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Abstract

We introduce a setup of model uncertainty in discrete time. In this setup we de-
rive dual expressions for the super–replication prices of game options with upper
semicontinuous payoffs. We show that the super–replication price is equal to the
supremum over a special (non dominated) set of martingale measures, of the corre-
sponding Dynkin games values. This type of results is also new for American options.
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1 Introduction

A game contingent claim (GCC) or game option, which was introduced in [11], is
defined as a contract between the seller and the buyer of the option such that both
have the right to exercise it at any time up to a maturity date (horizon) T . If the buyer
exercises the contract at time t then he receives the payment Yt, but if the seller exer-
cises (cancels) the contract before the buyer then the latter receives Xt. The difference
∆t = Xt − Yt is the penalty which the seller pays to the buyer for the contract cancel-
lation. In short, if the seller will exercise at a stopping time σ ≤ T and the buyer at a
stopping time τ ≤ T then the former pays to the latter the amount H(σ, τ) where

H(σ, τ) = XσIσ<τ + YτIτ≤σ

and we set IQ = 1 if an event Q occurs and IQ = 0 if not.
A hedge (for the seller) against a GCC is defined as a pair (π, σ) that consists of a

self financing strategy π and a stopping time σ which is the cancellation time for the
seller. A hedge is called perfect if no matter what exercise time the buyer chooses, the
seller can cover his liability to the buyer.

Until now there is quite a good understanding of pricing game options in the case
where the probabilistic model is given. For details see [12] and the references therein.
However, for the case of volatility uncertainty, there are only few papers which deal with
American options and game options (see [14] and [15]). For European options the topic
of super–replication under volatility uncertainty was widely studied (see for instance,
[3], [7], [8], [16], [17] and [22]). In the papers (see, [8], [17] and [22]) the authors
established a connection between G–expectation which was introduced by Peng (see
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Game options under model uncertainty

[19] and [20]), and super–replication under volatility uncertainty in continuous time
models.

In this paper we introduce a discrete setup of volatility uncertainty. We consider a
simple model which consists of a savings account and of one risky asset, and we as-
sume that the payoffs are upper semicontinuous. Our main result says that the super–
replication price is equal to the supremum over a special (non dominated) set of martin-
gale measures, of the corresponding Dynkin games values. In continuous time models,
the problem remains open for American options and game options.

Main results of this paper are formulated in the next section. In Section 3 we prove
the main results of the paper for continuous payoffs. This proof is quite elementary and
does not use advanced tools. In section 4 we extend the main results for upper semicon-
tinuous payoffs. This extension is technically involved and requires the establishment
of some stability results for Dynkin games under weak convergence. In Section 5 we
prove an Auxiliary Lemma that we use in Section 4.

2 Preliminaries and main results

First we introduce a discrete time version of volatility uncertainty. Let N ∈ N, s > 0

and I = [a, b] ⊂ R+. Define the set K ⊂ RN+1
++ by

K = {(x0, ..., xN ) : x0 = s, | lnxi+1 − lnxi| ∈ I, i < N}.

The financial market consists of a savings account B and a risky asset S (stock). The
stock price process is Sk, k = 0, 1, ..., N , where N < ∞ is the maturity date or the total
number of allowed trades. By discounting, we normalize B ≡ 1. We assume that the
stock price process satisfies (S0, ..., SN ) ∈ K. Namely the initial stock price is S0 = s

and for any i < N we have | lnSi+1− lnSi| ∈ I. This is the only assumption that we make
on our financial market and we do not assume any probabilistic structure.

For any k = 0, 1, ..., N let Fk, Gk : K → R+ be upper semicontinuous functions with
the following properties, for any u, v ∈ K, Fk(u) = Fk(v) and Gk(u) = Gk(v) if ui = vi
for all i = 0, 1, ..., k. Furthermore, we assume that Fk ≤ Gk.

Consider a game option with the payoff function

H(k, l, S) = Gk(S)Ik<l + Fl(S)Il≤k, k, l = 0, 1, ..., N. (2.1)

Observe thatH(k, l, S) is the reward that the buyer receives given that his exercise time
is l and that the seller cancelation time is k. Furthermore, the rewardH(k, l, S) depends
only on the stock history up to the moment k ∧ l.

