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Abstract

We verify the Edgeworth expansion of any order for the integrated ergodic Lévy
driven Ornstein-Uhlenbeck process, applying a Malliavin calculus with truncation
over the Wiener-Poisson space. Due to the special structure of the model, each coef-
ficient of the expansion can be given in a closed form.
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1 Introduction

Let (X,Y ) = {(Xt, Yt)}t∈R+
be the bivariate model described by
Xt = X0 − λ

∫ t

0

Xsds+ Zt,

Yt =

∫ t

0

(γ + βXs)ds+ ρZt,

(1.1)

where Z = (Zt)t∈R+
is a non-trivial Lévy process independent of the initial variable X0,

and the parameter (λ, γ, β, ρ) ∈ (0,∞)×R× (R\{0})×R satisfies that

β + ρλ 6= 0. (1.2)

The process X is the exponentially ergodic Lévy driven Ornstein-Uhlenbeck (OU) pro-
cess; we refer to [4] and the references therein for fundamental facts concerning the
OU process. The goal of this note is to provide conditions under which the Edgeworth
expansion of the expectation E[f(T−1/2HT )] as T →∞ is valid, where

HT := YT − E[YT ] (1.3)

and f : R → R is a measurable function of at most polynomial growth. The condition
(1.2) will turn out to be necessary for the Gaussian limit of L(T−1/2HT ) to be non-
degenerate: as a matter of fact, the necessity of (1.2) can be seen concisely by the
expression

T−1/2HT = (β + ρλ)T−1/2

∫ T

0

(Xt − E[Xt])dt+ ρT−1/2 {(Xt − E[Xt])− (X0 − E[X0])} ,
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Expansion of integrated OU process

so that, if β+ρλ = 0 and (Xt−E[Xt])−(X0−E[X0]) = Op(1) as T →∞, then L(T−1/2HT )

tends in probability to 0 (See Section 2.2).

As is well known, distributional regularity of the underlying model is essential to the
validity of the Edgeworth expansion. At first glance, the regularity of the joint distribu-
tion L(X,H), which will play an essential role in derivation of the expansion (see Section
3), does not seem enough since we have only one-dimensional random input Z against
the two-dimensional objective (X,H). In particular, for pure-jump Z we have to take
distributional regularity over the Poisson space into account, rendering the problem
mathematically interesting in its own right. In this case, we will execute the Malliavin
calculus under truncation, which enables us to successfully pick out a nice event on
which the integration by parts formula can apply to ensure distributional regularity;
more specifically, our truncation functional will be constructed through two diffusive
jumps, so as to make the Malliavin covariance matrix associated with the flow of (X,H)

non-degenerate (As will be mentioned in Section 3.4, a single jump is not enough). The
Malliavin calculus conveniently enables us to bypass intractable direct estimate of the
characteristic function of L(T−1/2HT ), and results in fairly simple conditions.

Our result has the following statistical implication. Suppose that we can directly
observe {Xt : 0 ≤ t ≤ T}, based on which we want to estimate θ0 := E[X0] (the mean of
the stationary distribution). A natural estimator is then given by

θ̂T :=
1

T

∫ T

0

Xsds

We easily see that T−1/2HT = T 1/2(θ̂T − θ0) with β = 1 and γ = ρ = 0, hence the consis-
tency, asymptotic normality, and higher order expansion of θ̂T are obtained according
to our result.

The distributional property of the integrated OU process X∗T :=
∫ T

0
Xtdt, especially

its tail behavior, has been investigated in [2]. There, especially motivated by the OU-
based stochastic volatility model, the authors provided several concrete examples of
positive OU processes for which the tail behavior of L(X∗T ) for fixed T resembles that of
L(XT ); it was done by looking at the tail of the Lévy measures. The tail approximation
discussed in [2] is typically better for smaller λ > 0. Turning to the present study, our
Theorem 2.3 provides the different perspective in the different setting: we here provide
a unified way of improving the central-limit effect over long period through T →∞.

