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Abstract

A uniform key renewal theorem is deduced from the uniform Blackwell’s renewal
theorem. A uniform LDP (large deviation principle) for renewal-reward processes is
obtained, and MDP (moderate deviation principle) is deduced under conditions much
weaker than existence of exponential moments.
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1 Introduction

An ordinary renewal-reward process S(·) is a process of the form

S(t) = X1 + · · ·+Xn for τ1 + · · ·+ τn ≤ t < τ1 + · · ·+ τn+1 ;

here (τ1, X1), (τ2, X2), . . . are independent copies of a pair (τ,X) of (generally, corre-
lated) random variables such that τ > 0 a.s. That is,

S(t) =

N(t)∑
j=1

Xj where N(t) = min{n : Tn ≤ t} , Tn =

n∑
j=1

τn .

Large deviation principle (LDP) for S(t) (as t→∞) is well-known when τ and X have
exponential moments. I prove moderate deviation principle (MDP) for S(t) requiring

E τ <∞ , (1.1)

E exp(εX2 − τ) <∞ for some ε > 0 . (1.2)

Example 1.1. Let X = ±
√
τ in the sense that P

(
X = −

√
τ
∣∣τ ) = P

(
X =

√
τ
∣∣τ ) = 0.5

a.s. In this case (1.2) follows from (1.1), thus, MDP is ensured by Theorem 1.2 (below)
whenever E τ < ∞. Note that, for instance, large values of X1 do not contribute to the
tail of S(1); indeed, S(1) = 0 unless τ1 ≤ 1, that is, |X1| ≤ 1. This is the significance of
(1.2): large values of X are “screened out” by large values of τ .
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Uniform large and moderate deviations for renewal-reward processes

Emergence of MDP and/or LDP in some models driven by “bad” random variables
is not a new phenomenon. It was observed in the context of renewal processes [4],
self-normalization [6, Sect. 3], random walks in random environment [5, Sect. 2.2].

Conditions (1.1), (1.2) imply EX2 < ∞ (see Remark 4.1) and are invariant under
linear transformations of X and rescaling of τ (see Remark 4.2); thus we may restrict
ourselves to the case

EX = 0 , EX2 = 1 , E τ = 1 . (1.3)

Theorem 1.2. If (1.2), (1.3) are satisfied then

lim
x→+∞,x/

√
t→0

1

x2
lnP

(
S(t) > x

√
t
)

= −1

2
.

The limit in two variables t, x is taken; that is, for every ε > 0 there exists δ > 0 such
that for all t, x satisfying x > 1/δ, x/

√
t < δ the function is ε-close to the limit.

Theorem 1.2 (MDP) will be deduced from Theorem 1.4 (LDP uniform up to MDP),
and Theorem 1.4 extends Theorem 1.3 (LDP uniform away from MDP) to small λ; due
to the uniformity in small λ it covers the limit in two variables t→∞, λ→ 0, λ2t→∞,
which leads readily to MDP. The assumption for Theorem 1.3 is weaker than (1.2) (see
Remark 4.2):

∀λ ∈ R ∀ε > 0 E exp(λX − ετ) <∞ . (1.4)

In combination with (1.1) it implies E |X| < ∞ but does not imply EX2 < ∞ (see
Remark 3.3).

Theorem 1.3. If (1.1), (1.4) hold and EX = 0 then for every λ ∈ R, first,
E exp(λS(t)) < ∞ for all t ≥ 0; second, there exists one and only one ηλ ∈ [0,∞)

such that
E exp(λX − ηλτ) = 1 ; (1.5)

and third,
1

t
lnE exp

(
λS(t)

)
= ηλ +O

(1

t

)
(1.6)

as t→∞, uniformly in λ ∈ [−C,−c] ∪ [c, C] whenever 0 < c < C <∞.

Theorem 1.4. If (1.2) and (1.3) hold then

ηλ =
1

2
λ2 + o(λ2) as λ→ 0 ,

and (1.6) holds uniformly in λ ∈ [−C,C] whenever 0 < C <∞.

Theorem 1.2 is used in [7].
The author thanks the anonymous referee and the associate editor for helpful com-

ments.

2 Uniform renewal theorems

A uniform version of Blackwell’s renewal theorem is available ([8, Th. 1]; see also
[1, Th. 2.6(2), 2.7]) and may be formulated as follows.

First, we define the span of a probability measure µ on (0,∞) as

Span(µ) = max
({
δ > 0 : µ({δ, 2δ, 3δ, . . . }) = 1

}
∪
{

0
})

;

Span(µ) = 0 if and only if µ is non-arithmetic. A set M of probability measures on (0,∞)

will be called a set of constant span δ, if Span(µ) = δ for all µ ∈ M . Symbolically:
Span(M) = δ. Thus, a set of constant span 0 contains only non-arithmetic measures;
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Uniform large and moderate deviations for renewal-reward processes

a set of constant span δ > 0 contains only arithmetic measures of span δ (rather than
2δ, 3δ, . . . ).