In our setup a portfolio with initial capital x is a pair π = (x, γ) where γ : {0, 1, ..., N−
1} × K → R is a progressively measurable process, namely for any k = 0, 1, ..., N − 1

and u, v ∈ K, γ(k, u) = γ(k, v) if ui = vi for all i = 0, 1, ..., k. The portfolio value at time k
is given by

V πk (S) = x+

k−1∑
i=0

γ(i, S)(Si+1 − Si), S ∈ K, k = 0, 1, ..., N. (2.2)

A stopping time is a measurable function σ : K → {0, 1, ..., N} which satisfies the
following, for any u ∈ K and k = 0, 1, ..., N if σ(u) = k then σ(v) = k for any v with
vi = ui for all i = 0, 1, ..., k.

A pair (π, σ) of a self financing strategy π and a stopping time σ will be called a
hedge. A hedge (π, σ) will called perfect if

V πσ(S)∧l(S) ≥ H(σ(S), l, S), ∀S ∈ K, l = 0, 1, ..., N. (2.3)
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Game options under model uncertainty

The super–replication price is given by

V = inf {V π0 | there exists a stopping time σ such that (π, σ) is a perfect hedge} . (2.4)

Observe that we do not have any underlying probability measure, and we require to
construct a super–hedge for any possible values of the stock prices. Similar setup (but
not the same) was studied in [7] for European options.

We make some preparations before we formulate the main result of the paper. Let
Z = (Z0, ..., ZN ) be the canonical process on the Euclidean space RN+1. Namely for
any z = (z0, ..., zN ) ∈ RN+1 and k ≤ N we have Zk(z) = zk. A probability measure P
supported on K is called a martingale law if for any k < N

EP(ZN |Z0, ..., Zk) = Zk P a.s. (2.5)

where EP denotes the expectation with respect to P. Denote by M the set of all mar-
tingale laws. Clearly, M 6= ∅. For instance the probability measure Pb which is given
by

Pb(Z0 = s) = 1 and

Pb(lnZi+1 − lnZi = b) = 1− Pb(lnZi+1 − lnZi = −b) = 1−e−b

eb−e−b , i < N,

is an element inM.
Let Fk = σ(Z0, ..., Zk), k ≤ N be the canonical filtration, and let T be the set of all

stopping times (with respect to the above filtration) with values in the set {0, 1, ..., N}.
The following theorem is the main result of the paper.

Theorem 2.1. The super–replication price is given by

V = infσ∈T supP∈M supτ∈T EPH(σ, τ, Z) =

supP∈M infσ∈T supτ∈T EPH(σ, τ, Z) = supP∈M supτ∈T infσ∈T EPH(σ, τ, Z).

It is well known that inf sup ≥ sup inf, thus in order to prove Theorem 2.1 it is
sufficient to prove the following relations

V ≤ sup
P∈M

sup
τ∈T

inf
σ∈T

EPH(σ, τ, Z) (2.6)

and
V ≥ inf

σ∈T
sup
P∈M

sup
τ∈T

EPH(σ, τ, Z). (2.7)

The first inequality is the difficult one and it will be proved in Sections 3–4. The
second inequality is simpler and we show it by the following argument.

From (2.4) it follows that for any ε > 0 there exists a perfect hedge (π̃, σ̃) with an
initial capital V π̃0 = V + ε. From (2.2) we get that for any P ∈ M the stochastic process

{V π̃k (Z)}Nk=0 is a martingale with respect to P. Observe that σ̃(Z) ∈ T , and so from (2.3)
we obtain that for any τ ∈ T

V + ε = V π̃0 = EPV
π̃
σ̃(Z)∧τ ≥ EPH(σ̃(Z), τ, Z).

The terms P ∈M and τ ∈ T are arbitrary, thus we conclude that

V + ε ≥ sup
P∈M

sup
τ∈T

EPH(σ̃(Z), τ, Z) ≥ inf
σ∈T

sup
P∈M

sup
τ∈T

EPH(σ, τ, Z).

By letting ε ↓ 0 we derive (2.7).

Remark 2.2. From Theorem 2.1 we obtain the following probabilistic corollary.

inf
σ∈T

sup
P∈M

sup
τ∈T

EPH(σ, τ, Z) = sup
P∈M

sup
τ∈T

inf
σ∈T

EPH(σ, τ, Z).