Section 2 presents the main result, followed by the proof in Section 3.

2 Edgeworth expansion

2.1 Statement of result

We are given a stochastic basis (Ω,F ,F = (Ft)t∈R+
, P ), on which our processes are

defined.

Assumption 2.1. X is strictly stationary with a stationary distribution F admitting
moments of any order.

It is known that X is exponentially β-mixing and ergodic under Assumption 2.1; see
[4] for more details.

Denote by (b, C,Π) the generating triplet of Z in the form

ϕ(u;Zt) = exp

{
t

(
ibu− 1

2
Cu2 +

∫
R

(eiuz − 1− iuz)Π(dz)

)}
,
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Expansion of integrated OU process

where b ∈ R, C ≥ 0, and the Lévy measure Π defined on R is a σ-finite measure
satisfying Π({0}) = 0 and

∫
(z2 ∧ 1)Π(dz) <∞. Then the process H of (1.3) satisfies

dHt = β(Xt − κ(1)
F )dt+ ρdZ̄t, H0 = 0,

where Z̄t := Zt − E[Zt] = Zt − E[Z1]t and

κ
(k)
ξ := i−k∂ku logE[exp(iuξ)]

∣∣
u=0

,

the k-th cumulant of ξ, with ∂v denoting the (partial) differentiation with respect to a
variable v.

Denote by Λ the Poisson random measure associated with jumps of Z. We decompose
it as

Λ(dt, dz) = µ[(dt, dz) + µ(dt, dz)

for some Poisson random measures µ[ and µ; by the independently scattered property
of Λ, such a decomposition is always possible. Correspondingly, we write

Π(dz) = ν[(dz) + ν(dz),

where ν[ and ν stand for the Lévy measures on R+ associated with µ[ and µ, respec-
tively.

Assumption 2.2. Either one of the following two conditions holds true:

(i) C > 0 (no condition is imposed on the jump-part characteristic);

(ii) C = 0 and there exists a non-empty open subset of R\{0} on which ν admits a
positive C3-density, say g, with respect to the Lebesgue measure.

Note that Assumption 2.2 puts no restriction on the structure of ν[.

Let us introduce the notation necessary for the Edgeworth expansion; see [6] for
more details. We introduce the r-th cumulant function of T−1/2HT (r ∈ N, r ≥ 2):

χr,T (u) := ∂ru logE
[
exp(iuT−1/2HT )

]
.

Let p ≥ 3 be an integer. The (p− 2)-th Edgeworth expansion Ψp,T (a signed measure) is
defined by the Fourier inversion of u 7→ Ψ̂p,T (u), where

Ψ̂p,T (u) := exp

(
1

2
χT,2(u)

)
+

p−2∑
r=1

T−r/2P̃r,T (u),

with P̃r,T (u) specified via the formal expansion

exp

( ∞∑
r=2

1

r!
χr,T (u)

)
= exp

(
1

2
χ2,T (u)

)
+

∞∑
r=1

T−r/2P̃r,T (u).

Let φ(·; Σ) stand for the one-dimensional centered normal density having variance Σ >

0, then the r-th Hermite polynomial associated with φ(·; Σ) is

hr(y; Σ) := (−1)rφ(y; Σ)−1∂ryφ(y; Σ).

Let
χr,T := (−i)rχr,T (0),
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Expansion of integrated OU process

the r-th cumulant of T−1/2HT ; in Section 2.2, we will see that χr,T = O(T−(r−2)/2) as
T →∞. The density of Ψp,T with respect to the Lebesgue measure is given by

gp(y;T−1/2HT ) =

1 +

p−2∑
k=1

k∑
l=1

∑
k1,...,kl∈N:
k1+···+kl=k

χk1+2,T · · · · · χkl+2,T

l!(k1 + 2)! · · · (kl + 2)!
hk+2l(y; ΣT )

φ(y; ΣT ),

where ΣT := χ2,T ; we will approximate E[f(T−1/2HT )] by

Ψp,T [f ] :=

∫
f(y)gp(y;T−1/2HT )dy.

