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Abstract

Based on the Stein method and a general integration by parts framework we derive
various bounds on the distance between probability measures. We show that this
framework can be implemented on the Poisson space by covariance identities ob-
tained from the Clark-Ocone representation formula and derivation operators. Our
approach avoids the use of the inverse of the Ornstein-Uhlenbeck operator as in the
existing literature, and also applies to the Wiener space.
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1 Introduction

The Stein and Chen-Stein methods have been applied to derive bounds on distances
between probability laws on the Wiener and Poisson spaces, cf. [6], [7] and [8]. The
results of these papers rely on covariance representations based on the number (or
Ornstein-Uhlenbeck) operator L on multiple Wiener-Poisson stochastic integrals and its
inverse L−1. In particular the bound

dW (F,N ) ≤
√

E [|1− 〈DF,−DL−1F 〉|2] (1.1)

has been derived for centered functionals of a standard real-valued Brownian motion
in [6], Theorem 3.1. Here dW is the Wasserstein distance, N is a random variable dis-
tributed according to the standard Gaussian law, D is the classical Malliavin gradient
and 〈·, ·〉 is the usual inner product on L2(R+,B(R+), `), with ` the Lebesgue measure.

Although the Ornstein-Uhlenbeck operator L has nice contractivity properties as
well as an integral representation, it can be difficult to compute in practice as its
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eigenspaces are made of multiple stochastic integrals. Thus, although the Ornstein-
Uhlenbeck operator applies particularly well to functionals based on multiple stochas-
tic integrals, it is of a more delicate use in applications to functionals whose multiple
stochastic integral expansion is not explicitly known. This is due to the fact that the
operator L is expressed as the composition of a divergence and a gradient operator, on
both the Poisson and Wiener spaces.

In this paper we derive bounds on distances between probability laws using co-
variance representations based on the Clark-Ocone representation formula. In con-
trast with covariance identities based on the number operator, which relies on the
divergence-gradient composition, the Clark-Ocone formula only requires the compu-
tation of a gradient and a conditional expectation. In particular, in Corollary 3.4 below
we show that (1.1) can be replaced by

dW (F,N ) ≤
√

E[|1− 〈D·F,E[D·F | F·]〉|2], (1.2)

where F is a functional of a normal martingale such that E[F ] = 0. Here, D denotes a
Malliavin type gradient operator having the chain rule of derivation, and {Ft}t≥0 is the
natural filtration of the normal martingale.

In case D is the classical Malliavin gradient on the Wiener space, the bound (1.2)
offers an alternative to (1.1). For example, if F = In(fn) is a multiple stochastic inte-
gral with respect to the Brownian motion and the symmetric kernels fn satisfy certain
integrability conditions the inequality (1.2) gives

dW (In(fn),N ) ≤ |1− n!‖fn‖2L2(Rn
+)|

+ n2

√√√√n−2∑
k=0

(k!)2(2(n− 1)− 2k)!

(
n− 1

k

)4 ∫ ∞
0

∫ ∞
0

〈gsn−1,k, gtn−1,k〉L2(R
2(n−1−k)
+ )

dsdt (1.3)

obtained by the multiplication formula for multiple Wiener integrals, where

gtn−1,k(∗) = (fn(∗, t)) ◦k (fn(∗, t)1[0,t]n−1(∗)), t ∈ R+,

and the symbol ◦k denotes the canonical symmetrization of the L2 contraction over k
variables, denoted by ⊗k. On the other hand, by Proposition 3.2 of [6] the inequality
(1.1) yields

dW (In(fn),N ) ≤ |1− n!‖fn‖2L2(Rn
+)|

+n

√√√√n−2∑
k=0

(k!)2(2(n− 1)− 2k)!

(
n− 1

k

)4

‖fn ◦k+1 fn‖2
L2(R

2(n−k−1)
+ )

.

However, due to its importance, the Wiener case will be the object of a more detailed
analysis in a subsequent work.

Here our focus will be on the Poisson space, for which (1.2) provides an alternative
to Theorem 3.1 of [7]. Several applications are considered in Section 4. This includes
functionals of Poisson jump times (Tk)k≥1 of the form f(Tk), for which we obtain the
bound

dW (f(Tk),N ) ≤
∥∥∥1− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Nt
dt
∥∥∥
L1(P )

,

cf. Proposition 4.1, and a similar result for the gamma approximation, with linear and
quadratic functionals of the Poisson jump times as examples. The analogs of (1.3) for
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Poisson multiple stochastic integrals are treated in Proposition 4.3, and comparisons
with the results of [7] are discussed.

This paper is organized as follows. In Section 2 we present a general framework
for bounds on probability distances based on an abstract integration by parts formula.
Next in Section 3 we show that the conditions of this integration by parts setting can be
satisfied under the existence of a Clark-Ocone type stochastic representation formula.
In Section 4 we apply this general setting to a Clark-Ocone formula stated with a deriva-
tion operator on the Poisson space, and consider several examples, including multiple
stochastic integrals and other functionals of jump times. In Section 5 we consider the
total variation distance between a normalized Poisson compound sum and the standard
Gaussian distribution.

We close this section by quoting Stein’s lemmas for normal and gamma approxi-
mations. The following lemma on normal approximation can be traced back to Stein’s
contribution [12], see also the recent survey [5], and [6].

Lemma 1.1. Let h : R→ [0, 1] be a continuous function. The functional equation

f
′
(x) = xf(x) + h(x)− E[h(N )], x ∈ R,

has a solution fh ∈ C1b (R) given by

fh(x) = ex
2/2

∫ x

−∞
(h(a)− E[h(N )])e−a

2/2 da,

with the bounds

|fh(x)| ≤
√
π

2
and |f

′

h(x)| ≤ 2, x ∈ R.

The next lemma on the gamma approximation can be found in e.g. Lemma 1.3-(ii) of
[6]. In the sequel we denote by Γ(ν/2) a random variable distributed according to the
gamma law with parameters (ν/2, 1), ν > 0.

Lemma 1.2. Let h : R→ R be a twice differentiable function such that

|h(x)| ≤ ceax, x > −ν,

for some c > 0 and a < 1/2. Then, letting Γν := 2Γ(ν/2)− ν, the functional equation

2(x+ ν)f ′(x) = xf(x) + h(x)− E[h(Γν)], x > −ν, (1.4)

has a solution fh which is bounded and differentiable on (−ν,∞), and such that

‖fh‖∞ ≤ 2‖h′‖∞ and ‖f ′h‖∞ ≤ ‖h′′‖∞.

2 General results

2.1 Integration by parts

The main results of this paper will be derived under the abstract integration by
parts (IBP) formula (2.1) below. Let T denote a subset of C1(R) containing the constant
functions. Given F and G two real-valued random variables defined on a probability
space (Ω,F , P ) and A ∈ F an event with P (A) > 0, we let

CovA(F,G) := E[FG |A]− E[F |A]E[G |A]

denote the covariance of F and G given A. The following general Assumption 2.1 says
that the integration by parts formula with weights W1 and W2 holds for a random vari-
able F given A on T .
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Assumption 2.1. Given F a random variable, we assume that there exist two real-
valued random variables W1 ∈ L1(P (· |A)) and W2 such that

E[W2φ
′(F ) |A] = CovA(φ(F ),W1), (2.1)

for any φ ∈ T such that φ(F ), W1φ(F ), and W2φ
′(F ) ∈ L1(P (· |A)).

In particular, we note that if the IBP formula (2.1) with weights W1 and W2 holds on
T for the random variable F given A, then W1 is centered with respect to P (· |A) if and
only if we have

E[W1φ(F ) |A] = E[W2φ
′(F ) |A], φ ∈ T ,

as follows by taking φ = 1 identically. An implementation of this formula on the Poisson
space will be provided in Section 4 via the Clark-Ocone representation formula.

2.2 Normal approximation

Total variation distance

The total variation distance between two real-valued random variables Z1 and Z2 with
laws PZ1

and PZ2
is defined by

dTV (Z1, Z2) := sup
C∈B(R)

|PZ1(C)− PZ2(C)| = sup
C∈Bb(R)

|PZ1(C)− PZ2(C)|,

where B(R) and Bb(R) stand for the families of Borel and bounded Borel subsets of
R, respectively. The following bounds on the total variation distance dTV (F | A , N )

between the law of F given A and the law of N hold under Assumption 2.1.