This corollary is not obvious since the set M is a set of non dominated probability
measures, and so it does not follow from the results in [13].
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3 Proof of the main result

This section is devoted to the proof of (2.6), for the case where the functions Fk, Gk :

K → R+, k ≤ N are continuous.

3.1 Discretization of the space

Let n ∈ N. Introduce the set

Kn := {(x0, ..., xN ) : x0 = s and

| lnxi+1 − lnxi| ∈ {a, a+ (b− a)/n, a+ 2(b− a)/n, ..., b}}.

Consider a multinomial model for which the stock price S = (S0, ..., SN ) lies in the set
Kn. As before the savings account is given by B ≡ 1. In this model a portfolio with an
initial capital x is a pair π = (x, γ) where γ : {0, 1, ..., N − 1}×Kn → R is a progressively
measurable process. A hedge is a pair (π, σ) which consists of a portfolio strategy π and
a stopping time σ. A stopping time is a map σ : Kn → {0, 1, ..., N} which satisfies that
if σ(u) = k then σ(v) = k for any v with vi = ui for all i = 0, 1, ..., k. A hedge (π, σ) will
called perfect if

V πσ(S)∧l(S) ≥ H(σ(S), l, S), ∀S ∈ Kn, l = 0, 1, ..., N (3.1)

where the portfolio value is given by the same formula as (2.2).
Let

Vn = inf {V π0 | there exists a stopping time σ such that (π, σ) is a perfect hedge} (3.2)

be the super–replication price in the multinomial model. Next, we introduce a modified
super–replication price. Let M > 0 and let ΓM be the set of all portfolio strategies
π = (x, γ) where γ : {0, 1, ..., N − 1} × Kn → [−M,M ]. Namely, we consider portfolios
for which the absolute value of the number of stocks is not exceeding M . Consider the
super–replication price

VMn = inf
π∈ΓM

{V π0 | there exists a stopping time σ such that (π, σ) is a perfect hedge} .

We will need the following technical lemma.

Lemma 3.1. There exists a constant M > 0 (which is independent of n) such that

VMn = Vn.

Proof. Clearly, VMn ≥ Vn. Thus its sufficient to show that VMn ≤ Vn. Set

A = max
0≤k≤N

sup
x∈K

Fk(x).

Clearly there exists a perfect hedge with an initial capital A (in this case the investor
does not trade and stop only at the maturity). Let (π, σ) be a perfect hedge in the sense
of (3.1). We will assume (without loss of generality) that the initial capital V π0 is no
bigger than A > 0. Furthermore, since the option is exercised no later than in the
moment σ(S), we can assume (without loss of generality) that γ(k, S) ≡ 0 for k ≥ σ(S).

First let us prove by induction that for any S ∈ Kn and k = 0, 1, ..., N ,

V πk∧σ(S)(S) ≤ A
(
1 + eb

)k
and |γ(k, S)| ≤

A
(
1 + eb

)k
(1− e−b)Sk

. (3.3)
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If σ ≡ 0 then the statement is clear. Thus we assume that σ(S) > 0 for any S ∈ Kn (σ
is a stopping time, and so either σ ≡ 0 or σ(S) > 0 ∀S ∈ Kn). Choose S ∈ Kn. Clearly,
the portfolio value at time 1 should be non negative, for any possible growth rate of the
stock. In particular we have,

V π0 (S) + γ(0, S)s(eb − 1) ≥ 0 and V π0 (S) + γ(0, S)s(e−b − 1) ≥ 0

and we conclude that |γ(0, S)| ≤ A
s(1−e−b)

. Thus (3.1) holds for k = 0. Next, assume that

(3.3) holds for k, and we prove it for k + 1. From the induction assumption we get

V π(k+1)∧σ(S)(S) = V πk∧σ(S)(S) + γ(k ∧ σ(S), S)(S(k+1)∧σ(S) − Sk∧σ(S)) ≤

A
(
1 + eb

)k
+

A(1+eb)
k

(1−e−b)Sk
Sk(eb − 1) ≤ A

(
1 + eb

)k+1
,

as required. Next, if σ(S) ≤ k+ 1 then γ(k+ 1, S) = 0. If σ(S) > k+ 1, then the portfolio
value at time k + 2 should be non negative, for any possible growth rate of the stock.
Thus,

V πk+1(S) + γ(k + 1, S)Sk+1(eb − 1) ≥ 0 and V πk+1(S) + γ(k + 1, S)Sk+1(e−b − 1) ≥ 0

and so,

|γ(k + 1, S)| ≤
V πk+1(S)

(1− e−b)Sk+1
≤
A
(
1 + eb

)k+1

(1− e−b)Sk+1
.

