nor
deletion-tolerant. Indeed, in this case we have Λ(B(0, 1)) ≤ M for some constant M <

∞, so, by Theorem 1.2 (ii), Λ is not insertion-tolerant (otherwise we could add M + 1

random points in B(0, 1)). Also, Λ(B(0, N)) ≥ 1, for some N < ∞, so Theorem 1.1 (iii)
shows that Λ is not deletion-tolerant. 3
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For dimensions 1 and 2 we can say more.

Proposition 2.12 (Perturbed lattices in dimensions 1, 2). Let [Λ] :=
{
z + Yz : z ∈ Zd

}
for i.i.d. {Yz}z∈Zd . For d = 1, 2, if E‖Y0‖d < ∞, then Λ is neither insertion-tolerant nor
deletion-tolerant.

Question 2.13. Does there exists a distribution for the perturbation Y0 such that the re-
sulting perturbed lattice is insertion-tolerant? In particular, in the case d = 1, does this
hold whenever Y0 has infinite mean? What are the possible combinations of insertion-
tolerance and deletion-tolerance for perturbed lattices? Allan Sly has informed us that
he has made progress on these questions.

Perturbed lattice models were considered by Sodin and Tsirelson [24] as simplified
models to illustrate certain properties of Gaussian zero processes (which we will dis-
cuss next). Our proof of Proposition 2.12 is in part motivated by their remarks, and
similar proofs have also been suggested by Omer Angel and Yuval Peres (personal com-
munications).

The Gaussian zero processes on the plane and hyperbolic planes are defined as
follows (see [11, 24] for background). Let {an}∞n=0 be i.i.d. standard complex Gaus-
sian random variables with probability density π−1 exp(−|z|2) with respect to Lebesgue
measure on the complex plane. Firstly, consider the entire function

f(z) :=

∞∑
n=0

an√
n!
zn. (2.1)

The set of zeros of f forms a translation-invariant point process ΥC in the complex
plane. Secondly, consider the analytic function on the unit disc D := {z ∈ C : |z| < 1}
given by

g(z) :=

∞∑
n=0

anz
n. (2.2)

The set of zeros of g forms a point process ΥD. We endow D with the hyperbolic metric
|dz|/(1 − |z|2) and the group of symmetries G given by the maps z 7→ (az + b)/(b̄z + ā),
where a, b ∈ C and |a|2 − |b|2 = 1. Then ΥD is invariant in law under action of G.

The following two facts were suggested to us by Yuval Peres, and are consequences
of results of [24] and [23] respectively.

Proposition 2.14. The Gaussian zero process ΥC on the plane is neither insertion-
tolerant nor deletion-tolerant.

Proposition 2.15. The Gaussian zero process ΥD on the hyperbolic plane is both
insertion-tolerant and deletion-tolerant.

3 Basic results

In this section we prove elementary results concerning insertion-tolerance and de-
letion-tolerance. The following simple application of Fubini’s theorem will be useful.
Recall that L denotes Lebesgue measure.

Remark 3.1. Let Π be a point process on Rd. If S ∈ B is a set of positive finite measure
and U is uniformly distributed S and independent of Π, then

P(Π + δU ∈ ·) =
1

L(S)

∫
S

P(Π + δx ∈ ·) dx. 3
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Let M be the product σ-field on M. For A ∈M and x ∈ Rd, we set

Ax := {µ ∈M : µ+ δx ∈ A}.

Thus Ax is the set of point measures for which adding a point at x results in an element
of A.

Proof of Lemma 1.11. Let Π be insertion-tolerant. We first show that for almost all x ∈
Rd the point process Π + δx is insertion-tolerant. The proof follows from the definition
of Ax. Let V be uniformly distributed in S′ ∈ B and independent of Π. Suppose A ∈M

is such that

P(Π + δx + δV ∈ A) = P(Π + δV ∈ Ax) > 0.

Since Π is insertion-tolerant, 0 < P(Π ∈ Ax) = P(Π + δx ∈ A).

Next, let U be uniformly distributed in S ∈ B and independent of (Π, V ). Let P(Π +

δU ∈ A) = 0, for some A ∈ M. By Remark 3.1, P(Π + δx ∈ A) = 0 for almost all
x ∈ S, and since Π + δx is insertion-tolerant for almost all x ∈ Rd, we deduce that
P(Π + δx + δV ∈ A) = 0 for almost all x ∈ S. Applying Remark 3.1 to the process Π + δV ,
we obtain P(Π + δU + δV ∈ A) = 0.

With Lemma 1.11 we prove that insertion-tolerance implies the following stronger
variant of Theorem 1.2 in which we allow the number of points added to be random. If
(X1, . . . , Xn) is a random vector in (Rd)n with law that is absolutely continuous with re-
spect to Lebesgue measure, then we say that the random (unordered) set {X1, . . . , Xn}
is nice. A finite point process F is nice if for all n ∈ N, conditional on F(Rd) = n, the
support [F ] is equal in distribution to some nice random set; we also say that the law of
F is nice if F is nice.

Corollary 3.2. Let Π be an insertion-tolerant point process on Rd and let F be a finite
point process on Rd. If F admits a conditional law given Π that is nice, then Π +F ≺ Π.

Proof of Theorem 1.2. Clearly, (iii)⇒ (ii)⇒ (i). From Corollary 3.2, it is immediate that
(i)⇒ (iii).

Proof of Corollary 3.2. Let U be uniformly distributed in [0, 1] and independent of Π.
Let f : M × [0, 1] → M be a measurable function such that for all π ∈ M we have that
f(π, U) is a nice finite point process. It suffices to show that Π + f(Π, U) ≺ Π.

Consider the events

En,k :=
{
f(Π, U)(Rd) = n

}
∩
{

[f(Π, U)] ⊂ B(0, k)
}
.

Let {Ur,k}nr=1 i.i.d. random variables uniformly distributed in B(0, k) and independent of
(Π, U). Let F ′n,k :=

∑n
r=1 δUr,k

. By applying Lemma 1.11, n times, we see that Π+F ′n,k ≺
Π; thus it suffices to show that Π + f(Π, U) ≺ Π + F ′n,k for some n, k ≥ 0.

