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Abstract

We introduce a numerically efficient simulation algorithm for Hawkes process with
exponentially decaying intensity, a special case of general Hawkes process that is
most widely implemented in practice. This computational method is able to ex-
actly generate the point process and intensity process, by sampling interarrival-
times directly via the underlying analytic distribution functions without numerical
inverse, and hence avoids simulating intensity paths and introducing discretisation
bias. Moreover, it is flexible to generate points with either stationary or non-stationary
intensity, starting from any arbitrary time with any arbitrary initial intensity. It is also
straightforward to implement, and can easily extend to multi-dimensional versions,
for further applications in modelling contagion risk or clustering arrival of events in
finance, insurance, economics and many other fields. Simulation algorithms for one
dimension and multi-dimension are represented, with numerical examples of univari-
ate and bivariate processes provided as illustrations.
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1 Introduction

Throughout the recent subprime mortgage crisis and current European debt crisis,
financial deterioration and losses can easily spread through the business network and
financial market, and the risk of contagion has created enormous instability and un-
certainty substantially threatening the financial systems, both regionally and globally.
Financial models capable to capture the contagion or clustering effect are essentially
needed. Self-excited point processes, in particular, Hawkes processes early introduced
by [16], nowadays become very popular and viable mathematical tools for modelling
contagion risk and clustering arrival of events in finance, insurance and economics, see
examples of applications in [13], [11], [8], and more recently, [2] and [1]. They also
have various applications in many other fields such as seismology and neurophysiology,
see [24] and [5].

For statistical analysis or practical implementations, simulation is a crucial issue
as the procedure of the parameter estimation or calibration, in particular, for higher
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Exact simulation of Hawkes process

dimensional processes, heavily relies on it. Risk management and asset pricing for
complex path-dependent financial derivatives, such as collateralized debt obligations
(CDOs), require a high level of computational efficiency of simulation, as the analytic
formulas are rather limited and often difficult to obtain. For instance, the model pa-
rameters for pricing CDOs can be calibrated to the market data via numerically solving
optimisation problem using simulation, see [14].

There are two major simulation approaches in the literature: so-called intensity-
based and cluster-based, since a Hawkes process can either be defined via a condi-
tional stochastic intensity representation (e.g. Definition 2.1), or, via a Poisson cluster
representation (e.g. Definition 2.2). As recently surveyed by [19], the current standard
algorithms for simulating Hawkes processes mostly remain the conventional thinning
method via the acceptance/rejection procedure early introduced by [18]1 that is gen-
erally used for simulating any point process with stochastic intensity. [20] provided
algorithms named perfect simulation2 for simulating (marked) Hawkes processes (on
R-time) using a cluster-based approach with a branching structure. Their algorithms
start from time minus infinity and require certain stationarity condition, also see [21].
[14] introduced an algorithm named exact simulation3 for Hawkes process (on R+-
time) which is capable to sample interarrival-times directly via their underlying ana-
lytic distribution functions and hence avoid generating intensity paths and introducing
discretisation bias for associated estimators, also see [15]. However, their method re-
quires numerical evaluation of the inverse of these distribution functions via Brent’s
method which involves intensive computations.

In this paper, we focus on simulation algorithms rather than associated applications.
We have tailored a numerically efficient algorithm specifically for a Hawkes process
(on R+-time) with exponentially decaying intensity, a special case of general Hawkes
process that is most widely implemented in practice. Especially for this special case,
our approach has many advantages, in particular,

1. it is able to exactly generate Hawkes processes by sampling interarrival-times di-
rectly via the underlying analytic distribution functions without numerical inverse,
as each of these interarrival-times can be simulated exactly by splitting into two
independent simple random variables;

2. it is straightforward to implement, and easily to generalise into higher dimensions;

3. it is flexible to simulate Hawkes processes starting from any time, conditional on
any arbitrary fixed initial intensities, or, with any arbitrary distributions for the
initial intensities;

4. it does not require stationarity condition for intensity dynamics, and hence Hawkes
processes with unbounded intensities in a finite time can also be simulated;

5. it also can be easily adjusted to simulate Hawkes processes with stationary inten-
sities.

