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Abstract

We consider a regular n-ary tree of height h, for which every vertex except the root is
labelled with an independent and identically distributed continuous random variable.
Taking motivation from a question in evolutionary biology, we consider the number
of paths from the root to a leaf along vertices with increasing labels. We show that if
α = n/h is fixed and α > 1/e, the probability that there exists such a path converges
to 1 as h → ∞. This complements a previously known result that the probability
converges to 0 if α ≤ 1/e.
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1 Introduction

Consider a regular n-ary tree of height h, where n = bαhc. To each vertex ex-
cept the root attach an independent and identically distributed continuous random
variable. We ask whether there is a path from the root to a leaf whose labels only
increase. Nowak and Krug [9] called this accessibility percolation and showed that
P(there exists an increasing path)→ 0 as n→∞ if α ≤ 1/e, whereas if α > 1 then there
exists some p > 0 depending on α such that P(there exists an increasing path) > p. We
give a complete characterisation in terms of α, showing that there is a phase transition
at α = 1/e.

Theorem 1.1. Suppose that n = bαhc. As h→∞,

P(there exists an increasing path)→

{
0 if α ≤ 1/e,

1 if α > 1/e.

Given the result of [9] mentioned above, it suffices to prove the second statement.
In fact we will show that for any α > 1/e, there exist δ > 0 and η > 0 such that

P(there exist at least exp(δh) increasing paths) ≥ 1− exp(−ηh).

This suggests that we might be able to discover more around the critical point 1/e, and
indeed by essentially the same methods we are able to obtain the following finer result.
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Increasing paths in regular trees

Theorem 1.2. Suppose that n =
(

1+βh

e

)
h, where βh → 0 as h→∞. Then as h→∞,

P(there exists an increasing path)→

{
0 if log h− 2hβh →∞,
1 if hβh/ log h→∞.

1.1 Biological motivation

Consider the following simplified model of evolution in a population. Each genetic
type, or genotype, in the population has an associated fitness. A particular genotype
may give rise to multiple new genotypes through mutations, which either replace the
original wild genotype or disappear from the population. For a haploid asexual popu-
lation, the dynamics of evolution are governed by the population size N , the selection
coefficient s and the mutation rate µ [3]. We make the following two assumptions on
these three parameters:

1. Ns � 1. By a classical formula of Kimura [6], only mutations which give rise to a
fitter genotype can replace the wild genotype and survive.

2. µ is sufficiently small such that mutations arise and either replace the wild geno-
type or become extinct one at a time. Therefore, there can be at most two geno-
types in the population at any given time, of which one is a direct mutant of the
other.

Together, these two assumptions form what is known in the evolutionary biology
literature as the strong selection weak mutation (SSWM) regime [4, 10]. Under such
a setting, the only possible evolutionary paths of genotypes are ones with increasing
fitness. In the evolutionary biology literature, these increasing paths are known as
selectively accessible [3, 11, 12].

To analyse the number of such paths, we also require the relationship between geno-
type and fitness. For this, we use the House of Cards model [7, 8], in which every geno-
type has an independent and identically continuously distributed fitness. Since we only
care about whether the fitnesses along a path are in increasing order, as long as the
random variables are continuous, the precise distribution is not important.

The space of genotypes together with their fitnesses form a labelled graph. If we
further assume that the population initally consists of one single genotype, and that
separate mutations never give rise to the same genotype, then the space of genotypes
becomes a rooted tree. A selectively accessible or increasing path is then a simple path
from the root to a leaf along vertices with increasing labels. For the House of Cards
model in the SSWM regime, we may assume that the root has the genotype of minimal
fitness. This leads us precisely to the accessibility percolation model outlined above.

1.2 Other models

Our methods could be extended to consider, for example, Galton-Watson trees in-
stead of n-ary trees.

Besides trees it is also natural to consider the House of Cards model on the n-
dimensional hypercube {0, 1}n, for which there has been recent progress [2, 5]. A
selectively accessible path in this setting is a path of minimal length on increasing
labels from (0, . . . , 0) to (1, . . . , 1). Both papers consider the effect of varying the fit-
ness at the zero vertex on the number of accessible paths. Hegarty and Martinsson
[5] obtain the threshold for the phase transition of the existence of increasing paths as
n → ∞. Berestycki, Brunet and Shi [2] show that around this threshold, the number
of such paths converges in distribution to the product of two independent exponential
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variables. As a first step, they obtain results for a particular rooted tree related to the
hypercube.

Hegarty and Martinsson [5] also consider another model for the relationship be-
tween genotype and fitness, known as the Rough Mount Fuji model in the evolutionary
biology literature [1], where a linear drift, depending on the distance to the root, is
introduced to the random fitnesses. This model on n-ary trees was also considered in
[9].

