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Abstract

The problem of robust hedging requires to solve the problem of superhedging under
a nondominated family of singular measures. Recent progress was achieved by van
Handel, Neufeld, and Nutz. We show that the dual formulation of this problem is
valid in a context suitable for martingale optimal transportation or, more generally,
for optimal transportation under controlled stochastic dynamics.
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1 Introduction

An important attention is focused on the problem of robust superhedging in the
recent literature. Motivated by the original works of Avellaneda [1] and Lyons [2], the
first general formulation of this problem was introduced by Denis and Martini [4] by
considering the hedging problem under a nondominated family of probability measures
on the canonical space of continuous trajectories. Since the hedging problem involves
stochastic integration, [4] used the capacity theory to develop the corresponding quasi-
sure stochastic analysis tools, i.e. stochastic analysis results holding simultaneously
under the considered family of non-dominated measures.

The next progress was achieved by Soner, Touzi and Zhang [13] who introduced a
restriction of the set of non-dominated measures so as to guarantee that the predictable
representation property holds true under each measure. However, [13] placed strong
regularity conditions on the random variables of interest in order to guarantee the
measurability of the value function of some dynamic version of a stochastic control
problem, and to derive the corresponding dynamic programming principle.

By using the notion of measurable analyticity, Nutz and van Handel [11] and Neufeld
and Nutz [9] extended the previous results to general measurable claims by introducing
some conditions that the non-dominated family of singular measures must satisfy.

The main objective of this paper is to extend the approach of Neufeld and Nutz [9]
so as to introduce some specific additional constraints on the family of probability mea-
sures, and to weaken the integrability condition on the random variables of interest.
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On the robust superhedging of measurable claims

Such an extension is crucially needed in the recent problem of martingale transporta-
tion problem [5, 6], where the superhedging problem allows for the static trading of any
Vanilla payoff in addition to the dynamic trading of the underlying risky asset. Assum-
ing that the financial market, with this enlarged possibilities of trading, satisfies the
no-arbitrage condition leads essentially to the restriction of the family of probability
measures to those under which the canonical process is a uniformly integrable mar-
tingale. The main problem is that this restriction violates the conditions of [9] on one
hand, and that the integrability conditions in [9] are not convenient for the stochastic
control approach of [5, 6].

The paper is organized as follows. Section 2 introduces the main probabilistic frame-
work. The robust superhedging problem is formulated in Section 3, where we also re-
port our main result, together with the comparison to [9]. Section 4 contains the proof
of the duality result. Finally, some extensions are reported in Section 5.

2 Preliminaries

2.1 Probabilistic framework

Let Ω := {ω ∈ C
(
[0, T ] ,Rd

)
: ω0 = 0} be the canonical space equipped with the uni-

form norm ||ω||T∞ := sup0≤t≤T |ωt|. F will always be a fixed σ-field on Ω which contains
all our filtrations. We then denote B the canonical process, P0 the Wiener measure,
F := {Ft}0≤t≤T the filtration generated by B and F+ := {F+

t , 0 ≤ t ≤ T}, the right limit
of F where F+

t := ∩s>tF . We will denote by M(Ω) the set of all probability measures on
Ω. We also recall the so-called universal filtration F∗ := {F∗t }0≤t≤T defined as follows

F∗t :=
⋂

P∈M(Ω)

FPt ,

where FPt is the usual completion under P.

For any subset E of a finite dimensional space and any filtration X on (Ω,F), we
denote by H0(E,X) the set of all X-progressively measurable processes with values in
E. Moreover for all p > 0 and for all P ∈ M(Ω), we denote by Hp(P, E,X) the subset

of H0(E,X) whose elements H satisfy EP
[∫ T

0
|Ht|p dt

]
< +∞. The localized versions of

these spaces are denoted by Hploc(P, E,X).

For any subset P ⊂M(Ω), a P−polar set is a P−negligible set for all P ∈ P, and we
say that a property holds P−quasi-surely if it holds outside of a P−polar set. Finally, we
introduce the following filtration GP := {GPt }0≤t≤T which will be useful in the sequel

GPt := F∗t+ ∨N
P , t < T and GPT := F∗T ∨NP ,

where NP is the collection of P-polar sets.

For all α ∈ H1
loc(P0,S

>0
d ,F), where S>0

d is the set of positive definite matrices of size
d× d, we define the probability measure on (Ω,F)

Pα := P0 ◦ (Xα
. )−1 where Xα

t :=

∫ t

0

α1/2
s dBs, t ∈ [0, T ], P0 − a.s.

We denote by PS the collection of all such probability measures on (Ω,F). We recall
from Karandikar [7] that the quadratic variation process 〈B〉 is universally defined un-
der any P ∈ PS , and takes values in the set of all nondecreasing continuous functions
from R+ to S>0

d . We will denote its pathwise density with respect to the Lebesgue
measure by â. Finally we recall from [14] that every P ∈ PS satisfies the Blumenthal
zero-one law and the martingale representation property.

