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Invariant measure of the
stochastic Allen-Cahn equation: the

regime of small noise and large system size
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Abstract

We study the invariant measure of the one-dimensional stochastic Allen-Cahn equa-
tion for a small noise strength and a large but finite system with so-called Dobrushin
boundary conditions, i.e., inhomogeneous ±1 Dirichlet boundary conditions, which
enforce at least one transition layer from −1 to 1. (Our methods can be applied to
other boundary conditions as well.) We are interested in the competition between the
“energy” that should be minimized due to the small noise strength and the “entropy”
that is induced by the large system size.

Specifically, in the context of system sizes that are exponential with respect to
the inverse noise strength—up to the “critical” exponential size predicted by the
heuristics—we study the extremely strained large deviation event of seeing more
than the one transition layer between ±1 that is forced by the boundary conditions.
We capture the competition between energy and entropy through upper and lower
bounds on the probability of these unlikely extra transition layers. Our bounds are
sharp on the exponential scale and imply in particular that the probability of having
one and only one transition from −1 to +1 is exponentially close to one. Our second
result then studies the distribution of the transition layer. In particular, we establish
that, on a super-logarithmic scale, the position of the transition layer is approximately
uniformly distributed.

In our arguments we use local large deviation bounds, the strong Markov property,
the symmetry of the potential, and measure-preserving reflections.
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1 Introduction

In this paper we study the unique invariant measure of the stochastically perturbed
Allen-Cahn equation

∂tuε(t, x) = ∂2
x uε(t, x)− V ′(uε(t, x)) +

√
2ε η(t, x), (1.1)
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Invariant measure on large systems

where uε is a one-dimensional order parameter defined for all non-negative times t ∈ R+

and x ∈ (−Lε, Lε). Here η is a formal expression denoting space-time white noise and
V is a symmetric double-well potential. The canonical choice for V is

V (u) =
1

4
(1− u2)2,

although more general choices are possible (see Assumption 1.1 below). We are inter-
ested in the properties of the invariant measure for large system sizes,

Lε � 1.

It is well-known that for ε ↓ 0 and fixed system size L, the invariant measure of the
Allen-Cahn equation concentrates on minimizers of the energy∫ L

−L

(
1

2
(∂xu)2 + V (u)

)
dx.

This follows from large deviation theory. In fact, even for system sizes Lε that grow
with ε, the same is true. Indeed, in [23] the second author proved this fact for Lε ∼ ε−α
for any α < 2

3 . See also the discussion in Subsection 1.4 about the analysis in [2] of the
layer location for Lε = | log ε|/4.

Our main goal in the current paper is to study the emergence of competition between
energy and entropy in the setting of large systems. Specifically, we are interested,
on the one hand, in large deviation estimates for the very unlikely event of multiple
transition layers in interval sizes that are exponential with respect to ε−1. On the other
hand, we are interested in the distribution of the layer location for super-logarithmic
interval sizes. We now sketch the heuristic picture for each question.

The effect of energy on the measure is well-known. The intuition is that the invariant
measure can be viewed as a Gibbs measure with respect to the given energy, i.e., that
it is in some sense proportional to

exp

(
−1

ε

∫ Lε

−Lε

(
1

2
(∂xu)2 + V (u)

)
dx

)
.

The heuristic picture then says that, because of the potential term in the energy, func-
tions u supported on this measure are most likely to be close to one or the other mini-
mum of V on most of [−Lε, Lε]. On the other hand, because of the gradient term in the
energy, there is an energetic “cost” c0 for each transition between these two preferred
states. In the setting of inhomogeneous ±1 Dirichlet boundary conditions, one transi-
tion layer is forced by the boundary conditions, and the above considerations imply that
having say n+ 1 transition layers is exponentially unlikely with weight

exp
(
−nc0

ε

)
.

On bounded systems, this is the end of the story.
Now let us consider the competing effect of entropy on the measure that emerges

due to the system size. Namely, the probability of finding a transition between the min-
ima of V is increased by the fact that it is possible for the transition to occur anyplace in
the system. Similarly, the combinatorial factor associated to n extra transitions scales
like (Lε)

n. Hence, the folklore is that the probability of finding n transition layers scales
like

(Lε)
n exp

(
−nc0

ε

)
. (1.2)
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Invariant measure on large systems

This heuristic picture is captured (on the exponential level) in our first theorem, Theo-
rem 1.5 below. Notice that if Lε is exponentially large, then the entropic factor changes
the exponential factor in the probability of finding n extra transitions. See Remark 1.6
below.

The second issue in which we are interested is the distribution of the transition layer.
From the above discussion, the (exponentially) most likely scenario is that the system
has only one transition layer. Where is the layer most likely to be found? As we discuss
in more detail in Subsection 1.4, the recent work [2] shows that on systems with Lε =

| log ε|/4, the transition layer is localized in a bounded interval around the origin. On the
real line, however, the infinite volume Gibbs measure is translation invariant. Hence,
the localized picture captured in [2] must break down for sufficiently large systems.
Intuitively, one understands that there is again an entropic effect associated with large
systems that gives weight to paths with transition layers located away from the origin.
Our second result, Theorem 1.9, establishes this breakdown of the localization due to
entropy: It shows that on super-logarithmic intervals (up to critical scale), the transition
layer is approximately uniformly distributed.

To obtain our results, we use the simple idea that one can decompose the mea-
sure into conditional measures and the corresponding marginals in order to reduce to
order-one intervals on which one can apply large deviation theory. Along the way, it
is important for us to use measure-preserving reflection arguments that allow us to
transform the underlying Brownian paths. The detailed structure of the (deterministic)
energy functional is also critical in our proofs. There are at least two alternative ap-
proaches that one may consider; we comment more on these alternatives in the context
of our literature discussion in Subsection 1.4.

We will state our results in detail in Subsection 1.2 after first explaining our set-up
and notation.