For each x ∈ (Rd)n, let (x1, . . . ,xn) = x. If S ⊂ Rd has n elements, then we write
〈S〉 := (s1 . . . , sn) ∈ (Rd)n, where si are the elements of S in lexicographic order. For
each n ≥ 0, let gn : (Rd)n × M → R be a measurable function such that gn(·, π) is
the probability density function (with respect to n-dimensional Lebesgue measure) of
〈[f(π, U)]〉, conditional on f(π, U)(Rd) = n. Let Q be the law of Π and let A ∈M. Thus

P
(
Π + f(Π, U) ∈ A, En,k

)
=

∫ (∫
B(0,k)n

1
[
π +

n∑
i=1

δxi
∈ A

]
g(x, π)dx

)
dQ(π). (3.1)
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On the other hand,

P
(
Π + F ′n,k ∈ A

)
=

∫
1

L(B(0, k))n

(∫
B(0,k)n

1
[
π +

n∑
i=1

δxi
∈ A

]
dx

)
dQ(π). (3.2)

If P(Π+f(Π, U) ∈ A) > 0, then there exist n, k ≥ 0 such that P(Π+f(Π, U) ∈ A, En,k) >

0; moreover from (3.1) and (3.2), we deduce that P(Π + F ′n,k ∈ A) > 0.

The proof of Theorem 1.1 relies on the following lemma.

Lemma 3.3. Let Π be a point process on Rd. If F is a finite subprocess of Π, then there
exists a bounded S ∈ B with L(S) ∈ (0,∞) such that

P(Π|S = F) > 0. (3.3)

Proof. A ball B(x, r) is rational if x ∈ Qd and r ∈ Q+. Let C be the collection of all
unions of finitely many rational balls. Clearly C is countable. We will show that there
exists S ∈ C satisfying (3.3). Since Π is locally finite, it follows that there exists a
C-valued random variable S such that Π|S = F a.s. Since∑

S∈C
P(Π|S = F , S = S) = P(Π|S = F) = 1,

at least one of the terms of the sum is nonzero.

With Lemma 3.3 we first prove the following special case of Theorem 1.1.

Lemma 3.4. Let Π be a point process on Rd. The following conditions are equivalent.

(i) The point process Π is deletion-tolerant.

(ii) If F is a finite subprocess of Π such that F(Rd) is a bounded random variable, then
Π−F ≺ Π.

Proof. Clearly, (ii) implies (i).
We show by induction on the number of points of the finite subprocess that (i) implies

(ii). Assume that Π is deletion-tolerant. Suppose that (ii) holds for every finite subpro-
cess F of Π such that F(Rd) ≤ n. Let F ′ be a finite subprocess of Π with F ′(Rd) ≤ n+1.
Observe that on the event that F ′(Rd) 6= 0, we have F ′ = F + δZ , where F is a finite
subprocess of Π with F(Rd) ≤ n and Z is some Π-point. Let P(Π − F ′ ∈ A) > 0, for
some A ∈ M. If P(Π − F ′ ∈ A, F ′(Rd) = 0) > 0, then clearly P(Π ∈ A) > 0. Thus we
assume without loss of generality that F ′ = F + δZ so that P(Π − F − δZ ∈ A) > 0. By
applying Lemma 3.3 to the point process Π− F , conditioned on Π− F − δZ ∈ A, there
exists S ∈ B with finite Lebesgue measure, so that

P
(

(Π−F)|S = δZ

∣∣∣ Π−F − δZ ∈ A
)
> 0. (3.4)

Let AS := {µ+ δx : µ ∈ A, x ∈ S}, so that by the definition of AS and (3.4), we have
P(Π−F ∈ AS) > 0. By the inductive hypothesis, P(Π ∈ AS) > 0.

Observe that if Π ∈ AS , there is an x ∈ [Π]∩S such that Π− δx ∈ A. Define a Π-point
R as follows. If Π ∈ AS , let R be the point of [Π]∩S closest to the origin (where ties are
broken using lexicographic order) such that Π− δR ∈ A, otherwise let R be the Π-point
closest to the origin. Hence

P(Π− δR ∈ A) ≥ P(Π ∈ AS) > 0.

Since Π is deletion-tolerant, P(Π ∈ A) > 0.
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Proof of Theorem 1.1. We show that (iv)⇒ (iii)⇒ (i)⇒ (ii)⇒ (iii)⇒ (iv).
Assume that (iv) holds and that for some bounded S ∈ B and some A ∈ M we have

P(Π|Sc ∈ A) > 0. From (iv), we have P(Π(S) = 0 | Π|Sc) > 0 a.s. Thus P(Π ∈ A) ≥
P(Π|Sc ∈ A,Π(S) = 0) > 0, and (iii) holds.

Assume that (iii) holds and that for some Π-point Z and some A ∈ M we have
P(Π−δZ ∈ A) > 0. By Lemma 3.3, P(Π|Sc ∈ A) > 0 for some bounded S ∈ B, with finite
Lebesgue measure. From (iii), P(Π ∈ A) > 0. Thus (i) holds and Π is deletion-tolerant.

Assume that (i) holds. Let F be a finite subprocess of Π and suppose for some
A ∈ M we have P(Π − F ∈ A) > 0. Define Fn as follows. Take Fn = F if F(Rd) = n,
otherwise set Fn = 0. Note that for some n, we have P(Π − Fn ∈ A) > 0. Since Π is
deletion-tolerant, by Lemma 3.4, P(Π ∈ A) > 0. Thus (ii) holds.

Clearly (ii) implies (iii), since for bounded S ∈ B, the point process with support
[Π] ∩ S is a finite subprocess of Π.

Assume that (iv) fails, so that there exists a bounded S ∈ B such that P(Π(S) =

0 | Π|Sc) = 0 on some set of positive measure. Thus there exists A ∈ M such that
P(Π(S) = 0, Π|Sc ∈ A) = 0 and P(Π|Sc ∈ A) > 0. With A′ := A ∩ {µ ∈M : µ(S) = 0}, we
have P(Π|Sc ∈ A′) > 0, but P(Π ∈ A′) = 0, so that Π does not satisfy (iii).

We remark that the condition in Theorem 1 (iii, iv) that S is bounded may be replaced
with the condition that Π(S) <∞ a.s., and the resulting statements are also equivalent.
It is easy to verify that the modified statements (iii)′, (iv)′ satisfy: (ii) ⇒ (iii)′ ⇒ (iv)′ ⇒
(iv). In particular if Π is translation-invariant and of finite intensity, then any S of finite
volume satisfies Π(S) <∞ a.s.

For a translation θ of Rd and a point measure µ ∈M, we define θµ ∈M by (θµ)(S) :=

µ(θ−1S) for all S ∈ B; for A ∈M, we write θA := {θµ : µ ∈ A}. For x ∈ Rd let θx be the
translation defined by θx(y) := y + x for all y ∈ Rd.

Proof of Proposition 1.3. Let U, V be uniformly distributed on S, T ∈ B respectively and
let U, V,Π be independent. Assume that Π + δU ≺ Π and let A ∈ M be such that
P(Π + δV ∈ A) > 0. We will show that P(Π ∈ A) > 0.