Second, for every probability measure µ on (0,∞) we introduce the renewal measure
as the sum of convolutions:

Uµ =

∞∑
n=0

µ ∗ · · · ∗ µ︸ ︷︷ ︸
n

(2.1)

(the term for n = 0 being the atom at the origin); Uµ is infinite, but locally finite, since∫
e−tUµ(dt) =

∑
n

(∫
e−tµ(dt)

)
n <∞.

Theorem 2.1. ([8], [1]) Assume that a setM of probability measures on (0,∞) is weakly
compact (treated as a set of measures on R), is a set of constant span, and is uniformly
integrable, that is,

lim
a→+∞

sup
µ∈M

∫
[a,∞)

t µ(dt) = 0 .

Then in the non-arithmetic case (Span(M) = 0), for every v > 0,

Uµ
(
(u, u+ v]

)
→ v∫

t µ(dt)
as u→∞

uniformly in µ ∈M ; and in the arithmetic case (Span(M) = δ),

Uµ({nδ})→ δ∫
t µ(dt)

as n→∞

uniformly in µ ∈M .

We denote for convenience

λµ =
1∫

t µ(dt)
.

Remark 2.2. The uniform integrability of M ensures continuity of the function µ 7→ λµ
on M . By compactness,

0 < min
µ∈M

λµ ≤ max
µ∈M

λµ <∞ .

Remark 2.3. Under the uniform integrability, M is weakly compact if and only if it is
weakly closed (as noted in [8, p. 25]).

Remark 2.4. In the non-arithmetic case it follows that Uµ({u}) → 0 as u → ∞, uni-
formly in µ ∈ M . Therefore the interval (u, u+ v] in Theorem 2.1 may be replaced with
(u, u+ v), [u, u+ v] or [u, u+ v).

Remark 2.5. We note well-known inequalities

Uµ([u, u+ v]) ≤ Uµ([0, v]) ,

Uµ([u, u+ v)) ≤ Uµ([0, v)) ,

Uµ((u, u+ v]) ≤ Uµ([0, v))

for all u, v ≥ 0. See [2, p. 123] for the third inequality; others follow by approximation.

A uniform version of the key renewal theorem follows. We start with the arithmetic
case.
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Uniform large and moderate deviations for renewal-reward processes

Theorem 2.6. Let M be a set of probability measures on (0,∞) satisfying the condi-
tions of Theorem 2.1, Span(M) = δ > 0, and H a set of functions {0, δ, 2δ, . . . } → R such
that

sup
h∈H

∞∑
k=0

|h(kδ)| <∞ and lim
n→∞

sup
h∈H

∞∑
k=n

|h(kδ)| = 0 .

Then

(Uµ ∗ h)(nδ)→ δλµ

∞∑
k=0

h(kδ) as n→∞

uniformly in µ ∈M and h ∈ H.

Proof. By Remark 2.5, Uµ({nδ}) ≤ Uµ({0}) = 1 for all µ and n. By Theorem 2.1,
Uµ({nδ}) → δλµ as n → ∞, uniformly in µ ∈ M . Lemma 2.7 (below) completes the
proof.

Lemma 2.7. Let U and H be sets of functions {0, 1, 2, . . . } → R such that

sup
u∈U

sup
n
|u(n)| <∞ ,

the limit u(∞) = lim
n→∞

u(n) exists uniformly in u ∈ U ;

sup
h∈H

∑
n

|h(n)| <∞ ;

∞∑
n=N

|h(n)| → 0 as N →∞ , uniformly in h ∈ H .

Then

(u ∗ h)(n)→ u(∞)

∞∑
k=0

h(k) as n→∞ , uniformly in u ∈ U and h ∈ H .

Proof. Denoting ‖u‖∞ = supn |u(n)|, ‖h‖1 =
∑
n |h(n)| and Σ(h) =

∑
n h(n) we have

‖u ∗ h‖∞ ≤ ‖u‖∞‖h‖1, |u(∞)| ≤ ‖u‖∞ and |Σ(h)| ≤ ‖h‖1. For arbitrary N ∈ {0, 1, 2, . . . }
and h ∈ H we introduce hN , hN : {0, 1, 2, . . . } → R by hN (n) = h(n) for n ≤ N , hN (n) = 0

for n > N , and hN = h − hN . We have supu∈U ‖u‖∞ < ∞, suph∈H ‖h‖1 < ∞, and
suph∈H ‖hN‖1 → 0 as N →∞. For arbitrary N and all n ≥ N ,

|(u ∗ h)(n)− u(∞)Σ(h)| ≤
≤ |(u ∗ hN )(n)− u(∞)Σ(hN )|+ |(u ∗ hN )(n)− u(∞)Σ(hN )| ≤