Theorem 2.1. Let A ∈ F be such that P (A) > 0 and assume that the IBP formula (2.1)
holds for F given A on T = C1b (R). Then

1. If W2 = 1 and W1 is P (· |A)-centered we have

dTV (F | A , N ) ≤
√
π

2
E[|W1 − F | |A]. (2.2)

2. If W1 = F is P (· |A)-centered we have

dTV (F | A , N ) ≤ 2 E[|1−W2| |A]. (2.3)

Proof. 1) Take C ∈ Bb(R) and let a > 0 be such that C ⊂ [−a, a]. Consider a sequence
of continuous functions hn : R −→ [0, 1], n ≥ 1, such that limn→∞ hn(x) = 11C(x), µ-a.e.
where µ(dx) = (dx + PF |A(dx))|[−a,a] (restriction to [−a, a] of the sum of the Lebesgue
measure and the law of F given A), cf. [11] or Corollary 1.10 of [2]. Lemma 1.1 and the
integration by parts formula (2.1) show that for any n ≥ 1 we have

|E[hn(F )11A]− E[hn(N )]P (A)| = |E[(f ′hn
(F )− Ffhn(F ))11A]| (2.4)

= |E[fhn
(F )(W1 − F )11A]|

≤
√
π

2
E[|W1 − F |11A].

Dividing first this inequality by P (A) > 0 and then taking the limit as n goes to infinity,
the Dominated Convergence Theorem shows that

|P (F ∈ C |A)− P (N ∈ C)| ≤
√
π

2
E[|W1 − F | |A],

EJP 18 (2013), paper 91.
Page 4/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2787
http://ejp.ejpecp.org/


Probability approximation

for any C ∈ Bb(R). The claim follows taking the supremum over all bounded Borel sets.

2) By (2.4) and the integration by parts formula, for any n ≥ 1, we have

|E[hn(F )11A]− E[hn(N )]P (A)| = |E[f ′hn
(F )(1−W2)11A]|

≤ 2E[|1−W2|11A].

The claim follows arguing exactly as in case (1) above. �

Wasserstein distance

The Wasserstein distance between the laws of Z1 and Z2 is defined by

dW (Z1, Z2) := sup
h∈Lip(1)

|E[h(Z1)]− E[h(Z2)]|,

where Lip(1) denotes the class of real-valued Lipschitz functions with Lipschitz constant
less than or equal to 1. We have the following upper bound for the Wasserstein distance
between a centered random variable F and N .

Theorem 2.2. Assume that the IBP formula (2.1) holds for F given A with W1 = F , on
the space T of twice differentiable functions whose first derivative is bounded by 1 and
whose second derivative is bounded by 2. Then we have

dW (F | A , N ) ≤ E[|1−W2| | A], (2.5)

provided F is P (· |A)-centered.

Proof. Using the bound (2.33) in [7] and the IBP formula (2.1), we have

dW (F | A,N ) ≤ sup
φ∈T
|E[φ′(F )− Fφ(F ) | A]|

= sup
φ∈T
|E[φ′(F )(1−W2) | A]| ≤ E[|1−W2| | A].

�

2.3 Gamma approximation

Here we use the distance

dH(Z1, Z2) := sup
h∈H
|E[h(Z1)]− E[h(Z2)]|, (2.6)

where
H := {h ∈ C2b (R) : max{‖h‖∞, ‖h′‖∞, ‖h′′‖∞} ≤ 1}.

The following upper bound for the dH-distance between the centered random variable
F given A and a centered gamma random variable holds under the IBP formula (2.1) of
Assumption 2.1.

Theorem 2.3. Let F be a P (· |A)-centered, a.s. (−ν,∞)-valued random variable. Given
A ∈ F such that P (A) > 0, assume that the IBP formula (2.1) holds for F given A on
T = C1b (R) with W1 = F . Then we have

dH(F | A , Γν) ≤ E[|2(F + ν)−W2| |A], (2.7)

where the random variable Γν is defined in Lemma 1.2.
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Proof. Let h ∈ H be arbitrarily fixed. Since h is bounded above by 1, there exist c > 0

and a < 1/2 such that |h(x)| ≤ ceax, ∀ x > −ν (take c > 1 and 0 < a < 1/2 so small
that 1 < ce−aν). Let fh be solution of (1.4) (its existence is guaranteed by Lemma 1.2).
By the IBP formula (2.1) on C1b (R) for the centered random variable F given A with
W1 = F , we have

|E[h(F )11A]− E[h(Γν)]P (A)| = |E[(2(F + ν)f ′h(F )− Ffh(F ))11A]|
= |E [(2(F + ν)f ′h(F )−W2f

′
h(F ))11A] |

≤ ‖h′′‖∞E[|2(F + ν)−W2|11A].

The claim follows by dividing the above inequality by P (A) > 0 and then taking the
supremum over all functions h ∈ H. �

3 Integration by parts via the Clark-Ocone formula

In this section we consider an implementation of the the IBP formula (2.1) of As-
sumption 2.1, based on the Clark-Ocone formula for a real-valued normal martingale
(Mt)t≥0 defined on a probability space (Ω,F , P ), generating a right-continuous filtra-
tion (Ft)t≥0. In other words, (Mt)t≥0 is a square integrable martingale with respect
to the natural filtration Ft = σ(Ms : 0 ≤ s ≤ t), such that E[|Mt −Ms|2 | Fs] = t − s,
0 ≤ s < t, and the filtration is right-continuous. Let ` be the Lebesgue measure on R+.
In this section we assume the existence of a gradient operator

D : Dom(D) ⊂ L2(Ω,F , P ) −→ L2(Ω×R+,F ⊗ B(R+), P ⊗ `)

with domain Dom(D), defined by DF = (DtF )t≥0 and satisfying the following proper-
ties:

(i) D satisfies the Clark-Ocone representation formula

F = E[F ] +

∫ ∞
0

E[DtF | Ft] dMt, F ∈ Dom(D), (3.1)

(ii) D satisfies the chain rule of derivation

Dtφ(F ) = φ′(F )DtF, F ∈ Dom(D), (3.2)

for all φ ∈ T ⊆ C1(R), cf. e.g. § 3.6 of [10] (here T contains the constant functions).

This condition will be satisfied in both the Wiener and Poisson settings of Section 4. In
addition we will assume that for any F ∈ Dom(D) and φ ∈ T we have φ(F ) ∈ Dom(D).
From (3.1) the gradient operator D satisfies the following covariance identity, cf. e.g.
Proposition 3.4.1 in [10], p. 121.

Lemma 3.1. For any F,G ∈ Dom(D) we have

Cov(F,G) = E

[∫ ∞
0

E[DtF | Ft]DtGdt

]
. (3.3)

3.1 Integration by parts

We now implement the IBP formula (2.1) for functionals in the domain ofD, based on
the Clark-Ocone representation formula (3.1). Note that IBP formulas of the form (2.1)
can also be obtained by the Ornstein-Uhlenbeck semigroup, cf. e.g. Proposition 2.1 of
[3].
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Proposition 3.2. If F,G ∈ Dom(D) and φ′(F )ϕF,G(F ) ∈ L1(P ) for any φ ∈ T , then the
IBP formula (2.1) holds on T for F with W1 = G and W2 = ϕF,G(F ), i.e.

E[ϕF,G(F )φ′(F )] = Cov(φ(F ), G)

where ϕF,G is the function

ϕF,G(z) := E

[∫ ∞
0

DtF E[DtG | Ft] dt
∣∣∣F = z

]
, z ∈ R. (3.4)

Proof. By Lemma 3.1 and the properties of the gradient operator, for any φ ∈ T and
F,G ∈ Dom(D), we have

Cov(φ(F ), G) = E

[∫ ∞
0

E[DtG | Ft]Dtφ(F ) dt

]
= E

[
φ′(F )

∫ ∞
0

DtF E[DtG | Ft] dt

]
= E

[
E

[
φ′(F )

∫ ∞
0

DtF E[DtG | Ft] dt
∣∣∣F]]

= E[φ′(F )ϕF,G(F )]. (3.5)

�

3.2 Normal and gamma approximation

We now apply Theorems 2.1 and 2.2 using the Clark-Ocone formula (3.3). For any
F ∈ Dom(D), we define

ϕF (z) := ϕF,F (z) = E

[∫ ∞
0

DtF E[DtF | Ft] dt
∣∣∣F = z

]
, z ∈ R (3.6)

and note that by Jensen’s inequality

‖ϕF (F )‖L1(P ) ≤ ‖DF‖2L2(P⊗`) = E

[∫ ∞
0

|DtF |2 dt

]
<∞, F ∈ Dom(D).