Our focus in this paper will be on the following subset of PS .
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On the robust superhedging of measurable claims

Definition 2.1. Pm is the sub-class of PS consisting of all P ∈ PS such that the canon-
ical process B is a P−uniformly integrable martingale.

2.2 Regular conditional probability distributions

In this section, we recall the notion of regular conditional probability distribution
(r.c.p.d.), as introduced by Stroock and Varadhan [16]. Let P ∈ M(Ω) and consider
some F-stopping time τ . Then, for every ω ∈ Ω, there exists an r.c.p.d. Pωτ satisfying:
(i) Pωτ is a probability measure on FT .
(ii) For each E ∈ FT , the mapping ω → Pωτ (E) is Fτ -measurable.
(iii) Pωτ is a version of the conditional probability measure of P on Fτ , i.e., for every
integrable FT -measurable r.v. ξ we have EP[ξ|Fτ ](ω) = EP

ω
τ [ξ], P−a.s.

(iv) Pωτ (Ωωτ ) = 1, where Ωωτ := {ω′ ∈ Ω : ω′(s) = ω(s), 0 ≤ s ≤ τ(ω)}.
We next introduce the shifted canonical space and the corresponding notations.

• For 0 ≤ t ≤ T , denote by Ωt := {ω ∈ C([t, T ],R) : w(t) = 0} the shifted canonical
space, Bt the shifted canonical process on Ωt, Pt0 the shifted wiener measure, Ft the
shifted filtration generated by Bt.

• For 0 ≤ s ≤ t ≤ T , ω ∈ Ωs, define the shifted path ωt ∈ Ωt, ωtr := ωr − ωt for all r ∈
[t, T ].

• For 0 ≤ s ≤ t ≤ T , ω ∈ Ωs, define the concatenation path ω ⊗t ω̃ ∈ Ωs by:

(ω ⊗t ω̃)(r) := ωr1[s,t)(r) + (ωt + ω̃r)1[t,1](r) for all r ∈ [s, T ].

• For 0 ≤ s ≤ t ≤ T , for any FsT -measurable random variable ξ on Ωs, and for each
ω ∈ Ωs, define the shifted F tT -measurable random variable ξt,ω on Ωt by:

ξt,ω(ω̃) := ξ(ω ⊗t ω̃) for all ω̃ ∈ Ωt.

• The r.c.p.d. Pωτ induces naturally a probability measure Pτ,ω on Fτ(ω)
T such that the

Pτ,ω-distribution of Bτ(ω) is equal to the Pωτ -distribution of {Bt − Bτ(ω), t ∈ [τ(ω), T )}.
It is then clear that for every integrable and FT -measurable random variable ξ,

EP
ω
τ [ξ] = EP

τ,ω

[ξτ,ω].

For the sake of simplicity, we shall also call Pτ,ω the r.c.p.d. of P.

• Finally, we introduce for all (s, ω) ∈ [0, T ]× Ω:

PS(s, ω) :=

{
Ps0 ◦

(∫ ·
s

α1/2
u dBsu

)−1

, with

∫ T

s

|αu|du < +∞, Ps0 − a.s.

}
Pm(s, ω) := {P ∈ Ps(s, ω) s.t. Bs is a uniformly integrable martingale} .

Remark 2.2. We are abusing notations here. In order to suit to the definition of [9]
and [11], we should have considered the concatenation of PS(s, ω) (resp. Pm(s, ω))
defined above with the dirac mass on ω0≤t≤s to ensure that elements of PS(s, ω) (resp.
Pm(s, ω)) are probabilities on Ω, and not on Ωs. The reader should note that the link
between these two definition is obvious and we will implicitly identify these families.

It is clear that the families (PS(s, ω))(s,ω)∈[0,T ]×Ω and (Pm(s, ω))(s,ω)∈[0,T ]×Ω are adap-
ted in the sense that PS(s, ω) = PS(s, ω̃) and Pm(s, ω) = Pm(s, ω̃), whenever ω|[0,s] =

ω̃|[0,s].
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3 Superreplication and duality

3.1 Problem formulation and main results

Throughout this paper, we consider some scalar GT -measurable random variable ξ.
For any (s, ω) ∈ [0, T ]× Ω, we naturally restrict the subset Pm and Pm(s, ω) to:

Pξm :=
{
P ∈ Pm : EP[ξ−] < +∞

}
Pξm(s, ω) :=

{
P ∈ Pm(s, ω) : EP[(ξs,ω)−] < +∞

}
.

Notice that such a restriction can be interpreted as suppressing measures which induce
arbitrage opportunities in our market.

Our main interest is on the problem of superreplication under model uncertainty and
the corresponding dual formulation. Given some initial capital X0, the wealth process
is:

XH
t := X0 +

∫ t

0

HsdBs, t ∈ [0, T ],

where H ∈ Hξ, the set of admissible trading strategies defined by:

Hξ :=
{
H ∈ H0(Rd,GPm) ∩H2

loc(P,Rd,GPm), XH is a P− supermartingale, ∀ P ∈ Pξm
}
.