The paper is organised as follows. Section 2 briefly reviews the Hawkes process with
exponentially decaying intensity via definitions of intensity-based and cluster-based rep-
resentations respectively, and some basic distributional properties are given. Section

1Also see Ogata’s modified thinning algorithm by [23] and Algorithm 7.5.IV in [6].
2Here ‘perfect’ refers to the fact that the simulation on a finite time interval takes the past into account

(without edge effects), also see [4].
3Here the ‘exact’ simulation means a method of drawing an unbiased associated estimator throughout the

entire simulation process.
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Exact simulation of Hawkes process

3 provides the numerical algorithm of exact simulation for a Hawkes process in one
dimension. For verification, numerical examples and comparison with exact theoreti-
cal results of means and variances are also given in Section 4. Section 5 represents
how straightforward our method can be extended to a multi-dimensional version, and a
numerical example of bivariate case is provided as an illustration.

2 Preliminaries

[16] introduced a general type of Hawkes process, where the current intensity of
the arrival of points is determined by points in the past with associated weights. In this
paper, we focus on a simple and slightly modified version, when the response function
is decaying exponentially, and sizes of self-excited jumps in the intensity process are al-
lowed to be either fixed or random. The randomness in jump sizes could provide higher
flexibility for measuring the self-exciting effect, and this is a minor generalisation of the
Markovian self-exciting process represented by [22].

Our aim is to develop algorithms for practical implementation and we assume the
Hawkes processes start from time zero. The definition of this univariate Markovian
Hawkes process on R+-time via conditional stochastic intensity representation is given
in Definition 2.1.

Definition 2.1 (Intensity-based). Hawkes process with exponentially decaying inten-
sity is a point process Nt ≡

{
Tk
}
k=1,2,...

on R+ with non-negative Ft−stochastic inten-
sity

λt = a+ (λ0 − a) e−δt +
∑

0≤Tk<t

Yke
−δ(t−Tk), t ≥ 0,

where

• {Ft}t≥0 is a history of the process Nt with respect to which {λt}t≥0 is adapted;

• a ≥ 0 is the constant reversion level;

• λ0 > 0 is the initial intensity at time t = 0;

• δ > 0 is the constant rate of exponential decay;

• {Yk}k=1,2,... are sizes of self-excited jumps, a sequence of i.i.d. positive random
variables with distribution function G(y), y > 0;

• {Tk}k=1,2,... and {Yk}k=1,2,... are assumed to be independent of each other.

Jump-sizes {Yk}k=1,2,... in the intensity measure the levels of compact of contagion
and can also be fixed constants; δ captures the persistence of contagion with a common
rate of exponentially decaying after each jump. A sample figure of joint process (Nt, λt)

is represented in Figure 1.

On the other hand, this Hawkes point process
{
Nt
}
t≥0

can also be alternatively
constructed as a marked Poisson cluster process on R+-time with the clusters follow-
ing a recursive branching structure, see [17], [6] and [25]. The definition via marked
Poisson cluster representation is given by Definition 2.2, and offers a nice economic
interpretation: the immigrants and offsprings could be considered as primary shocks
and associated aftershocks respectively. Note that, as this point process is defined on
R+, there are no immigrants before time 0 and hence no edge effects as concerned by
[20].

Definition 2.2 (Cluster-based). Hawkes process with exponentially decaying intensity
is a marked Poisson cluster process C =

{
(Ti, Yi)

}
i=1,2,...

with times Ti ∈ R+ and marks
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Figure 1: A Hawkes Process with Exponential Decaying Intensity (Nt, λt)

Yi: the number of points in (0, t] is defined by Nt = NC(0,t]; the cluster centers of C are
the particular points called immigrants, the rest of the points are called offspring, and
they have the following structure:

(a) The immigrants I =
{
Tm
}
m=1,2,...

on R+ are distributed as an inhomogeneous Pois-

son process of rate a+ (λ0 − a) e−δt, t ≥ 0.

(b) The marks
{
Ym
}
m=1,2,...

associated to immigrants I are i.i.d. with Ym ∼ G, and are
independent of the immigrants.

(c) Each immigrant Tm generates one cluster Cm, and these clusters are independent.

(d) Each cluster Cm is a random set formed by marked points of generations of order
n = 0, 1, ... with the following branching structure:

• The immigrant and its mark (Tm, Ym) is said to be of generation 0.
• Recursively, given generations 0, 1, ..., n in Cm, each (Tj , Yj) ∈ Cm of genera-

tion n generates a Poisson process of offspring of generation n+ 1 on (Tj ,∞)

with intensity Yje−δ(t−Tj), t > Tj , where mark Yj ∼ G, independent of gener-
ations 0, 1, ..., n.