≤
∣∣∣ N∑
k=0

u(n− k)h(k)− u(∞)

N∑
k=0

h(k)
∣∣∣+ |(u ∗ hN )(n)|+ |u(∞)Σ(hN )| ≤

≤
N∑
k=0

|u(n− k)− u(∞)||h(k)|+ ‖u ∗ hN‖∞ + |u(∞)||Σ(hN )| ≤

≤ ‖h‖1 sup
k≥n−N

|u(k)− u(∞)|+ 2‖u‖∞‖hN‖1 ;

given ε > 0, we choose N such that ‖u‖∞‖hN‖1 ≤ ε for all u ∈ U and h ∈ H; then for all
n large enough we have ‖h‖1 supk≥n−N |u(k) − u(∞)| ≤ ε for all u ∈ U and h ∈ H, and
finally, |(u ∗ h)(n)− u(∞)Σ(h)| ≤ 3ε.

The non-arithmetic case needs more effort. Recall that a function h : [0,∞) → R is
called directly Riemann integrable, if two limits exist and are equal (and finite):

lim
δ→0+

δ

∞∑
n=0

inf
[nδ,nδ+δ)

h(·) = lim
δ→0+

δ

∞∑
n=0

sup
[nδ,nδ+δ)

h(·) .
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Uniform large and moderate deviations for renewal-reward processes

Definition 2.8. A set H of functions [0,∞) → R is uniformly directly Riemann inte-
grable, if

sup
h∈H

∞∑
n=0

sup
[n,n+1)

|h(·)| <∞ ,

∞∑
n=N

sup
[n,n+1)

|h(·)| → 0 as N →∞ , uniformly in h ∈ H ;

δ

∞∑
n=0

(
sup

[nδ,nδ+δ)

h(·)− inf
[nδ,nδ+δ)

h(·)
)
→ 0 as δ → 0+ , uniformly in h ∈ H .

Remark 2.9. If suph∈H
∑∞
n=0 sup[nδ,nδ+δ) |h(·)| < ∞ for some δ then it holds for all δ.

Proof. Given δ1, δ2 > 0, we consider A = {(n1, n2) : [n1δ1, n1δ1+δ1)∩[n2δ2, n2δ2+δ2) 6= ∅},
note that #{n1 : (n1, n2) ∈ A} ≤ δ2

δ1
+ 2, and get

∞∑
n1=0

sup
[n1δ1,n1δ1+δ1)

|h(·)| ≤
∞∑

n1=0

max
n2:(n1,n2)∈A

sup
[n2δ2,n2δ2+δ2)

|h(·)| ≤

≤
∑

(n1,n2)∈A

sup
[n2δ2,n2δ2+δ2)

|h(·)| ≤
(δ2
δ1

+ 2
) ∞∑
n2=0

sup
[n2δ2,n2δ2+δ2)

|h(·)| .

Remark 2.10. By Remark 2.9, the first two conditions of Def. 2.8 may be reformulated
as

sup
h∈H

∞∑
n=0

sup
[nδ,nδ+δ)

|h(·)| <∞ ,

∞∑
n=N

sup
[nδ,nδ+δ)

|h(·)| → 0 as N →∞ , uniformly in h ∈ H

for some (therefore, all) δ > 0. Similarly,

δ
∑

n:nδ>N

(
sup

[nδ,nδ+δ)

h(·)− inf
[nδ,nδ+δ)

h(·)
)
≤ (1 + 2δ)

∞∑
n=N

sup
[n,n+1)

|h(·)| .

Thus, the third condition of Def. 2.8 may be reformulated as uniform Riemann integra-
bility on bounded intervals: for every N ,

δ
∑

n≥0:nδ≤N

(
sup

[nδ,nδ+δ)

h(·)− inf
[nδ,nδ+δ)

h(·)
)
→ 0 as δ → 0+ , uniformly in h ∈ H .

Remark 2.11. If each h ∈ H is a decreasing function [0,∞) → [0,∞) then H is uni-
formly directly Riemann integrable if and only if

sup
h∈H

h(0) <∞ , sup
h∈H

∫ ∞
0

h(s) ds <∞ , and

sup
h∈H

∫ ∞
a

h(s) ds→ 0 as a→∞ .

By taking differences, a similar result can be obtained for functions of uniformly bounded
variation on [0,∞) (rather than decreasing).