The main result of this paper is the following.

Theorem 3.1. Let ξ be an upper semi-analytic r.v. with supP∈Pm E
P[ξ+] < +∞. Then

V (ξ) := inf
{
X0 : XH

T ≥ ξ, Pξm − q.s. for some H ∈ Hξ
}

= sup
P∈Pm

EP[ξ].

Moreover, existence holds for the primal problem, i.e. V (ξ) +
∫ T

0
HsdBs ≥ ξ, Pξm−q.s.

for some H ∈ Hξ.

Remark 3.2. Suppose that the random variable ξ− is P−integrable for all P ∈ Pm.
Then, Pξm = Pm, and the corresponding set of admissible strategies Hξ =: H is inde-
pendent of ξ. Under the condition supP∈P∞ E

P[ξ+] < ∞, it follows from the previous
theorem that:

inf
{
X0 : XH

T ≥ ξ, Pm − q.s. for some H ∈ H
}

= sup
P∈Pm

EP[ξ].

Remark 3.3. When it comes to which filtration the trading strategies are admissible,
we can actually do a little bit better than GPm , and consider the universal filtration F∗

completed by the Pm-polar sets, instead of its right limit. Indeed, let X be a process
adapted to GPm , then following the arguments in Lemma 2.4 of [14], we define X̃ by

X̃t := lim sup
ε↓0

1

ε

∫ t

t−ε
Xsds.

Then, X̃ coincides dt×P−a.e. with X, for any P ∈ PS and is adapted to F∗ completed by
the Pm-polar sets. For simplicity, we however refrain from considering this extension.1

The problem of superhedging under model uncertainty was first considered by Denis
and Martini [3] using the theory of capacities and the quasi-sure analysis. The set of
probability measures considered in [3] is larger than PS , and whether existence of
an optimal hedging strategy strategy holds or not in the framework of [3] is still an
open problem. Later, Soner, Touzi and Zhang [14] considered the same problem but

1We would like to thank Marcel Nutz for pointing this out.
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with a strict subset of PS satisfying a separability condition, which allowed them to
recover the existence of an optimal strategy. The same approach is adapted in Galichon,
Henry-Labordère and Touzi to obtain the duality result of Theorem 3.1 for uniformly
continuous ξ. Recently, Neufeld and Nutz [9] introduced a new approach which avoids
the strong regularity condition on ξ. In the next subsection, we briefly outline their
approach and explain why it fails to cover our framework.

3.2 The analytic measurability approach

We now introduce the general framework of [11] and [9]. Let P be a non-empty
subset of PS , with corresponding "shifted" sets P(s, ω), satisfying:

Condition 3.4. Let s ∈ R+, τ a stopping time such that τ ≥ s, ω ∈ Ω, and P ∈ P(s, ω).
Set θ := τs,ω − s.
(i) The graph {(P′, ω) : ω ∈ Ω, P′ ∈ P(t, ω)} ⊆M(Ω)× Ω is analytic.
(ii) We have Pθ,ω ∈ P(τ, ω ⊗s ω) for P-a.e. ω ∈ Ω.
(iii) If ν : Ω→ B(Ω) is an Fθ-measurable kernel and ν(ω) ∈ P(τ, ω⊗s ω) for P-a.e. ω ∈ Ω,
then the following measure P ∈ P(s, ω):

P(A) :=

∫∫
(1A)θ,ω(ω′)ν(dω′;ω)P(dw), A ∈ F .

Theorem 3.5 (Theorem 2.3 in [9]). Suppose {P(s, ω)}(s,ω) satisfies Condition 3.4. Then,
for any upper semi-analytic map ξ with supP∈P E

P[|ξ|] < +∞, we have:

inf
{
X0 : XH

T ≥ ξ P − q.s. for some H ∈ H
}

= sup
P∈P

EP[ξ].

For the purpose of the application of this result to the problem of martingale optimal
transportation, see [5, 6], the last result presents two inconveniences:
- The integrability condition of the previous theorem from [9] turns out to be too strong.
The weaker integrability conditions in our Theorem 3.1 is crucial for the analysis con-
ducted in [5, 6].
- The set of probability measures of interest is the smaller subset Pm. We shall verify
below that Pm satisfies Conditions 3.4(i) and (ii), but fails to satisfy (iii). Therefore, we
need to extend the results of [9] in order to address the case of Pm.

Example 3.6. [Pm does not satisfy Condition 3.4 (iii)] For simplicity, let d = 1. Let
s ∈ (0, T ), t ≥ s, ω ∈ Ω and P = Ps0 ∈ PB(s, ω). Now consider ω ∈ Ωs. The family (Pi)i∈N
is defined by

∀i ∈ N, Pi = Pt0 ◦
(∫ ·

0

σ
1/2
i dBtu

)−1

.

where (σi)i∈N is a sequence of positive numbers which will be chosen later. We consider
the following partition (Ei)i∈N of Ft

∀i ∈ N, Ei := {ω s.t. ωt ∈ (−i− 1,−i] ∪ [i, i+ 1)}.