1.1 Set-up and notation

For the potential V in (1.1), we need a symmetric double-well potential with at least
superlinear growth at infinity. For simplicity, we assume that the two minima of V are
normalized to be at ±1 and that the minimum value of the potential is zero. To be
precise, our assumptions are:

Assumption 1.1. V is a smooth, even potential such that, on (0,∞), V satisfies

V (u) ≥ 0 and V (u) = 0 iff u = 1,

V ′(u) = 0 if and only if u = 1,

V ′′(1) > 0,

V (u) ≥ u1+β/C for u ≥ C for some C <∞ and β > 0. (1.3)

Remark 1.2. If we assume superquadratic growth on V at infinity (recall that we have
quartic growth of the standard double well potential V (u) = (1 − u2)2/4), some of our
technical lemmas simplify slightly. In particular, one can remove the dependence of the
minimal system size `∗ on M in Lemmas 2.3 and 2.5.

Because of the normalization of our potential, the transitions that we are interested
in are transitions between ±1. We make the notion precise in the following definition.

Definition 1.3 (Up/down transition layers). We say that u has an up transition layer on
(x−, x+) if

u(x±) = ±1 and |u(x)| < 1 for all x ∈ (x−, x+).

We say that u has a down transition layer on (x−, x+) if the same condition holds with
signs reversed, and that u has a transition layer if it has an up or down transition layer.
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Invariant measure on large systems

For the boundary conditions on our PDE, we will work with so-called Dobrushin
boundary conditions or inhomogeneous ±1 Dirichlet boundary conditions:

uε
(
t,±Lε

)
= ±1. (1.4)

Because of the boundary conditions, there is necessarily one up transition layer, and
our first question is whether there are additional transition layers. Notice that, if there
are additional layers, then they come as a pair of an up layer and a down layer. We
remark that our methods can also handle other boundary conditions, for instance peri-
odic boundary conditions or Dirichlet boundary conditions that do not force a transition
layer to be present.

We will denote the invariant measure of (1.1) subject to the boundary conditions (1.4)
by µ−1,1

ε,(−Lε,Lε) and the corresponding expectation by Eµε,−1,1
(−Lε,Lε)(·). We will often use the

fact that the measure µ−1,1
ε,(−Lε,Lε) can be written as a Gaussian measure with density

[25]. Namely, one can express the expectation of any test function Φ as

E
µε,−1,1
(−Lε,Lε)(Φ) =

E
Wε,−1,1
(−Lε,Lε)

[
Φ(u) exp

(
− 1

ε

∫ Lε
−Lε V (u) dx

)]
E
Wε,−1,1
(−Lε,Lε)

[
exp

(
− 1

ε

∫ Lε
−Lε V (u) dx

)] . (1.5)

Here EWε,−1,1
(−Lε,Lε) denotes the expectation with respect to the measure W−1,1

ε,(−Lε,Lε), which

is the distribution of a Brownian bridge on (−Lε, Lε) from −1 to +1 with variance pro-
portional to ε. Properties ofW−1,+1

ε,(−Lε,Lε) will be discussed in detail in Section 3.

The deterministic Allen-Cahn equation (set η = 0 in (1.1)) is the L2-gradient flow of
the energy

E(u) :=

∫ Lε

−Lε

(
1

2
(∂xu)2 + V (u)

)
dx. (1.6)

When we need to refer to the energy on all of R or the localized energy on a subinterval,
we will denote this with a subscript:

E(−∞,∞)(u) =

∫ ∞
−∞

(
1

2
(∂xu)2 + V (u)

)
dx,

E(−`,`)(u) =

∫ `

−`

(
1

2
(∂xu)2 + V (u)

)
dx. (1.7)

As mentioned above, the energy functional will be important for understanding the
invariant measure of the stochastic equation. In particular, the probability of finding
transition layers will depend on the energetic “cost” of a transition layer on R, that is:

c0 := inf
{
E(−∞,∞)(u) : u(±∞) = ±1

}
. (1.8)

It is well known [16] that this cost can be computed explicitly as

c0 =

∫ 1

−1

√
2V (u) du

Ass. 1.1
= 2

∫ 1

0

√
2V (u) du; (1.9)

see the beginning of Section 2 for an explanation.
We will often refer to scaling regimes in our results. To this end, we define the

following notation.

Notation 1.4. • The well-established theory of large deviations applies on intervals
whose length is order-one with respect to ε. A main point of this paper, however, is
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Invariant measure on large systems

to obtain estimates on intervals that are exponentially large with respect to ε and
for which, consequently, the established theory does not apply. We therefore use
a subscript of ε in order to distinguish interval lengths that are large with respect
to ε from quantities that are order-one with respect to ε.

• To specify bounds with respect to ε, we sometimes make use of the shorthand
notation�, ., and /. To explain: For Aε, Bε ≥ 0, we write

Aε � Bε

if for every C <∞, we have Aε/Bε ≤ 1/C for ε sufficiently small.

We write
Aε . Bε

if there exists a universal constant C < ∞ such that Aε ≤ C Bε, and similarly for
Aε & Bε. If both inequalities hold, then we write Aε ∼ Bε.
We write

Aε / Bε

if for every α > 0 we have Aε ≤ Bε + α for ε sufficiently small, and similarly for
Aε ' Bε. If both inequalities hold, then we write Aε ≈ Bε.

• We use numbered constants C1, C2, et cetera, to denote specific constants that
we refer to later in the paper. On the other hand, we use C to denote a generic
order-one constant whose value may change from place to place. Throughout the
article, C or a numbered constant Ci is a constant that is universal except for a
possible dependence on the potential V .

• In specifying our constants, we use the convention of specifying “the worst case
scenario,” in the sense that we use a lowercase letter and specify c > 0 or an
uppercase letter and specify C <∞ when the power of the estimate would be lost
in the limit c ↓ 0 or C ↑ ∞, respectively. When necessary, we specify C ∈ (0,∞)

or write C < ∞ “sufficiently large”; when we write only C < ∞, it is clear from
the context either that only positive C is possible or that negative C gives an even
stronger result.

We are now ready to state our results.

1.2 Main results

Recall that the boundary conditions imply that there must be at least one up layer
and that any additional layers come in pairs. We will always consider the regime in
which the system size Lε satisfies

1� Lε . exp

(
c′0
ε

)
for some c′0 < c0. (1.10)

(Recall that c0 is the energy cost defined in (1.8).) This is the regime in which one
expects the probability of extra transitions to go to zero and in particular to obey the
energetic and entropic scaling expressed in (1.2). Our first result captures this behavior
on the exponential level.