We turn to the non-arithmetic case (of the uniform version of the key renewal theo-
rem).
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Uniform large and moderate deviations for renewal-reward processes

Theorem 2.12. Let M be a set of probability measures on (0,∞) satisfying the condi-
tions of Theorem 2.1, Span(M) = 0, and H a uniformly directly Riemann integrable set
of functions [0,∞)→ R. Then

(Uµ ∗ h)(t)→ λµ

∫ ∞
0

h(s) ds as t→∞

uniformly in µ ∈M and h ∈ H.

Here is a generalization of Lemma 2.7, to be used in the proof of the theorem.

Lemma 2.13. Let H be as in Lemma 2.7, and V a set of functions {0, 1, 2, . . . } ×
[0,∞) → R such that, first, supv∈V supn supt |vn(t)| < ∞, and second, the limit v(∞) =

limt→∞ vn(t) exists uniformly in v ∈ V for every n, and does not depend on n. Then

∞∑
n=0

h(n)vn(t)→ v(∞)

∞∑
n=0

h(n) as t→∞ , uniformly in v ∈ V and h ∈ H .

Proof. The proof of Lemma 2.7 needs only trivial modifications:
∑
n h(n)vn(t) instead

of (u ∗ h)(n);
∑N
n=0 |vn(t) − v(∞)||h(n)| instead of

∑N
k=0 |u(n − k) − u(∞)||h(k)|; and

maxn=0,...,N |vn(t) − v(∞)| (for large t) instead of supk≥n−N |u(k) − u(∞)| (for large n).
Also, ‖v‖∞ = supn,t |vn(t)|.

Here is a special case of Theorem 2.12 for step functions.

Lemma 2.14. Assume that M and H are as in Theorem 2.12, δ > 0, and every h ∈ H is
constant on each [nδ, nδ + δ). Then the conclusion of Theorem 2.12 holds.

Proof. Lemma 2.13 will be applied to H̃ and V , where H̃ consists of all h̃ of the form
h̃(n) = h(nδ) for h ∈ H, and V consists of all v of the form

vn(·) = Uµ ∗ 1l[nδ,nδ+δ)

for µ ∈M ; that is, vn(t) = Uµ
(
(t− nδ − δ, t− nδ]

)
. By Remark 2.5,

vn(t) ≤ Uµ
(
[0, δ)

)
≤ eδ

∫
e−sUµ(ds) =

eδ

1−
∫

e−sµ(ds)
;

by compactness of M ,

sup
v,n,t
|vn(t)| ≤ eδ

1−maxµ
∫

e−sµ(ds)
<∞ .

By Theorem 2.1, for every n, vn(t) → λµδ as t → ∞, uniformly in v. Thus, V satisfies
the conditions of Lemma 2.13. By Remark 2.10, H̃ satisfies the conditions (for H) of
Lemma 2.13, that is, of Lemma 2.7. It remains to apply Lemma 2.13 and take into
account that v(∞) = λµδ, δ

∑
n h̃(n) =

∫∞
0
h(s) ds and

∑
n h̃(n)vn(·) = Uµ ∗ h since∑

n h(nδ)1l[nδ,nδ+δ) = h.

Proof of Theorem 2.12. For arbitrary δ > 0 and h ∈ H we introduce h−δ , h
+
δ : [0,∞)→ R

by
h−δ (t) = inf

[nδ,nδ+δ)
h(·) , h+

δ (t) = sup
[nδ,nδ+δ)

h(·) for t ∈ [nδ, nδ + δ) ,

then h−δ ≤ h ≤ h+
δ . The sets H−δ = {h−δ : h ∈ H}, H+

δ = {h+
δ : h ∈ H} are uniformly

directly Riemann integrable by the arguments of Remark 2.10. Applying Lemma 2.14
to M and H±δ we get

(Uµ ∗ h±δ )(t)→ λµ

∫ ∞
0

h±δ (s) ds as t→∞
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Uniform large and moderate deviations for renewal-reward processes

uniformly in µ ∈M and h ∈ H.
Given ε > 0, we choose δ = δε such that

∫
|h±δ (t)− h(t)|dt ≤ ε for all h ∈ H. Then we

choose tε such that for all t ≥ tε, µ ∈M and h ∈ H,∣∣∣(Uµ ∗ h±δ )(t)− λµ
∫ ∞

0

h±δ (s) ds
∣∣∣ ≤ ε .

We get

(Uµ ∗ h)(t)− λµ
∫
h(s) ds ≤

≤ (Uµ ∗ h+
δ )(t)− λµ

∫ ∞
0

h+
δ (s) ds+ λµ

(∫ ∞
0

h+
δ (s) ds−

∫ ∞
0

h(s) ds
)
≤

≤ ε+ λµε

and a similar lower bound; thus (recall Remark 2.2),∣∣∣(Uµ ∗ h)(t)− λµ
∫
h(s) ds

∣∣∣ ≤ ε(1 + max
µ∈M

λµ

)
for all t ≥ tε, µ ∈M and h ∈ H.