Let p0 := 2[p/2] and denote by E(M,p0) the set of all measurable functions f : R→ R

satisfying |f(x)| ≤M(1 + |x|p0) for every x ∈ R.
Now we can state the main result.

Theorem 2.3. Let X,Y,H be given through (1.1) and (1.3), and suppose that (1.2) and
Assumptions 2.1 and 2.2 hold true. Fix any positive number Σ0 such that

Σ0 >
2

λ
(β + ρλ)2κ

(2)
F .

Then, for anyM,K > 0, there exist positive constantsM∗ and δ∗ such that∣∣∣E[f(T−1/2HT )]−Ψp,T [f ]
∣∣∣ ≤M∗ ∫

R

sup
|y|≤T−K

|f(x+ y)− f(x)|φ(x; Σ0)dx+ o(T−(p−2+δ∗)/2)

(2.1)
for T →∞ uniformly in f ∈ E(M,p0).

Most often in practice, the first term in the upper bound in (2.1) can be quickly
vanishing by taking K large; for example, it is the case when f is an indicator function
f = 1A for various A ⊂ R, such as A = (−∞, a], A = [a, b], and so on.

2.2 Explicit coefficients

The approximating density gp(·;T−1/2HT ) involves the cumulants χ2,T , χ3,T , . . . , χp,T .
We here prove the explicit formula for them.

Noticing the explicit solution Xt = e−λtX0+
∫ t

0
e−λ(t−s)dZs, we can apply the stochas-

tic Fubini theorem to obtain the relation∫ t

0

Xsds = η(λ, t)X0 +

∫ t

0

η(λ, t− s)dZs, (2.2)

where η(λ, u) = λ−1(1− e−λu); one can consults [2] for a detailed analysis of integrated
OU processes, especially in the context of financial econometrics. It follows from (1.1),
(2.2), and the special relation kλκ

(k)
F = κ

(k)
Z1

for k ∈ N (see [1, 4]) that we can express
HT as

HT = βη(λ, T )X0 − T (β + ρλ)κ
(1)
F +

∫ T

0

{ρ+ βη(λ, T − s)} dZs.

Hence, using the independence between X0 and Z we obtain

χr,T = (−i)r
[
∂ruκ

(
βT−1/2η(λ, T )u;F

)
+

∫ T

0

∂ruκ
(
{ρ+ βη(λ, T − s)}T−1/2u;Z1

)
ds

]∣∣∣∣∣
u=0

=
{
βT−1/2η(λ, T )

}r
κ

(r)
F +

∫ T

0

(
{ρ+ βη(λ, v)}T−1/2

)r
dvλrκ

(r)
F

= T−(r−2)/2

[
T−1 {βη(λ, T )}r + λrT−1

∫ T

0

{ρ+ βη(λ, v)}r dv

]
κ

(r)
F ,
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Expansion of integrated OU process

where κ(·; ξ) denotes the cumulant function of ξ. By making use of the differential equa-
tion ∂s {η(λ, s)}k = k {η(λ, s)}k−1−λk {η(λ, s)}k with η(λ, 0) = 0 and then integrating the
both sides with respect to s over [0, T ], we can proceed as in [5, Section 3] to conclude
that

χr,T = T−(r−2)/2

T−1 {βη(λ, T )}r + λr

r∑
j=0

(
r

j

)
ρr−jβjMr,T (j)

κ(r)
F , (2.3)

whereMr,T (j) is given by

Mr,T (0) = 1,

Mr,T (j) = λ−j − T−1λ−(j+1)

j∑
k=1

k−1 {λη(λ, T )}k , j ≥ 1.