We then introduce the Ft-measurable kernel ν(ω)(A) :=
∑+∞
i=0 1Ei(ω)Pi(A), and we de-

fine P as in Condition 3.4(iii) from P and ν. We now show that EP[|BT |] = +∞ for some
convenient choice of the sequence (σi). In particular this shows that P /∈ Pm.

EP[|BT |] = EP
[
EP[|BT ||Ft]

]
= EP

[
EP

t,ω⊗sω
[|BT |]

]
= EP

[
+∞∑
i=0

1Ei(ω)EPi
[
|Bt,ω⊗sωT |

]]

= EP

[
+∞∑
i=0

1Ei(ω)

∫ +∞

−∞
|σiu+Bt(ω)|e

−u2/2

√
2π

du

]
=

+∞∑
i=0

fi(σi),
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where, for all i,

fi(σ) :=
σ

2π

(∫ −i
−i−1

∫ +∞

−∞

∣∣∣∣u+
ty

σ

∣∣∣∣ e−u2+y2

2 dudy +

∫ i+1

i

∫ +∞

−∞

∣∣∣∣u+
ty

σ

∣∣∣∣ e−u2+y2

2 dudy

)
.

Notice that fi(σ) −→ ∞, as σ → ∞. Then there exists σi > 0 such that fi(σi) ≥ 1.

Hence, EP[|BT |] = +∞, where P is defined using this family of coefficients.

Proposition 3.7. Pm and Pξm verify Condition 3.4 (i) and (ii).

Proof. We only provide the proof for Pm, the result for Pξm follows by direct adaptation.
We first verify Condition 3.4 (ii). Let P ∈ Pm, and consider an arbitrary F-stopping time
τ , and Fτ -stopping time σ. By Lemma A.1 in [8], there exists some Fτ -stopping time σ̃
such that for every ω, σ̃τ,ω = σ. Then, we have for P-a.e. ω

EP
τ,ω

[|Bτσ |] ≤ EP
τ,ω

[|Bτ,ωσ̃τ,ω |] + |Bτ (ω)| = EPτ [|Bσ̃|](ω) + |Bτ | (ω) < +∞,

where we used the fact that P ∈ Pm. Similarly, we have for P-a.e. ω:

EP
τ,ω

[Bτσ ] = EP
τ,ω

[Bτ,ωσ̃τ,ω −Bτ (ω)] = EPτ [Bσ̃](ω)−Bτ (ω) = 0.

By the arbitrariness of τ and σ, this completes the verification of Condition 3.4 (ii).

To verify Condition 3.4 (ii), we adapt an argument from [9]. We define the following
map

ψ : H1
loc(P0,S

>0
d ,F)→M(Ω), α 7→ Pα = P0 ◦

(∫ ·
0

α1/2
s dBs

)−1

.

From [9] (see Lemmas 3.1 and 3.2), we know that it is sufficient to show that Pm ⊂
M(Ω) is the image of a Borel space (i.e. a Borel subset of a Polish space) under a Borel
map. For that we show that H0(S>0

d ,F) is Polish and H1
loc(P0,S

>0
d ,F) ⊂ H0(S>0

d ,F) is
Borel. The first part is already given in Lemma 3.1 of [9]. We then need to show that
the map ψ : H1

loc(P0,S
>0
d ,F)→M(Ω) is Borel, which is a direct consequence of Lemma

3.2 in [9].

It then only remains to prove that H1
m(P0,S

>0
d ,F) ⊂ H0(S>0

d ,F) is Borel,where

H1
m(P0,S

>0
d ,F) :=

{
α ∈ H0(S>0

d ,F) : sup
τ
EP0

[
|Xα

τ |1|Xατ |≥n
]
−→

n→+∞
0

}
.

It is clear that

H1
m(P0,S

>0
d ,F) =

⋂
p∈N∗

⋃
N∈N

⋂
n≥N

{
α ∈ H0(S>0

d ,F) : sup
τ
EP0 [|Xα

τ |1|Xατ |>n] ≤ 1

p

}
.

and{
α ∈ H0(S>0

d ,F) : sup
τ
EP0 [|Xα

τ |1|Xατ |>n] ≤ 1

p

}
= ψ−1

{
P ∈ PS : supτ E

P0 [|Bτ |1|Bτ |>n]≤ 1
p

}
.

It then suffices to show that for any n ∈ N, the following function fn is Borel measurable:

fn : P 7→ sup
τ
EP[|Bτ |1|Bτ |>n].