This completes the proof of (3.3). Finally, observe that Sk ≥ se−bk and so, we conclude

that for M := As ebN

1−e−b

(
1 + eb

)N
, we have |γ(k, S)| ≤M for all k, S.

Now, we can easily prove the following lemma.

Lemma 3.2.
V ≤ lim inf

n→∞
Vn.

Proof. Fix ε > 0. Let n ∈ N. Consider the multinomial model for which the stock
price process S = (S0, ..., SN ) lies in the set Kn. Let (π, σ) be a perfect hedge for this
multinomial model such that π = (Vn + ε, γ). From lemma 3.1 it follows that we can
assume that |γ(k, S)| ≤ M for any k, S. Consider the map ψn : K → Kn which is given
by ψn(y0, ..., yN ) = (x0, ..., xN ) where

x0 = y0 and for k > 0 ln yi+1 = ln yi

+sgn(lnxi+1 − lnxi)(a+ (b− a)[n(| lnxi+1 − lnxi| − a)/(b− a)]/n)

where [v] is the integer part of v and sgn(v) = 1 for v > 0 and = −1 otherwise. For the
original financial market define a hedge (π̃, σ̃) by the following relations, π̃ = (Vn+2ε, γ̃)

where
γ̃(k, S) = γ(k, ψn(S)) and σ̃(S) = σ(ψn(S)), k < N, S ∈ K. (3.4)

Observe that γ̃ is a progressively measurable map and σ̃ is a stopping time. Thus (π̃, σ̃)

is indeed a hedge for the original financial market. From the continuity of the functions
Fk, Gk, k = 0, 1, ..., N it follows that for sufficiently large n

||S−ψn(S)||+ |Fk(S)−Fk(ψn(S))|+ |Gk(S)−Gk(ψn(S))| < ε

2MN
, S ∈ K, k ≤ N, (3.5)

where we denote ||(z0, ..., zN )|| = max0≤i≤N |zi|. Let S ∈ K. Set Y (n) = ψn(S). From
(3.5) and the fact that γ ∈ [−M,M ] it follows that (for sufficiently large n) for any l ≤ N
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we get

V π̃l∧σ̃(S)(S) = ε+ V π
l∧σ(Y (n))

(Y (n)) +∑l∧σ̃(S)−1
k=0 γ(k, Y (n))((Sk+1 − Sk)− (Y

(n)
k+1 − Y

(n)
k )) ≥

ε+H(σ(Y (n)), l, Y (n))− 2NM ||S − Y (n)| ≥ H(σ̃(S), l, S).

Thus for sufficiently large n, V ≤ 2ε+Vn. Since ε > 0 was arbitrary this concludes the
proof.

3.2 Analysis of the multinomial models

Fix n ∈ N. Let Ω = RN+1. Define the piecewise constant stochastic processes

S
(n)
t (z0, ..., zN ) := z[nt], Y

(n)
t (z0, ..., zN ) = F[nt](z0, ..., zN )

and X
(n)
t = G[nt](z0, ..., zN ), z ∈ Ω, t ∈ [0, 1].

Let {F (n)
t }

1

t=0 be the filtration which is generated by the process S(n). The set Kn ⊂ Ω is
finite, and so, there exists a probability measure Pn on Ω which is supported on Kn and
gives to any element in Kn a positive probability. Thus we can apply Theorem 2.2 in [13]
for a market with one risky asset S(n) which lives on the probability space (Ω,F (n)

1 ,Pn),
and a game option with the payoffs Y (n) ≤ X(n). In this case the super–replication price
coincides with Vn which is given by (3.2). Thus letMn ⊂M be the set of all martingale
laws which are supported on the set Kn and T be the set of all stopping times (with

respect to the filtration {F (n)
t }

1

t=0) with values in the set [0, 1]. From Theorem 2.2 in
[13] and the fact that the processes Y (n), X(n) are piecewise constant we obtain

Vn = sup
P∈Mn

sup
τ∈T

inf
σ∈T

EP(X(n)
σ Iσ<τ + Y (n)

τ Iσ≥τ ) = sup
P∈Mn

sup
τ∈T

inf
σ∈T

EPH(σ, τ, Z).