1.3 Notation

Throughout, we assume without loss of generality that the distribution of the labels
is U [0, 1], and use the following crude double bound for Stirling’s approximation valid
for all n ≥ 1:

2 <
n!√

n(n/e)n
< 3.

We also assume that n = αh, rather than use unwieldy b·c notation all the way through
the article. Since there is a clear monotonicity in α in the model, no extra difficulty
arises in considering cases when αh is not an integer.

Let P be the set of simple (that is, non-backtracking) paths from the root to a leaf in
the tree; then #P = nh. For a path u ∈ P , writeX(u) = (X(u1), . . . , X(uh)) for the (i.i.d.,
U [0, 1]) labels on its vertices. For any two paths u, v ∈ P , let a(u, v) = max{k : uk = vk}.
Clearly X(uj) = X(vj) for all j ≤ a(u, v).

Define
I =

{
(x1, . . . , xh) ∈ [0, 1]h : x1 < x2 < . . . < xh

}
,

and for ε ∈ [0, 1),
Cε =

{
(x1, . . . , xh) ∈ [0, 1]h : xj ≥ ε ∀j

}
and

Dε =

{
(x1, . . . , xh) ∈ [0, 1]h : xj ≥ ε+ (1− ε)

(
j − 1

h

)
∀j
}
.

Dε

j

vj

h

1

ε

Define
Nε =

∑
u∈P

1{X(u)∈I∩Dε},

and
N =

∑
u∈P

1{X(u)∈I}.

1.4 Outline of proof

We will concentrate for the most part on proving Theorem 1, and then show how to
adapt our proof to obtain Theorem 2.

We first observe that for a path u, {X(u) ∈ I} is the event that h i.i.d. labels are in
increasing order, which has probability 1

h! . As #P = nh,

E[N ] =
nh

h!
.
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Using Stirling’s approximation we have that

E[N ] � nheh√
hhh

=
(αe)h√

h
. (1.1)

In particular, we see that for α ≤ 1/e, E[N ]→ 0 as h→∞, and recover the α ≤ 1/e part
of Theorem 1.1 via Markov’s inequality.

Nowak and Krug [9] gave this argument, and then went on to give an upper bound
on E[N2], which they used to get a lower bound on the probability that N ≥ 1. We take
a similar but slightly more subtle route, in that we will work for the most part with Nε,
whose moments are slightly harder to estimate but give us more information. Of course
we have

E[Nε] ≤ E[N ] =
nh

h!
� (αe)h√

h
.

In Section 2 we will show that

E[Nε] ≥
(α(1− ε)e)h

3h3/2

and in Section 3 we will see that when α(1− ε)e > 1 and h is large,

E[N2
ε ] ≤ E[Nε] + E[Nε]2 + c(α(1− ε)e)2h.

This will be enough to tell us that the probability that there is at least one path in Nε is
at least a constant times h−3 when h is large.

We then do a fairly standard trick to complete the proof of Theorem 1.1 in Section 4.
We will show that there are many more than h3 “good” subpaths in the first few levels
of the tree: these are subpaths whose labels are increasing and small on the first few
levels. Each of these subpaths then has a constant times h−3 probability of being the
start of an increasing path to a leaf.

Finally in Section 5 we show how our techniques can be fine-tuned to give Theorem
1.2.

2 First moment bound

We aim to prove our lower bound on the first moment of Nε:

Proposition 2.1.

E[Nε] ≥
(α(1− ε)e)h

3h3/2
.

We shall need the following lemma.

Lemma 2.2. Let U1, . . . , Uj be i.i.d. U [0, 1] random variables. Then

P

(
U1 ≤ . . . ≤ Uj , U1 ≥

1

j + 1
, . . . , Uj ≥

j

j + 1

)
=

1

(j + 1)!
.

Proof. Let

p = P

(
U1 ≤ . . . ≤ Uj , U1 ≥

1

j + 1
, . . . , Uj ≥

j

j + 1

)
and for each i = 2, . . . , j, define

Ii =

∫ 1

j
j+1

∫ vj

j−1
j+1

. . .

∫ vi+1

i
j+1

(
vi−1i

(i− 1)!
− vi−2i

(j + 1)(i− 2)!

)
dvi . . . dvj .
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Note that

p =

∫ 1

j
j+1

∫ vj

j−1
j+1

. . .

∫ v2

1
j+1

1 dv1 . . . dvj =

∫ 1

j
j+1

∫ vj

j−1
j+1

. . .