We actually show that this function is lower semi-continuous. For K, l > 0, define:

φ(x) = |x|1|x|>n and φK,l(x) = |x| ∧K (|x| − n)+ − (|x| − n− l)+

l
, x ∈ Rd.
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We emphasize that φK,l is uniformly continuous and bounded. Let then P ∈ PS and
consider some sequence (Pi)i≥0 which converges weakly to P. We represent Pi and P
by αi and α. Remember that for any P̃ ∈ PS , associated to some α̃, we have

fn(P̃) = sup
τ
EP0

[
|X α̃

τ |1|Xα̃τ |>n
]
.

The weak convergence of Pi to P is equivalent to the convergence in law of Xαi to Xα.
Hence, for all τ , we have

lim
i→+∞

EP0 [φK,l(X
αi
τ )] = EP0 [φK,l(X

α
τ )],

from which we deduce easily lim inf
i→+∞

supτ E
P0 [φK,l(X

αi
τ )] ≥ EP0 [φK,l(X

α
τ )]. As this is true

for all K > 0 and l > 0, and since the function φK,l is non-decreasing in K and non-
increasing in l, we also have

lim inf
i→+∞

sup
τ
EP0 [φ(Xαi

τ )] ≥ EP0 [φK,l(X
α
τ )].

Letting K go to +∞ and l to 0 on the right-hand side above, we deduce using monotone
convergence and taking supremum in τ

lim inf
i→+∞

sup
τ
EP0 [φ(Xαi

τ )] ≥ sup
τ
EP0 [φ(Xα

τ )]

Then fn is lower semicontinuous and thus measurable.

4 The duality result

In this section we show our main result Theorem 3.1. We will assume throughout
that ξ is upper semi-analytic. For that purpose, we introduce the dynamic version of the
dual problem:

Yt(ξ)(ω) := sup
P∈Pm(t,ω)

EP[ξt,ω], t ∈ [0, T ], ω ∈ Ω.

We first observe that Yt is measurable with respect to the universal filtration F∗t , as a
consequence of Step 1 in the proof of Theorem 2.3 in [11], since Condition 3.4(i) holds
true for Pm.

Lemma 4.1. Let τ be an F-stopping time. Then, for all P ∈ Pm:

Yτ (ξ) = ess supP

P′∈Pm(τ,P)

EP
′
[ξ|Fτ ], P− a.s.

where Pm(τ,P) = {P′ ∈ Pm : P′ = P on Fτ}.

Proof. The inequality ≥ is trivial as Yτ is F∗τ -measurable and measures extend uniquely
to universal completions, which means that if P and P′ coincide on Fτ , they also coin-
cide on F∗τ (see Step 3 of the proof of Theorem 2.3 in [11] for similar arguments). We
then focus on ≤. Fix some P ∈ Pm. We recall that following the same construction
as in Step 2 of the proof of Theorem 2.3 in [11], for any ε > 0, we can construct a
Fτ -measurable kernel ν : Ω→M(Ω) such that:

Eν(ω)[ξτ,ω] ≥
(
Yτ (ω)− ε

)
1{−∞<Yτ (ω)<∞} + ε−11{Yτ (ω)=∞} −∞1{Yτ (ω)=−∞}, (4.1)

and such that ν(ω) ∈ Pm(τ, ω), P-a.s.

We then consider the probability P̃ ∈ PS(τ,P) associated to ν through Condition
3.4(iii), where this last assertion uses that Condition 3.4(iii) is verified for PS thanks to
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Theorem 2.4 in [9]. However there is no guarantee that P̃ belongs to Pm, and the rest
of this proof overcomes this difficulty by using a suitable approximation.

Step 1: Construction of an approximation νn. Define, for all n ≥ 1,

νn(ω) := ν(ω)1{Eν(ω)[|BτT |]≤n} + Pτ,ω1{Eν(ω)[|BτT |]>n}.

Clearly, νn is a measurable kernel, and since Pm is stable by bifurcation, we also have
νn(ω) ∈ Pm(τ, ω). Observe that En := {ω ∈ Ω : Eν(ω)[|BτT |] ≤ n}, n ≥ 1, is an increasing
sequence in Fτ with P(En) −→

n→+∞
1, as a consequence of the fact that Eν(ω)[|BτT |] < +∞,

P−a.s. We now define the measure P
n

by:

P
n
(A) :=

∫∫
(1A)τ,ω(ω′)νn(dω′;ω)P(dw), A ∈ F .

We first show that P
n ∈ Pm(τ,P). The fact that P

n
coincides with P on Fτ is clear

by construction. Next, we compute that:

EP
n

[|BT |] = EP
n [
|BT |1En + |BT |1Ecn

]
= EP

n
[
Eν

n(ω) [|Bτ,ωT |]1En
]

+ EP
n
[
Eν

n(ω) [|Bτ,ωT |]1Ecn
]

= EP
n
[
Eν(ω) [|Bτ,ωT |]1En

]
+ EP

n
[
EP

τ,ω

[|Bτ,ωT |]1Ecn
]

≤ EP
[(
Eν(ω) [|BτT |] + |Bτ |

)
1En

]
+ EP

[
EP

τ,ω

[|Bτ,ωT |]1Ecn
]

≤ EP [|Bτ |] + n+ EP [|BT |] < +∞.