SinceMn ⊂M, we conclude that for any n ∈ N,

Vn ≤ sup
P∈M

sup
τ∈T

inf
σ∈T

EPH(σ, τ, Z).

This together with Lemma 3.2 completes the proof of (2.6).

Remark 3.3. An interesting question which remains open is the limit behavior where
the maturity date N goes to infinity. Namely, for a given N ∈ N consider the interval

I := I(N) =
[
a√
N
, b√

N

]
. Our conjecture is that for regular enough payoffs the limit

behavior of the super–replication prices V := V(N) as N → ∞ is equal to a stochastic
game version of G–expectation, defined on the canonical space C[0, T ]. For European
options the limit is the standard G–expectation, this follows from [6] and [10]. It seems
that the tool which was employed in [6] can work for the American options case. In this
case the limit of the super–replication prices is equal to an optimal stopping version of
G–expectation. However for game options the problem is more complicated.

4 Extension for upper semicontinuous payoffs

In this section we prove (2.6) for the case where the functions Fk, Gk : K → R+,
k ≤ N are upper semicontinuous (and not necessarily continuous).

Let A = max0≤k≤N supx∈K Gk(x) < ∞. By using similar arguments as in Lemma
5.3 in [9] it follows that for any k = 0, 1, ..., N there are two sequences of continuous
functions {F (n)

k }∞n=1 and {G(n)
k }∞n=1 which satisfy the following:
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(i). A ≥ G(n)
k ≥ Gk, A ≥ F (n)

k ≥ Fk and G(n)
k ≥ F (n)

k , for all n.
(ii).

lim sup
n→∞

G
(n)
k (xn) ≤ Gk(x) and lim sup

n→∞
F

(n)
k (xn) ≤ Fk(x) (4.1)

for every x ∈ K and every sequence {xn}∞n=1 ⊂ K with limn→∞ xn = x.

(iii). Furthermore, for any n ∈ N and u, v ∈ K, F (n)
k (u) = F

(n)
k (v) and G(n)

k (u) = G
(n)
k (v)

if ui = vi for all i = 0, 1, ..., k.
Let V be the super–replication price which corresponds to the payoff functions F,G,

and for any n ∈ N let Vn be the super–replication price which corresponds to the payoff
functions F (n), G(n).

From (i), it follows that for any n ∈ N, V ≤ Vn. Thus from Theorem 2.1 (for continu-
ous payoffs) it follows that

V ≤ lim inf
n→∞

sup
P∈M

sup
τ∈T

inf
σ∈T

EPH
(n)(σ, τ, Z)

where
H(n)(k, l, S) = G

(n)
k (S)Ik<l + F

(n)
l (S)Il≤k, k, l = 0, 1, ..., N, S ∈ K.

We conclude that in order to establish (2.6) we need to prove the following lemma.

Lemma 4.1.

sup
P∈M

sup
τ∈T

inf
σ∈T

EPH(σ, τ, Z) = lim inf
n→∞

sup
P∈M

sup
τ∈T

inf
σ∈T

EPH
(n)(σ, τ, Z).

Proof. From (i),

sup
P∈M

sup
τ∈T

inf
σ∈T

EPH(σ, τ, Z) ≤ lim inf
n→∞

sup
P∈M

sup
τ∈T

inf
σ∈T

EPH
(n)(σ, τ, Z).

Thus we will prove that (infact this is the inequality that we need)

sup
P∈M

sup
τ∈T

inf
σ∈T

EPH(σ, τ, Z) ≥ lim inf
n→∞

sup
P∈M

sup
τ∈T

inf
σ∈T

EPH
(n)(σ, τ, Z). (4.2)

For any n ∈ N, let Pn ∈M and ρn ∈ T be such that

sup
P∈M

sup
τ∈T

inf
σ∈T

EPH
(n)(σ, τ, Z) <

1

n
+ inf
σ∈T

EPnH
(n)(σ, ρn, Z). (4.3)

Consider the set Π of all probability measures on K, induced with the topology of weak
convergence. Observe that Π is a compact set (this follows from Prohorov’s theorem,
see [2] Section 1 for details). From the existence of the regular distribution function
(for details see [21] page 227) we obtain that there exist measurable functions h(n)

k :

Rk+1 → Π, k < N , such that for any Borel set A ⊂ K and n ∈ N

Pn((Z0, ..., ZN ) ∈ A|Z0, ..., Zk) = h
(n)
k (Z0, ..., Zk)(A), Pn a.s.