Since Π is translation-invariant, for all A′ ∈ M we have P(Π + δθU ∈ A′) = P(Π +

δU ∈ θ−1A′) and thus Π + δθU ≺ Π for all translations θ of Rd. By Remark 3.1, T ′ :=

{w ∈ T : P(Π + δw ∈ A) > 0} has positive Lebesgue measure. By the Lebesgue density
theorem [20, Corollary 2.14], there exist x ∈ T ′, y ∈ S, and ε > 0 such that

L(T ∩B(x, ε)) > 1
2LB(x, ε);

L(S ∩B(y, ε)) > 1
2LB(y, ε).

Thus with z = x−y, the set T ′∩θzS has positive Lebesgue measure. Thus by Remark
3.1, P(Π + δθzU ∈ A) > 0. Since Π + δθzU ≺ Π, we have P(Π ∈ A) > 0.

4 Palm equivalences

In this section, we discuss insertion-tolerance and deletion-tolerance in the context
of Palm processes. We begin by presenting some standard definitions and facts. Let
Π be a translation-invariant point process with finite intensity λ. The Palm version of
Π is the point process Π∗ such that for all A ∈ M and all S ∈ B with finite Lebesgue
measure, we have

E#
{
x ∈ [Π] ∩ S with Π ∈ θxA

}
= λLS · P(Π∗ ∈ A), (4.1)

where #B denotes the cardinality of a set B. Sometimes (4.1) is called the Palm prop-
erty.

EJP 18 (2013), paper 74.
Page 11/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2621
http://ejp.ejpecp.org/


Insertion and deletion tolerance

By a monotone class argument, a consequence of (4.1) is that for all measurable
f : M×Rd → [0,∞) we have

E

∫
Rd

f(θ−xΠ, x) dΠ(x) = λ

∫
Rd

Ef(Π∗, x) dx; (4.2)

see [14, Chapter 11].

Proof of Theorem 1.5. Let Π have intensity λ > 0. Let S ∈ B have finite Lebesgue
measure. By Theorem 1.1 it suffices to show that Π|Sc ≺ Π.

Let P(Π|Sc ∈ A) > 0, for some A ∈M. Thus we may assume that

P(∃x ∈ [Π] ∩ S : Π− δx ∈ A) > 0, (4.3)

otherwise P(Π ∈ A) > 0. By applying (4.2) to the function

(µ, x) 7→ 1[µ− δ0 ∈ θ−xA]1[x ∈ S],

we obtain

E# {x ∈ [Π] ∩ S : θ−x(Π− δx) ∈ θ−xA} = λ

∫
S

P(Π∗ − δ0 ∈ θ−xA)dx. (4.4)

From (4.3) and (4.4), we deduce that P(Π∗ − δ0 ∈ θ−xA) > 0, for some x ∈ S. By
assumption, P(Π ∈ θ−xA) > 0. Since Π is translation-invariant, P(Π ∈ A) > 0.

Proof of Theorem 1.4, (i)⇒ (ii). Suppose that Π + δ0 is not absolutely continuous with
respect to Π∗; then there exists A ∈M such that

P(Π∗ ∈ A) = 0 but P(Π + δ0 ∈ A) > 0.

Without loss of generality, take A to be a set that does not care whether there is a point
at 0; that is if µ ∈ A, then µ′ ∈ A, provided µ, µ′ agree on Rd \ {0}. By translation-
invariance,

0 < c := P(Π + δ0 ∈ A) = P(Π ∈ A) = P(Π ∈ θxA)

for every x ∈ Rd. Hence the translation-invariant random set G := {x ∈ Rd : Π ∈ θxA}
has intensity EL([0, 1]d ∩ G) = c. Moreover, if U is uniformly distributed in [0, 1]d and
independent of Π, then P(U ∈ G) = c. Therefore defining the set

A′ := {µ ∈M : ∃x ∈ [µ] ∩ [0, 1]d with µ ∈ θxA},

we deduce that P(Π + δU ∈ A′) > 0. (Recall that A does not care whether there is a
point at 0.) On the other hand by the Palm property (4.1) we have

P(Π ∈ A′) ≤ E#{x ∈ [Π] ∩ [0, 1]d with Π ∈ θxA}
= λLS · P(Π∗ ∈ A) = 0.

Thus Π is not insertion-tolerant.

The following observations will be useful in the proof that (ii) implies (i) in Theorem
1.4.

Lemma 4.1. Let Π be a translation-invariant point process on Rd with finite intensity.
If Y is any Rd-valued random variable, and U is uniformly distributed in S ∈ B and
independent of (Π, Y ), then θUθY Π ≺ Π.
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Lemma 4.2. Let Π be a translation-invariant point process on Rd with finite intensity.
There exists a Π-point Z such that Π∗ ≺ θ−ZΠ.

Proof of Theorem 1.4, (ii)⇒ (i). Suppose that Π + δ0 ≺ Π∗. Without loss of generality
we may assume that Π and Π∗ are defined a common probability space. By Lemma 4.2,
there exists a Π-point Z such that

Π∗ ≺ θ−ZΠ. (4.5)

Let U be uniformly distributed in a Borel set S and independent of (Π,Π∗, Z). By
Lemma 4.1, it suffices to show that Π + δU ≺ θUθ−ZΠ. Since U is independent of
(Π,Π∗, Z), from (4.5) it follows that θUΠ∗ ≺ θUθ−ZΠ. Thus it remains to show that
Π + δU ≺ θUΠ∗.

Since Π is translation-invariant and U is independent of Π we have

θU (Π + δ0)
d
= Π + δU . (4.6)

Since we assume that Π+δ0 ≺ Π∗ and U is independent of (Π,Π∗) we deduce from (4.6)
that Π + δU ≺ θUΠ∗.

Proof of Lemma 4.1. Let Q be the joint law of Π and Y . Since U is independent of
(Π, Y ), by Fubini’s theorem, for all A ∈M, we have

P(θUθY Π ∈ A) =
1

L(S)

∫ (∫
S

1[θu+yπ ∈ A]du

)
dQ(π, y)

≤ 1

L(S)

∫ (∫
Rd

1[θxπ ∈ A]dx

)
dQ(π, y)

=
1

L(S)

∫
Rd

P(θxΠ ∈ A)dx

=
1

L(S)

∫
Rd

P(Π ∈ A)dx.

Lemma 4.2 is an immediate consequence of a result of Thorisson [25], which states

that there exists a shift-coupling of Π and Π∗; that is, a Π-point Z such that Π∗
d
= θ−ZΠ.

In fact, Holroyd and Peres [10] prove that such a Z may be chosen as a deterministic
function of Π. Since Lemma 4.2 is much weaker result, we can give the following simple
self-contained proof.