Thus we can explicitly write down the coefficients of the Edgeworth expansion Ψp,T up
to any order. It is obvious from (2.3) that χr,T = O(T−(r−2)/2) for r ≥ 2;

T (r−2)/2χr,T → λr

r∑
j=0

(
r

j

)
ρr−jβjλ−jκ

(r)
F .

In particular, we get
ΣT = χ2,r → 2λ−1(β + ρλ)2κ

(2)
F ,

hence the necessity of the condition (1.2).

3 Proof of Theorem 2.3

We will apply [6, Theorem 1]. In order to ensure distributional regularity necessary
for the Edgeworth expansion, we will make use of a Malliavin calculus with an effective
truncation functional. The main idea of the proof is in principle similar to that of [5,
Section 4] treating the stochastic volatility model, whereX expresses the latent positive
volatility process. However, the OU process X in the present model can take negative
values too, so that the way of constructing a truncation functional is essentially different
from that of [5]. To save space, we will sometimes omit the technical details, referring
to the pertinent parts of [3, 5].

Let us briefly overview the fundamental device. By means of [6, Theorem 1], in order
to deduce Theorem 2.3 it suffices to verify the following conditions:

[A1] X is strongly mixing with exponential rate;

[A2] supt∈[0,T ] ‖Ht‖Lp+1(P ) <∞ for each T ∈ R+;

[A3] there exist positive constants t0, a, a′ and B, and a truncation functional ψ :

(Ω,F)→ ([0, 1],B([0, 1])) such that 0 < a, a′ < 1 and 4a′ < (a− 1)2, and that

E

[
sup
|u|≥B

∣∣E[ψ exp(iuHt0)|X0, Xt0 ]
∣∣] < a′,

1− E[ψ] < a.

As was mentioned in Section 2, Assumption 2.1 ensures [A1] and [A2] (see (2.3)), so
that it remains to verify [A3], which is a version of conditional Cramér conditions. Al-
though it may be difficult in general to verify [A3], we will be able to construct a specific
truncation ψ which significantly simplify the task.

We also note that the condition (Ã′ − 4) of [3, p. 60 and p.130] (smoothness of the
coefficients, and integrability under cut-off through an auxiliary function) is indispens-
able. We will mention this point in Section 3.2
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Page 5/10

ecp.ejpecp.org



Expansion of integrated OU process

3.1 Transformation of the Poisson random measure

In order to execute a Malliavin calculus of [3], we introduce a transformation of the
absolutely continuous part of the Poisson random measure.

Under Assumption 2.1, Z admits the Lévy-Itô decomposition of the form

Zt = λκ
(1)
F t+

√
Cw̃t +

∫ t

0

∫
R

zµ̃[(ds, dz) +

∫ t

0

∫
R

zµ̃(ds, dz), t ∈ R+,

where w̃ stands for a one-dimensional Wiener process defined on (Ω,F ,F, P ),

µ̃[(dt, dz) := µ[(dt, dz)− ν[(dz)dt,

and µ̃(dt, dz) := µ(dt, dz)− ν(dz)dt.

Assumption 2.2 assures the existence of a bounded domain

E0 = (c1, c2) ⊂ R\{0},

for which the Lévy density g of ν satisfies that

inf
z∈E0

g(z) > 0.

Without loss of generality, we may and do suppose that 0 < c1 < c2: if ν(R+) ≡ 0, then
take −Z as Z anew. We introduce the change of variables z∗ = z∗(z) = g+(z) through
z∗ = z∗(z) =

∫ c2
z
g(v)dv for z ∈ E0; obviously, g+ is strictly decreasing on E0. Let g−

denote the strictly decreasing inverse function of g+ defined on

E = (g+(c2), g+(c1)).