For any n ∈ N consider the distribution of (under the measure Pn)

(ρn, Z0, ..., ZN , h
(n)
0 (Z0), ..., h

(n)
N−1(Z0, ..., ZN−1))

on the space {0, 1, ..., N} ×K ×ΠN with the product topology.
Since the space {0, 1, ..., N} ×K ×ΠN is compact then by Prohorov’s theorem there

is a subsequence which for simplicity we still denote by

(ρn, Z0, ..., ZN , h
(n)
0 (Z0), ..., h

(n)
N−1(Z0, ..., ZN−1)), n ∈ N
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which converges weakly. Thus from the Skorohod representation theorem (see [4]) we
obtain that we can redefine the sequence

(ρn, Z0, ..., ZN , h
(n)
0 (Z0), ..., h

(n)
N−1(Z0, ..., ZN−1)), n ∈ N

on a probability space (Ω,F , P ) such that we have P a.s convergence

(ρn, Z
(n)
0 , ..., Z

(n)
N , h

(n)
0 (Z

(n)
0 ), ..., h

(n)
N−1(Z

(n)
0 , ..., Z

(n)
N−1))→ (ρ, U0, ..., UN ,W1, ...,WN ).

(4.4)
Redefining means that for any n ∈ N the distribution of

(ρn, Z0, ..., ZN , h
(n)
0 (Z0), ..., h

(n)
N−1(Z0, ..., ZN−1))

under Pn is equal to the distribution of

(ρn, Z
(n)
0 , ..., Z

(n)
N , h

(n)
0 (Z

(n)
0 ), ..., h

(n)
N−1(Z

(n)
0 , ..., Z

(n)
N−1))

under P . Let Gk = σ{U0, ..., Uk}, k ≤ N be the filtration which is generated by U0, ..., UN .
Denote by TU the set of all stopping times (with respect to this filtration) with values in
the set {0, 1, ..., N}. From Lemma 5.1 (property (III)) it follows that for any stochastic
process (L0, ..., LN ) which is adapted to the filtration Gk, k ≤ N , we have

ELρ ≤ sup
τ∈TU

ELτ (4.5)

where E denotes the expectation with respect to P . The proof of this implication can
be done in the same way as in Lemma 3.3 in [5], and so we omit it.

Next, choose 0 < ε < 1. Let σ̃ ∈ TU be such that

inf
σ∈TU

EH(σ, ρ, U) > EH(σ̃, ρ, U)− ε, (4.6)

where U = (U0, ..., UN ). For any k there exists a continuous function fk : Rk+1 → R such

that P (Iσ̃=k 6= fk(U0, ..., Uk)) < ε
2k+1 . For any n ∈ N define σ̃n = N∧min{k|fk(Z

(n)
0 , ..., Z

(n)
k )

> 1
2}. Clearly σ̃n is a stopping time with respect to the filtration generated by Z(n)

0 , ..., Z
(n)
N .

Let C be the following set

C = {ω ∈ Ω|∃m := m(ω) such that ∀n > m σ̃n(ω) = σ̃(ω)}.

From (4.4) and the fact that fk, k ≤ N are continuous functions, it follows that

P (C) ≥ 1−
N∑
i=0

ε

2i+1
≥ 1− ε. (4.7)

Observe that (4.4) also implies that a.s. ρn(ω) = ρ(ω) for sufficiently large n (which
depends on ω). Thus from (4.4) we get

H(σ̃, ρ, U)IC ≥ lim sup
n→∞

H(n)(σ̃n, ρn, Z
(n))IC

where Z(n) = (Z
(n)
0 , ..., Z

(n)
N ). Since H and H(n) are uniformly bounded by A then from

Fatou’s lemma we derive

EH(σ̃, ρ, U)IC ≥ lim sup
n→∞

EH(n)(σ̃n, ρn, Z
(n))IC . (4.8)