3 Uniform large deviations

Theorem 1.3 is proved in this section.
Exponential moments of a renewal-reward process boil down to a renewal equation,

see [3, Th. 5], and therefore to an auxiliary renewal process, as explained below.
Having ηλ satisfying (1.5) for a given λ (see Lemma 3.5), we introduce a probability

distribution νλ on (0,∞)×R by its Radon-Nikodym derivative

dνλ
dν

(t, x) = eλx−ηλt

where ν is the joint distribution of τ and X. Our renewal-reward process S(·) is driven
by independent pairs (τk, Xk) distributed ν. Replacing ν with νλ (“change of measure”)
we may get another renewal-reward process. However, we need only the corresponding
renewal measure (the reward being irrelevant). Thus, we introduce the first projection
(marginal distribution) µλ of νλ. That is, if a pair (τλ, Xλ) is distributed νλ then τλ is
distributed µλ. Also, τ is distributed µ. Similarly to (2.1) we define the renewal measure

Uλ =

∞∑
n=0

µ∗nλ , µ∗nλ = µλ ∗ · · · ∗ µλ︸ ︷︷ ︸
n

.

Lemma 3.1.

E eλS(t) = eηλt(Uλ ∗ hλ)(t)

where

hλ(t) =

{
e−ηλtP

(
τ > t

)
for t ≥ 0,

0 for t < 0.
(3.1)

Proof. Using the notation E (Z;A) = E (Z · 1lA) we have

E eλS(t) =

∞∑
n=0

E (eλS(t); N(t) = n) .
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Uniform large and moderate deviations for renewal-reward processes

It is sufficient to prove that

E (eλS(t); N(t) = n) = eηλt(µ∗nλ ∗ hλ)(t) for n = 0, 1, 2, . . .

We have

e−ηλtE (eλS(t); N(t) = n) = e−ηλtE (eλ(X1+···+Xn); N(t) = n) =

E (eλX1−ηλτ1 . . . eλXn−ηλτne−ηλ(t−τ1−···−τn); 0 ≤ t− τ1 − · · · − τn < τn+1) =∫
νλ(dt1 dx1) . . .

∫
νλ(dtn dxn)

∫
ν(dtn+1 dxn+1)e−ηλ(t−t1−···−tn)1l0≤t−t1−···−tn<tn+1 =∫

µλ(dt1) . . .

∫
µλ(dtn)

∫
µ(dtn+1)e−ηλ(t−t1−···−tn)1l0≤t−t1−···−tn<tn+1︸ ︷︷ ︸

hλ(t−t1−···−tn)

= (µ∗nλ ∗hλ)(t) .

Remark 3.2.
dµλ
dµ

(t) = E
(
eλX−ηλτ

∣∣τ = t
)

for µ-almost all t.

Proof: µλ(A) = νλ(A × R) = E (eλX−ηλτ ; τ ∈ A) = E
(
E
(
eλX−ηλτ

∣∣τ ); τ ∈ A
)

=∫
A
E
(
eλX−ηλτ

∣∣τ = t
)
µ(dt) for all µ-measurable sets A ⊂ R.

Recall assumptions (1.1) E τ <∞ and (1.4) ∀λ ∈ R ∀ε > 0 E exp(λX − ετ) <∞.

Remark 3.3. Assumptions (1.1), (1.4) imply E |X| <∞ but do not imply EX2 <∞.
Proof. First, |X| ≤ τ + e|X|−τ ≤ τ + e−X−τ + eX−τ is integrable. Second, take X = τ2/3

with τ such that E τ <∞ but E τ4/3 =∞, then (1.1), (1.4) hold but EX2 =∞.

From now on, till the end of this section, we assume the conditions of Theorem 1.3;
that is, (1.1), (1.4), and EX = 0. We also assume that P

(
X = 0

)
6= 1; otherwise

Theorem 1.3 is trivial.

Lemma 3.4. Maps (λ, η) 7→ exp(λX − ητ) and (λ, η) 7→ τ exp(λX − ητ) are continuous
from R× (0,∞) to the space L1 of integrable random variables.

Proof. It is sufficient to prove the continuity on [−C,C] × [2ε,∞) for arbitrary C, ε > 0.
Also, it is sufficient to consider the map (λ, η) 7→ eετ exp(λX − ητ), since τ ≤ 1

eεeετ a.s.
We apply the dominated convergence theorem, taking into account that exp(−CX −
ετ) + exp(CX − ετ) is an integrable majorant of eετ exp(λX − ητ) for all λ ∈ [−C,C] and
η ∈ [2ε,∞).