The next proposition follows as a simple consequence of Theorems 2.1, 2.2, 2.3 and
Proposition 3.2 and uses the definition (2.6) of the distance dH.

Proposition 3.3. For any F ∈ Dom(D) such that E[F ] = 0, we have

dTV (F,N ) ≤ 2E[|1− ϕF (F )|]

and
dW (F,N ) ≤ E[|1− ϕF (F )|],

where ϕF is defined in (3.6). If moreover F is a.s. (−ν,∞)-valued then we have

dH(F , Γν) ≤ E[|2(F + ν)− ϕF (F )|].

Letting 〈·, ·〉 denote the usual inner product on L2(R+), from Proposition 3.3 we also
have the following corollary:

Corollary 3.4. For any F ∈ Dom(D) such that E[F ] = 0, we have

dTV (F,N ) ≤ 2‖1− 〈D·F,E[D·F | F·]〉‖L2(P )

≤ 2|1− ‖F‖2L2(P )|+ 2‖〈D·F,E[D·F | F·]〉 − E[〈D·F,E[D·F | F·]〉]‖L2(P )
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and

dW (F,N ) ≤ ‖1− 〈D·F,E[D·F | F·]〉‖L2(P )

≤ |1− ‖F‖2L2(P )|+ ‖〈D·F,E[D·F | F·]〉 − E[〈D·F,E[D·F | F·]〉]‖L2(P ).

If moreover F is a.s. (−ν,∞)-valued then we have

dH(F,Γν) ≤ ‖2(F + ν)− 〈D·F,E[D·F | F·]〉‖L2(P )

≤ ‖2(F + ν)− ‖F‖2L2(P )‖L2(P ) + ‖〈D·F,E[D·F | F·]〉 − E[〈D·F,E[D·F | F·]〉]‖L2(P ).

Proof. The first inequality follows by Proposition 3.3 and the Cauchy-Schwarz inequal-
ity. The second inequality follows by the triangle inequality noticing that by the Itô
isometry and the Clark-Ocone formula we have

E[〈D·F,E[D·F | F·]〉] = E

[∫ ∞
0

DtF E[DtF | Ft] dt

]
= E

[∫ ∞
0

E[DtF | Ft]2 dt

]
= E

[(∫ ∞
0

E[DtF | Ft] dMt

)2
]

= ‖F‖2L2(P ).

The counterpart of this statement for the Wasserstein and dH distances is proved simi-
larly. �

In this work our main focus will be on the Poisson space, and in Section 4, we shall
compare the upper bound on the Wasserstein distance with the bound obtained in [7]
on the Poisson space.

4 Analysis on the Poisson space

In this section we apply the results of Section 3 to functionals of a standard Poisson
process (Nt)t≥0 with jump times (Tk)k≥1 defined on an underlying probability space
(Ω,F , P ). We let

S = {F = f(T1, . . . , Td) : d ≥ 1, f ∈ C1p(Rd+)},
where C1p(Rd+) denotes the space of continuously differentiable functions such that f
and its partial derivatives have polynomial growth, i.e. for any i ∈ {0, 1, . . . , d} there

exist α(i)
j ≥ 0, j = 1, . . . , d, such that

sup
(x1,...,xd)∈Rd

+

|x−α
(i)
1

1 . . . x
−α(i)

d

d ∂if(x1, . . . , xd)| <∞,

where ∂0f := f . Given F = f(T1, . . . , Td) ∈ S, we consider the gradient on the Poisson
space defined as

DtF = −
d∑
k=1

11[0,Tk](t)∂kf(T1, . . . , Td), t ≥ 0 (4.1)

(see e.g. Definition 7.2.1 in [10] p. 256). We recall that the gradient operator

D : S ⊂ L2(Ω,F , P ) −→ L2(Ω×R+,F ⊗ B(R+), P ⊗ `)

is closable (see [10] p. 259). We shall continue to denote by D its minimal closed
extension, whose domain Dom(D) coincides with the completion of S with respect to
the norm

‖F‖1,2 = ‖F‖L2(P ) + ‖DF‖L2(P⊗`).
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By Proposition 7.2.8 in [10] p. 262 the operator D satisfies the Clark-Ocone represen-
tation formula, i.e. for any F ∈ Dom(D) we have

F = E[F ] +

∫ ∞
0

E[DtF | Ft] (dNt − dt), (4.2)

where (Ft)t≥0 is the filtration generated by (Nt)t≥0. We note that the gradient D satis-
fies the chain rule on the set T of real-valued functions which have polynomial growth
and are continuously differentiable with bounded derivative, i.e. for any g ∈ T and
F ∈ Dom(D) we have g(F ) ∈ Dom(D) and Dg(F ) = g′(F )DF , cf. Lemma 6.1 in the
Appendix.

Before turning to some concrete examples of Poisson functionals we note that identi-
fying the process E[DtF | Ft] in (4.2) amounts to finding the predictable representation
of the random variable F . For example if F = XT is the terminal value of the solution
(Xt)t∈[0,T ] to the stochastic differential equation

Xt = X0 +

∫ t

0

σ(s,Xs−)(dNs − ds), (4.3)

where σ : [0, T ]×Ω −→ R is a measurable function, then we immediately have E[DtF | Ft] =

σ(t,Xt−) and Corollary 3.4 shows that e.g.

dTV (XT ,N ) ≤ 2

∥∥∥∥∥1−
∫ T

0

σ(t,Xt)DtXT dt

∥∥∥∥∥
L2(P )

≤ 2
∣∣∣1− ‖XT ‖2L2(P )

∣∣∣+ 2

∥∥∥∥∥
∫ T

0

(σ(t,Xt)DtXT − E[σ(t,Xt)DtXT ]) dt

∥∥∥∥∥
L2(P )

,

provided the terminal value XT belongs to Dom(D) and E[X0] = 0. In particular, the
domain condition can be achieved under a usual Lipschitz condition on σ(·, x), x ∈
R, and a usual sub-linear growth condition on σ(t, ·), t ∈ [0, T ]. We refer the reader
to e.g. Proposition 3.2 of [4] for an explicit solution of (4.3) which is suitable for D-
differentiation when σ(t, x) vanishes at t = T , for any x ∈ R.

4.1 Approximation of Poisson jump times functionals

Proposition 4.1. Let f ∈ C1p(R+) be such that E[f(Tk)] = 0, k ≥ 1. Then

dTV (f(Tk),N ) ≤ 2
∥∥∥1− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Ntdt
∥∥∥
L1(P )

(4.4)

and

dW (f(Tk),N ) ≤
∥∥∥1− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Nt
dt
∥∥∥
L1(P )

. (4.5)

If moreover f(Tk) > −ν a.s. we have

dH(f(Tk) , Γν) ≤
∥∥∥2(f(Tk) + ν)− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Ntdt
∥∥∥
L1(P )

. (4.6)

Proof. We have f(Tk) ∈ Dom(D) and Dtf(Tk) = f ′k(Tk)DtTk = −f ′k(Tk)11[0,Tk](t), t ≥ 0.
By the formula in [10] p. 261 we have

E[Dtf(Tk) | Ft] = −
∫ ∞
t

f ′(x)pk−1−Nt(x− t) dx,
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where pk(t) = P (Nt = k). So

ϕf(Tk)(f(Tk)) = E

[∫ ∞
0

Dtf(Tk)E[Dtf(Tk) | Ft] dt
∣∣∣ f(Tk)

]
= −E

[
f ′(Tk)

∫ Tk

0

E[Dtf(Tk) | Ft] dt
∣∣∣ f(Tk)

]

= E

[
f ′(Tk)

∫ Tk

0

∫ ∞
t

f ′(x)pk−1−Nt
(x− t) dxdt

∣∣∣ f(Tk)

]

= E

[
f ′(Tk)

∫ Tk

0

∫ ∞
0

f ′(x+ t)pk−1−Nt(x) dxdt
∣∣∣ f(Tk)

]

= E

[
f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Ntdt
∣∣∣ f(Tk)

]
. (4.7)

Finally, by Proposition 3.3 we deduce

dTV (f(Tk),N ) ≤ 2E[|1− ϕf(Tk)(f(Tk))|]

= 2E

[∣∣∣E[1− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Nt
dt
∣∣∣ f(Tk)

] ∣∣∣]

≤ 2
∥∥∥1− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Nt
dt
∥∥∥
L1(P )

.