Theorem 1.5. Suppose that Lε satisfies (1.10). Then for every n ∈ N and γ > 0

sufficiently small, there exists ε0 > 0 such that for ε ≤ ε0, one has the upper bound

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
≤ (Lε)

2n exp

(
−2nc0 − γ

ε

)
,
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and the lower bound

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
≥ (Lε)

2n exp

(
−2nc0 + γ

ε

)
.

Remark 1.6. One should note that because of the error term γ, our result sees only
information on the exponential level. In particular, if one has an exponential system
size such that

ε log Lε ≈ c′0 < c0,

then what our result says is that for any n ∈ N we have

ε logµ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
≈ −2n(c0 − c′0).

Remark 1.7. Throughout the paper, when we say “u has 2n+ 1 layers,” we mean that
u has at least 2n+ 1 layers.

Remark 1.8. As mentioned above, our techniques can also handle different boundary
conditions, e.g., periodic boundary conditions or Dirichlet boundary conditions that do
not enforce a transition layer. For instance, for periodic boundary conditions or Dirich-
let conditions u(±Lε) = 1, the probability of 2n transition layers is bounded above and
below by

(Lε)
2n exp

(
−2nc0 ∓ γ

ε

)
,

respectively, while for homogeneous Dirichlet boundary conditions, the probability of n
transition layers is bounded above and below by

(Lε)
n exp

(
−nc0 ∓ γ

ε

)
,

respectively.

Our second main result states that, on scales larger than logarithmic in 1/ε, the
layer location is uniformly distributed in the following sense.

Theorem 1.9. Consider µ−1,1
ε,(−Lε,Lε) in the regime

| log ε| � Lε . exp

(
c′0
ε

)
for some c′0 < c0. (1.11)

Let dε > 0 be such that
| log ε| � dε ≤ Lε.

Then uniformly for any x such that [x− dε, x+ dε] ⊆ [−Lε, Lε], we have

Lε
dε

µ−1,1
ε,(−Lε,Lε)

(
there is an up layer contained in [x− dε, x+ dε]

)
≈ 1. (1.12)

The theorem says that the probability of finding an up transition layer in a subinter-
val of length 2dε given a system size 2Lε is approximately dε/Lε in the sense expressed
in (1.12), independent of the location of the subinterval. (The existence of an up transi-
tion layer somewhere in the system is forced by the boundary conditions.) In this sense,
the layer locations are approximately uniformly distributed. The theorem is strongest
when considering dε at the lower range of validity: It shows that the uniform distribu-
tion holds not only on macroscopic intervals but also down to the logarithmic scale.

As remarked above, the uniform distribution of the layer location in our regime is
in contrast to the characterization of the layer distribution in the case Lε = | log ε|/4
studied in [2]; see Subsection 1.4 below for more discussion.
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1.3 Methods: Markovianity, compact sets, and reflections

Our approach for Theorem 1.5 relies on a simple idea. Namely, while we cannot
use large deviation theory directly on (−Lε, Lε), we can use the Markovianity of the
underlying reference measure to reduce to order-one subintervals on which we can. In
particular, by taking large (but order-one) subintervals and conditioning on the bound-
ary values of a larger, surrounding subinterval, we can take advantage of large devi-
ation bounds with a cost that is to leading order independent of the subinterval size.
This method is similar in spirit to Freidlin and Wentzell’s approach of calculating the
expected exit time from a metastable domain for a diffusion process with small noise
([11]), but there is a twist due to the two sided nature of our Markov property.

To illustrate our method, suppose that we want to estimate the probability that there
is a transition layer contained within [−`, `] for some ` large. (Transition layers are
introduced in Definition 1.3 above; roughly, they are layers connecting ±1.) The Markov
property (Lemma 3.2) implies that this probability can be written as

µ−1,1
ε,(−Lε,Lε)

(
transition in(−`, `)

)
=

∫ ∞
−∞

∫ ∞
−∞

ν(du−, du+)µ
u−,u+

ε,(−2`,2`)

(
transition in(−`, `)

)
. (1.13)

Here ν denotes the marginal distribution of the pair (u(−2`), u(2`)), and µ
u−,u+

ε,(−2`,2`) de-

notes the distribution of paths on (−2`, 2`) with boundary conditions u± (see Section 3
for a precise definition of this measure).

In Subsection 3.2 we establish large deviation estimates for the measures µ
u−,u+

ε,(−2`,2`)

that hold locally uniformly in the boundary values u±. Hence for u± in some large
compact set, we can integrate over these bounds in (1.13). On the other hand, the
probability that the boundary values u± fall outside of the compact set [−M,M ] for
M � 1 decays exponentially with M (see Lemma 4.1 below).

For boundary values within the compact set [−M,M ], large deviation theory gives
the uniform estimate

µ
u−,u+

ε,(−2`,2`)

(
transition in(−`, `)

)
= exp

(
− 1

ε

(
∆E(transition) + o(1)

))
.

Here ∆E(transition) denotes the difference between the minimal energy of paths that
satisfy the boundary conditions u(±2`) = u± and perform a transition in (−`, `) and the
minimal energy over all paths that satisfy the boundary conditions. (See Subsection 3.2
for a more complete discussion.)

Now we arrive at the second problem, which is more subtle. The issue is that the
energy difference ∆E(transition) depends strongly on the boundary conditions. The
cost that we are expecting to recover is c0, defined in (1.8). However, if u− ≈ −1 and
u+ ≈ 1, for instance, then the energy difference is approximately zero! In this case, the
information about the probability of a transition is encoded in the distribution ν.