To prove the martingale property of B under P
n
, we consider an arbitrary F-stopping

time σ, and we compute that:

EP
n

[Bσ] = EP
n

[Bσ1σ≤τ +Bσ1σ>τ ] = EP[Bσ1σ≤τ ] + EP
n

[Bσ1σ>τ ],

by the fact that P
n

= P on Fτ . We continue computing

EP
n

[Bσ1σ>τ ] = EP
n
[
E(P

n
)τ,ω [Bτ,ωστ,ω ]1σ>τ

]
= EP

n
[
Eν

n(ω) [Bτστ,ω +Bτ (ω)]1σ>τ

]
= EP

n

[Bτ1σ>τ ] = EP [Bτ1σ>τ ] ,

where the last equality uses the definition of νn which ensures that νn(ω) ∈ Pm(τ, ω),

P-a.s. Therefore, we have EP
n

[Bσ] = EP[Bσ∧τ ] = 0, since B is a martingale under P.

Step 2: By (4.1), we have for every ω

Eν
n(ω)[ξτ,ω] ≥ (Yτ (ω)− ε) ∧ ε−11En + EP

τ,ω

[ξτ,ω]1Ecn .

Then for any ω ∈ Ω\NP, for some P-null set NP

EP
n

[ξ|Fτ ](ω) ≥ (Yτ (ω)− ε) ∧ ε−11En(ω) + EP[ξ|Fτ ](ω)1Ecn(ω).

Hence, for any ω ∈ Ω\NP, for all n ≥ 0

ess supP

P′∈Pm(τ,P)

EP
′
[ξ|Fτ ](ω) ≥ (Yτ (ω)− ε) ∧ ε−11En(ω) + EP[ξ|Fτ ](ω)1Ecn(ω).

We emphasize that a priori, the right-hand side above is only F∗τ -measurable. However,
if P and P′ coincide on Fτ , they also coincide on F∗τ , since measures extend uniquely
on universal completions. Therefore the above inequality does indeed hold P− a.s.
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Since the sequence En increases to Ω (up to some P-null set which we implicitly add
to NP), for any ω ∈ Ω\NP, there exists N(ω) ∈ N such that if n ≥ N(ω), then ω ∈ En.
Therefore, taking n large enough, we have

ess supP

P′∈Pm(τ,P)

EP
′
[ξ|Fτ ](ω) ≥ (Yτ (ω)− ε) ∧ ε−1. (4.2)

If Yτ (ω) = −∞, then by the inequality proved at the beginning, the left-hand side
above is also equal to −∞. Hence the result in this case. If Yτ (ω) = +∞, then (4.2)
implies directly that the left-hand side is also +∞ by arbitrariness of ε > 0. Finally, if
Yτ (ω) is finite, the desired result follows from (4.2) by arbitrariness of ε.

We then continue with a version of the tower property in our context.

Proposition 4.2. Let P ∈ Pξm, and σ, τ two F-stopping times with σ ≤ τ . Then, P−a.s.

Yσ(ξ) = ess sup
P′∈Pξm(σ,P)

EP
′

[
ess sup

P′′∈Pξm(τ,P′)

EP
′′
[ξ|Fτ ]|Fσ

]
= ess sup
P′∈Pm(σ,P)

EP
′

[
ess sup

P′′∈Pm(τ,P′)

EP
′′
[ξ|Fτ ]|Fσ

]
,

where for any F-stopping time ι and any P ∈ Pξm

Pξm(ι,P) :=
{
P′ ∈ Pξm s.t. P′ = P on Fι

}
.

Proof We consider P ∈ Pξm. Exactly as in the proof of Lemma 4.1, we can construct
a measurable kernel νn from a kernel ν such that:
• νn is Fτ -measurable.
• Pn ∈ Pm(τ,P) where Pn(A) =

∫∫
(1A)τ,ω(ω′)νn(dω′;ω)P(dw), A ∈ F .

• ν is a Fτ -measurable kernel such that (4.1) holds.
• En = {νn = ν} is an increasing sequence such that P(En) −→

n→+∞
1.

We then compute for any ε > 0

ess sup
P′∈Pm(σ,P)

EP
′
[ξ|Fσ] ≥ EP

n

[ξ|Fτ ] ≥ EP[(Yτ − ε) ∧ ε−11En − EP[ξ−|Fτ ]1Ecn |Fσ], P− a.s.

Recall that EP[ξ−] <∞. Then, it follows from the dominated convergence theorem that
EP[ξ−1Ecn |Fσ] −→ 0, as n → ∞, P−a.s. Also, since Yτ ≥ −EP[ξ−|Fτ ] ∈ L1(P), it follows
from Fatou’s lemma that:

EP[(Yτ − ε) ∧ ε−1|Fσ] ≤ ess sup
P′∈Pm(σ,P)

EP
′
[ξ|Fσ] P− a.s.