The inequalities concerning dW and dH can be proved similarly. �

Example - Linear Poisson jump times functionals

Proposition 4.1 can be applied to linear functionals of Poisson jump times. Consider first
the normal approximation. Take e.g. f(x) = (x− k)/

√
k, i.e. f(Tk) = (Tk − k)/

√
k, k ≥ 1,

and note that Tk/k is gamma distributed with mean 1 and variance 1/k. All hypotheses
of Proposition 4.1 are satisfied and we have∥∥∥1− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Nt
dt
∥∥∥
L1(P )

=
∥∥∥Tk
k
− 1
∥∥∥
L1(P )

≤
√

Var(Tk/k) =
1√
k
,

where the latter inequality follows by the Cauchy-Schwarz inequality. So (4.4) and (4.5)
recovers the classical Berry-Esséen bound. For the gamma approximation we take e.g.
ν := 2k and f(x) = 2(x− k), k ≥ 1. In such a case Γν has the same law of f(Tk) and we
check that dH(f(Tk),Γν) = 0. Indeed,∥∥∥2(f(Tk) + ν)− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Nt
dt
∥∥∥
L1(P )

=
∥∥∥4Tk − 4Tk

∥∥∥
L1(P )

= 0.

Example - Quadratic Poisson jump times functionals

Proposition 4.1 can also be applied to quadratic functionals of Poisson jump times. Con-
sider first the normal approximation, take e.g.

f(x) = αx2 − β, with α =
1

2k3/2
and β = −k + 1

2
√
k
, k ≥ 1.

Recall that if X is gamma distributed with parameters a and b, then E[Xk] = (a + k −
1)(a+k−2) · · · (a+1)a/bk, k ≥ 1. One easily sees that all the assumptions of Proposition
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4.1 are satisfied, and we find∥∥∥1− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Ntdt
∥∥∥
L1(P )

(4.8)

≤ 1

k
+

√
4

k
+

10

k2
+

6

k3
+

1

2

√
1 +

1

k

(√
4

3k
− 2

k2
+

2

3k3
+

√
4

k
+

10

k2
+

6

k3
+

2

k

)
,

cf. the Appendix. Note that this upper bound is asymptotically equivalent to (3+ 1√
3
)/
√
k

as k →∞, and so we recover the Berry-Esséen bound.

4.2 Approximation of multiple Poisson stochastic integrals

We present some applications of Corollary 3.4 to Poisson functionals. For n ≥ 1, we
denote by

In(fn) = n!

∫ ∞
0

∫ t−n

0

· · ·
∫ t−2

0

fn(t1, . . . , tn) (dNt1 − dt1) · · · (dNtn − dtn)

the multiple Poisson stochastic integral of the symmetric function fn ∈ L2(Rn+) with

In(fn) = In(f̃n) when fn is not symmetric, where f̃n denotes the symmetrization of fn
in n variables (see e.g. Section 6.2 in [10]). As a convention we identify L2(R0

+) with R,
and let

I0(f0) = f0, f0 ∈ L2(R0
+).

Moreover, we shall adopt the usual convention
∑j
k=i = 0 if i > j. Let the space S1,2

n of
weakly differentiable functions be defined as the completion of the symmetric functions
fn ∈ C1c ([0,∞)n) under the norm

‖fn‖1,2 = ‖fn‖L2(Rn
+) +

√∫ ∞
0

· · ·
∫ ∞
0

∫ ∞
t

|∂1fn(s1, . . . , sn)|2 ds1dtds2 · · · dsn

= ‖fn‖L2(Rn
+) +

√∫ ∞
0

· · ·
∫ ∞
0

∫ ∞
0

|∂1fn[t(s1, . . . , sn)|2 ds1dtds2 · · · dsn (4.9)

where ∂ifn[t(s1, . . . , sn) = ∂ifn(s1, . . . , sn)11[t,∞)(si). The next lemma is proved in the
Appendix, cf. Proposition 8 of [9] or Proposition 7.7.2 page 279 of [10].

Lemma 4.2. For any function fn ∈ S1,2
n symmetric in its n variables we have In(fn) ∈

Dom(D) with

DtIn(fn) = nIn−1(fn(∗, t))− nIn(∂1fn[t), t ∈ R+, (4.10)

and

‖DIn(fn)‖2L2(P⊗`) = n2(n− 1)!

∫ ∞
0

· · ·
∫ ∞
0

|fn(t1, . . . , tn)|2 dt1 · · · dtn

+n2n!

∫ ∞
0

· · ·
∫ ∞
0

∫ ∞
t

|∂1fn(t1, . . . , tn)|2 dt1dtdt2 · · · dtn.

We recall the multiplication formula for multiple Poisson stochastic integrals, cf. e.g.
Proposition 4.5.6 of [10]. For symmetric functions fn ∈ L2(Rn+) and gm ∈ L2(Rm+ ), we
define fn ⊗lk gm, 0 ≤ l ≤ k, to be the function

(xl+1, . . . , xn, yk+1, . . . , ym) 7→
∫
Rl

+

fn(x1, . . . , xn)gm(x1, . . . , xk, yk+1, . . . , ym) dx1 · · · dxl
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of n + m − k − l variables. We denote by fn ◦lk gm the symmetrization in n + m − k − l
variables of fn ⊗lk gm, 0 ≤ l ≤ k. Note that if k = l then ⊗k := ⊗kk is the classical L2

contraction over k variables and ◦k := ◦kk is the canonical symmetrization of ⊗k. We
have

In(fn)Im(gm) =

2(n∧m)∑
k=0

In+m−k(hn,m,k)

if the functions

hn,m,k =
∑

k≤2i≤2(k∧n∧m)

i!

(
n

i

)(
m

i

)(
i

k − i

)
fn ◦k−ii gm

belong to L2(Rn+m−k+ ), 0 ≤ k ≤ 2(n ∧m). In particular, letting 11{(t1,...,tn)<t} denote the
function 11[0,t]n(t1, . . . , tn), for any symmetric function fn ∈ S1,2

n , we have

In−1(fn(∗, t))In−1(fn(∗, t)11{∗<t}) =

2n−2∑
k=0

I2n−2−k(g
(1,t)
n−1,n−1,k) (4.11)

if the functions

g
(1,t)
n−1,n−1,k =

∑
k≤2i≤2(k∧(n−1))

i!

∣∣∣∣(n− 1

i

)∣∣∣∣2( i

k − i

)
fn(∗, t) ◦k−ii fn(∗, t)11{∗<t} (4.12)

belong to L2(R2n−2−k
+ ), 0 ≤ k ≤ 2n− 2, and

In(∂1fn[t)In−1(fn(∗, t)1{∗<t}) =

2n−2∑
k=0

I2n−1−k(g
(2,t)
n,n−1,k) (4.13)

if the functions

g
(2,t)
n,n−1,k =

∑
k≤2i≤2(k∧(n−1))

i!

(
n

i

)(
n− 1

i

)(
i

k − i

)
∂1fn[t ◦k−ii fn(∗, t)11{∗<t}

belong to L2(R2n−1−k
+ ), 0 ≤ k ≤ 2n − 2. Part (2) of the next proposition proposes an

alternative to the Gamma bound of Theorem 2.6 of [8].

Proposition 4.3. 1) For any symmetric function fn ∈ S1,2
n such that

g
(1,t)
n−1,n−1,k ∈ L

2(R2n−2−k
+ ), 0 ≤ k ≤ 2n− 2

and

g
(2,t)
n,n−1,k ∈ L

2(R2n−1−k
+ ), 0 ≤ k ≤ 2n− 2,

we have

dTV (In(fn),N ) ≤ 2|1− n!‖fn‖2L2(Rn
+)|

+2n2

(
2n−3∑
k=0

(2n− 2− k)!