Our idea to handle the problem of dependence on the boundary conditions relies on
Markovianity and the global symmetries of µ−1,1

ε,(−Lε,Lε). What we want to do is to trans-
form a transition event into an event that does not feel the influence of the boundary
conditions. Roughly, the new event will be that there are points x < y < z ∈ (−`, `)
such that u(x) ≈ u(z) ≈ −1 while u(y) = 0. (See Figure 1 for an illustration and Defini-
tions 2.4 and 2.7 for formal definitions of these “wasted excursions.”) The expected cost
for such an event is also c0, and a little thought reveals that this should be the energy
difference regardless of the boundary conditions at ±2`. (For a result in this direction,
see Lemma 2.5.)
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x

Figure 1: A vertical reflection turns a transition layer into a “wasted excursion” in which
(roughly speaking) the path goes from −1 to 0 and then back to −1. The probability of
a wasted excursion on (−`, `) is approximately independent of the boundary conditions
at ±2`.

x

J1 J2

Figure 2: A point reflection between a hitting point of −1 and a hitting point of +1

moves the transition from the interval J1 into the interval J2. As the point reflection
preserves the measure, both events have the same probability.

In order to transform transitions into wasted excursions, we use the strong Markov
property (see Lemma 3.3) and the symmetry of V . Specifically, we reflect paths verti-
cally between certain hitting points of zero in such a way that leaves µ−1,1

ε,(−Lε,Lε) invari-
ant. For details, see for instance (4.22) and the subsequent calculations in the proof of
Theorem 1.5.

A different reflection operator turns out to be useful when we come to the proof of
the uniform distribution of the layer location in Theorem 1.9. Again the Markovianity
and the symmetry of µ−1,1

ε,(−Lε,Lε) are crucial. Here the rough idea is to show that the

probability of finding the transition layer in any interval [y− dε, y+ dε] is approximately
the same as that of finding the layer in any other interval [z − dε, z + dε]. In Section 5,
we construct a measure-preserving reflection operator that transforms paths with a
transition in [y − dε, y + dε] into paths with a transition in (or near) [z − dε, z + dε]. We
build this reflection operator using certain hitting points of −1 and +1 to the left and
right of the transition layer. (This is illustrated in Figure 2.) Hence a key point is to
prove that, on the set of paths with a transition in [y−dε, y+dε], such hitting points exist
with high probability. This fact is developed in Lemmas 5.1 and 5.2 using an iterated
rescaling argument and large deviation bounds.

Remark 1.10. Our reflection argument is similar in spirit to the classical Peierls argu-
ment [17], which shows that the Ising model admits a phase transition in dimensions
d ≥ 2.
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1.4 Background literature and related results

The dynamics of the stochastic Allen-Cahn equation (1.1) have been considered by
several authors. In particular, the groundbreaking works of Funaki [12] and Brassesco,
De Masi, and Presutti [5] study the dynamics of very similar equations. In [12], Funaki
studies the equation (1.1) on R with the noise term

√
2εη multiplied by a function with

compact spatial support and boundary conditions that enforce one transition. In terms
of our notation, the noise acts on an interval Lε of length polynomial in ε−1. In [5], the
equation (1.1) is considered for Lε = ε−1 with Neumann boundary conditions. In both
articles, the initial condition is chosen close to the optimal profile of a single transition,
and it is shown that the solution stays close to an optimal profile on timescales that are
polynomial in ε−1. The evolution of the midpoint of the transition layer is also charac-
terized: In [12], the interface dynamic is given by a stochastic differential equation that
reflects the spatially dependent noise strength. In [5], it is shown that the midpoint
performs a Brownian motion. The dynamic behavior observed in both of these articles
is consistent with—but does not contain—our results on the invariant measure. In par-
ticular, the Brownian motion of interfaces is consistent with the uniform distribution of
layer location that we observe in Theorem 1.9.

The theory of large deviations for diffusion processes was developed in the mathe-
matics literature in the 1970s in papers by Wentzell and Freidlin (see for instance [24])
and Kifer [15], and a landmark text is the book of Freidlin-Wentzell [11] (published
in Russian in 1979 and first published in English in 1984). The small noise problem
for stochastic partial differential equations appears more recently in the mathematics
community. A seminal paper in extending the Freidlin-Wentzell theory to spatially vary-
ing diffusions is the paper of Faris and Jona-Lasinio [8], which specifically established
and studied the action functional of the stochastic Allen-Cahn differential equation on
a bounded system [0, L]. The invariant measure of stochastically perturbed reaction
diffusion systems (including the Allen-Cahn equation) on a bounded domain is analyzed
by Freidlin in [10]. For issues related to invariant measures and uniqueness, see for
instance [3] and the references therein.

As we have emphasized in the beginning of the introduction, in this paper we are
concerned with the interplay between small noise and large domain size. Specifically,
we are interested in large deviation estimates for the invariant measure for system
sizes that are exponential with respect to the inverse noise strength. As we have also
mentioned in Subsection 1.3, we will use the idea of breaking our (large) system up
into order-one subsystems. The idea of understanding large deviation events on large
spatial systems via a decomposition into subintervals and the Markov property is clas-
sical and is similar in spirit to the method of Freidlin and Wenzell for calculating the
expected exit time from a metastable domain [11]. In the context of stochastic reaction
diffusion equations, it was used in the paper [21] to heuristically derive the nucleation
and propagation dynamics in the setting of an unequal-well potential.

In an analysis of the invariant measure for the equal-well case [23], the second au-
thor proved a concentration result for the measures µ−1,1

ε,(−Lε,Lε) for system sizes that

are large but algebraically bounded: specifically, Lε ≤ ε−α for α < 2/3. The technique
used there is completely different from the one employed in the present article, how-
ever. In [23], the measure is discretized to make rigorous the heuristic intuition that
µ−1,1
ε,(−Lε,Lε) is a Gibbs measure. Explicit bounds on the energy landscape and Gaussian

concentration inequalities are then used to derive bounds on this discretized measure.
This technique does not appear to be applicable for longer intervals because the dis-
cretization errors become too large.