Lemma 3.5. For every λ there is one and only one ηλ satisfying (1.5) E exp(λX−ηλτ) =

1, and the function λ 7→ ηλ is continuous on R.

Proof. The function ψ : R×(0,∞)→ (0,∞) defined by ψ(λ, η) = E exp(λX−ητ) is contin-
uous by Lemma 3.4. For every λ the function ψ(λ, ·) is strictly decreasing, ψ(λ,+∞) = 0,
and (possibly, infinite) ψ(λ, 0+) = E exp(λX) > exp(λEX) = 1 provided that λ 6= 0.
Thus, for λ 6= 0 we get unique ηλ > 0; and trivially, η0 = 0.

It remains to prove continuity of the function λ 7→ ηλ. Given λ0 6= 0 and ε < ηλ0

we note that ψ(λ0, ηλ0
+ ε) < 1 = ψ(λ0, ηλ0

) < ψ(λ0, ηλ0
− ε) and take δ > 0 such that

ψ(λ, ηλ0
+ ε) < 1 = ψ(λ, ηλ) < ψ(λ, ηλ0

− ε) and therefore ηλ0
− ε < ηλ < ηλ0

+ ε for all
λ ∈ (λ0 − δ, λ0 + δ). For λ0 = 0 we use a one-sided version of the same argument: given
ε > 0, we take δ > 0 such that ψ(λ, ε) < 1 and therefore ηλ < ε for all λ ∈ (−δ, δ).

Lemma 3.6. The function λ 7→ µλ is continuous from (−∞, 0) ∪ (0,∞) to the space of
measures with the (total variation) norm topology.
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Proof. By Remark 3.2, dµλ/dµ = ϕλ where ϕλ is defined by ϕλ(τ) = E
(
eλX−ηλτ

∣∣τ ). If
λn → λ 6= 0 then, using Lemmas 3.4 and 3.5, ‖µλn −µλ‖ =

∫
|ϕλn −ϕλ|dµ = E |ϕλn(τ)−

ϕλ(τ)| = E |E
(
eλnX−ηλnτ

∣∣τ ) − E(eλX−ηλτ ∣∣τ )| ≤ E |eλnX−ηλnτ − eλX−ηλτ | → 0 as n →
∞.

Lemma 3.7. The set {µλ : λ ∈ [−C,−c] ∪ [c, C]} satisfies the conditions of Theorem 2.1
whenever 0 < c < C <∞.

Proof. Lemma 3.6 ensures compactness (even in a topology stronger than needed). For
every λ measures µλ and µ are mutually absolutely continuous, therefore Span(µλ) =

Span(µ). It remains to prove uniform integrability. We have
∫

[a,∞)
t µλ(dt) =

E
(
τ exp(λX − ηλτ)1l[a,∞)(τ)

)
→ 0 as a → ∞ uniformly in λ ∈ [−C,−c] ∪ [c, C], since

random variables τ exp(λX − ηλτ) for these λ are a compact subset of L1 by Lemmas
3.4, 3.5.

Proof of Theorem 1.3. Existence and uniqueness of ηλ satisfying (1.5) are ensured by
Lemma 3.5; finiteness of E eλS(t) by Lemma 3.1.

We reformulate (1.6) as existence of T ∈ (0,∞) such that

sup
λ∈[−C,−c]∪[c,C], t∈[T,∞)

∣∣∣− ηλt+ lnE eλS(t)
∣∣∣ <∞ . (3.2)

The set M = {µλ : λ ∈ [−C,−c] ∪ [c, C]} satisfies the conditions of Theorem 2.1 by
Lemma 3.7.

By Remark 2.2,
∫
t µλ(dt) is bounded away from 0 and ∞ for λ ∈ [−C,−c] ∪ [c, C].

The rest of the proof of (3.2) splits in two cases.
Non-arithmetic case: Span(µ) = 0.
The set H = {hλ : λ ∈ [−C,−c] ∪ [c, C]} is uniformly directly Riemann integrable by

(3.1), (1.1) and Remark 2.11. By Lemma 3.1 and Theorem 2.12,

e−ηλtE eλS(t) →
∫∞

0
hλ(s) ds∫
s µλ(ds)

as t→∞

uniformly in λ ∈ [−C,−c] ∪ [c, C]. In order to get (3.2) it remains to check that the
ratio of integrals is bounded away from 0 and ∞. For the denominator, see above. The
numerator is bounded from above by (3.1), (1.1), and from below, since ηλ is bounded
from above for λ ∈ [−C,−c] ∪ [c, C] by continuity.