∫ v3

2
j+1

(
v2 −

1

j + 1

)
dv2 . . . dvj = I2.

But for each i = 2, . . . , j − 1,

Ii =

∫ 1

j
j+1

∫ vj

j−1
j+1

. . .

∫ vi+1

i
j+1

(
vi−1i

(i− 1)!
− vi−2i

(j + 1)(i− 2)!

)
dvi . . . dvj

=

∫ 1

j
j+1

∫ vj

j−1
j+1

. . .

∫ vi+2

i+1
j+1

[
vii
i!
− vi−1i

(j + 1)(i− 1)!

]vi+1

i
j+1

dvi+1 . . . dvj

=

∫ 1

j
j+1

∫ vj

j−1
j+1

. . .

∫ vi+2

i+1
j+1

(
vii+1

i!
−

vi−1i+1

(j + 1)(i− 1)!

)
dvi+1 . . . dvj = Ii+1.

Therefore

p = I2 = Ij =

∫ 1

j
j+1

(
vj−1j

(j − 1)!
−

vj−2j

(j + 1)(j − 2)!

)
dvj =

[
vjj
j!
−

vj−1j

(j + 1)(j − 1)!

]1
j

j+1

=
1

j!
− 1

(j + 1)(j − 1)!
=
j + 1− j
(j + 1)!

=
1

(j + 1)!

as claimed.

Proof of Proposition 2.1. By the fact that a U [0, 1] random variable conditioned to be at
least ε is a U [ε, 1] random variable,

E[Nε] = nhP(U ∈ I∩Dε) = nhP(U ∈ I∩Dε|U ∈ Cε)P(U ∈ Cε) = (αh(1−ε))hP(U ∈ I∩D0).

But by Lemma 2.2,

P(U ∈ I ∩D0) ≥ P(U1 ≤ 1/h)P

(
U2 < . . . < Uh, Ui ≥

i− 1

h
∀i = 2, . . . , h

)
=

1

h · h!
.

Applying Stirling’s approximation once more, we obtain

E[Nε] ≥
(α(1− ε)e)h

3h3/2
.

3 Second moment bound

We now aim to prove an upper bound on the second moment of Nε:

Proposition 3.1. If α(1− ε)e > 1, then there exists some constant c > 0 such that

E[N2
ε ] ≤ E[Nε] + E[Nε]2 + c(α(1− ε)e)2h.

Proof. We break the second moment into a sum over k-forks:

root

k vertices

h− k vertices
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To this end, for k = 0, . . . , h, let

N2
ε (k) =

∑
u,v∈P :
a(u,v)=k

1{X(u),X(v)∈I∩Dε}.

Then

N2
ε =

h∑
k=0

N2
ε (k).

Clearly N2
ε (h) = Nε, and E[N2

ε (0)] = E[Nε]
2.

Let U = (U1, . . . , Uh) and V = (V1, . . . , Vh) each be a sequence of i.i.d. U [0, 1] random
variables such that Uj = Vj for all j ≤ k and Uj and Vj are independent for j > k. Using
the fact that a uniform [0, 1] random variable conditioned to have value at least ε is a
uniform [ε, 1] random variable, we have for k = 2, . . . , h− 1,

E[N2
ε (k)] = nk · n(n− 1) · n2h−2k−2 · P(U, V ∈ I ∩Dε)

=

(
n− 1

n

)
n2h−kP(U, V ∈ I ∩Dε|U, V ∈ Cε)P(U, V ∈ Cε)

=

(
n− 1

n

)
(αh)2h−k(1− ε)2h−kP(U, V ∈ I ∩D0).

Now,

P(U, V ∈ I ∩D0) =

∫ 1

k−1
h

P(U, V ∈ I ∩D0|Uk = x) dx

≤
∫ 1

k−1
h

P(U1 < U2 < . . . < Uk−1 < x)P(x < Uk+1 < Uk+2 < . . . < Uh)
2 dx

=

∫ 1

k−1
h

xk−1

(k − 1)!
· (1− x)

2h−2k

(h− k)!2
dx.

The curve xk−1(1−x)2h−2k is decreasing on x > (k−1)/(2h−k+1), so since (k−1)/(2h−
k + 1) < (k − 1)/h,∫ 1

k−1
h

xk−1

(k − 1)!
· (1− x)

2h−2k

(h− k)!2
dx ≤ ((k − 1)/h)k−1

(k − 1)!
· ((h− k + 1)/h)2h−2k

(h− k)!2
.