(e) C consists of the union of all clusters, i.e. C =
⋃
m=1,2,... Cm.

Definition 2.1 and Definition 2.2 are equivalent. The stationarity condition for this
Hawkes process is δ > µ1G

where µ1G
=
∫∞

0
ydG(y), although this is not required in the

simulation algorithm we developed later. We provide the expectation and variance of
λt and expectation of Nt conditional on λ0 in Proposition 2.3, which will be used later
in Section 4 for numerically validating our algorithm. Fundamental distributional prop-
erties including Proposition 2.3, Laplace transform of λt, and probability generating
function of Nt and the size of clusters can be easily derived by using formulas in [7]
for a more generalised point process (so-called dynamic contagion process), also see
further extensions in [9] and [10].
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Proposition 2.3. The expectation and variance of λt conditional on λ0 are given by

E[λt|λ0] =
aδ

κ
+

(
λ0 −

aδ

κ

)
e−κt,

Var[λt|λ0] =
µ2G

κ

[(
aδ

2κ
− λ0

)
e−2κt +

(
λ0 −

aδ

κ

)
e−κt +

aδ

2κ

]
,

where κ = δ − µ1G
> 0, µ2G

=
∫∞

0
y2dG(y); and the expectation of Nt is given by

E[Nt|λ0] =
aδ

κ
t+

1

κ

(
λ0 −

aδ

κ

)(
1− e−κt

)
.

3 Simulation Algorithm

The algorithm of exact simulation is given by Algorithm 3.1 for a univariate Hawkes
process with exponentially decaying intensity (defined by Definition 2.1 or Definition
2.2) and random sizes of self-excited jumps in the intensity process. This algorithm
is very easy to implement, because each of the random interarrival-times of jumps in
the Hawkes process can be simulated exactly by decomposing it into two independent
and simpler random variables without inverting the underlying cumulative distribution
function. In addition, simulating intensity processes does not require stationarity con-
ditions both for the cases of one-dimension in Algorithm 3.1 and multi-dimension in
Algorithm 5.1.

Algorithm 3.1 (Univariate). The simulation algorithm for one sample path of one-
dimensional Hawkes process with exponentially decaying intensity

{
(Nt, λt)

}
t≥0

con-

ditional on λ0 and N0 = 0, with jump-size distribution Y ∼ G and K̄ jump-times
{T1, T2, ..., TK̄}:

1. Set the initial conditions T0 = 0, λT±
0

= λ0 > a, N0 = 0 and k ∈ {0, 1, 2, ..., K̄ − 1}.

2. Simulate the (k + 1)th interarrival-time Sk+1 by

Sk+1 =

{
S

(1)
k+1 ∧ S

(2)
k+1, Dk+1 > 0,

S
(2)
k+1, Dk+1 < 0,

where

Dk+1 = 1 +
δ lnU1

λT+
k
− a

, U1 ∼ U[0, 1],

and

S
(1)
k+1 = −1

δ
lnDk+1, S

(2)
k+1 = −1

a
lnU2, U2 ∼ U[0, 1].

3. Record the (k + 1)th jump-time Tk+1 in the intensity process λt by

Tk+1 = Tk + Sk+1.

4. Record the change at the jump-time Tk+1 in the intensity process λt by

λT+
k+1

= λT−
k+1

+ Yk+1, Yk+1 ∼ G, (3.1)

where

λT−
k+1

=
(
λT+

k
− a
)
e−δ(Tk+1−Tk) + a.
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5. Record the change at the jump-time Tk+1 in the point process Nt by

NT+
k+1

= NT−
k+1

+ 1. (3.2)

Proof. Given the kth jump-time Tk, the point process has the intensity process {λt}Tk≤t<Tk+Sk+1

following the ODE
dλt
dt

= −δ (λt − a) , (3.3)

with the initial condition λt
∣∣
t=Tk

= λTk
. Obviously, (3.3) has the unique solution

λt =
(
λT+

k
− a
)
e−δ(t−Tk) + a, Tk ≤ t < Tk + Sk+1,

and the cumulative distribution function of the (k + 1)th interarrival-time Sk+1 is given
by

FSk+1
(s) = P {Sk+1 ≤ s}

= 1− P {Sk+1 > s}
= 1− P {NTk+s −NTk

= 0}

= 1− exp

(
−
∫ Tk+s

Tk

λudu

)

= 1− exp

(
−
∫ s

0

λT+
k +vdv

)
= 1− exp

(
−
(
λT+

k
− a
) 1− e−δs

δ
− as

)
. (3.4)

By the inverse transformation method, we have

Sk+1
D
=F−1

Sk+1
(U), U ∼ [0, 1].

