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Abstract

In this paper we give extensions of the Hoeffding-Azuma inequalities for weighted
sums of uniformly bounded martingale differences. Our results improve previous
results of Antonov (1979).
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1 Introduction

In this paper, we are interested in deviation inequalities for martingales with bounded
differences. Let (Fn)n∈IN denote an increasing filtration and (Xn)n>0 is a sequence of
real-valued integrable random variables, adapted to the above filtration. We consider
a sequence (∆n)n>0 of nonnegative deterministic reals. The martingale (Mn)n≥0 is de-
fined by M0 = 0 and

Mn =

n∑
k=1

∆k

(
Xk − IE(Xk | Fk−1)

)
for n > 0. (1.1)

Throughout the paper, we assume that the sequences (Xn)n>0 and (∆n)n>0 satisfy the
additional integrability condition below:

sup
k>0

IE(|Xk|p) ≤ 1 and
∑
k>0

∆p
k <∞, for some p ∈]1, 2]. H(p)

Let Yn = Mn −Mn−1. By the Whittle inequality - see Inequality (13) in Whittle (1969) -

IE(|Mn|p) ≤ 22−p
n∑
k=1

IE(|Yk|p) ≤ 4
∑
k>0

∆p
k

under assumption H(p). Hence, by the martingale convergence theorem, (Mn)n con-
verges almost surely and in Lp to the random variable

M∞ =

∞∑
k=1

∆k

(
Xk − IE(Xk | Fk−1)

)
. (1.2)
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Extensions of Hoeffding-Azuma inequalities

In this paper, we are interested in exponential decay of the tail function of M∞ under
additional conditions on the random variables Xk. Let us first recall the Hoeffding-
Azuma inequality (see Devroye and Lugosi (2001), Chapter 2 for a proof). Assume that
the sequence (∆n)n>0 belongs to `2(IN∗) and the random variables Xk take their values
in [0, 1]. In that case H(2) holds true. For p ≥ 1, set

‖∆‖p =
(∑
k>0

∆p
k

)1/p
. (1.3)

The Hoeffding-Azuma inequality states that

IP(M∞ ≥ ‖∆‖2 x) ≤ exp(−2x2) for any positive x. (1.4)

Assume now that the sequence (∆k)k>0 satisfies the stronger assumption ‖∆‖p <∞ for
some p < 2. Under this stronger condition, Antonov (1979) proved that, for independent
and centered random variables Xk with values in [−1/2, 1/2],

IP(M∞ ≥ ‖∆‖p x) ≤ exp(−Cqxq) with q = p∗ = p/(p− 1) and Cq = 8q−q(q − 1)q−1,

which is a much better tail estimate. For q = 2, Cq = 2. However the constant Cq
is decreasing with respect to q and converges to 0 as q tends to ∞. For example,
Cq = 32/27 for q = 3 and Cq = 27/32 for q = 4. In this paper, we will give more efficient
constants. In particular we will prove that, for random variables Xk with values in [0, 1]

(this assumption is weaker than Antonov’s assumption),

IP(M∞ ≥ ‖∆‖p x) ≤ exp(−2xq) with q = p∗ = p/(p− 1), (1.5)

which extends the Hoeffding-Azuma inequality with the same constant as for p = 2.
This inequality will be derived from a more general result, which is stated and proved in
Section 2. Next, in Section 3, we apply this general result to the Azuma inequality under
symmetric conditions of boundedness. In Section 4, we extend the classical Hoeffding-
Azuma inequality (1.4).

2 The main inequality

Throughout this section, we assume that H(p) holds true for some p in ]1, 2]. Our
main result is the following extension of the Hoeffding-Azuma inequalities.

Theorem 2.1. Assume that there exists a convex and increasing function ` : IR+ → IR+,
such that `(0) = `′(0) = 0 and

log IE
(
exp
(
tXk − tIE(Xk | Fk−1)

)
| Fk−1

)
≤ `(t) a.s., for any t ≥ 0 and any k > 0. (2.1)

Let `∗ denote the Young transform of `, which is defined by `∗(x) = supt>0(tx − `(t)).
Suppose that H(p) holds true, for some p in ]1, 2]. Set q = p/(p − 1). For any function
ψ : IR+ → IR+, let

Cψ(q) = inf
x>0

(ψ(x)/xq). (2.2)

Then, for any positive x,

IP(M∞ ≥ ‖∆‖px) ≤ exp(−C`∗(q)xq).