Proof of Lemma 4.2. Let {ai}i∈N = [Π] be an enumeration of the Π-points. Let K be a
random variable with support N; also assume that K is independent of (ai)i∈N. Define
the Π-point Z := aK . We will show that Π∗ ≺ θ−ZΠ.

Let A ∈ M be so that P(Π∗ ∈ A) > 0. By the Palm property (4.1), there exists a
Π-point Z ′ = Z ′(A) such that P(θ−Z′Π ∈ A) > 0; moreover, there exists i ∈ N such
that P(θ−Z′Π ∈ A, Z ′ = ai) > 0. Since K is independent of (ai)i∈N, it follows from the
definition of Z that

P(θ−Z′Π ∈ A, Z ′ = ai, K = i, Z = ai) > 0.

Therefore, P(θ−ZΠ ∈ A) > 0.

5 Continuum percolation

Theorem 1.7 is an immediate consequence of the following. Consider the Boolean
continuum percolation model for a point process Π. LetW denote the cluster of contain-
ing the origin. For M > 0, an M -branch is an unbounded component of W ∩B(0,M)c.
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Lemma 5.1. For a translation-invariant ergodic insertion-tolerant point process, the
number of unbounded clusters is a fixed constant a.s. that is zero, one, or infinity.

Lemma 5.2. If an insertion-tolerant point process has infinitely many unbounded clus-
ters, then with positive probability there exists M > 0 so that there at least three
M -branches.

Theorem 5.3. For all M > 0, a translation-invariant ergodic point process has at most
two M -branches.

For a proof of Theorem 5.3 see [21, Theorem 7.1].

Proof of Theorem 1.7. From Lemma 5.1, it suffices to show that there can not be in-
finitely many unbounded clusters; this follows from Theorem 5.3 and Lemma 5.2.

For r > 0, let rZd :=
{
rz : z ∈ Zd

}
.

Proof of Lemma 5.1. Let Π be a translation-invariant ergodic insertion-tolerant point
process. Let the occupied region be given by a union of balls of radius R > 0. By
ergodicity, if K(Π) is the number of unbounded clusters, then K(Π) is a fixed constant
a.s. Assume that K(Π) <∞. It suffices to show that P(K(Π) ≤ 1) > 0. Since K(Π) <∞,
there exists N > 0 so that every unbounded cluster intersects B(0, N) with positive
probability. Consider the finite set S := (R/4)Zd ∩ B(0, N). For each x ∈ S, let Ux be
uniformly distributed in B(x,R) and assume that the Ux and Π are independent. Let
F :=

∑
x∈S δUx

. Since B(0, N) ⊂ ∪x∈SB(Ux, R), we have that P(K(Π + F) ≤ 1) > 0. By
Theorem 1.2 (ii), Π + F ≺ Π, so that P(K(Π) ≤ 1) > 0.

Proof of Lemma 5.2. The proof is similar to that of Lemma 5.1. Let Π be an insertion-
tolerant point process with infinitely many unbounded clusters. Let the occupied region
be given by a union of balls of radius R > 0. Choose N large enough so that at least
three unbounded clusters interest B(0, N) with positive probability. Define a finite point
process F exactly as in the proof of Lemma 5.1. The point process Π + F has at least
three (N + R)-branches with positive probability and Theorem 1.2 (ii) implies that Π +

F ≺ Π. Thus Π has at least three (N +R)-branches with positive probability.

6 Stable matching

Theorems 1.8 and 1.9 are consequences of the following lemmas. Let R be a point
process with a unique one-colour stable matching schemeM. Define

H = H(R) :=
{
x ∈ [R] : ‖x−M(x)‖ > ‖x‖ − 1

}
. (6.1)

This is the set ofR-points that would prefer someR-point in the ball B(0, 1), if one were
present in the appropriate location, over their current partners. Also define H by (6.1)
for the case of two-colour stable matching.

A calculation given in [9, Proof of Theorem 5(i)] shows that, for one-colour and two-
colour matchings,

E#H = cE∗
[
(X + 1)d

]
. (6.2)

for some c = c(d) ∈ (0,∞).

Lemma 6.1 (One-colour stable matching). Let R be a translation-invariant point pro-
cess onRd with finite intensity that almost surely is non-equidistant and has no descend-
ing chains. If R is insertion-tolerant, then P(#H = ∞) = 1. If R is deletion-tolerant,
then P(#H =∞) > 0.
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Lemma 6.2 (Two-colour stable matching). Let R and B be independent translation-
invariant ergodic point processes on Rd with equal finite intensity, such that the point
process R + B is non-equidistant and has no descending chains. If R is insertion-
tolerant, then P(#H =∞) = 1. If R is deletion-tolerant, then P(#H =∞) > 0.

Remark 6.3. Recall that in the case of two-colour stable matching we defined X in
terms of the distance from anR-point to its partner. If we instead defineX ′ by replacing

R with B in (1.3), then X ′
d
= X; see the discussion after [9, Proposition 7] for details. 3

Proof of Theorem 1.8. Use Lemma 6.1 together with (6.2).

Proof of Theorem 1.9. Use Lemma 6.2 together with (6.2) and Remark 6.3.

The following lemmas concerning stable matchings in a deterministic setting will be
needed. A partial matching of a point measure µ ∈ M is the edge set m of simple
graph ([µ],m) in which every vertex has degree at most one. A partial matching is a
perfect matching if every vertex has degree exactly one. We write m(x) = y if and only
if {x, y} ∈ m, and set m(x) = ∞ if x is unmatched. We say a partial matching is stable
if there do not exist distinct points x, y ∈ [µ] satisfying

‖x− y‖ < min {‖x−m(x)‖, ‖y −m(y)‖} , (6.3)

where ‖x−m(x)‖ =∞ if x is unmatched. Note that in any stable partial matching there
can be at most one unmatched point.

For each ε > 0, set

Hε = Hε(µ) := {x ∈ [µ] : ‖x−m(x)‖ > ‖x‖ − ε} .

For each y ∈ Rd, set

N(µ, y) := {x ∈ [µ] \ {y} : ‖x−m(x)‖ > ‖x− y‖} .

This is the set of µ-points that would prefer y ∈ Rd over their partners.

Lemma 6.4. If µ ∈ M is non-equidistant and has no descending chains, then µ has an
unique stable partial matching m. In addition, we have the following properties.

(i) If {x, y} ∈ m is a matched pair, then m\{{x, y}} is the unique stable partial match-
ing of µ− δx − δy.

(ii) Let ε > 0. If m is a perfect matching and #Hε = 0, then for all x ∈ B(0, ε) such
that µ+ δx is non-equidistant, m is the unique stable partial matching of µ+ δx; in
particular, x is unmatched in m.

(iii) If {x, y} ∈ m is a matched pair and #N(µ, y) = 0, then m \ {{x, y}} is the unique
stable partial matching of µ− δx, and in particular, y is left unmatched.