Finally, when ε→ 0, we have P-a.s., with the last equality being obvious

EP[Yτ |Fσ] ≤ ess sup
P′∈Pm(σ,P)

EP
′
[ξ|Fσ] = ess sup

P′∈Pξm(σ,P)

EP
′
[ξ|Fσ].

2

Proposition 4.3. Assume that supP∈Pm E
P[ξ+] <∞. Then, for any P ∈ Pξm, the process

{Yt(ξ), t ≤ T} is a P-supermartingale.

Proof. In view of Proposition 4.2, we already have the tower property. It only remains
to show the integrability of Yt(ξ) for all t ∈ [0, T ]. For that we only need to show that
Yt(ξ

+) is integrable. We fix 0 ≤ t ≤ T and P ∈ Pξm. Then Yt(ξ
+)(ω) ∈ R+ × {+∞}. Let

us then show that the family {EP′ [ξ+|Ft], P′ ∈ Pm(t,P)} is upward directed.
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We consider P1 and P2 in Pm(s,P). The set A := {EP2 [ξ+|Ft] ≤ EP1 [ξ+|Ft]}, is
Ft-measurable. Then P := P11A + P21Ac is an element of Pm(t,P) such that:

EP[ξ+|Ft] = EP1 [ξ+|Ft] ∨ EP2 [ξ+|Ft]

We then have an increasing sequence Pn of Pm(t,P) such that:

EPn [ξ+|Ft]↗ ess sup
P′∈Pm(s,P)

EP
′
[ξ+|Ft], P− a.s.,

and by the monotone convergence theorem limn→+∞E
Pn [ξ+] = EP[Yt(ξ

+)]. Hence

EP[Yt(ξ
+)] ≤ sup

P∈Pm
EP[ξ+] < +∞, for all P ∈ Pm.

We now have all ingredients to follow the classical line of argument for the

Proof of theorem 3.1. For the sake of simplicity, the dependence of Y in ξ will be omit-
ted.

(i) We first show that right-limiting process Y t := Yt+, t ≤ T, is a (GPm ,P) super-

martingale for all P ∈ Pξm. By Proposition 4.3 and the fact that for any P ∈ PS , F
P

is right-continuous, contains G and P has the predictable representation property (see
[14]), Y is a (F∗,P) supermartingale for every P ∈ Pξm. Then applying [3] (see Theorem
VI.2), we have that Y is well defined P-a.s. and Y is a right continuous (GPm ,P) super-
martingale for all P ∈ Pξm. We also notice the important fact that for all P ∈ Pξm we have
Y t ≤ Yt P-a.s. In particular, Y 0 ≤ Y0, and Y 0 is constant because GPm0 is trivial.

(ii) We next construct the optimal trading strategy. By the Doob-Meyer decomposi-
tion (see Theorem 13 page 115 in [12]), there exists a pair of processes (HP,KP) where
HP belongs to H2

loc(P,Rd,GPm) and KP is P−integrable and non-decreasing, such that:

Y t = Y0 +

∫ t

0

HP
s dBs −KP

t , t ∈ [0, T ], P− a.s.

Since Y is right continuous, it follows from Karandikar [7] that the family HP can be
aggregated by some process Ĥ in the sense that Ĥ = HP, dt × dP-a.s. for all P ∈ Pξm.
Thus, for every P ∈ Pξm, the local martingale

∫
ĤdB is bounded from below by the

martingale EP[ξ|GPmt ]. Hence this is a supermartingale which ensures that Ĥ is in Hξ
and superreplicates the claim ξ Pξm-quasi-surely.

5 Extensions

5.1 The case of Pb
In this section, we show that Theorem 3.1 together with the previous arguments in

its proof, hold for the following example, which is important in the context of second-
order BSDEs as introduced in [13]. We recall that 〈B〉 is well defined pathwise and that
its density is denoted by â.

Definition 5.1. Pb is the sub-class of PS consisting of all P ∈ PS such that:

aP ≤ â ≤ aP, dt× dP− a.s. for some aP, aP ∈ S>0
d .

We emphasize that our Example 3.6 also shows directly that Pb does not satisfy
Condition 3.4(iii). We now prove the three main technical results of this paper in this
case.

ECP 18 (2013), paper 95.
Page 10/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2739
http://ecp.ejpecp.org/


On the robust superhedging of measurable claims

Proposition 5.2. Pb verifies Condition 3.4 (i) and (ii).

Proof. (ii) has already been proved in [15]. Let us now prove (i). We observe that:

Pb =
⋃

a,a∈S>0
d (Q)

{P ∈ PS : a ≤ â ≤ ā dt× dP− a.s.}.

By Proposition 3.1 in [11], we know that all these sets satisfy Condition 3.4(i). Since a
countable union of analytic set is analytic, we obtain the result.

It remains to introduce a suitable sequence of approximations of measurable kernels
as in the proof of Lemma 4.1 and Proposition 4.2.