Proof of Theorem 2.1. Since Mn converges to M∞ almost surely, it is enough to prove
Theorem 2.1 with Mn instead of M∞. Now, from (2.1), by induction on n,

log IE
(
exp(tMn)

)
≤ `(∆1t) + `(∆2t) + · · ·+ `(∆nt) := L(t). (2.3)
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Let a`(p) = supt>0(`(t)/tp). By (2.3), for any positive t,

L(t) ≤ a`(p)
(
∆p

1 + ∆p
2 + · · ·+ ∆p

n

)
tp ≤ a`(p) ‖∆‖pp tp. (2.4)

Since ` is convex, ` = (`∗)∗, wich ensures that `(t) = supx>0(xt− `∗(x)) for any positive
t. Consequently

a`(p) = sup
x>0

sup
t>0

t−p(xt− `∗(x)). (2.5)

Let then f(t) = t−p(xt − `∗(x)). We have to compute the maximum of f . Since `(0) =

`′(0) = 0, `∗(x) > 0 for any positive x. Now f ′(t) = t−1−p(p`∗(x) − (p − 1)xt). Hence f
has an unique maximum at the point tx = q`∗(x)/x. Therefore

sup
t>0

t−p(xt− `∗(x)) = (q − 1)`∗(x)t−px = q1−pp−1
(
xq/`∗(x)

)p−1
. (2.6)

Both (2.5) and (2.6) imply that

a`(p) = p−1
(
qC`∗(q)

)1−p
. (2.7)

Combining (2.7) and (2.4), we then get that

L(t) ≤ p−1
((
qC`∗(q)

)−1/q‖∆‖p t)p. (2.8)

Now, recall that the Young transform of t → (tp/p) is x → (xq/q). Hence, from (2.8)
and elementary computations, L∗(x) ≥ C`∗(q)

(
x/‖∆‖p

)q
, which, together with (2.3),

completes the proof of Theorem 2.1.

3 Application to Azuma type inequalities

In this section, we assume that the sequence (Xn)n>0 satisfies Azuma’s condition

IE(Xn | Fn−1) = 0 and Xn ∈ [−1, 1] almost surely, for any n > 0. (3.1)

Under condition (3.1), it is well known (see Bentkus (2004), for example) that

log IE
(
exp(tXk) | Fk−1

)
≤ log cosh(t) a.s., for any t ≥ 0 and any k > 0. (3.2)

Hence condition (2.1) holds true with `(t) = log cosh(t). Now (see Bentkus (2004) for
example), `∗(x) = ψ(x), with

ψ(x) = 1
2

(
(1 + x) log(1 + x) + (1− x) log(1− x)

)
for x ≤ 1 and ψ(x) =∞ for x > 1. (3.3)

Starting from (3.3) and Theorem 2.1, we now prove the following extension of the
Azuma inequality (1967).

Theorem 3.1. Let p be any real in ]1, 2]. Set q = p/(p− 1). Assume that condition (3.1)
holds true and that the sequence (∆k)k>0 belongs to `p(IN∗). Let the constant c(q) be
defined by

c(q) = 2−2/3 for q ≥ 8/3 and c(q) =
3
√

3

2

(
(q/2)− (2/3)

)(q/2)−(2/3)
(q − 2)(q−2)/2

for q ∈ [2, 8/3],

with the convention that 00 = 1. Then, for any positive x,

IP(M∞ ≥ ‖∆‖px) ≤ exp(−cs(q)xq) with cs(q) ≥ c(q) ≥ 1/2.
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Remark 3.1. From Equation (3.7) below, c(q) is increasing with respect to q on [2, 8/3].
Note also that c(2) = 1/2. The threshold q = 8/3 in Theorem 3.1 comes from the function
ϕ defined in (3.6) below. This threshold is purely technical.

Remark 3.2. From Equation (3.4) below, Theorem 3.1 holds with cs(q) = Cψ(q). Since
ψ(1) = log 2 and limx↑1 ψ

′(x) = ∞, Cψ(q) < log 2 for any q > 2. Furthermore, from the
continuity of ψ, limq↑∞ Cψ(q) = log 2.