In the articles [1] and [2], the special case of intervals growing like Lε = 1
4 | log ε| is

studied. (The prefactor 1/4 depends on a specific choice of double-well potential.) Like

EJP 19 (2014), paper 23.
Page 9/76

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2813
http://ejp.ejpecp.org/


Invariant measure on large systems

us, the authors in [2] are interested in the strained setting of Dobrushin boundary condi-
tions in a setting in which there is a nontrivial effect coming from the system size. They
find that for Lε = 1

4 | log ε|, the location of the transition layer is random and nonuni-
form. Specifically, they derive a concentration result around the one-parameter family
of energy minimizers and characterize the asymptotic distribution of the position of the
interfacial layer, which is nonuniform and concentrated near the origin. The idea is that
the nonuniformity comes from the energetic repulsion from the boundary of the inter-
val, which survives at this logarithmic spatial scale. Incidentally, this result shows that
our lower bound dε � | log ε| in Theorem 1.9—where we show that for super-logarithmic
scales the transition layer is approximately uniformly distributed—is optimal. Loosely
speaking, the results in [2] and ours are complementary. They obtain finer results on
logarithmic scales; we obtain coarser results on super-logarithmic scales.

On a technical level, the article [2] uses the fact that the measure µ−1,1
ε,(−Lε,Lε) can be

realized as the distribution of a diffusion process

du(x) = aε
(
u(x)

)
dx+ ε1/2dw(x) (1.14)

subject to u(−Lε) = −1 and conditioned on the event u(Lε) = 1. The drift term aε
satisfies the Riccati equation

ε2a′′ε (u) + 2a′ε(u)aε(u) = 2V ′(u). (1.15)

This equivalence between the invariant measure of an SPDE and the distribution of
the associated bridge process has been pointed out in [19]. The drift term aε is the
logarithmic derivative of the ground state of the Schrödinger operator −ε2∆ + V , and
the relationship between (1.14) and the Schrödinger operator has been extensively ex-
ploited; see for instance [20] and the citing references. In this context, our model is
often referred to as the φ4

1 model and the limit ε ↓ 0 corresponds to the semiclassical
limit in which the Planck constant ~ is sent to zero.

An alternative approach to the one that we pursue below would be to study the law
of the bridge process associated to (1.14) on super-logarithmic intervals. The behavior
of the solution aε of the Riccati equation (1.15) for small ε was investigated already by
Jona-Lasinio, Martinelli, and Scoppola in [14]. Their analysis suggests that the invari-
ant measure on R concentrates on functions with u(x) ≈ ±1 with transitions between
plus and minus one exponentially distributed with parameter c0. Making this picture
rigorous is nontrivial, however, since it requires establishing large deviation estimates
for a stochastic differential equation with an ε-dependent drift term aε whose ε → 0

limit a0 contains a jump discontinuity. Although the method of [2] successfully uses the
corresponding bridge process on an ε-dependent domain, they compare to a process
whose drift is ε-independent and close the argument using careful error estimates that
seem, as they point out, to depend on the scaling Lε ∼ | log ε|.

Let us point out here that the symmetry of the potential is more than a technical
assumption. Indeed the behavior of solutions to the Riccati equation (1.15) (or equiva-
lently, the behavior of the ground state of the Schrödinger operator −ε2∆ +V ) changes
drastically as soon as the potential is only mildly asymmetric. Consider, for example,
the situation where V is a double-well potential with two wells of equal depth, but one
well is broader than the other, in the sense that (say) V ′′(1) > V ′′(−1). Then (under
some additional assumptions) the results from [14] imply that for small enough ε the aε
will be positive on all of (−1, 1). Hence, the field u will typically never stay near −1 for
extended intervals.

There is also a wide body of literature on spin systems from the mathematical
physics community. A fundamental paper in this area is [6], in which a one-dimensional
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Ising model with ferromagnetic Kac potential is analyzed. Below we summarize their
results and then comment on the idea of applying their method in our setting.

The Ising model with ferromagnetic Kac potential is a spin model whose spins inter-
act not only with their nearest neighbors, but with all spins in a given range. In [6],
the authors study the limit in which this range diverges. This corresponds to the limit
ε ↓ 0 that we investigate. Just as symmetry of the potential V is critical in our work,
symmetry of the Kac potential is essential in [6]. Their main argument relies on a large
deviation statement for their measure on all of R, cf.[6, Theorem 2.7]. This large de-
viation result implies, for example, that the local spin averages concentrate around ±1

and that probability to see a transition from −1 to +1 in any given compact interval is
exponentially small. The exponential rate is given by the energetic cost of a transition
(the analogue of the constant c0 in this work). They use their large deviation bounds
to establish the convergence to the exponential distribution (suggested for our model
by [14]; see above).

The significant difference between the large deviation bounds of [6] and ours is the
dependence on the boundary condition. They obtain a large deviation principle on the
line (again, see [6, Theorem 2.7]). We use only large deviation bounds for the measure
conditioned on the boundary values of a given interval (see Propositions 3.4 and 3.5,
below). Interestingly, their large deviation principle also relies on a reflection (see for
instance [6, proof of Proposition 3.2, p. 70]), although they reflect outside a given
interval while we reflect inside a given interval.

Another alternative approach to the one that we pursue in this paper would be to try
to adapt the method of [6] to our setting. After establishing a large deviation principle
on R, one could move to a large deviation principle on the positive half-line and from
there use the Markov property to try to establish sharp scaling bounds on the extremely
rare event of multiple transitions, as in Theorem 1.5. This approach is interesting to
consider and seems to be feasible. However, it does not seem to be shorter or conceptu-
ally easier than the approach we pursue here; indeed, it will require many of the same
arguments (quantitative control on the probability of large boundary values, ruling out
of so-called “lazy transitions,” establishing the likelihood of boundary values in a small
neighborhood of ±1, reflection). Establishing the uniform distribution (Theorem 1.9)
also goes beyond the scope of the tools developed in [6].

1.5 Organization

We begin with preliminaries: In Section 2 we collect some properties of the energy
functional, and in Section 3 we collect some probabilistic properties of µ−1,1

ε,(−Lε,Lε) and
of the underlying Gaussian measures. With these preliminaries in hand, we turn in Sec-
tion 4 to the proof of our first result, Theorem 1.5. In Section 5 we prove Theorem 1.9,
the uniform distribution of the layer location. Finally, in Section 6 we prove the various
technical lemmas that have been used in support of the main theorems.

2 Deterministic preliminaries

In this section we discuss some more details about the energy functional E (cf. (1.6)).
Our goal is to familiarize the reader with the common intuition about this energy, as well
as to present some facts that will guide our method and appear later in proofs.