∫
(0,∞)2

〈g(1,t)n−1,n−1,k − g
(2,t)
n,n−1,k+1, g

(1,s)
n−1,n−1,k − g

(2,s)
n,n−1,k+1〉L2(R2n−2−k

+ ) dsdt

+

∫ ∞
0

∫ ∞
0

(2n− 1)!〈g(2,t)n,n−1,0, g
(2,s)
n,n−1,0〉L2(R2n−1

+ ) dsdt

)1/2
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and

dW (In(fn),N ) ≤ |1− n!‖fn‖2L2(Rn
+)|

+n2

(
2n−3∑
k=0

(2n− 2− k)!

∫
(0,∞)2

〈g(1,t)n−1,n−1,k − g
(2,t)
n,n−1,k+1, g

(1,s)
n−1,n−1,k − g

(2,s)
n,n−1,k+1〉L2(R2n−2−k

+ ) dsdt

+

∫ ∞
0

∫ ∞
0

(2n− 1)!〈g(2,t)n,n−1,0, g
(2,s)
n,n−1,0〉L2(R2n−1

+ ) dsdt

)1/2

.

2) If moreover In(fn) is a.s. (−ν,∞)-valued then we have

dH(In(fn),Γν) ≤
√

4ν2 + n!‖fn‖4L2(Rn
+) + 4n!(1− ν)‖fn‖2L2(Rn

+)

+n2

(
2n−3∑
k=0

(2n− 2− k)!

∫
(0,∞)2

〈g(1,t)n−1,n−1,k − g
(2,t)
n,n−1,k+1, g

(1,s)
n−1,n−1,k − g

(2,s)
n,n−1,k+1〉L2(R2n−2−k

+ ) dsdt

+

∫ ∞
0

∫ ∞
0

(2n− 1)!〈g(2,t)n,n−1,0, g
(2,s)
n,n−1,0〉L2(R2n−1

+ ) dsdt

)1/2

.

Proof. By Lemma 4.2 we have In(fn) ∈ Dom(D) and

DtIn(fn) = nIn−1(fn(∗, t))− nIn(∂1fn[t), t ∈ R+.

So by Lemma 2.7.2 p. 88 of [10] and the definition of ∂1fn[t , we have

E[DtIn(fn) | Ft] = nIn−1(fn(∗, t)11{∗<t})− nIn(∂1fn[t11[0,t]n) = nIn−1(fn(∗, t)11{∗<t}),
(4.14)

since fn(∗, t)11{∗<t} = 0, t ∈ R+. Combining this with the multiplication formulas (4.11)
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and (4.13) for multiple Poisson stochastic integrals, we deduce

〈D·In(fn),E[D·In(fn) | F·]〉

= n2
∫ ∞
0

In−1(fn(∗, t))In−1(fn(∗, t)11{∗<t}) dt− n2
∫ ∞
0

In(∂1fn[t)In−1(fn(∗, t)11{∗<t}) dt

= n2
2n−2∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k) dt− n2

2n−2∑
k=0

∫ ∞
0

I2n−1−k(g
(2,t)
n,n−1,k) dt

= n2
2n−2∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k) dt− n2

2n−2∑
k=1

∫ ∞
0

I2n−1−k(g
(2,t)
n,n−1,k) dt

−n2
∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt

= n2
2n−2∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k) dt− n2

2n−3∑
s=0

∫ ∞
0

I2n−2−s(g
(2,t)
n,n−1,s+1) dt

−n2
∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt

= n2
∫ ∞
0

I0(g
(1,t)
n−1,n−1,2n−2) dt+ n2

2n−3∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1) dt

−n2
∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt

= n2(n− 1)!

∫ ∞
0

fn(∗, t) ◦n−1n−1 fn(∗, t)11{∗<t} dt

+n2
2n−3∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1) dt− n2

∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt

= n2(n− 1)!

∫ ∞
0

∫
[0,t]n−1

fn(t1, . . . tn−1, t)fn(t1, . . . tn−1, t) dt1 · · · dtn−1dt

+n2
2n−3∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1) dt− n2

∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt.

Using the first equality above and the isometry formula for multiple Poisson stochastic
integrals (see Proposition 2.7.1 p. 87 in [10]) we have

E[〈D·In(fn),E[D·In(fn) | F·]〉]

= n2(n− 1)!

∫ ∞
0

∫
[0,t]n−1

fn(t1, . . . tn−1, t)fn(t1, . . . tn−1, t) dt1 · · · dtn−1dt.

Hence

〈DIn(fn),E[DIn(fn) | F·]〉 − E[〈DIn(fn),E[DIn(fn) | F·]〉]

= n2
2n−3∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1) dt− n2

∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt.

We conclude by Corollary 3.4, noticing that In(fn) is a centered random variable (see
[10] pp. 87-88), ‖In(fn)‖2L2(P ) = n!‖fn‖2L2(Rn

+), for any ν > 0

‖2(In(fn) + ν)− n!‖fn‖2L2(Rn
+)‖

2
L2(P ) = n!‖fn‖4L2(Rn

+) + 4n!(1− ν)‖fn‖2L2(Rn
+) + 4ν2,
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and

‖
2n−3∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1) dt−

∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt‖2L2(P )

= E

(2n−3∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1) dt

)2


+E

[(∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt

)2
]

−2

2n−3∑
k=0

E

[∫ ∞
0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1)I2n−1(g

(2,s)
n,n−1,0) dsdt

]

= E

(2n−3∑
k=0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1) dt

)2


+E

[(∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt

)2
]

=

2n−3∑
k=0

E

[(∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1) dt

)2
]

+E

[(∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0) dt

)2
]

=

2n−3∑
k=0

E

[∫ ∞
0

∫ ∞
0

I2n−2−k(g
(1,t)
n−1,n−1,k − g

(2,t)
n,n−1,k+1)I2n−2−k(g

(1,s)
n−1,n−1,k − g

(2,s)
n,n−1,k+1) dsdt

]
+E

[∫ ∞
0

∫ ∞
0

I2n−1(g
(2,t)
n,n−1,0)I2n−1(g

(2,s)
n,n−1,0) dsdt

]
=

2n−3∑
k=0

(2n− 2− k)!

∫ ∞
0

∫ ∞
0

〈g(1,t)n−1,n−1,k − g
(2,t)
n,n−1,k+1, g

(1,s)
n−1,n−1,k − g

(2,s)
n,n−1,k+1〉L2(R2n−2−k

+ ) dsdt

+(2n− 1)!

∫ ∞
0

∫ ∞
0

〈g(2,t)n,n−1,0, g
(2,s)
n,n−1,0〉L2(R2n−1

+ ) dsdt.

�

Single Poisson stochastic integrals

In the particular case n = 1, the space S1,2
1 is the completion of C1c ([0,∞)) under the

norm

‖f‖1,2 = ‖f‖L2(R+) + ‖‖f ′[·‖L2(R+)‖L2(R+) : =

√∫ ∞
0

|f(t)|2 dt+

√∫ ∞
0

∫ ∞
t

|f ′(s)|2 dsdt

(4.15)

=

√∫ ∞
0

|f(t)|2 dt+

√∫ ∞
0

s|f ′(s)|2 ds

where f ′[t(s) := f ′(s)11[t,∞)(s) and we have I1(f) ∈ Dom(D) with

DtI1(f) = f(t)− I1(1[t,∞)f
′), t ∈ R+,
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and

‖DI1(f)‖2L2(P⊗`) =

∫ ∞
0

|f(t)|2 dt+

∫ ∞
0

∫ ∞
t

|f ′(s)|2 dsdt.

The following result is a simple consequence of Proposition 4.3 for n = 1.

Corollary 4.4. For any f ∈ S1,2
1 , we have

dTV (I1(f),N ) ≤ 2|1− ‖f‖2L2(R+)|+ 2

√∫ ∞
0

|f ′(t)|2
(∫ t

0

f(z) dz

)2

dt

and

dW (I1(f),N ) ≤ |1− ‖f‖2L2(R+)|+

√∫ ∞
0

|f ′(t)|2
(∫ t

0

f(z) dz

)2

dt.