Proof. The existence and uniqueness is given by [9, Lemma 15]. Thus for (i)–(iii) it
suffices to check that the claimed matching is stable, which is immediate from the
definition (6.3).

The next lemma is a simple consequence of Lemma 6.4.

Lemma 6.5. Suppose that µ ∈M is non-equidistant and has no descending chains. Let
m be the unique stable matching of µ. Suppose that {x, y} ∈ m and 0 6∈ [µ]. There exists
ε > 0 such that for L-a.a. x′ ∈ B(x, ε) and y′ ∈ B(y, ε): the unique stable matching m′ of
µ+ δx′ + δy′ is given by

m′ = (m \ {{x, y}}) ∪ {{x, x′} , {y, y′}} ,

and furthermore, x, x′, y, y′ 6∈ Hε(µ+ δx′ + δy′) ⊆ Hε(µ).
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Proof of Lemma 6.5. Consider

dv := min {‖v − w‖ : w ∈ [µ] ∪ {0} , w 6= v} .

Let
ε := 1

5 min {dx, dy, d0} (6.4)

(any multiplicative factor less than 1
4 would suffice here). Let A := B(x, ε) × B(y, ε). It

is easy to verify that for L-a.a. (x′, y′) ∈ A that the measure µ + δx′ + δy′ is also non-
equidistant and has no descending chains. Thus by Lemma 6.4, for L-a.a. (x′, y′) ∈ A
the measure µ + δx′ + δy′ has a unique stable perfect matching m′. Clearly, by (6.4)
and (6.3), we have that {x, x′} , {y, y′} ∈ m′. On the other hand, by Lemma 6.4 (i),
m′ \{{x, x′} , {y, y′}} is the unique stable perfect matching of µ− δx− δy and m\{{x, y}}
is the also the unique stable perfect matching of µ− δx − δy. Thus

m′ = (m \ {{x, y}}) ∪ {{x, x′} , {y, y′}} .

It also follows from (6.4) that

x, x′, y, y′ 6∈ Hε(µ+ δx′ + δy′) ⊆ Hε(µ).

Proof of Lemma 6.1: the case where R is insertion-tolerant. LetR be insertion-tolerant.
Note that H1(R) = H(R). First, we will show that

P(#Hε(R) > 0) = 1 for all ε > 0. (6.5)

Second, we will show that if P(0 < #H1(R) <∞) > 0, then there exists a finite point
process F such that F admits a nice conditional law given R, and

lim
ε→0

P
(
#Hε(R+ F) = 0

)
= P

(
0 < #H1(R) <∞

)
> 0. (6.6)

Finally, note that by Corollary 3.2 and the insertion-tolerance of R that (6.6) and
(6.5) are in contradiction. Thus P(#H1(R) = ∞) = 1. It remains to prove the first two
assertions.

The following definition will be useful. Let M′ be the set of point measures µ ∈ M
such that µ has a unique stable perfect matching, has no descending chains, and is
non-equidistant.

Let ε > 0. Let J be the set of point measures µ ∈M′ such that #Hε(µ) = 0. To show
(6.5), it suffices to prove that P(R ∈ J ) = 0. Let µ ∈ J and let m be the unique stable
perfect matching for µ. By Lemma 6.4 (ii), for Lebesgue-a.a. x ∈ B(0, ε) the unique
stable partial matching for µ + δx is m (and x is unmatched). If P(R ∈ J ) > 0, then it
follows from the insertion-tolerance of R that with positive probability R does not have
a perfect stable matching, a contradiction.

Now letA be the set of point measures µ ∈M′ such that 0 < #H1(µ) <∞ and 0 6∈ [µ].
If R ∈ A, then, by applying Lemma 6.5 repeatedly, there exists ρ = ρ(R) such that if
a point is added within distance ρ of each point in H1(R) and each of their partners,
then (for L-a.a. choices of such points) the resulting process R′ satisfies Hρ(R′) = 0.
Let F be the finite point process whose conditional law given R is given as follows.
Take independent uniformly random points in each of the appropriate balls of radius ρ
provided R ∈ A; otherwise take F = 0. By the construction,

lim
ε→0

P
(
#Hε(R+ F) = 0 | R ∈ A, ρ(R) > ε

)
= 1,

so (6.6) follows.
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Proof of Lemma 6.1: the case where R is deletion-tolerant. Suppose R is deletion-tol-
erant. We will show that for any R-point Z

#N(R, Z) =∞ a.s. (6.7)

From (6.7) it follows that if R(B(0, 1)) > 0, then #H = ∞. Since R is translation-
invariant, P(R(B(0, 1)) > 0) > 0 and P(#H =∞) > 0.

It remains to show (6.7). Let Z be an R-point. Let F1 be the point process with
support N(R, Z), and let F2 be the point process with support {M(y) : y ∈ N(R, Z)}.
Consider the point process F defined by

F :=

{
F1 + F2, if #N(R, Z) <∞
0, otherwise.

LetM′ be given by

[M′] := [M] \
⋃
x∈[F ]

{{x,M(x)}} .

By Lemma 6.4 (i),M′ is the unique stable matching for R−F a.s.
Towards a contradiction assume that P(#N(R, Z) <∞) > 0. Thus, P(N(R−F , Z) =

0) > 0. By Lemma 6.4 (iii), with positive probability, R−F−δM(Z) has the unique stable
partial matching given byM′ with the pair {Z,M(Z)} removed and Z left unmatched.
From Theorem 1.1 (ii) and the deletion-tolerance ofR we haveR−F−δM(Z) ≺ R. Thus
with positive probability, R has a stable partial matching with an unmatched point, a
contradiction.

We now turn to the two-colour case. Given two point measures µ, µ′ ∈ M such that
µ + µ′ is a simple point measure, we say that m is a partial (respectively, perfect)
matching of (µ, µ′) if m is the edge set of a simple bipartite graph ([µ], [µ′],m) in which
every vertex has degree at most one (respectively, exactly one). We write m(x) = y if
and only if {x, y} ∈ m and set m(x) = ∞ if x is unmatched. We say that m is stable if
there do not exist x ∈ [µ] and y ∈ [µ′] satisfying (6.3). If µ + µ′ is non-equidistant and
has no descending chains then there exists a unique stable partial matching of (µ, µ′)

[9, Lemma 15].

Remark 6.6. It is easy to verify that the two-colour analogues of Lemma 6.4 (i) and
(iii) hold. 3

We will need the following monotonicity facts about stable two-colour matchings.
Similar results are proved in [8, Proposition 21], [5], and [16].