Proposition 5.3. The results of Lemma 4.1, Proposition 4.2 and 4.3 and Theorem 3.1
are valid if we replace Pm by Pb.

Proof. We only redefine an approximated kernel family adapted to Pb, which allows, by
the same arguments as in Lemma 4.1 and Proposition 4.3, to obtain the duality result
of Theorem 3.1. Let τ be a F-stopping time and ν the Fτ -measurable kernel obtained
by the same construction as in Lemma 4.1 and Proposition 4.2. For P ∈ Pb we are
interested in the measure P defined by:

P(A) =

∫∫
(1A)

τ,ω
(ω′) ν (dω′;ω)P (dw) .

Then P is in PS and there is some α s.t. P = P0 ◦ (Xα
. )−1. Define P

n
by:

P
n

:= P0 ◦
(∫ ·

0

(α1/2
s 1s≤τ + πn(α1/2

s )1s>τ )dBs)

)−1

, n ≥ 1,

where πn is the projection on BS>0
d

(0, n)\BS>0
d

(0, 1/n), where BS>0
d

(x, r) denotes the

closed ball of S>0
d centered at x with radius r. Then P

n
belongs to Pb. Observe also

that the sets
En :=

{
ω ∈ Ω,

(
P
n
)τ,ω

= ν(ω)
}
,

are in Fτ and define an increasing covering of Ω. We then build the "right" approxima-
tion P̃n, ensuring all the convergences in the proofs, by P̃n = P

n
1En + P1Ecn . P̃n is in

Pb, and associated to the Fτ -measurable kernel ν̃n(ω) := ν(ω)1ω∈En + Pτ,ω1ω∈Ecn . Then
we can reproduce exactly the same proofs as in the case of Pm.

5.2 A general framework

As the reader may have realized, our proofs in the case of Pm and Pb are very
similar, and essentially rely on the construction of a suitable approximated kernel. In
this subsection, we consider a generic subset P of PS (and the corresponding shifted
families P(s, ω)), and we give a general condition, (weaker than Condition 3.4) under
which our results still hold true. We recall that such a family is said to be stable by
bifurcation if for any F-stopping times 0 ≤ σ ≤ τ , ω ∈ Ω, A Fτ -measurable, P1 and P2

in P(σ, ω), we have
P = P11A + P21Ac ∈ P(σ, ω).

Condition 5.4. Let s ∈ R+, τ ≥ s a stopping time, ω ∈ Ω, P ∈ P(s, ω) and θ := τs,ω − s.
(i) The graph {(P′, ω) : ω ∈ Ω, P′ ∈ P(t, ω)} ⊆M(Ω)× Ω is analytic.
(ii) We have Pθ,ω ∈ P(τ, ω ⊗s ω) for P-a.e. ω ∈ Ω.
(iii) P is stable by bifurcation.
(iv) If ν : Ω → M(Ω) is an Fθ-measurable kernel and ν(ω) ∈ P(τ, ω ⊗s ω) for P-a.e.
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ω ∈ Ω, then there exists νn : Ω → M(Ω), which is a Fθ-measurable kernel such that
P(νn = ν) −→

n→∞
1 and the following measure P

n ∈ P(s, ω):

P
n
(A) =

∫∫
(1A)θ,ω(ω′)νn(dω′;ω)P(dw), A ∈ F .

Remark 5.5. Notice that Condition 5.4 is weaker than Condition 3.4. Indeed, Condition
3.4(iii) implies directly that the set P is stable by bifurcation. Moreover, considering the
constant kernels νn := ν, it also implies Condition 5.4(iv). Furthermore, as shown in
our previous proofs, the sets Pm and Pb satisfy Condition 5.4 but not Condition 3.4.

Similarly to our previous notations, we introduce the sets Hξ(P) and Pξ. In this
context, we obtain a new version of Theorem 3.1:

Theorem 5.6. Let P(s, ω) be a family of probability measures satisfying Condition 5.4.
Let ξ be an upper semi-analytic r.v. with supP∈P E

P[ξ+] < +∞. Then

V (ξ) := inf
{
X0 : XH

T ≥ ξ, Pξ − q.s. for some H ∈ Hξ(P)
}

= sup
P∈P

EP[ξ].

Moreover, existence holds for the primal problem, i.e. V (ξ) +
∫ T

0
HsdBs ≥ ξ, Pξ−q.s.

for some H ∈ Hξ(P).

Proof. If we define Ẽn :=
{
ω ∈ Ω : (P

n
)θ,ω = ν(ω)

}
and then recursively

E0 := Ẽ0 and for all n ≥ 1, En := En
⋃
Ẽn−1,

then En is an increasing sequence such that P(En) −→
n→+∞

1. We can then use the

Fτ -measurable kernel νn to define a probability measure P̃n exactly as in the proof
of Proposition 5.3. We can then use exactly the same arguments as in our previous
proofs.
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