If moreover I1(f) is a.s. (−ν,∞)-valued then we have

dH(I1(f),Γν) ≤
√

4ν2 + ‖f‖4L2(R+) + 4(1− ν)‖f‖2L2(R+) +

√∫ ∞
0

|f ′(t)|2
(∫ t

0

f(z) dz

)2

dt.

Note that Corollary 3.4 of [7] states that

dW (I1(f),N ) ≤ |1− ‖f‖2L2(R+)|+ ‖f‖
3
L3(R+),

for any f ∈ L2(R+), which shows that

I1(fk) −→ N in law

provided ‖fk‖L2(R+) −→ 1 and ‖fk‖L3(R+) −→ 0 as k goes to infinity. Next we consider a
couple of examples for comparison with Corollary 4.4.

Example - Single Poisson stochastic integrals with specific kernels

1. Take gk(t) = (2/k)1/2e−t/k t ≥ 0, k ≥ 1. We shall show later on that gk ∈ S1,2
1 . We

have ‖gk‖L2(R+) = 1 and(∫ ∞
0

|g′k(t)|2
(∫ t

0

gk(z) dz

)2

dt

)1/2

=
2

k

(∫ ∞
0

e−2t/k|1− e−t/k|2dt

)1/2

=
2

k

(∫ ∞
0

(e−2t/k − 2e−3t/k + e−4t/k)dt

)1/2

=

√
1

3k
,

hence by Corollary 4.4 we get

dW (I1(gk),N ) ≤
√

1

3k
,

while Corollary 3.4 of [7] yields

dW (I1(gk),N ) ≤
∫ ∞
0

|gk(t)|3 dt =

√
8

3

√
1

3k

and
√

8/3 > 1.

To check that gk ∈ S1,2
1 it suffices to verify that g ∈ S1,2

1 , where g(t) = e−t, t ≥ 0.
Let {χk}k≥1 be a sequence of functions in C1c ([0,∞)) with 0 ≤ χk(t) ≤ 1, for any
t ≥ 0, χk(t) = 1, for any t ∈ [0, k], and supk≥1,t≥0 |χ′k(t)| < ∞. Then one may easily
see that {χkg}k≥1 is a sequence in C1c ([0,∞)) converging to g in the norm ‖ · ‖1,2.
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2. Take

gk(t) =
2

(k + 1
2 )1/2

11[0,2−1(k+2−1)](t) cos(2πt), t ≥ 0, k ≥ 1.

Note that gk is continuous and piecewise differentiable (with a piecewise contin-
uous derivative) and so gk is weakly differentiable. We shall show later on that
gk ∈ S1,2

1 . We have

‖gk‖L2(R+) =
2

(k + 1
2 )1/2

√∫ 2−1(k+2−1)

0

| cos(2πt)|2 dt = 1,

and (∫ ∞
0

|g′k(t)|2
(∫ t

0

gk(z) dz

)2

dt

)1/2

=
4π

(k + 1
2 )1/2

(∫ 2−1(k+2−1)

0

| sin(2πt)|2
(∫ t

0

gk(z) dz

)2

dt

)1/2

=
8π

k + 1
2

(∫ 2−1(k+2−1)

0

| sin(2πt)|2
(∫ t

0

cos(2πz) dz

)2

dt

)1/2

=
4

k + 2−1

(∫ 2−1(k+2−1)

0

| sin(2πt)|4 dt

)1/2

=
4

k + 2−1

(
3

4

∫ 2−1(k+2−1)

0

| sin(2πt)|2 dt

)1/2

=
2
√

3

k + 2−1

(
2−1(k + 2−1)−

∫ 2−1(k+2−1)

0

| cos(2πt)|2 dt

)1/2

=

√
3

k + 2−1

√
k +

1

2
=

√
3√

k + 2−1

hence by Corollary 4.4 we get

dW (I1(fk),N ) ≤
√

3√
k + 2−1

,

whereas by Corollary 3.4 of [7] we have

dW (I1(fk),N ) ≤
∫ ∞
0

|gk(t)|3 dt =
16

3π

1√
k + 2−1

.

Note that 16/(3π) <
√

3.

To check that gk ∈ S1,2
1 it suffices to verify that g ∈ S1,2

1 , where g(t) = 11[0,π/2](t) cos t,
t ≥ 0. Let ρ be a smooth probability density on [0,∞) with support in [0, 1],
ρk(t) = kρ(kt) and

Gk(t) := g ∗ ρk(t) =

∫ t

0

ρk(t− s)g(s) ds, t ≥ 0.

Then one may easily see that {Gk}k≥1 is a sequence in C1c ([0,∞)) converging to g
in the norm ‖ · ‖1,2.
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Double Poisson stochastic integrals

For the case of double Poisson stochastic integrals we have the following corollary.

Corollary 4.5. For any symmetric function f ∈ S1,2
2 , we have

dTV (I2(f),N ) ≤ 2|1− 2‖f‖2L2(R+)|

+8

(
2!

∫
(0,∞)2

∫ ∞
0

f(x, t)f(x, s) dx

∫ t∧s

0

f(y, t)f(y, s) dydsdt

+

∫
(0,∞)2

∫ t∧s

0

|f(x, t)f(x, s)|2 dxdsdt

+3!

∫
(0,∞)2

∫ ∞
t∨s

∫ ∞
0

|∂1f(x, y)|2 dxdy

∫ t∧s

0

f(z, t)f(z, s) dzdsdt

)1/2

and

dW (I2(f),N ) ≤ |1− 2‖f‖2L2(R+)|

+4

(
2!

∫
(0,∞)2

∫ ∞
0

f(x, t)f(x, s) dx

∫ t∧s

0

f(y, t)f(y, s) dydsdt

+

∫
(0,∞)2

∫ t∧s

0

|f(x, t)f(x, s)|2 dxdsdt

+3!

∫
(0,∞)2

∫ ∞
t∨s

∫ ∞
0

|∂1f(x, y)|2 dxdy

∫ t∧s

0

f(z, t)f(z, s) dzdsdt

)1/2

.

If moreover I2(f) is a.s. (−ν,∞)-valued then we have

dH(I2(f),Γν) ≤ (2‖f‖4L2(R+) + 8(1− ν)‖f‖2L2(R+) + 4ν2)1/2

+4

(
2!

∫
(0,∞)2

∫ ∞
0

f(x, t)f(x, s) dx

∫ t∧s

0

f(y, t)f(y, s) dydsdt

+

∫
(0,∞)2

∫ t∧s

0

|f(x, t)f(x, s)|2 dxdsdt

+3!

∫
(0,∞)2

∫ ∞
t∨s

∫ ∞
0

|∂1f(x, y)|2 dxdy

∫ t∧s

0

f(z, t)f(z, s) dzdsdt

)1/2

.

Proof. It follows after a direct computation taking n = 2 in Proposition 4.3 and noticing
that, for any f ∈ S1,2

2 ,

g
(1,t)
1,1,0(x, y) = f(x, t)f(y, t)11(0,t)(y), g

(1,t)
1,1,1(x) = |f(x, t)|211(0,t)(x), g

(1,t)
1,1,2 =

∫ t

0

|f(x, t)|2 dx

and
g
(2,t)
2,1,0(x, y, z) = ∂1f(x, y)f(z, t)11[t,∞)(x)11(0,t)(z), g

(2,t)
2,1,1 ≡ g

(2,t)
2,1,2 ≡ 0.

�

5 Normal approximation of the compound Poisson distribution

In this section we present an application of formula (2.2) to the compound Poisson
distribution. Let (Zk)k≥1 be a sequence of real-valued i.i.d. random variables indepen-
dent of a Poisson distributed random variable Nn with parameter n ≥ 1. We assume that
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Z1 has moments of any order and that its distribution has a continuously differentiable
density pZ1

(z) with respect to the Lebesgue measure, such that limz→±∞ |z|ppZ1
(z) = 0

for all p ≥ 1. We also assume that d
dz log pZ1

(z) = p′Z1
(z)/pZ1

(z) has at most polynomial
growth. Consider the sequence

Fn :=

∑Nn

k=1 Zk − nE[Z1]√
nE[Z2

1 ]
, n ≥ 1.