Lemma 6.7. Let µ, µ ∈ M and assume that µ + µ′ is a simple point measure that is
non-equidistant and has no descending chains. Let m be the stable partial matching of
(µ, µ′).

(i) Assume that w 6∈ [µ′] and µ′ + δw is non-equidistant and has no descending chains.
If m′ is the stable partial matching of (µ, µ′ + δw), then

‖z −m(z)‖ ≥ ‖z −m′(z)‖ for all z ∈ [µ].

(ii) Let x ∈ [µ]. If m′ is the stable partial matching of (µ− δx, µ′), then

‖z −m(z)‖ ≥ ‖z −m′(z)‖ for all z ∈ [µ− δx]. (6.8)
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Proof of Lemma 6.7. Part (i) follows from [9, Lemma 17]. For part (ii), if x is not
matched under m, then m′ = m, thus assume that m(x) = y. By Lemma 6.4 (i) and
Remark 6.6, m \ {{x, y}} is the unique stable partial matching for (µ− δx, µ′ − δy). Thus
by part (i), m′, the unique stable matching for (µ− δx, µ′), satisfies (6.8).

Proof of Lemma 6.2. The proof for the case when R is insertion-tolerant is given in [9,
Theorem 6(i)]. In the case when R is deletion-tolerant we proceed similarly to the proof
of Lemma 6.1. Recall that in the two-colour case, M denotes the two-colour stable
matching scheme for R and B. Let Z be a B-point. Define N(R, Z) and F1 as in the
proof of Lemma 6.1, so that N(R, Z) is the set of R-points that would prefer Z over
their partners and F1 is the point process with support N(R, Z).

Towards a contradiction assume that P(#N(R, Z) < ∞) > 0. There exists a unique
stable partial matching for (R − F1,B) a.s.; denote it by M′. From Lemma 6.7 (ii), it
follows that

P(N(R−F1, Z) = 0) > 0. (6.9)

From (6.9) and Remark 6.6 with Lemma 6.4 (iii), it follows that with positive probability,
M′ \ {{Z,M′(Z)}} is the unique stable partial matching for (R − F1 −M′(Z),B) and
the B-point Z is left unmatched. By Lemma 3.3, there exists a bounded Borel set S
with finite Lebesgue measure such that P(R|S = F1 + δM′(Z)) > 0. By Theorem 1.1 (iii)
and the deletion-tolerance of R, we have that R|Sc ≺ R; furthermore, since R and B
are independent, (R|Sc ,B) ≺ (R,B). Thus with positive probability (R,B) has a stable
partial matching with a unmatched B-point. This contradicts the fact that M is the
two-colour matching scheme for R and B.

7 Perturbed lattices and Gaussian zeros

7.1 Low-fluctuation processes

Propositions 2.12 and 2.14 will be proved using the following more general result,
which states that processes satisfying various “low-fluctuation” conditions are neither
insertion-tolerant nor deletion-tolerant. For a point process Π and a measurable func-
tion h : Rd → R write

Π(h) :=

∫
h(x)dΠ(x) =

∑
x∈[Π]

h(x). (7.1)

Let B(0, 1) :=
{
x ∈ Rd : ‖x‖ ≤ 1

}
denote the closed unit ball.

Proposition 7.1 (Low-fluctuation processes). Let Π be a point process onRd with finite
intensity. Let h : Rd → [0, 1] be a measurable function with h(x) = 1 for all x ∈ B(0, 1/2)

and support in B(0, 1). For each n ∈ Z+, set hn(x) := h(x/n) for all x ∈ Rd.
(i) If Π(hn)−EΠ(hn)→ 0 in probability as n→∞, then Π is neither insertion-tolerant

nor deletion-tolerant.

(ii) If there exists a deterministic sequence (nk) with nk →∞ such that

1

K

K∑
k=1

(
Π(hnk

)− EΠ(hnk
)
) P−→ 0 as K →∞, (7.2)

then Π is neither insertion-tolerant nor deletion-tolerant.

(iii) Write Nn = Π(hn) − EΠ(hn). If there exists a deterministic sequence (nk) with
nk →∞ and a discrete real-valued random variable N such that for all ` ∈ R,

1

K

K∑
k=1

1[Nnk
≤ `] P→ P(N ≤ `) as K →∞, (7.3)

then Π is neither insertion-tolerant nor deletion-tolerant.
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In our application of Proposition 7.1 (iii), Nn will be integer-valued (see (7.8) below).

Proof of Proposition 7.1 (i). Let mn := EΠ(hn). Since Π(hn) − mn → 0 in probability,
there exists a (deterministic) subsequence nk such that Π(hnk

) −mnk
→ 0 a.s. On the

other hand, if U is uniformly distributed in B(0, 1), then (Π + δU )(hnk
) −mnk

→ 1 a.s.
Therefore Π is not insertion-tolerant. Similarly, if Z any Π-point, then (Π − δZ)(hnk

) −
mnk

→ −1. So Π is not deletion-tolerant.

Proof of Proposition 7.1 (ii). Suppose that (7.2) holds for some deterministic sequence
(nk). Let mnk

:= EΠ(hnk
), and for each integer K > 0 define SK : M→ R by

SK(µ) :=
1

K

K∑
k=1

(µ(hnk
)−mnk

).

Thus SK(Π) → 0 in probability as K → ∞, and there exists a subsequence (Ki) so that
SKi

(Π)→ 0 a.s. However, if U is uniformly distributed in B(0, 1), then SKi
(Π + δU )→ 1

a.s. Thus Π cannot be insertion-tolerant. Similarly, if Z is a Π-point, then SKi
(Π−δZ)→

−1 a.s. Thus Π cannot be deletion-tolerant.

Proof of Proposition 7.1 (iii). Suppose that (7.3) holds for some deterministic sequence
(nk) and some discrete random variable N . Let mnk

:= EΠ(hnk
), and let Nnk

(µ) :=

µ(hn)−mnk
for all µ ∈M. For each integer K > 0, define FK : M×R→ [0, 1] by

FK(µ, `) :=
1

K

K∑
k=1

1[Nnk
(µ) ≤ `].

Thus FK(Π, `)→ P(N ≤ `) in probability asK →∞ for all ` ∈ R. SinceN is discrete and
has countable support, by a standard diagonal argument, there exists a subsequence
(Ki) so that FKi(Π, `) → P(N ≤ `) a.s. for all ` ∈ R. Fix a ∈ R such that P(N ≤ a) 6=
P(N ≤ a+ 1). We have FKi(Π, a)→ P(N ≤ a) a.s. and FKi(Π, a+ 1)→ P(N ≤ a+ 1) a.s.
However, if U is uniformly distributed in B(0, 1), then FKi(Π+δU , a+1)→ P(N ≤ a) a.s.
Thus Π cannot be insertion-tolerant. Similarly, if Z is a Π-point, then FKi(Π − δZ , a) →
P(N ≤ a+ 1) a.s. Thus Π cannot be deletion-tolerant.