Arithmetic case: Span(µ) = δ > 0.
The set H of restrictions to {0, δ, 2δ, . . . } of the functions hλ for λ ∈ [−C,−c] ∪ [c, C]

satisfies the conditions of Theorem 2.6 by (3.1) and (1.1). By Lemma 3.1 and Theorem
2.6,

e−ηλnδE eλS(nδ) →
δ
∑∞
k=0 hλ(kδ)∫
s µλ(ds)

as n→∞

uniformly in λ ∈ [−C,−c] ∪ [c, C]. The numerator is bounded from above by (3.1), (1.1),
and from below, since hλ(0) = 1. Thus we get (3.2) for t ∈ {0, δ, 2δ, . . . }, which is
sufficient, since S(·) is constant on [kδ, kδ + δ) (and ηλ is bounded).

4 Moderate deviations

Theorems 1.2 and 1.4 are proved in this section.
In order to use small λ we need (1.2): E exp(εX2 − τ) <∞ for some ε > 0.

Remark 4.1. Assumptions (1.1), (1.2) imply EX2 <∞.
Proof: εX2 ≤ τ + eεX

2−τ is integrable.
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Remark 4.2. Assumption (1.2) is invariant under linear transformations of X, and
rescaling of τ ; also, (1.2) implies (1.4).
Proof. Rescaling X: E exp

(
(c−2ε)(cX)2 − τ

)
= E exp(εX2 − τ) <∞.

ShiftingX: E exp
(
ε
2 (X+c)2−τ

)
≤ E exp

(
ε
2 (X−c)2+ ε

2 (X+c)2−τ
)

= ec
2εE exp(εX2−

τ) <∞.
Rescaling τ : E exp(cεX2 − cτ) = E

(
exp(εX2 − τ)

)
c ≤

(
E exp(εX2 − τ)

)
c < ∞ for

c ∈ (0, 1), and E exp(εX2 − cτ) ≤ E exp(εX2 − τ) <∞ for c ∈ [1,∞).
Finally, (1.2) implies (1.4) since E exp(δX2 − τ) <∞ implies E exp(εδX2 − ετ) <∞

(assuming 0 < ε < 1) and therefore E exp(λX − ετ) ≤ E exp
(
λ2

4εδ + εδX2 − ετ
)
<∞.

From now on we assume the conditions of Theorem 1.4; that is, (1.2), and (1.3):
EX = 0, EX2 = 1, E τ = 1. Conditions of Theorem 1.3 follow, since (1.2) implies (1.4)
by Remark 4.2.

Here is an analytic fact that will give us some integrable majorants.

Lemma 4.3. For all a, ε,Λ ∈ (0,∞),

sup
t>0,x>0,λ∈(0,Λ)

(1 + t+ x2) exp(λx− aλ2t)

t+ exp(εx2 − t)
<∞ .

Proof. Denoting this supremum by S(a, ε,Λ) we observe that S(a, ε,Λ) ≤ max(1, c2)

S(c−2a, c2ε, cΛ) for arbitrary c > 0 (by rescaling, x 7→ cx and λ 7→ c−1λ). Thus, we
restrict ourselves to ε = 1.

We note that

max
λ∈R

(λx− aλ2t) =
x2

4at
.

We choose α, β > 0 such that α > 1 and β2 < 4a(α2−1) (for instance, α = 2 and β = 3
√
a)

and consider three cases.
Case 1: x ≤ α

√
t.

We note that t+ exp(x2 − t) ≥ t+ e−t ≥ max(t, 1), thus,

(1 + t+ x2) exp(λx− aλ2t)

t+ exp(x2 − t)
≤

(1 + t+ x2) exp x2

4at

max(t, 1)
≤

≤
(1 + t+ α2t) exp α2

4a

max(t, 1)
≤ (2 + α2) exp

α2

4a
.

Case 2: α
√
t ≤ x ≤ βt.

(1 + t+ x2) exp(λx− aλ2t)

t+ exp(x2 − t)
≤

(1 + t+ x2) exp x2

4at

exp(α2t− t)
≤

≤ (1 + t+ β2t2) exp
(β2t2

4at
− α2t+ t

)
≤

≤ sup
t>0

(1 + t+ β2t2) exp
(
− 4a(α2 − 1)− β2

4a
t
)
<∞ .

Case 3: x ≥ βt.

(1 + t+ x2) exp(λx− aλ2t)

t+ exp(x2 − t)
≤ (1 + β−1x+ x2) exp(λx− aλ2t− x2 + t) ≤

≤ sup
x

(1 + β−1x+ x2) exp(Λx− x2 + β−1x) <∞ .
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Lemma 4.4. For all a, ε,Λ ∈ (0,∞),

sup
t>0,x∈R,λ∈(−Λ,Λ)

(1 + t+ x2)
(
1 + exp(λx− aλ2t)

)
t+ exp(εx2 − t)

<∞ .