Let µ∗ denote the integer-valued random measure defined by

∫ t

0

∫ a2

a1

h(s, z)µ(ds, dz) =

∫ t

0

∫ g+(a1)

g+(a2)

h(s, g−(z∗))µ∗(ds, dz∗)

for each t ∈ R+, a1, a2 ∈ R such that a1 < a2, and for any measurable function h on
R+ ×R+; in particular,

E[µ∗([0, t], B)] = tLeb(B).

Writing µ̃∗(dt, dz∗) = µ∗(dt, dz∗)−dtdz∗, we transform µ (on [0, t]×E0) into µ∗ as follows:

∫ t

0

∫ c2

c1

zµ̃(ds, dz) =

∫ t

0

∫ g+(c1)

g+(c2)

g−(z∗)µ̃∗(ds, dz∗).

The bivariate process (X,H) satisfies the stochastic differential equation(
dXt

dHt

)
= (κ

(1)
F −Xt)

(
λ

−β

)
dt+

√
C

(
1

ρ

)
dw̃t

+

∫
R

z

(
1

ρ

)
(µ̃[ + 1Ec0 µ̃)(dt, dz) +

∫
E∪[g+(c1),∞)

J(z∗)

(
1

ρ

)
µ̃∗(dt, dz∗),

(3.1)

where J(z∗) := g−(z∗)1E(z∗) for z∗ ∈ E ∪ [g+(c1),∞). As g− is strictly decreasing, we
have |∂J(z∗)| > 0 for z∗ ∈ E ∪ [g+(c1),∞).
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Expansion of integrated OU process

3.2 Malliavin covariance matrix

Fix any constant t0 > 0 and define (Ω̂, B̂, P̂ ) to be the Wiener-Poisson canonical
space (see [5, the last paragraph in page 1178]), on which we are given the flow
(X(·, v), H(·, v))> associated with (X,H) of (3.1) starting from v = (x, h)> ∈ R2:(
X(t, v)

H(t, v)

)
=

(
x

h

)
+

∫ t

0

(κ
(1)
F −X(s, v))

(
λ

−β

)
ds+

√
C

(
1

ρ

)
w̃t

+

∫ t

0

∫
R

z

(
1

ρ

)
(µ̃[ + 1Ec0 µ̃)(ds, dz) +

∫ t

0

∫
E∪[g+(c1),∞)

J(z∗)

(
1

ρ

)
µ̃∗(ds, dz∗).

Under the present assumption, the flow (X(·, v̂), H(·, v̂))> clearly satisfies the condition
(Ã′ − 4).

Let x̂ be a random variable independent of (w̃, µ[ + 1Ec0µ, µ
∗) such that L(x̂|P̂ ) = F

(the distribution under P̂ ), and v̂ := (x̂, 0)>. We will compute the Malliavin covariance
matrix of (X(t0, v̂), H(t0, v̂))>, whose “non-degeneracy” is essential here.

Let Q ∈ R2 ⊗R2 be given by

Q =

(
−λ 0

β 0

)
.

In view of (3.1), the process K(t, v) := ∂v(X(t, v), H(t, v))> satisfies that, for each v,

d

dt
K(t, v) =

(
−λ∂xX(t, v) 0

β∂xX(t, v) 0

)
= QK(t, v),

so that

K(t0, v̂) = exp(t0Q) =

(
e−λt

0

0

βλ−1(1− e−λt0) 1

)
.

We note that, different from [5, Eq.(25) in page 1180], K(·, v̂) is free of v̂.
Pick positive constants c′j and c′′j (j = 1, 2) in such a way that 0 < c1 < c′1 < c′′1 < c′′2 <

c′2 < c2 <∞, and let
Ě :=

(
g+(c′′2), g+(c′′1)

)
.

Then, trivially Ě b E. Let η : R+ → R+ be any bounded smooth function satisfying the
conditions:

(i) infz∗∈Ě η(z∗) > 0;

(ii) η(z∗) = 0 for z∗ /∈ (g+(c′2), g+(c′1)).