As described above, the potential term in the energy favors the states ±1 and the
gradient term in the energy leads to an energetic cost for transitions between these
states. Given our large system and the boundary conditions (1.4), it is natural to con-
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sider the problem

inf{E(−∞,∞)(u) : u(±∞) = ±1}.

As we mentioned, the minimum cost c0 can be calculated explicitly (cf. (1.9)). The
calculations underlying this fact appear repeatedly in the proofs of our energy lemmas,
so we begin by recalling them. The so-called Modica-Mortola trick (cf. [16]) uses the
elementary inequality a2 + b2 ≥ 2ab to observe:

inf{E(−∞,∞)(u) : u(±∞) = ±1}

= inf

{∫ ∞
−∞

(
1

2
(∂xu)2 + V (u)

)
dx : u(±∞) = ±1

}
≥ inf

{∫ ∞
−∞

√
2V (u)(∂xu) dx : u(±∞) = ±1

}
=

∫ 1

−1

√
2V (u) du,

which gives a lower bound on the energetic cost. For the matching upper bound, one
observes that the equality a2 + b2 = 2ab holds if and only if a = b, so that if the minimum
energetic cost is achieved, then there must hold

|∂xu| =
√

2V (u). (2.1)

Moreover, minimality of the energy and our boundary conditions imply that the mini-
mum is achieved for the strictly increasing function that satisfies

∂xu =
√

2V (u). (2.2)

We denote by m the minimizer that is normalized so that m(0) = 0. This function m is
then the unique, centered, stationary solution of the Allen-Cahn equation on R subject
to the given boundary conditions, i.e., the solution of

∂2
xm− V ′(m) = 0 m(0) = 0 and m(±∞) = ±1.

In the case of the standard double-well potential V (u) = (1 − u2)2/4, one has m(x) =

tanh(x/
√

2).
For general potentials satisfying Assumption 1.1, the energy minimizer has similar

qualitative properties to the hyperbolic tangent. In particular, what will be important
for us is that the minimizer converges exponentially to ±1 as x→ ±∞.

Lemma 2.1 (Exponential decay of minimizer). Under Assumption 1.1 on the potential
V , there exists C <∞ such that the global energy minimizer m satisfies

|m(x)− sign(x)| ≤ C exp

(
−
√
V ′′(1)

2
x

)
.

The exponential convergence to ±1 follows directly from (2.2) and the quadratic
behavior of V near the minima (cf., Assumption 1.1).

In addition to the exponential convergence to ±1, we see from (2.2) and Assump-
tion 1.1 that, outside of a neighborhood of ±1, the slope of m is bounded away from
zero. Consequently, there is a characteristic length-scale associated to a transition
layer. We will use this length-scale in an essential way. That is, since we cannot apply
large deviation theory on the full system scale Lε, we will decompose into subsystems
of bounded size, typically called 2` or 4`. We will choose the subsystem size so that
(with very large probability) a typical transition layer fits inside, which requires ` to
be large. In order to make these ideas precise, we begin by introducing the idea of a
δ− transition layer. Simply put, instead of connecting ±1, it connects −1 + δ with 1− δ.
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Definition 2.2 (δ− transition layer). Fix δ ∈ (0, 1/2) and suppose x− < x+. We say that
u has a δ− up transition layer between x− and x+ if

u(x±) = ±(1− δ) and |u(x)| < 1− δ for all x ∈ (x−, x+).

We say that u has a δ− down transition layer on (x−, x+) if the same condition holds
true with signs reversed, and that u has a δ− transition layer if it has a δ− up or a δ−

down transition layer.

Since it is of course true that

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
≤ µ−1,1

ε,(−Lε,Lε)
(
u has (2n+ 1) δ− transition layers

)
,

the proof of the upper bound in Theorem 1.5 will be established if we can show that for
any γ > 0 and for sufficiently small δ > 0, there is an ε0 > 0 such that, for all ε ≤ ε0, we
have

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) δ− transition layers

)
. (Lε)

2n exp

(
−2nc0 − γ

ε

)
. (2.3)

The main ingredient for establishing (2.3) is the uniform large deviation estimate from
Proposition 3.4, below, which essentially reduces the problem to one of energy esti-
mates. We will control the energy of suitable classes of functions up to a small δ-
dependence and ultimately absorb this error term into the large deviation error γ from
the proposition.

One of the first steps will be to understand the length-scale associated to δ− transi-
tion layers. For any δ ∈ (0, 1/2), the optimal transition layer is captured by the energy
minimizer m that goes from −1 + δ to 1 − δ over a finite length-scale, and “typical lay-
ers” perform the transition on a similar length-scale. A question that we will have to
address is how likely it is for a transition to take unusually long to complete a δ− tran-
sition. In the following lemma, we show that the difference of energies expressed in
Proposition 3.4 is large for functions that perform unusually long transitions (uniformly
with respect to the boundary values).

Lemma 2.3 (Long transitions). There exists a C1 < ∞ (depending only on V ) such
that, for any M ∈ (0,∞) and any δ ∈ (0, 1/2), there exists an `∗ < ∞ with the following
property. For any ` ≥ `∗ and u± ∈ [−M,M ], set

Abc := {u ∈ C([−2`, 2`]) : u(−2`) = u− and u(2`) = u+},
Abc

0 := {u ∈ Abc : for all x ∈ [−`, `], u(x) ∈ [−1 + δ, 1− δ]}.

Then we have

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u) ≥ 2δ2 `

C1
. (2.4)

The proof of Lemma 2.3 is given in Subsection 6.1. This lemma together with the
large deviation bound from Proposition 3.4 will imply that for γ small with respect to
δ2`, the probability of finding such a layer is bounded above by

exp

(
−2δ2`/C1 − γ

ε

)
≤ exp

(
− δ

2`

C1ε

)
,
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which we can make negligible by choosing ` sufficiently large.
Now we would like to show that the exponential factor in the probability of finding

a δ− layer is close to c0, defined in (1.8). Specifically, we expect it to be approximately∫ 1−δ

−1+δ

√
2V (s) ds.