It is well-known that Fn −→ N , in law, as n −→ ∞. In the following we are going
to upper bound the total variation distance between Fn and N . The following lemma
applies the IBP formula of [1] to each Fn |Nn = m, m,n ≥ 1.

Lemma 5.1. Let m,n ≥ 1 be fixed integers. Under the foregoing assumptions on the
law of the jump amplitude Z1, we have that the IBP formula (2.1) holds on C1b (R) for
Fn |Nn = m with P (· |Nn = m)-centered

W1 = W (m)
n := −

√
nE[Z2

1 ]

m

m∑
k=1

qZ1(Zk) where qZ1(z) :=
p′Z1

(z)

pZ1
(z)

11{pZ1
(z)>0}

and W2 = 1.

Proof. See Theorem 3.1 and Section 4 in [1]. �

We have the following bound for the total variation distance.

Proposition 5.2. Under the foregoing assumptions on the law of the jump amplitude
Z1, we have

dTV (Fn,N ) ≤ e−n +

√
π

2
‖(1−Rn)11{Nn≥1}‖L2(P ), n ≥ 1

where

Rn = − n

Nn

E[Z2
1 ]
∑Nn

k=1 qZ1
(Zk)∑Nn

k=1 Zk − nE[Z1]
.

Proof. For any n ≥ 1, we have

dTV (Fn,N ) = sup
C∈B(R)

|P (Fn ∈ C)− P (N ∈ C)|

= sup
C∈B(R)

∣∣∣ ∑
m≥0

[P (Fn ∈ C |Nn = m)P (Nn = m)− P (N ∈ C)P (Nn = m)]
∣∣∣

≤
∑
m≥0

dTV (Fn |Nn = m,N )P (Nn = m)

≤ e−n +

√
π

2

∑
m≥1

E[|W (m)
n − Fn| |Nn = m]P (Nn = m) (5.1)

= e−n +

√
π

2
E[|W (Nn)

n − Fn|11{Nn≥1}]

= e−n +

√
π

2
E

[
|Fn|

∣∣∣1− W
(Nn)
n

Fn

∣∣∣11{Nn≥1}

]

≤ e−n +

√
π

2
‖Fn‖L2(P )

∥∥∥(1− W
(Nn)
n

Fn

)
11{Nn≥1}

∥∥∥
L2(P )

= e−n +

√
π

2

∥∥∥(1− W
(Nn)
n

Fn

)
11{Nn≥1}

∥∥∥
L2(P )

,

where the inequality (5.1) follows by (2.2). �
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Example - Normal approximation of Poisson compound sums with Gaussian ad-
dends

Suppose that Z1 is a standard Gaussian random variable. Then all the hypotheses of
Proposition 5.2 are satisfied and Rn = n/Nn. So, for any n ≥ 1,

dTV (Fn,N ) ≤ e−n +

√
π

2

∥∥∥(1− n

Nn

)
11{Nn≥1}

∥∥∥
L2(P )

. (5.2)

We have ∥∥∥(1− n

Nn

)
11{Nn≥1}

∥∥∥
L2(P )

= e−n/2
√∑
m≥1

(
1− n

m

)2 nm
m!

=
√

1− e−n − 2ne−nS1(n) + n2e−nS2(n), (5.3)

where

S1(n) :=
∑
m≥1

nm

mm!

and

S2(n) :=
∑
m≥1

nm

m2m!
.

Note that these two series converge (by e.g. the ratio test), but their sum do not have
a closed form. After some manipulations, one can realize that S1(n) and S2(n) have the
following series expansion at n =∞:

S1(n) = en(n−1 + n−2 +O(n−3)) + log n−1 − iπ − γ +O(n−7)

and

S2(n) = en(n−2+3n−3+O(n−4))−2−1 log2(n−1)+(γ+iπ) log n−1+5π2/12−iγπ−γ2/2+O(n−6)

where γ denotes the Euler-Mascheroni constant. So

n(1− e−n − 2ne−nS1(n) + n2e−nS2(n)) = 1 + ω(n),

where ω(n) is a suitable function converging to zero as n −→ ∞. Therefore, combining
(5.2) and (5.3) we get a Berry-Esseen type upper bound for Fn, which is asymptotically
equivalent to

√
π
2n , as n −→∞.

6 Appendix

Lemma 6.1. Let g : R −→ R be with polynomial growth and continuously differentiable
with bounded derivative and F ∈ Dom(D), we have g(F ) ∈ Dom(D) and Dg(F ) =

g′(F )DF .

Proof. For any F ∈ S we clearly have g(F ) ∈ S and the claim is an immediate con-
sequence of the action of Dt on S and the chain rule for the derivative. Now, take
F ∈ Dom(D). Then there exists a sequence (F (n))n≥1 ⊂ S such that F (n) −→ F in
L2(P ) and DF (n) −→ DF in L2(P ⊗ `). Since the claim holds for functionals in S,
for g : R −→ R with polynomial growth and continuously differentiable with bounded
derivative, we have Dg(F (n)) = g′(F (n))DF (n), n ≥ 1. By the convergence in L2(P ) we
have that there exists a subsequence {n′} of {n} such that F (n′) −→ F a.s.. The claim
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follows if we check that Dg(F (n′)) −→ g′(F )DF in L2(P ⊗ `). By the boundedness of g′,
for a positive constant C > 0 we have

‖Dg(F (n′))− g′(F )DF‖L2(P⊗`) = ‖g′(F (n′))DF (n′) − g′(F )DF‖L2(P⊗`)

≤ ‖g′(F (n′))DF (n′) − g′(F (n′))DF‖L2(P⊗`) + ‖g′(F (n′))DF − g′(F )DF‖L2(P⊗`)

≤ C‖DF (n′) −DF‖L2(P⊗`) +

(
E

[∫ ∞
0

|g′(F (n′))− g′(F )|2|DtF |2 dt

])1/2

.

This latter quantity tend to zero as n′ −→ ∞. Indeed, the first term goes to zero since
DFn −→ DF in L2(P ⊗ `); the second term goes to zero by the Dominated Convergence
Theorem since for some constant C > 0 we have |g′(F (n′)) − g′(F )||DtF | ≤ C|DtF |,
P ⊗ `-a.e, DF ∈ L2(P ⊗ `) and g′(F (n′)) −→ g′(F ) a.s. by the continuity of g′. �

Proof of Lemma 4.2. Let fn ∈ C1c ([0,∞)n) be a symmetric function and define the
sequence

F (m) =

n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m

∫ ∞
0

· · ·
∫ ∞
0

fn(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

= In(fn11[0,Tm]n)

+

n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m

∫
R

n−k
+ \[0,Tm]n−k

fn(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn,

(6.1)

m ≥ 1. We have (F (m))m≥1 ⊂ S and F (m) converges to F = In(fn) in L2(P ). Indeed,
by the isometry formula for multiple Poisson stochastic integrals (see e.g. Proposition
6.2.4 in [10]), we have

E[|F − In(fn11[0,Tm]n)|2] = E
[(
In(fn(1− 11[0,Tm]n))

)2]
(6.2)

= n!E

[∫ ∞
0

· · ·
∫ ∞
0

|fn(t1, . . . , tn)|2(1− 11[0,Tm]n(t1, . . . , tn)) dt1 · · · dtn
]

and this latter term tends to 0 as m goes to infinity by the Dominated Convergence
Theorem. Moreover, each of the remaining terms

∫
R

n−k
+ \[0,Tm]n−k

fn(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

in (6.1) is bounded and tends to 0 a.s. as m goes to infinity, since fn has compact
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support. Next, by (4.1) we have

DtF
(m) = −

n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m

×
k∑
i=1

11[0,Tli
](t)

∫ ∞
0

· · ·
∫ ∞
0

∂ifn(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

= −
n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m∫ ∞

0

· · ·
∫ ∞
0

n∑
i=1

∂ifn[t(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

+

n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m∫ ∞

0

· · ·
∫ ∞
0

n∑
i=k+1

∂ifn[t(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

= −
n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m∫ ∞

0

· · ·
∫ ∞
0

n∑
i=1

∂ifn[t(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

−
n−1∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m

n∑
i=k+1∫ ∞

0

· · ·
∫ ∞
0

fn(Tl1 , . . . , Tlk , sk+1, . . . , si−1, t, si+1, . . . sn) dsk+1 · · · dsi−1dsi+1 · · · dsn−1