Finally, let Q be the distribution of (U0, ..., UN ). From Lemma 5.1 (property (I)) it follows
that Q ∈ M is a martingale distribution. It is well known that for Dynkin games the
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inf and the sup can be exchanged (for details see [18]). Thus from (4.3)–(4.4), (4.5) for
Lk = H(σ, k, U) and (4.6)–(4.8) we get

supP∈M supτ∈T infσ∈T EPH(σ, τ, Z) ≥ supτ∈TU infσ∈TU EH(σ, τ, U)

= infσ∈TU supτ∈TU EH(σ, τ, U) ≥ infσ∈TU EH(σ, ρ, U)

≥ EH(σ̃, ρ, U)IC − ε ≥ lim supn→∞EH(n)(σ̃n, ρn, Z
(n))IC − ε

≥ lim supn→∞EH(n)(σ̃n, ρn, Z
(n))−Aε− ε

≥ lim supn→∞ supP∈M supτ∈T infσ∈T EPH
(n)(σ, τ, Z)− ε(A+ 1),

and since ε was arbitrary we obtain (4.2) as required. The reason that we have lim sup

in the above equation and not lim inf as in (4.2), is because we passed to a subsequence,
but left the same notations.

Remark 4.2. Let us notice that in order to obtain Lemma 4.1 we used a stronger
form of the standard weak convergence. Namely we also required a convergence of
the conditional distributions. This is the discrete analog of the extended weak conver-
gence which introduced by Aldous in [1] for continuous time processes. In general, the
standard weak convergence is not sufficient for the convergence of the corresponding
optimal stopping and Dynkin games values.

5 Auxiliary Lemma

In this section we establish several essential properties of the random vector (ρ, U0, ...,

UN ,W1, ...,WN ) from (4.4).

Lemma 5.1.
(I). The distribution of (U0, ..., UN ) (on the space K) is an element inM.
(II). For any k, the conditional distribution of (U0, ..., UN ) given U0, ..., Uk equals to Wk.
(III). For any k, the event {ρ = k} and GN are independent given Gk.

Proof.
(I). From Lebesgue’s dominated convergence theorem it follows that for any k ≤ N and
continuous bounded functions f : Rk+1 → R, g : K → R we have

E((UN − Uk)f(U0, ..., Uk)) = (5.1)

limn→∞E((Z
(n)
N − Z(n)

k )f(Z
(n)
0 , ..., Z

(n)
k ))

= limn→∞EPn
((ZN − Zk)f(Z0, ..., Zk)) = 0,

where the last equality follows the fact that Pn ∈ M is a martingale distribution. By
applying standard density arguments we obtain that (5.1) implies (I).
(II). From the definition of the topology on Π we have

E(f(U0, ..., Uk)g(U0, ..., UN )) = (5.2)

limn→∞E(f(Z
(n)
0 , ..., Z

(n)
k )g(Z

(n)
0 , ..., Z

(n)
N ))

= limn→∞E(f(Z
(n)
0 , ..., Z

(n)
k )

∫
g(y)h

(n)
k (Z

(n)
0 , ..., Z

(n)
k )(dy))

= E(f(U0, ..., Uk)
∫
g(y)Wk(dy)).

Again, by applying standard density arguments we obtain that (5.2) implies (II).
(III). Next, fix k. The random variables ρn, n ∈ N take on values on the set {0, 1, ..., N}
and so from the fact ρn → ρ it follows that limn→∞ Iρn=k = Iρ=k. Thus, from (II), the
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definition of the topology on Π and the fact that ρn is a stopping time we obtain that

E(Iρ=kE(g(U0, ..., UN )|Gk)) = E(Iρ=k
∫
g(y)Wk(dy)) =

limn→∞E(Iρn=k

∫
g(y)h

(n)
k (Z

(n)
0 , ..., Z

(n)
k )(dy)) =

limn→∞E(Iρn=kE(g(Z
(n)
0 , ..., Z

(n)
N )|Z(n)

0 , ..., Z
(n)
k )) =

limn→∞E(g(Z
(n)
0 , ..., Z

(n)
N )Iρn=k) = E(g(U0, ..., UN )Iρ=k),

and again, from standard density arguments we conclude that

E(Iρ=k|Gk) = E(Iρ=k|GN )

and (III) follows.
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