However, we can avoid inverting this function FSk+1
(·) of (3.4) by decomposing Sk+1

into two simpler and independent random variables S(1)
k+1 and S(2)

k+1 via

Sk+1
D
=S

(1)
k+1 ∧ S

(2)
k+1,

where

P
{
S

(1)
k+1 > s

}
= exp

(
−
(
λT+

k
− a
) 1− e−δs

δ

)
,

P
{
S

(2)
k+1 > s

}
= e−as,

since

P{Sk+1 > s} = exp

(
−
(
λT+

k
− a
) 1− e−δs

δ

)
× e−as

= P
{
S

(1)
k+1 > s

}
× P

{
S

(2)
k+1 > s

}
= P

{
S

(1)
k+1 ∧ S

(2)
k+1 > s

}
.

• For the simulation of S(1)
k+1, since

F
S

(1)
k+1

(s) = P
{
S

(1)
k+1 ≤ s

}
= 1− exp

(
−
(
λT+

k
− a
) 1− e−δs

δ

)
,
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we set

exp

(
−
(
λT+

k
− a
) 1− e−δS

(1)
k+1

δ

)
D
=U1.

We can invert this simple function explicitly by

S
(1)
k+1

D
= − 1

δ
ln

(
1 +

δ lnU1

λT+
k
− a

)
. (3.5)

Note that, S(1)
k+1 is a defective random variable as

lim
s→∞

F
S

(1)
k+1

(s) = P
{
S

(1)
k+1 ≤ ∞

}
= 1− exp

(
−
λT+

k
− a
δ

)
< 1,

and the condition for simulating a valid S(1)
k+1 is Dk+1 > 0 where

Dk+1 =: 1 +
δ lnU1

λT+
k
− a

.

• For the simulation of S(2)
k+1, since S(2)

k+1 ∼ Exp(a), we have

S
(2)
k+1

D
= − 1

a
lnU2. (3.6)

Hence, for the simulation of Sk+1, we have

Sk+1
D
=

{
S

(1)
k+1 ∧ S

(2)
k+1, Dk+1 > 0,

S
(2)
k+1, Dk+1 < 0,

where S(1)
k+1 and S(2)

k+1 are given by (3.5) and (3.6), respectively.
Therefore, the (k + 1)th jump-time Tk+1 in the Hawkes process is given by

Tk+1 = Tk + Sk+1,

and the change in λt and Nt at time Tk+1 then can be easily derived as given by (3.1)
and (3.2), respectively.

Algorithm 3.1 applies to any arbitrary distribution assumption G for self-excited
jump-sizes {Yk}k=1,2,..., and of course also to the case when jump-sizes are fixed which
is more widely used in the existing literature. By slightly adjusting the algorithm, it
is straightforward to simulate process starting from any time with any arbitrary fixed
value or distribution for λ0, and this flexibility is useful for practical implementations,
such as applications in modelling credit risk and insurance risk, see [7] and [8]. This
algorithm can generate non-stationary process, and also is flexible to extend to simu-
late the process with stationary intensity by additionally assuming that λ0 follows the
stationary distribution4. For instance, if jump-sizes follow exponential distribution of
parameter β, to simulate a stationary process, we only need set the initial intensity by

λ0 ∼ a+ Gamma

(
a

δ
,
δβ − 1

δ

)
.5

4This stationary distribution has been derived in Theorem 3.3. by [7].
5This result is based on Remark 4.3. of [7].
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Figure 2: One Simulated Sample Path of Hawkes process (Nt, λt)

4 Numerical Examples

For illustration purposes, we assume the sizes of self-excited jumps {Yk}k=1,2,... sim-
ply follow the exponential distribution, with the density function specified by

g(y) = βe−βy, y, β > 0,

and then we have the first and second moments µ1G
= 1/β and µ2G

= 2/β2. By set-
ting parameters (a, δ;β;λ0) = (0.9; 1.0; 1.2; 0.9) and using the simulation algorithm in
Algorithm 3.1, we provide some numerical examples as below.