The problem, which we already alluded to at the end of Subsection 1.3, is that the
boundary values (for instance u(−2`) ≈ −1, u(2`) ≈ 1) may make it likely to find a layer.
Hence, we will employ reflection operators to transform δ− transition layers into events
that are unlikely regardless of the boundary conditions. We will call such events wasted
δ− excursions:

Definition 2.4 (Wasted δ− excursion). For any δ ∈ (0, 1/2), we will say that u has a
wasted δ− excursion on (−`, `) if there exist points

−` ≤ x− < x0 < x+ ≤ `

such that
|u(x0)| ≤ δ

and
either |u(x±)− 1| ≤ δ or |u(x±) + 1| ≤ δ.

As described above for long transitions, we will estimate the probability of such
events using the large deviation estimate from Proposition 3.4. We note that the propo-
sition requires minimizing energy over a ball (in the space of continuous functions)
around the set of interest. Because of the way we have defined wasted excursions, a
ball of radius δ around the set of functions with a δ− excursion in a given interval is
equal to the set of functions with a (2δ)− excursion in that interval. Hence, our large
deviation estimate together with an energetic estimate will bound the probability that
we are after. The following lemma contains the necessary energetic estimate: namely,
that the difference of energies described in our large deviation estimate is bounded
below by c0 plus a small term.

Lemma 2.5. There exists a constant C < ∞ such that for every M ∈ (0,∞) and δ ∈
(0, 1/2), there exists a constant `∗ < ∞ with the following property. For any ` ≥ `∗ and
any boundary conditions u± ∈ [−M,M ], set

Abc := {u ∈ C([−2`, 2`]) : u(±2`) = u±},
Abc

0 := {u ∈ Abc : uhas a wasted δ− excursion in (−`, `)}.

Define the optimal cost

c` := inf
Abc

0

E(−2`,2`)(u)− inf
Abc

E(−2`,2`)(u). (2.5)

Then we have

c` − c0 ≥ −C δ. (2.6)

The proof of Lemma 2.5 is given in Subsection 6.1. It gives us the exponential factor
in the desired estimate (2.3), above.

For the lower bound in Theorem 1.5, we will work with so-called δ+ transition layers
between −1− δ and 1 + δ.
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Definition 2.6 (δ+ transition layer). Fix δ ∈ (0, 1/2). We say that u has a δ+ up transi-
tion layer within the interval (−`, `) if there exist points

−` ≤ x− < x+ ≤ `

such that

u(x±) = ±(1 + δ).

We say that u has a δ+ down transition layer on (−`, `) if the same condition holds true
with signs reversed, and that u has a δ+ transition layer if it has a δ+ up or a δ+ down
transition layer.

In analogy with the δ− transition layers that we use for the upper bound, δ+ tran-
sition layers will be convenient for the lower bound. Since the probability of having
(2n+ 1) transition layers is greater than the probability of having (2n+ 1) δ+ transition
layers, it will suffice to show that

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) δ+ transition layers

)
& (Lε)

2n exp

(
−2nc0 − γ

ε

)
.

We will establish this bound by reflecting in order to transform the δ+ transition layers
into some kind of “wasted excursions” whose probability we can bound, independently
of the boundary conditions.

Definition 2.7 (Wasted δ+ excursion). For any δ ∈ (0, 1/2), we will say that u has a
wasted δ+ excursion on (−`, `) if there exist points

−` ≤ x− < x0 < x+ ≤ `

such that

u(x±) ≤ −1− δ, u(x0) = 0.

(We will use only the wasted δ+ excursions that come from below, but of course it
would be straightforward to define the analogue with u(x±) ≥ 1 + δ, and they would
obey the same energetic and probabilistic bounds.)

As in the case of the upper bound, we need an energetic lemma that will control
the contribution to the large deviation estimate for wasted δ+ excursions. Because of
the form of the large deviation estimate that we will develop in Section 3 (see Propo-
sition 3.5 below), it will be convenient for us to introduce the energy bound on the
following set of functions:

Abc
δ,pre :=

{
u ∈ Abc : there exist points − ` ≤ x− < x0 < x+ ≤ `

with u(x−) ≤ −1− 2δ, u(x+) ≤ −1− 2δ, u(x0) ≥ δ
}
. (2.7)

It is easy to see that a δ ball (with respect to the sup norm) around Abc
δ,pre is equal to

the set of functions with wasted δ+ excursions on (−`, `). This fact is what will later
be useful for the lower bound. For now, we record the following energetic fact, which
plays the role for the lower bound that Lemma 2.5 played for the upper bound.
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Lemma 2.8. There exists a constant C < ∞ such that for every M ∈ (0,∞) and δ ∈
(0, 1/2), there exists a constant `∗ < ∞ with the following property. For any ` ≥ `∗ and
u± ∈ [−M, 0], set

Abc := {u ∈ C([−2`, 2`]) : u(±2`) = u±}
and Abc

δ,pre as above in (2.7).

Define the optimal cost

c` := inf
Abc
δ,pre

E(−2`,2`)(u)− inf
Abc

E(−2`,2`)(u).

Then we have

c` − c0 ≤ C δ.

We will need to consider some additional properties of the energy as we prove the
main theorems, but we defer their discussion to a later time when their motivation and
hypotheses will be clearer. With the central facts about the energy in hand, we now
turn to the probabilistic background for our paper.

3 Probabilistic preliminaries

In this section, we collect some probabilistic facts about the Gaussian measures
Wu−,u+

ε,(x−,x+) and the measures µ
u−,u+

ε,(x−,x+). After stating a precise definition and some el-
ementary symmetry properties, we will discuss Markov properties satisfied by these
measures in Subsection 3.1 and large deviation bounds in Subsection 3.2.

For every x− < x+, we denote by W0,0
ε,(x−,x+) the distribution of a Brownian bridge

with homogeneous boundary conditions on [x−, x+] whose variance is proportional to ε.
To be more precise, W0,0

ε,(x−,x+) is the unique centered Gaussian measure on the space

of continuous functions C([x−, x+]) such that, for all x1, x2 ∈ [x−, x+], one has

E
Wε,0,0
(x−,x+)

(
u(x1)u(x2)

)
=

ε

x+ − x−

(
(x1 − x−)(x+ − x2) ∧ (x2 − x−)(x+ − x1)

)
. (3.1)

Equivalently, one can say that W0,0
ε,(x−,x+) is the centered Gaussian measure whose

Cameron-Martin space is given by the Sobolev spaceH1
0 ([x−, x+]) with vanishing bound-

ary conditions equipped with the homogeneous scalar product

1

ε

∫ x+

x−

∂xu ∂xv dx.