Proof. By Lemma 4.3 applied to |x|, |λ|,

sup
t>0,x∈R,λ∈(−Λ,Λ)

(1 + t+ x2) exp(|λx| − aλ2t)

t+ exp(εx2 − t)
<∞ ,

and λx ≤ |λx|, of course. The new terms are bounded:

1 + t

t+ exp(εx2 − t)
≤ 1 + t

t+ e−t
≤ 1 + t

max(1, t)
≤ 2 ;

x2

t+ exp(εx2 − t)
≤ x2

t+ εx2 − t
≤ 1

ε
.

Here is a counterpart of Lemma 3.4. This time, the origin λ = η = 0 is included (but
its neighborhood is reduced).

Lemma 4.5. For every a ∈ (0,∞), maps (λ, η) 7→ exp(λX − ητ) and (λ, η) 7→ τ exp(λX −
ητ) are continuous from {(λ, η) : λ ∈ R, η ∈ [aλ2,∞)} to the space L1 of integrable
random variables.

Proof. We apply the dominated convergence theorem, taking into account that τ +

exp(εX2 − τ) is an integrable majorant by Lemma 4.4.

Lemma 4.6. For all a, ε,Λ ∈ (0,∞),

sup
t>0,x∈R,λ∈(−Λ,0)∪(0,Λ)

| exp(λx− aλ2t)− 1− (λx− aλ2t)|
λ2
(
t+ exp(εx2 − t)

) <∞ .

Proof. Denote u = λx− aλ2t.
Case |x| ≤ a|λ|t: we have |λx| ≤ aλ2t, thus −2aλ2t ≤ u ≤ 0 and |eu − 1 − u| =

eu − 1− u ≤ 1− 1− u = −u ≤ 2aλ2t ≤ 2aλ2
(
t+ exp(εx2 − t)

)
.

Case |x| ≥ a|λ|t: we apply the bound |eu − 1− u| ≤ 1
2u

2 max(1, eu), note that u2/λ2 ≤
2x2 + 2(aλt)2 ≤ 4x2 and get an upper bound

2x2 max
(
1, exp(λx− aλ2t)

)
t+ exp(εx2 − t)

,

bounded by Lemma 4.4.

Lemma 4.7. For all a ∈ (0,∞),

E exp(λX − aλ2τ)− 1

λ2
→ 1

2
− a as λ→ 0 .

Proof. We have

exp(λX − aλ2τ)− 1− (λX − aλ2τ)

λ2
→ 1

2
X2 a.s. as λ→ 0 .

The left-hand side is dominated by τ + exp(εX2 − τ) by Lemma 4.6, the majorant being
integrable (for some ε) by (1.1), (1.2). By the dominated convergence theorem,

E exp(λX − aλ2τ)− 1− λEX + aλ2E τ

λ2
→ 1

2
EX2 ;

it remains to use (1.3).
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Recall ηλ satisfying (1.5) E exp(λX − ηλτ) = 1, given by Lemma 3.5; η0 = 0, and
ηλ > 0 for λ 6= 0.

Lemma 4.8. ηλ = 1
2λ

2 + o(λ2) as λ→ 0.

Proof. If a > 1
2 then by Lemma 4.7, E exp(λX − aλ2τ) < 1 and therefore ηλ < aλ2 for all

λ 6= 0 small enough. Similarly, if a < 1
2 then ηλ > aλ2 for all λ 6= 0 small enough.

Lemma 4.9. The function λ 7→ µλ is continuous from R to the space of measures with
the norm topology.

Proof. Continuity on (−∞, 0) ∪ (0,∞) holds by Lemma 3.6. The same proof gives now
continuity at 0 due to Lemma 4.5 (and 4.8).

Lemma 4.10. The set {µλ : λ ∈ [−C,C]} satisfies the conditions of Theorem 2.1 when-
ever 0 < C <∞.

Proof. We repeat the proof of Lemma 3.7 using Lemma 4.9 instead of 3.6, and 4.5
instead of 3.4.

Proof of Theorem 1.4. The first claim is ensured by Lemma 4.8. For the second claim,
the proof of Theorem 1.3 needs only trivial modifications: [−C,C] and related results of
Sect. 4 are used instead of [−C,−c] ∪ [c, C] and related results of Sect. 3.

Proof of Theorem 1.2. By the well-known Gärtner(-Ellis) argument it is sufficient to
prove that

lim
t→∞,λ→0,λ2t→∞

1

λ2t
lnE expλS(t) =

1

2
.

By Theorem 1.4, ∣∣∣∣ 1

λ2t
lnE expλS(t)− ηλ

λ2

∣∣∣∣ = O
( 1

λ2t

)
as t→∞, uniformly in λ ∈ [−C, 0) ∪ (0, C]. By Lemma 4.8,∣∣∣∣ηλλ2

− 1

2

∣∣∣∣→ 0

as λ→ 0.
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