The Malliavin covariance matrix of (X(t0, v̂), H(t0, v̂))> is then well-defined and given
by

U(t0, v̂) := K(t0, v̂)S(t0, v̂)K(t0, v̂)>

= exp(t0Q)S(t0, v̂) exp(t0Q>),

where

S(t, v̂) := C

∫ t

0

exp(−sQ)

(
1 ρ

ρ ρ2

)
exp(−sQ>)ds

+

∫ t

0

∫
E

exp(−sQ)

(
1 ρ

ρ ρ2

)
exp(−sQ>)V (z∗)µ∗(ds, dz∗), (3.2)

with V (z∗) := {∂J(z∗)}2η(z∗); see [3, Section 10] for details of (3.2). Thus we arrive at
the identity

detU(t0, v̂) = e−2λt0detS(t0, v̂), a.s. (3.3)
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Expansion of integrated OU process

3.3 Completion of the proof under Assumption 2.2 (i)

Suppose that C > 0. It follows from (3.2) that, in the matrix sense,

S(t0, v̂) ≥ C
∫ t0

0

e−sQ
(

1 ρ

ρ ρ2

)
e−sQ

>
ds

=

(
H2 sym.

χH1 − (β/λ)H2 χ2t0 − 2(β/λ)χH1 + (β/λ)2H2

)

where Hk :=
∫ t0

0
ekλsds and χ := ρ+ β/λ. The determinant of the rightmost side is

C2λ−4(β + ρλ)2

{
λt0

2
(e2λt0 − 1)− (eλt

0

− 1)2

}
,

which is positive as soon as t0λ 6= 0 and β+ ρλ 6= 0. Thus S(t0, v̂) is bounded from below
by a positive-definite matrix, hence the non-degeneracy of U(t0, v̂) follows from (3.3)
without any non-trivial truncation functional; simply let ψ ≡ 1 in [A3]. Thus we have ob-
tained the non-degeneracy of the Malliavin covariance matrix (i.e. enough integrability
of {detU(t0, v̂)}−1), which corresponds to [5, Lemma 6].

We further notice the following.

• The flow (X(t, v̂), H(t, v̂))t∈[0,t0] satisfies the condition (Ã′ − 4) (as was seen in
Section 3.2), hence the analogous assertions as [5, Lemmas 7] holds true.

• Following the same argument as in [5, pp.1184–1185], we see that there exists a
random variable Φ′t0 ∈ L1(P̂ ) such that

E

[
sup
|u|≥B

|E[exp(iuHt0)|X0, Xt0 ]|

]
≤ 1

B
Ê[|Φ′t0 |]

for every B > 0.

After all, we have deduced the analogous assertions to [5, Lemmas 6, 7 and 8],
completing the proof of Theorem 2.3 under Assumption 2.1 and Assumption 2.2 (i).

3.4 Construction of a truncation functional

It remains to prove Theorem 2.3 under Assumptions 2.1 and 2.2 (ii). Then, in order
to verify distributional regularity we have to make an effective use of jumps. We will
construct the truncation functional ψ in an explicit way through two diffusive jumps.

We continue the argument of Section 3.2. Let t1, t2 ∈ (0, t0) be constants such that
t1 < t2, and fix z0 ∈ Ě. Let ε > 0 be sufficiently small so that:

• Iε1 ∩ Iε2 = ∅ for Iεj := (tj − ε, tj + ε), j = 1, 2;

• g+(c′′2) < z0 − ε < z0 + ε < g+(c′′1).