Proof of Theorem 3.1. Clearly condition H(p) holds true. Consequently we may apply
Theorem 2.1. In particular Theorem 3.1 holds true with

cs(q) = Cψ(q) = inf
x∈]0,1]

(ψ(x)/xq). (3.4)

Now ψ(0) = ψ′(0) = 0 and ψ′′(x) = 1/(1− x2) = 1 + x2 + · · ·+ x2k + · · · . Hence, for any
x in [0, 1],

ψ(x) =
∑
k>0

x2k

2k(2k − 1)
. (3.5)

We now prove that

ψ(x) ≥ (1− x2/2)−1/3(x2/2) := ϕ(x) . (3.6)

Let u = x2/2. Then

ϕ(x) = u(1− u)−1/3 =
∑
k≥0

aku
k+1 with a0 = 1 and ak =

1.4 . . . (3k − 2)

3.6 . . . (3k)
for k > 0.

Now

ψ(x) =
∑
k≥0

bku
k+1 with bk = 2k/((2k + 1)(k + 1)) for any k ≥ 0.

In order to compare ϕ and ψ, we will compare ak/ak−1 and bk/bk−1. Clearly

ak/ak−1 = (3k − 2)/(3k) and bk/bk−1 = 2k(2k − 1)/((2k + 1)(k + 1)),

from which (a1/a0) = (1/3) = (b1/b0) and, for k ≥ 2,

akbk−1
ak−1bk

=
(3k − 2)(2k + 1)(k + 1)

6k2(2k − 1)
≤ 6k3 + 5k2 − 3k − 2

6k3 + 6k2
≤ 1.

Since a0 = b0 = 1, by induction on k, ak ≤ bk for any natural integer k, which implies
(3.6). Now, by (3.4) and (3.6),

cs(q) ≥ c(q) := inf
x∈]0,1]

x−qϕ(x) = 2−q/2
(

sup
u∈]0,1/2]

u(q−2)/2(1− u)1/3
)−1

, (3.7)

using again the change of variable u = x2/2. Let f(u) = u(q−2)/2(1− u)1/3. For q ≥ 8/3,
the function f is increasing on [0, 1/2]. Then the maximum is reached at the point
u = 1/2, from which c(q) = 2−2/3. For q ≤ 8/3, the maximum of f is reached at the point
uq = (3q − 6)/(3q − 4) (which belongs to [0, 1/2] ). Then

c(q) = 2−q/2
(3q − 4)(q/2)−(2/3)

3
√

2 (3q − 6)(q−2)/2
=

3
√

3

2

(
(q/2)− (2/3)

)(q/2)−(2/3)
(q − 2)(q−2)/2

,

which completes the proof of Theorem 3.1.
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We now give another formulation of Theorem 3.1, which provides better estimates
than the usual Azuma inequality. The proof, being immediate, is omitted.

Corollary 3.1. Assume that (3.1) holds true and that the sequence (∆k)k>0 belongs to
`p(IN∗) for some p < 2. Let c(q) be defined as in Theorem 3.1. Then, for any positive z
and any r in ]1, 2[ such that (∆k)k>0 belongs to `r(IN∗),

IP(M∞ ≥ z) ≤ exp
(
− sup
q∈[2,r∗]

c(q)
( z

‖∆‖q∗

)q)
, with q∗ = q

q−1 and r∗ = r
r−1 .

Remark 3.3. For any fixed positive z, let g(q) = log
(
c(q)

(
z/‖∆‖q∗)q

)
. Then g is differ-

entiable on ]2, r∗[ \ { 83}, continuous on [2, r∗], and, for q 6= 8
3 ,

g′(q) =
c′(q)

c(q)
+ log z − q∗ log(‖∆‖q∗) + (q∗ − 1)

(∑
k>0

∆q∗

k log(∆k)
/∑
k>0

∆q∗

k

)
. (3.8)

Since limq↓2 c
′(q) = +∞, (3.8) ensures that limq↓2 g

′(q) = +∞. Hence the optimal value
qopt of q in Corollary 3.1 satisfies qopt > 2. Therefore Corollary 3.1 strictly improves the
Azuma inequality.