7.2 Gaussian zeros in the plane

Proof of Proposition 2.14. Let ΥC be the Gaussian zero process on the plane. Sodin and
Tsirelson [24, Equation (0.6)] show that ΥC satisfies the conditions of Proposition 7.1
(i), with a twice differentiable function h; in particular they show that Var ΥC(hn) → 0

as n→∞. Hence ΥC is neither insertion-tolerant nor deletion-tolerant.

7.3 Perturbed lattices in dimension 2

The proof of Proposition 2.12 for the case d = 2 relies on the following lemma.

Lemma 7.2. Let (Yz : z ∈ Z2) be i.i.d. R2-valued random variables with EY0 = 0 and
Var ‖Y0‖ = σ2 < ∞. Let Λ be the point process given by [Λ] :=

{
z + Yz : z ∈ Z2

}
. Let

h : R2 → [0, 1] have support in B(0, 1), and have Lipschitz constant at most c < ∞, and
let h(x) = 1 for all x ∈ B(0, 1/2). Define hr(x) := h(x/r) for x ∈ R2 and r > 0. Set
mr := EΛ(hr).

(i) For all r > 0 we have Var Λ(hr) ≤ C, for some C = C(σ2, c) <∞.

(ii) For all r > 0, we have Cov(Λ(hr),Λ(hR))→ 0 as R→∞.
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(iii) There exists a deterministic sequence (nk) with nk →∞ such that (7.2) is satisfied
with Λ in place of Π; that is,

1

K

K∑
k=1

(
Λ(hnk

)− EΛ(hnk
)
) P−→ 0 as K →∞.

Lemma 7.2 parts (i) and (ii) will allow us to use a weak law of large numbers to prove
(iii).

Proof of Proposition 2.12 (d = 2). We may clearly assume without loss of generality that
EY0 = 0. Now apply Lemma 7.2 (iii) together with Proposition 7.1 (ii).

Proof of Lemma 7.2 (i). Note that

Λ(hr) =
∑
z∈Z2

hr(z + Yz). (7.4)

Thus by the independence of the Yz, we have

Var Λ(hr) =
∑
z∈Z2

Varhr(z + Yz); (7.5)

we will split this sum into two parts. We write C1, C2 for constants depending only on
σ2 and c.

Firstly, since hr has Lipschitz constant at most c/r, we have for all z ∈ Z2,

Varhr(z + Yz) ≤ E[(hr(z + Yz)− hr(z))2] ≤ E[(c‖Yz‖/r)2] = (cσ/r)2,

therefore ∑
z∈Z2:‖z‖≤2r

Varhr(z + Yz) ≤ C1. (7.6)

Secondly, since hr has support in B(0, r),

Varhr(z + Yz) ≤ E[hr(z + Yz)
2]

≤ P[z + Yz ∈ B(0, r)] = P[Y0 ∈ B(−z, r)],

therefore ∑
z∈Z2:‖z‖>2r

Varhr(z + Yz) ≤
∑

z∈Z2:‖z‖>2r

P[Y0 ∈ B(−z, r)]

≤ C2r
2P(‖Y0‖ > r) ≤ C2σ

2. (7.7)

The result now follows by combining (7.5)–(7.7).

Proof of Lemma 7.2 (ii). Note that by Lemma 7.2 (i), for all r,R > 0, we have that
Cov(Λ(hr),Λ(hR)) <∞. By (7.4) and independence of the Yz we have

Cov(Λ(hr),Λ(hR)) = E
( ∑
z∈Z2

hr(z + Yz) hR(z + Yz)
)
−
∑
z∈Z2

Ehr(z + Yz) EhR(z + Yz).

Let R > 2r. If hr(z + Yz) > 0, then hR(z + Yz) = 1; thus

Cov(Λ(hr),Λ(hR)) = mr −
∑
z∈Z2

Ehr(z + Yz) EhR(z + Yz).

Since hR ↑ 1 as R→∞, for each z ∈ Z2 we have by the monotone convergence theorem
that EhR(z+ Yz) ↑ 1 as R→∞. An additional application of the monotone convergence
theorem shows that

lim
R→∞

∑
z∈Z2

Ehr(z + Yz) EhR(z + Yz) =
∑
z∈Z2

Ehr(z + Yz) = mr.

EJP 18 (2013), paper 74.
Page 20/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2621
http://ejp.ejpecp.org/


Insertion and deletion tolerance

We will employ the following weak law of large numbers for dependent sequences
to prove Lemma 7.2 (iii).

Lemma 7.3. Let Z1, Z2, . . . be real-valued random variables with finite second moments
and zero means. If there exists a sequence b(k) with b(k) → 0 as k → ∞ such that
E(ZnZm) ≤ b(n−m) for all n ≥ m, then (Z1 + · · ·+ Zn)/n→ 0 in probability as n→∞.

Lemma 7.3 is a straightforward generalization of the standard L2 weak law. See [4,
Chapter 1, Theorem 5.2 and Exercise 5.2].

Corollary 7.4. Let Z1, Z2, . . . be real-valued random variables with finite second mo-
ments and zero means. Suppose that there exists C > 0, such that E|Zm|2 ≤ C for
all m ∈ Z+. If for all m ∈ Z+ we have E(ZmZn) → 0 as n → ∞, then there exists
an increasing sequence of positive of integers (rn) such that (Zr1 + · · · + Zrn)/n → 0

in probability as n → ∞. Furthermore, for any further subsequence (rnk
) we have

(Zrn1
+ · · ·+ Zrnk

)/k → 0 in probability as n→∞.

Proof. Consider the sequence b(k) := 1/k, where we set b(0) = C. We will show that
there exists a sequence rk so that E(ZrnZrm) ≤ 1/n for all n > m. Thus Zrk satisfies
the conditions of Lemma 7.3 with b(k). We proceed by induction. Set r1 = 1. Suppose
that r2, . . . , rk−1 have already been defined and satisfy E(ZrnZrm) ≤ 1/n for all 1 ≤
m < n ≤ k − 1. It follows from Lemma 7.2 (ii) that there exists an integer R > 0 such
that E(ZrmZR) ≤ 1/k for all 1 ≤ m ≤ k − 1; set rk := R. Furthermore, if (rnk

) is a
subsequence of (rn), we have that if m < k, then E(Zrnm

Zrnk
) ≤ 1/nk ≤ 1/k. Thus Zrnk

satisfies the conditions of Lemma 7.3 with b(k).

Proof of Lemma 7.2 (iii). For each n ∈ Z+, set Zn := Λ(hn) −mn. By Lemma 7.2 parts
(i) and (ii), Zn satisfies the conditions of Corollary 7.4.