One Simulated Sample Path of Hawkes process

For instance, one simulated sample path of Hawkes process (Nt, λt) with time T = 100

is provided in Figure 2. We can observe the clustering arrival of points of the Hawkes
process by plotting the histogram of Nt, and this contagion effect cannot be captured
in classical Poisson models. This would be useful, for instance, for modelling the conta-
gion risk of clustering defaults during economic crisis. For comparison, the theoretical
expectations E[λt|λ0] and E[Nt|λ0] (given by Proposition 2.3) are also represented.

Comparison between Theoretical Formulas and Simulation Results

To numerically verify our new algorithm, we calculate theoretical formulas of E[λT |λ0],
Var[NT |λ0] and E[NT |λ0] explicitly given by Proposition 2.3, and compare them with
the simulated counterparts, i.e. the mean, variance of simulated λT and the mean of
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Figure 3: Comparison between Exact and Simulated Expectation and Variance of Nt
and λt

simulated NT , respectively, and the results are very close. The comparison figures
and error analysis (in error percentage with respect to the exact theoretical result) are
represented in Figure 3 and Table 1. Every point (marked by a star ∗) in Figure 3 is
calculated based on 100,000 simulated sample paths of (Nt, λt).

5 Multi-dimensional Hawkes Process

By slightly modifying Algorithm 3.1, our method is straightforward to extend to

multi-dimensional cases, for instance, D̄−dimendional point process
{
N

[]
t

}
=1,2,...,D̄

where N []
t ≡

{
T

[]
k

}
k=1,2,...

with the underlying intensity process

λ
[]
t = a[] +

(
λ

[]
0 − a[]

)
e−δ

[]t +

D̄∑
`=1

∑
0≤T [`]

k <t

Y
[,`]
k e

−δ[]
(
t−T [`]

k

)
,  ∈ {1, 2, ..., D̄},

where
{
Y

[,`]
k

}
=`

are the sizes of self-excited jumps and
{
Y

[,`]
k

}
6=`

are sizes of cross-

excited jumps, and they are measurements of the impacts of self-contagion and cross-
contagion respectively. Note that, upon the arrival of a jump in point process N [`]

t , each

marginal intensity process
{
λ

[]
t

}
=1,2,...,D̄

experiences a simultaneous jump of positive

random size, and these jump-sizes could be either independent or dependent. The
simulation algorithm is provided by Algorithm 5.1.

Algorithm 5.1 (Multivariate). The simulation algorithm for one sample path of a D̄−dimensional

Hawkes process with exponentially decaying intensity
{(
N

[]
t , λ

[]
t

)}
t≥0

for  ∈ {1, 2, ..., D̄}
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Table 1: Comparison between Theoretical Formulas and Simulation Results

Time T E[λT |λ0] Simulation Error% Var[NT |λ0] Simulation Error% E[NT |λ0] Simulation Error%
1 1.5908 1.5988 0.50% 1.5049 1.5281 1.54% 1.2550 1.2679 1.03%
2 2.1756 2.1718 -0.18% 3.3313 3.3485 0.51% 3.1463 3.1484 0.07%
3 2.6706 2.6691 -0.06% 5.2733 5.2403 -0.63% 5.5763 5.5789 0.05%
4 3.0896 3.0936 0.13% 7.2008 7.2906 1.25% 8.4623 8.4913 0.34%
5 3.4443 3.4494 0.15% 9.0357 9.1034 0.75% 11.7342 11.7482 0.12%
6 3.7445 3.7521 0.20% 10.7346 10.8018 0.63% 15.3327 15.3604 0.18%
7 3.9987 3.9975 -0.03% 12.2770 12.2694 -0.06% 19.2079 19.2744 0.35%
8 4.2138 4.1992 -0.35% 13.6574 13.7337 0.56% 23.3171 23.2009 -0.50%
9 4.3959 4.3819 -0.32% 14.8794 14.7119 -1.13% 27.6245 27.5913 -0.12%
10 4.5501 4.5424 -0.17% 15.9523 15.9158 -0.23% 32.0996 31.9812 -0.37%
11 4.6805 4.6932 0.27% 16.8879 17.2706 2.27% 36.7168 36.7424 0.07%
12 4.7910 4.8033 0.26% 17.6997 17.5879 -0.63% 41.4541 41.5309 0.19%
13 4.8845 4.8829 -0.03% 18.4009 18.2099 -1.04% 46.2931 46.3742 0.18%
14 4.9636 4.9716 0.16% 19.0046 19.1359 0.69% 51.2182 51.2477 0.06%
15 5.0306 5.0106 -0.40% 19.5229 19.4930 -0.15% 56.2163 55.9555 -0.46%
16 5.0873 5.0841 -0.06% 19.9668 19.8292 -0.69% 61.2761 61.2907 0.02%
17 5.1353 5.1213 -0.27% 20.3463 20.0887 -1.27% 66.3880 66.2481 -0.21%
18 5.1760 5.1840 0.15% 20.6702 20.8857 1.04% 71.5443 71.6802 0.19%
19 5.2104 5.2071 -0.06% 20.9462 20.9341 -0.06% 76.7379 76.4919 -0.32%
20 5.2395 5.2414 0.04% 21.1813 20.9516 -1.08% 81.9632 81.8746 -0.11%