4 Application to Hoeffding type inequalities

In this section, we assume that (Xn)n>0 satisfies the Hoeffding type condition

Xn ∈ [0, 1] almost surely, for any n > 0. (4.1)

Under (4.1), by Inequality (4.6) in Rio (2013), for any positive integer k and any t > 0,

log IE
(
exp
(
tXk − tIE(Xk | Fk−1)

)
| Fk−1

)
≤ `(t) almost surely, (4.2)

with `(t) = (t− log t− 1) + t(et − 1)−1 + log(1− e−t). Furthermore, by Inequality (2.2) in
Rio (2013),

`∗(x) ≥ max(ψ1(x), ψ2(x)), (4.3a)

where ψ1 and ψ2 are defined by

ψ1(x) = 2x2 + (4x4/9) and ψ2(x) = (x2 − 2x) log(1− x), (4.3b)

with the convention that ψ2(x) = +∞ for x ≥ 1. The inequality `∗(x) ≥ ψ1(x) is in fact
due to Krafft (1969) and the second inequality `∗(x) ≥ ψ2(x) is proved in Rio (2013).
From (4.2), (4.3) and Theorem 2.1, we now derive the following extension of the Ho-
effding inequality (1963).

Theorem 4.1. Assume that (4.1) holds true and that the sequence (∆k)k>0 belongs to
`p(IN∗) for some p < 2. Let c1(q) be defined by

c1(q) = 22
9 for q ≥ 26

11 and c1(q) = 4
(√

2
3

)q−2 (4− q)(q−4)/2

(q − 2)(q−2)/2
for q ∈ [2, 2611 ],

with the convention that 00 = 1. Then, for any positive z and any r in ]1, 2[ such that
(∆k)k>0 belongs to `r(IN∗),

IP(M∞ ≥ z) ≤ exp
(
− sup
q∈[2,r∗]

ca(q)
( z

‖∆‖q∗

)q)
, with ca(q) ≥ c1(q).
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Remark 4.1. From Equation (4.4) below, c1(q) is nondecreasing with respect to q.
Furthermore c1(2) = 2. Hence c1(q) ≥ 2, which yields Inequality (1.5).

Remark 4.2. For any fixed positive z, let g1(q) = log
(
c1(q)

(
z/‖∆‖q∗)q

)
. Then g1 is

differentiable on ]2, r∗[ \ { 2611} and continuous on [2, r∗]. Since limq↓2 c
′
1(q) = +∞, using

the same arguments as in Remark 3.3, we get that limq↓2 g
′
1(q) = +∞. Hence Theorem

4.1 strictly improves the usual Hoeffding inequality.

Remark 4.3. From (4.3) and (4.4) below, ca(q) ≥ Cψ2(q). Since limx↑1 ψ2(x) = +∞, it
implies that limq↑∞ ca(q) = ∞. Hence the lower bound ca(q) ≥ c1(q) is suboptimal for
large values of q.

Proof of Theorem 4.1. As in Section 3, we may apply Theorem 2.1. Both Theorem 2.1
and (4.3) ensure that Theorem 4.1 holds true with

ca(q) = inf
x∈]0,1]

(`∗(x)/xq) ≥ c1(q) := inf
x∈]0,1]

(ψ1(x)/xq). (4.4)

It remains to compute c1(q). Let fq(x) = x−qψ(x) = 2x2−q + (4/9)x4−q. Then

f ′q(x) = 2x1−q((2− q) + (2/9)(4− q)x2).

Hence, for q ≥ 4, f ′q(x) ≤ 0 for any positive x. In that case c1(q) = fq(1) = 22/9. For
q < 4,

f ′q(x) = (4/9)(4− q)x1−q(x2 − 9(q − 2)/(8− 2q)).

If q ≥ 26/11, then 9(q − 2)/(8 − 2q) ≥ 1. In that case, f ′q(x) ≤ 0 for any x ≤ 1 and
therefrom c1(q) = fq(1) = 26/11. Now, for q in ]2, 26/11], the positive real xq defined by
x2q = 9(q − 2)/(8− 2q) belongs to ]0, 1]. Then

c1(q) = fq(xq) = 2x2−qq (1 + (4/9)x2q) = 4
(√

2
3

)q−2 (4− q)(q−4)/2

(q − 2)(q−2)/2
,

which completes the proof of Theorem 4.1.
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