7.4 Perturbed lattices in dimension 1

The proof of Proposition 2.12 for the case d = 1 relies on the following lemma.

Lemma 7.5. Let (Yz : z ∈ Z) be i.i.d. R-valued random variables. Let Λ be the point
process given by [Λ] := {z + Yz : z ∈ Z}. Define h(x) := 1(−1,1](x) for all x ∈ R and set
hn(x) := h(x/n) for x ∈ R and n ∈ Z+. For each n ∈ Z+, let Nn := Λ(hn) − EΛ(hn).

Assume that E|Y0| <∞.

(i) The family of random variables (Nn)n∈Z+ is tight and integer-valued.

(ii) For any k, ` ∈ R and a ∈ Z+,

P(Na ≤ k,Nn ≤ `)− P(Na ≤ k) P(Nn ≤ `)→ 0 as n→∞.

(iii) There exists a deterministic sequence (nk) with nk → ∞ and an integer-valued
random variable N such that (7.3) is satisfied; that is, for all ` ∈ R,

1

K

K∑
k=1

1[Nnk
≤ `] P→ P(N ≤ `) as K →∞.

As in the case d = 2, Lemma 7.5 parts (i) and (ii) will allow us to use a weak law
of large numbers to prove (iii). Let us note that the assumption that E|Y0| < ∞ is not
necessary for Lemma 7.5 part (ii).

Proof of Proposition 2.12 (d = 1). Apply Lemma 7.5 (iii) together with Proposition 7.1
(iii).
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Proof of Lemma of 7.5 (i). The following simple calculation (an instance of the ‘mass-
transport principle’) shows that EΛ(0, 1] = 1:

EΛ(0, 1] =
∑
z∈Z

P
(
Yz + z ∈ (0, 1]

)
=
∑
z∈Z

P
(
Y0 ∈ (−z,−z + 1]

)
= 1.

Thus

Nn = Λ(−n, n]− 2n for all n ∈ Z+. (7.8)

For A,B ⊆ R, write

TBA := # {z ∈ A ∩Z : z + Yz ∈ B} ;

that is, the number of Λ-points in B that originated from A. Observe that for n ∈ Z+,

Nn = T
(−n,n]
(n,∞) + T

(−n,n]
(−∞,−n] − T

(n,∞)
(−n,n] − T

(−∞,−n]
(−n,n] . (7.9)

On the other hand, E|Y0| < ∞ implies easily that K+ := ET
[0,∞)
(−∞,0] < ∞ and K− :=

ET
(−∞,0]
[0,∞) <∞. By translation-invariance, each term on the right side of (7.9) is bounded

in expectation by one of these constants; for instance: ET (−n,n]
(n,∞) ≤ ET

(−∞,n]
[n,∞) = K−.

Hence E|Nn| ≤ 2K+ + 2K− for all n ∈ Z+.

Proof of Lemma 7.5 (ii). Let Fn := σ({z + Yz ∈ [−n, n]} : z ∈ Z). We will show that for
any event E ∈ σ(Yz : z ∈ Z), we have

P(E | Fn)→ P(E) a.s. as n→∞. (7.10)

From (7.10), the result follows, since {Nn ≤ `} ∈ Fn. It suffices to check (7.10) for E
in the generating algebra of events that depend on only finitely many of the Yz. But
for such an event, say E ∈ σ(Yz : −m ≤ z ≤ m), we observe that P(E | Fn) equals the
conditional probability of E given the finite σ-algebra σ({z + Yz ∈ [−n, n]} : −m ≤ z ≤
m), hence the required convergence follows from an elementary computation.

Proof of Lemma 7.5 (iii). By Lemma 7.5 (i) we may choose an integer-valued N and a

subsequence (cn) so that Ncn
d→ N as n→∞. We will show that for all ` ∈ Z, there is a

further subsequence cnk
=: rk such that

1

n

n∑
k=1

[
1[Nrk ≤ `]− P(Nrk ≤ `)

]
P→ 0 as n→∞. (7.11)

Clearly, the result follows from (7.11) and the fact that Nrk
d→ N as k →∞.

We use Corollary 7.4 in conjunction with a diagonal argument to prove (7.11).
Consider an enumeration of the integers given by `1, `2, . . . For each i ∈ Z+, let
Zik := 1[Nck ≤ `i] − P(Nck ≤ `i). By Lemma 7.5 (ii) and Corollary 7.4, there exists
a subsequence c1nk

:= r1
k such that (7.11) holds with rk replaced by r1

k, and ` replaced by
`1. Similarly, we may choose (r2

k) to be a subsequence of (r1
k) so that (7.11) holds with

rk replaced by r2
k, and ` replaced by `2; moreover Corollary 7.4 assures us that (7.11)

holds with rk replaced by r2
k, and ` replaced by `1. Similarly define the sequence (rik)

for each i ∈ Z+. By taking the diagonal sequence rk := rkk , we see that (7.11) holds for
all ` ∈ Z.
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7.5 Gaussian zeros in the hyperbolic plane

The proof of Proposition 2.15 uses the following consequence of a result of Peres
and Virág.

Proposition 7.6. If ΥD is the Gaussian zero process on the hyperbolic plane and Υ∗D is
its Palm version, then Υ∗D ≺ ΥD + δ0 and ΥD + δ0 ≺ Υ∗D.

Proof. Let ΥD be the process of zeros of
∑∞
n=0 anz

n, where the an’s are i.i.d. standard
complex Gaussian random variables. Let Ek be the event that ΥD(B(0, 1/k)) > 0. Peres
and Virág [23, Lemma 18] prove that the conditional law of (a0, a1, . . .) given Ek con-
verges as k → ∞ to the law of (0, â1, a2, . . .), where â1 is independent of the an’s, and
has a rotationally symmetric law with |â1| having probability density 2r3e−r

2

.
Let Υ̂D be the process of zeros of the power series with coefficients (0, â1, a2, . . .).

Since the latter sequence is mutually absolutely continuous in law with (0, a1, a2 . . .), we
have that Υ̂D and ΥD + δ0 are mutually absolutely continuous in law.

By Rouché’s theorem from complex analysis [6, Ch. 8, p. 229], the above conver-
gence implies that the conditional law of ΥD given Ek converges to the law of Υ̂D (the
convergence is in distribution with respect to the vague topology for point processes).

By [12, Theorem 12.8] it follows that Υ̂D
d
= Υ∗D.

Proof of Proposition 2.15. It follows from Proposition 7.6 and Theorems 1.4 and 1.5
with Remark 1.6 that the Gaussian zero process on the hyperbolic plane is insertion-
tolerant and deletion-tolerant.
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