Putting these estimates together and then applying Stirling’s approximation, we obtain
that for k = 2, . . . , h− 1,

E[N2
ε (k)] ≤ (αh(1− ε))2h−k · ((k − 1)/h)k−1

(k − 1)!
· ((h− k + 1)/h)2h−2k

(h− k)!2

≤ (α(1− ε))2h−kh · ek−1

2(k − 1)1/2
· e2h−2k+2

4(h− k + 1)

=
e

8
· (α(1− ε)e)2h−kh
(k − 1)1/2(h− k + 1)

.

Similarly,

E[N2
ε (1)] ≤ n2h−1

(1− ε)2h−1

(h− 1)!2

≤ e

4
(α(1− ε)e)2h−1.

ECP 18 (2013), paper 87.
Page 6/10

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2784
http://ecp.ejpecp.org/


Increasing paths in regular trees

Thus if α(1− ε)e > 1, for some constant c,

E[N2
ε ] ≤ E[Nε] + E[Nε]2 +

e

4
(α(1− ε)e)2h−1 +

h−1∑
k=2

e

8
· (α(1− ε)e)2h−kh
(k − 1)1/2(h− k + 1)

≤ E[Nε] + E[Nε]2 + c(α(1− ε)e)2h.

4 Proof of Theorem 1.1

As noted previously, it suffices to prove a lower bound when α > 1/e. Choose ε ∈
(0, 1) such that α(1− ε)e > 1. By the Paley-Zygmund inequality,

P

(
Nε ≥

E[Nε]

2

)
≥ E[Nε]

2

4E[N2
ε ]
.

By Proposition 2.1, if we choose δ ∈ (0, log(α(1− ε)e)) then E[Nε]/2 ≥ eδh for all large h,
so

P (Nε > exp(δh)) ≥ E[Nε]
2

4E[N2
ε ]
.

But by Propositions 2.1 and 3.1, for large h and some constant c′,

E[N2
ε ] ≤ c′h3E[Nε]2.

Thus we get

P(Nε > exp(δh)) ≥ 1

4c′h3
. (4.1)

Of course, we now want to improve this bound to get something exponentially close to
1 on the right-hand side. To do this, we will consider the first four levels of the tree
separately from the rest. The idea is that with high probability, there are ∼ n4 paths
from the root of length 4 whose labels are increasing and < ε. Each vertex at level 4
then has a subtree of (h − 4)n paths of length h − 4 and with probability & h−3 lots of
these subpaths have labels which are increasing and > ε, by (4.1). So the probability
that no path is increasing should look like, up to constants, (1 − h−3)n4

, which decays
exponentially as desired. We note that our choice of four levels is only to counteract the
factor of h−3 in (4.1) and working with any finite number of levels greater than 3 would
also suffice.

We start by considering the subpaths v from the root to level 4. Although one can
count subpaths whose labels satisfy X(v1) < . . . < X(v4) < ε, we will instead count
subpaths whose labels lie inside a priori intervals, allowing us to consider levels one at
a time. More precisely, for j ≤ 4, let Mj be the set of subpaths v from the root to level
j such that X(vi) ∈ [(i− 1)ε/4, iε/4) for each i = 1, . . . , j. Observe that #M1 is the sum
of n independent Bernoulli random variables of parameter ε/4; similarly, for 2 ≤ j ≤ 4,
given #Mj−1 ≥ k, #Mj is at least a sum of kn independent Bernoulli random variables
of parameter ε/4. For this reason, the following well-known form of the Chernoff bound
will be useful.

Lemma 4.1. Let Z1, . . . , Zr be independent Bernoulli random variables and let Z =∑r
i=1 Zi. Then

P

(
Z ≤ E[Z]

2

)
≤ exp

(
−E[Z]

8

)
.

We can now prove our desired bound on #M4.

Lemma 4.2.
P(#M4 ≤ (nε/8)4) ≤ 4 exp(−nε4/16384).
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Proof. At level 1, there are n vertices, and E[#M1] = nε/4. Thus by Lemma 4.1,

P (#M1 ≤ nε/8) ≤ exp
(
− nε

4 · 8

)
.

At level 2, given that #M1 > nε/8, there are at least nε2/8 vertices whose parent had
label in [0, ε/4), and so

E[#M2 | #M1 > nε/8] ≥ n2ε2

8 · 4
.

Again by Lemma 4.1,

P
(
#M2 ≤ (nε/8)2

∣∣ #M1 > nε/8
)
≤ exp

(
− (nε/8)2

4

)
.

Similarly,

P
(
#M3 ≤ (nε/8)3

∣∣ #M2 > (nε/8)2
)
≤ exp

(
− (nε/8)3

4

)
.

and

P
(
#M4 ≤ (nε/8)4

∣∣ #M3 > (nε/8)3
)
≤ exp

(
− (nε/8)4

4

)
.