= −
n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m

∫ ∞
0

· · ·
∫ ∞
0

n∑
i=1

∂ifn[t(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

−
n−1∑
k=0

(−1)n−k
(
n

k

)
(n− k)

∑
1≤l1 6=···6=lk≤m∫ ∞

0

· · ·
∫ ∞
0

fn(Tl1 , . . . , Tlk , t, z1, . . . zn−k−1) dz1 · · · dzn−k−1

= −
n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m

∫ ∞
0

· · ·
∫ ∞
0

n∑
i=1

∂ifn[t(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

−n
n−1∑
k=0

(−1)n−k
(
n− 1

k

) ∑
1≤l1 6=···6=lk≤m∫ ∞

0

· · ·
∫ ∞
0

fn(Tl1 , . . . , Tlk , t, z1, . . . , zn−k−1) dz1 · · · dzn−k−1

= nIn−1(fn(∗, t)11[0,Tm]n−1)− nIn(∂1fn[t11[0,Tm]n)

−
n∑
k=0

(−1)n−k
(
n

k

) ∑
1≤l1 6=···6=lk≤m

(6.3)

∫
R

n−k
+ \[0,Tm]n−k

n∑
i=1

∂ifn[t(Tl1 , . . . , Tlk , sk+1, . . . , sn) dsk+1 · · · dsn

+n

n−1∑
k=0

(−1)n−1−k
(
n− 1

k

) ∑
1≤l1 6=···6=lk≤m

(6.4)∫
R

n−1−k
+ \[0,Tm]n−1−k

fn(Tl1 , . . . , Tlk , t, z1, . . . , zn−1−k) dz1 · · · dzn−k−1, t ∈ R+.
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To conclude we note that, as in (6.2), nIn−1(fn(∗, t)1[0,Tm]n−1) − nIn(∂1fn[t1[0,Tm]n) con-
verges in L2(P ⊗ `) to

DtF := nIn−1(fn(∗, t))− nIn(∂1fn[t), t ∈ R+, (6.5)

as m goes to infinity by the isometry formula for multiple Poisson stochastic integrals,
and the two terms in (6.3) and (6.4) converge to 0 since fn ∈ C1c ([0,∞)n).

In order to complete the proof of the first part of the lemma by closability, given
fn ∈ S1,2

n we choose a sequence (f
(m)
n )m∈N ⊂ C1c ([0,∞)n) converging to fn for the norm

(4.9) and we define the sequence of functionals (F (m))m≥1 in Dom(D) by

F (m) := In(f (m)
n ), m ≥ 1.

Then we note that by the isometry formula for multiple Poisson stochastic integrals and
the convergence of f (m)

n to fn in L2(R+), we have In(f
(m)
n )→ In(fn) in L2(P ) as m→∞.

Moreover, DtF defined by (4.10) and (6.5) satisfies

E

[∫ ∞
0

|DtF −DtF
(m)|2 dt

]
≤ 2n2E

[∫ ∞
0

∣∣∣In(∂1fn[t)− In(∂1f
(m)
n[t )

∣∣∣2 dt

]
+2n2E

[∫ ∞
0

|In−1(fn(∗, t))− In−1(f (m)
n (∗, t))|2 dt

]
= 2n2n!

∫ ∞
0

· · ·
∫ ∞
0

∫ ∞
t

|∂1fn(s1, . . . , sn)− ∂1f (m)
n (s1, . . . , sn)|2 ds1dtds2 · · · dsn

+2n2(n− 1)!

∫ ∞
0

· · ·
∫ ∞
0

|fn(s1, . . . , sn)− f (m)
n (s1, . . . , sn)|2 ds1 · · · dsn.

So DF (m) converges to DF in L2(P ⊗`) by the convergence of f (m)
n to fn with respect to

the norm ‖·‖1,2. Finally, using again the isometry formula for multiple Poisson stochastic
integrals, we have

E

[∫ ∞
0

|DtF |2 dt

]
= n2E

[∫ ∞
0

(
In−1(fn(∗, t))− In(∂1fn[t)

)2
dt

]
= n2E

[∫ ∞
0

(In−1(fn(∗, t)))2 dt

]
+ n2E

[∫ ∞
0

(
In(∂1fn[t)

)2
dt

]
−2n2E

[∫ ∞
0

In−1(fn(∗, t))In(∂1fn[t) dt

]
= n2(n− 1)!

∫ ∞
0

· · ·
∫ ∞
0

|fn(t1, . . . , tn)|2 dt1 · · · dtn

+n2n!

∫ ∞
0

· · ·
∫ ∞
0

∫ ∞
t

|∂1fn(t1, . . . , tn)|2 dt1dtdt2 · · · dtn.

�
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Probability approximation

Proof of (4.8). We have

f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Ntdt = 4α2Tk

∫ Tk

0

(t+ E[Tk−h]h=Nt) dt

= 4α2Tk

∫ Tk

0

(t+ k −Nt) dt

= 2α2T 3
k + 4kα2T 2

k − 4α2Tk

∫ Tk

0

Nt dt

= 2α2T 3
k + 4kα2T 2

k − 4α2Tk

k∑
h=1

(h− 1)(Th − Th−1).

Therefore∥∥∥1− f ′(Tk)

∫ Tk

0

E[f ′(Tk−h + t)]h=Nt
dt
∥∥∥
L1(P )

≤ E[|1− 4kα2T 2
k |] + 2α2E

[
Tk

∣∣∣2 k∑
h=1

(h− 1)(Th − Th−1)− T 2
k

∣∣∣]

≤ E[|1− 4kα2T 2
k |] + 2α2‖Tk‖L2(P )

∥∥∥2

k∑
h=1

(h− 1)(Th − Th−1)− T 2
k

∥∥∥
L2(P )

= E

[∣∣∣1− T 2
k

k2

∣∣∣]+
1

2

√
k + 1

k

∥∥∥ 2

k2

k∑
h=1

(h− 1)(Th − Th−1)− T 2
k

k2

∥∥∥
L2(P )

.

We shall provide an upper bound for both these addends. We have

E

[∣∣∣1− T 2
k

k2

∣∣∣] = E

[∣∣∣T 2
k − (k + 1)k

k2
+

1

k

∣∣∣]
≤ 1

k
+

1

k2

√
Var(T 2

k )

=
1

k
+

√
4

k
+

10

k2
+

6

k3
.

Now, consider the other term. We have

2

k2

k∑
h=1

(h− 1)(Th − Th−1)− T 2
k

k2

=
1

k2
((k + 1)k − T 2

k ) +
2

k2

k∑
h=1

(h− 1)(Th − Th−1 − 1) +
2

k2

k∑
h=1

(h− 1)− (k + 1)k

k2
,

hence

∥∥∥ 2

k2

k∑
h=1

(h− 1)(Th − Th−1)− T 2
k

k2

∥∥∥
L2(P )

≤
∥∥∥2
∑k
h=1(h− 1)(Th − Th−1 − 1)

k2

∥∥∥
L2(P )

+
∥∥∥T 2

k − (k + 1)k

k2

∥∥∥
L2(P )

+

∣∣∣2∑k
h=1(h− 1)− (k + 1)k

∣∣∣
k2

≤
∥∥∥2
∑k
h=1(h− 1)(Th − Th−1 − 1)

k2

∥∥∥
L2(P )

+
∥∥∥T 2

k − (k + 1)k

k2

∥∥∥
L2(P )

+
2

k
.
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Probability approximation

Note that

∥∥∥2
∑k
h=1(h− 1)(Th − Th−1 − 1)

k2

∥∥∥
L2(P )

=

√√√√Var

(
2
∑k
h=1(h− 1)(Th − Th−1)

k2

)

=
2

k2

√√√√ k∑
h=1

|h− 1|2 =

√
4

3k
− 2

k2
+

2

3k3
,

and ∥∥∥T 2
k − (k + 1)k

k2

∥∥∥
L2(P )

=
1

k2

√
Var (T 2

k ) =

√
4

k
+

10

k2
+

6

k3
.

Collecting all these inequalities leads to (4.8). �
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