conditional on λ[]
0 and N []

0 = 0, with K̄ joint jump-times {T1, T2, ..., TK̄} in intensity pro-
cesses:

1. Set the initial conditions T0 = 0, λ[]

T±
0

= λ
[]
0 > a[], N []

0 = 0,  ∈ {1, 2, ..., D̄} and

k ∈ {0, 1, 2, ..., K̄ − 1}.

2. Simulate the (k + 1)th interarrival-time Wk+1 by

Wk+1 = min
{
S

[1]
k+1, S

[2]
k+1, ..., S

[D̄]
k+1

}
,

where
Wk+1 = S

[`]
k+1,

and each S
[]
k+1 can be simulated in the same way as Sk+1 as given by Step 2 of

Algorithm 3.1.

3. Record the (k + 1)th jump-time Tk+1 in the intensity process λ[]
t by

Tk+1 = Tk +Wk+1.

4. Record the change at the jump-time Tk+1 in the point process N []
t by

N
[]

T+
k+1

=

 N
[]

T−
k+1

+ 1,  = `,

N
[]

T−
k+1

,  6= `,
 ∈ {1, 2, ..., D̄}.

5. Record the change at the jump-time Tk+1 in the intensity process λ[]
t by

λ
[]

T+
k+1

= λ
[]

T−
k+1

+ Y
[,`]
k+1 ,  ∈ {1, 2, ..., D̄},

where
λ

[]

T−
k+1

=
(
λ

[]

T+
k

− a[]
)
e−δ

[](Tk+1−Tk) + a[].
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Numerical Example: A Bivariate Hawkes Process

Bivariate point processes are widely used in practice, for instance, for modelling the ar-
rivals of (well-defined) events such as transactions, quote updates or price changes ob-
servable in the market, see [12] and [3]. The additional internal and bilateral contagion

risk could be further captured by using a bivariate Hawkes process
{(
N

[1]
t , N

[2]
t , λ

[1]
t , λ

[2]
t

)}
t≥0

,

for instance, with the joint intensity processes specified by

λ
[1]
t = a[1] +

(
λ

[1]
0 − a[1]

)
e−δ

[1]t +
∑

0≤T [1]
k <t

Y
[1,1]
k e

−δ[1]
(
t−T [1]

k

)
+

∑
0≤T [2]

k <t

Y
[1,2]
k e

−δ[1]
(
t−T [2]

k

)
,

λ
[2]
t = a[2] +

(
λ

[2]
0 − a[2]

)
e−δ

[2]t +
∑

0≤T [1]
k <t

Y
[2,1]
k e

−δ[2]
(
t−T [1]

k

)
+

∑
0≤T [2]

k <t

Y
[2,2]
k e

−δ[2]
(
t−T [2]

k

)
.

Again, we assume the sizes of jumps in intensity processes follow independent expo-
nential distributions, i.e.

Y
[,`]
k ∼ Exp(β,`), , ` ∈ {1, 2},

and set parameters by

λ
[·]
0 =

[
0.7

0.7

]
, a[·] =

[
0.4

0.6

]
, δ[·] =

[
0.8

1.0

]
, β[·,·] =

[
1.5 4.0

8.0 2.0

]
.

Here, β[1,1], β[2,2] provide measurement for self-contagion effect, and β[1,2], β[2,1] provide
measurement for cross-contagion effect. A simulated sample path with T = 100 is
represented in Figure 4 by using Algorithm 5.1.
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