Summing these estimates gives the result.

To complete the proof of Theorem 1.1, note that

P(N ≤ exp(δh)) ≤ P(#M4 ≤ (nε/8)4) + P(N ≤ exp(δh), #M4 > (nε/8)4).

Suppose that u ∈ M4, and consider the subtree of height h − 4 rooted at the vertex
u4. In order that N ≤ eδh, it must hold that there are no more than eδh paths in this
subtree that have labels ordered and greater than ε. But we know from (4.1), since
n/(h − 4) ≥ n/h = α, that the probability of this event is at most 1 − c′h−3. Thus,
applying also Lemma 4.2 and the inequality 1 + x ≤ ex,

P(N ≤ exp(δh)) ≤ 4 exp(−nε4/16384) + (1− c′h−3)(nε/8)
4

≤ exp(−ηh)

for some η > 0, which proves Theorem 1.1.

5 Extension to α = 1/e+ o(1): proof of Theorem 1.2

We now turn our attention to the case when n = αhh where αh = (1 + βh)/e, βh →
0. For the first part of the theorem, it is not difficult to see from (1.1) and Markov’s
inequality that if log h− 2hβh →∞, then the probability that there exists an increasing
path tends to 0 as h → ∞. For the second part, choose εh such that εh/βh → 0 but
hεh/ log h→∞ as h→∞. Then

αh(1− εh)e = (1 + βh)(1− εh) = 1 + βh − εh − βhεh.

So, for h sufficiently large, we have αh(1 − εh)e > 1 and the proofs of Propositions 2.1
and 3.1 go through almost unchanged. As before we get

E[Nεh ] ≥
(αh(1− εh)e)h

3h3/2
→∞

and

E[N2
εh
] ≤ E[Nεh ] + E[Nεh ]2 +

e

4
(αh(1− εh)e)2h−1 +

h−1∑
k=2

e

8
· (αh(1− εh)e)2h−kh
(k − 1)1/2(h− k + 1)

.
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However, since (αh(1 − εh)e) is not constant, we cannot bound the last term, up to
constants, by (αh(1− εh)e)2h as before. Instead, we see that

h−1∑
k=2

1

(k − 1)1/2(h− k + 1)
<

∫ h−1

0

1√
x(h− x)

dx =
2√
h
tanh−1

(√
h− 1

h

)
∼ log h√

h
,

which leads to a bound, up to constants, of h1/2 log h(αh(1− εh)e)2h. Therefore,

E[N2
εh
] ≤ E[Nεh ] + E[Nεh ]2 + ch1/2 log h(αh(1− εh)e)2h ≤ c′h15/4E[Nεh ]2

for some constants c and c′.
Now, the main difficulty arises in our application of Lemma 4.2. With the new expo-

nent of 15/4, applying our previous argument, we get

P(N ≤ exp(δh), #M4 > (nεh/8)
4) ≤ (1− c′h−15/4)(nεh/8)

4

≤ exp(−c′′h1/4ε4h)

for some constant c′′. However, unlike before, this probability does not converge to 0 as
h→∞, because h1/4ε4h does not necessarily converge to infinity. So instead of working
with a fixed number of levels, we work with log h levels. More precisely, we work with
blog hc levels, but to save notation we simply write log h.

Now, for j = 1, . . . , log h, we define M̃j to be the set of subpaths v from the root to
level j such that X(vi) ∈ [(i − 1)εh/ log h, iεh/ log h) for each i = 1, . . . , j. As before, by
repeatedly applying Lemma 4.1 we get

P

(
#M̃j ≤

(
nεh

2 log h

)j ∣∣∣∣∣ #M̃j−1 >

(
nεh

2 log h

)j−1)
≤ exp

(
−1

4

(
nεh

2 log h

)j)
,

for j = 1, . . . , log h. Summing these bounds gives

P

(
#M̃log h ≤

(
nεh

2 log h

)log h
)
≤

log h∑
j=1

exp

(
−1

4

(
nεh

2 log h

)j)

which converges to 0 as h→∞ by our assumption that hεh/ log h→∞. Therefore, with
high probability, we have at least (nεh/2 log h)

log h = hlog(nεh/2 log h) “good” increasing
subpaths up to level log h, each of which has probability at least c′h−15/4 of extending
to an increasing path to a leaf. Since

(1− c′h−15/4)(nεh/2 log h)log h

≤ exp
(
−c′h−15/4+log(nεh/2 log h)

)
→ 0,

the probability that there is no increasing path from the root to a leaf converges to 0 as
h→∞, completing the proof of Theorem 1.2.
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