Let Eε := (z0 − ε, z0 + ε) and

Aε := {µ∗(Iεj , Eε) = 1 for j = 1, 2.}. (3.4)

According to the independently scattered property of µ∗ and since the Lévy measure
associated with µ∗ (over E) here is the Lebesgue measure, we have

P̂ [Aε] =
{
P̂ [µ∗ ([0, 2ε], [0, 2ε])]

}2

=
{

4ε2 exp(−4ε2)
}2

> 0

for each ε > 0.
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Expansion of integrated OU process

Now, we define the truncation functional ψ̂ε by ψ̂ε = ζ(ξ̂ε), where ζ : R+ → [0, 1] is a
non-increasing smooth function such that ζ(x) = 1 if 0 ≤ x ≤ 1/2 and ζ(x) = 0 if x ≥ 1,
where

ξ̂ε =
2

1 + 3detU(t0, v̂)
. (3.5)

We will show that the Malliavin covariance matrix U(t0, v̂) is non-degenerate on the
event Aε for any ε > 0 small enough.

Noting that

sup
s:|s−tj |≤ε

∣∣∣∣e−sQ − ( eλtj 0

βλ−1(1− eλtj ) 1

)∣∣∣∣+ sup
z:|z−z0|≤ε

|V (z)− V (z0)| → 0

as ε → 0 and by virtue of (3.4), we apply Taylor’s expansion around z0 and tj (j = 1, 2)
on Aε to conclude that

S(t0, v̂) ≥
2∑
j=1

∫
Iεj

∫
Eε
e−sQ

(
1 ρ

ρ ρ2

)
e−sQ

>
V (z∗)µ∗(ds, dz∗)

=

2∑
j=1

e−tjQ
(

1 ρ

ρ ρ2

)
e−tjQ

>
V (z0) + o(1)

= V (z0)M ε + o(1)

as ε→ 0 (we used the symbol o(1) for matrices too), where

M ε :=

(
J (2) sym.

(ρ+ βλ−1)J (1) − βλ−1J (2) 2(ρ+ βλ−1)2 − 2βλ−1(ρ+ βλ−1)J (1) + β2λ−2J (2)

)
with J (1) := eλt1 + eλt2 and J (2) := e2λt1 + e2λt2 . Therefore

detS(t0, v̂) ≥ V (z0)2λ−2(β + λρ)2(eλt1 − eλt2)2 + o(1),

which is positive for ε sufficiently small whenever ρλ+ β 6= 0 and t1 6= t2. [We note that
a single jump is not enough: if we instead estimate S(t0, v̂) as

S(t0, v̂) ≥ e−t1Q
(

1 ρ

ρ ρ2

)
e−t1Q

>
V (z0) + o(1),

then the determinant of the first term in the right-hand side is identically 0.]
We may set V (z0) arbitrarily large by choosing the function η suitably. Hence, re-

calling (3.3) we conclude that detU(t0, v̂) ≥ 1 on Aε for some ε > 0. The definition (3.5)
then leads to the estimate

P̂ [ξ̂ε ≤ 1/2] ≥ P̂
[{

detU(t0, v̂) ≥ 1
}
∩ Aε

]
= P̂ [Aε] > 0,

hence the assertion corresponding to [5, Lemma 6] holds true.
We keep using the η and ε > 0 chosen in the last paragraph. Clearly, ψ̂ε > 0 implies

that 1/3 ≤ detU(t0, v̂), hence

ψ̂ε
{

detU(t0, v̂)
}−1 ∈

⋂
0<p<∞

Lp(P̂ ).

This implies that the integration-by-parts formula under the truncation ψ̂ε is in force.
Then, as before, we could deduce the assertions corresponding to [5, Lemmas 7 and 8]:
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Expansion of integrated OU process

• The flow (X(t, v̂), H(t, v̂))t∈[0,t0] satisfies the condition (Ã′ − 4) (as was seen in
Section 3.2);

• There exists a random variable Φ′′t0 ∈ L1(P̂ ) such that

E

[
sup
|u|≥B

∣∣∣E[ψ̂ε exp(iuHt0)|X0, Xt0 ]
∣∣∣] ≤ 1

B
Ê[|Φ′′t0 |]

for every B > 0.

The proof of Theorem 2.3 is thus complete.
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