Indeed, the right-hand side of (3.1) is the Green’s function for 1
ε∂

2
x with Dirichlet

boundary conditions.
In the sequel, we often use the notation

Ix−,x+(u) :=
1

2

∫ x+

x−

(
∂xu

)2
dx (3.2)

to denote the Gaussian part of the energy of a function u on the interval (x−, x+).
It is common to think ofW0,0

ε,(x−,x+) as a Gibbs measure

W0,0
ε,(x−,x+) ∝ exp

(
− 1

ε
Ix−,x+

(u)
)
du (3.3)
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with energy Ix−,x+
and noise strength ∝ ε. Of course, (3.3) does not make rigorous

sense because there is no “flat measure" du on path space, and Ix−,x+
(u) is almost surely

infinite underW0,0
ε,(x−,x+). The heuristic formula (3.3) is motivated by finite dimensional

approximations and it gives the right intuition for the large deviation bounds.
For more general boundary conditions u−, u+ ∈ R, we can define Wu−,u+

ε,(x−,x+) as the

image measure ofW0,0
ε,(x−,x+) under the shift map

u(x) 7→ u(x) + h
u−,u+

(x−,x+)(x),

where h is the affine function interpolating the boundary conditions:

h
u−,u+

(x−,x+)(x) :=
x− x−
x+ − x−

u+ +
x+ − x
x+ − x−

u−. (3.4)

Similarly to (1.5), for any choice of boundary condition u± and on any interval (x−, x+),
we denote by µ

u−,u+

ε,(x−,x+) the probability measure whose density with respect toWu−,u+

ε,(x−,x+)

can be expressed as

dµ
u−,u+

ε,(x−,x+)

dWu−,u+

ε,(x−,x+)

(u) =
1

Zu−,u+

ε,(x−,x+)

exp

(
− 1

ε

∫ x+

x−

V (u) dx

)
. (3.5)

Here we have introduced the notation

Zu−,u+

ε,(x−,x+) := E
Wε,u−,u+

(x−,x+)

(
exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

for the normalization constant that ensures that µ
u−,u+

ε,(x−,x+) is indeed a probability mea-
sure.

As we have indicated in the introduction, there are symmetry properties of the mea-
suresWu−,u+

ε,(x−,x+) and µ
u−,u+

ε,(x−,x+) that will play an important role in our argument. Observe

for example that bothW0,0
ε,(x−,x+) and µ0,0

ε,(x−,x+) are invariant under the vertical reflection
u 7→ Ru and the horizontal reflection u 7→ Su where

Ru(x) := −u(x) and Su(x) := u(x+ + x− − x).

Furthermore, the measures W−1,1
ε,(x−,x+) and µ−1,1

ε,(x−,x+) are invariant under the point re-
flection u 7→ RSu.

3.1 Markov properties

We first present a two-sided version of the Markov property for the measuresWu−,u+

ε,(x−,x+)

and µ
u−,u+

ε,(x−,x+), which states that for any fixed points x− ≤ x̂− < x̂+ ≤ x+ and for u dis-

tributed according toWu−,u+

ε,(x−,x+) (or µ
u−,u+

ε,(x−,x+)), the conditional distribution of (u(x), x ∈
[x̂−, x̂+]), given all the information about u(x) for x ∈ [x−, x+] \ (x̂−, x̂+), isWu(x̂−),u(x̂+)

ε,(x̂−,x̂+)

(or µ
u(x̂−),u(x̂+)
ε,(x̂−,x̂+) ). Then in Lemma 3.3, we give the strong Markov property, which states

that the same statement holds true when the deterministic points x̂± are replaced by
left and right stopping points χ±. The proofs of these statements are quite standard.
For completeness, we have included them in Subsection 6.2.

In the case of the measures Wu−,u+

ε,(x−,x+), the Markov property can be stated in the

following way. For x̂− < x̂+, we define the piecewise linearization u
x̂+

x̂−
of u between x̂−

and x̂+ as

u
x̂+

x̂−
(x) =

{
h
u(x̂−),u(x̂+)
(x̂−,x̂+) (x) if x ∈ (x̂−, x̂+)

u(x) else.
(3.6)

Recall the definition (3.4) of h
u−,u+

(x−,x+). Then the following holds.
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Lemma 3.1. Suppose x− ≤ x̂− < x̂+ ≤ x+ are fixed, non-random points. Then under
Wu−,u+

ε,(x−,x+) the random functions u−ux̂+

x̂−
and u

x̂+

x̂−
are independent. Furthermore, u−ux̂+

x̂−

is zero outside of (x̂−, x̂+) and is distributed according to W0,0
ε,(x̂−,x̂+) between the two

points.

Due to the lack of spatial homogeneity, the corresponding property for the measures
µ
u−,u+

ε,(x−,x+) has to be stated in a different way. For I ⊆ [x−, x+], we denote by FI the

sigma-algebra generated by u(x) for x ∈ I, completed with respect toWu−,u+

ε,(x−,x+).
We also introduce the following notation that extends the measures to paths on a

larger domain by prescribing the values outside of an interval. Suppose that [x̂−, x̂+] ⊆
[x−, x+] and that u ∈ C([x−, x+]) is a fixed path. We say that u is distributed according
toWu

ε,(x̂−,x̂+), resp. µu
ε,(x̂−,x̂+), if it almost surely coincides with u outside of the interval

[x̂−, x̂+] and is distributed according toWu(x̂−),u(x̂+)
ε,(x̂−,x̂+) , resp. µ

u(x̂−),u(x̂+)
ε,(x̂−,x̂+) , on [x̂−, x̂+].

Then the Markov property takes the following form.

Lemma 3.2. Suppose x− ≤ x̂− < x̂+ ≤ x+ are fixed, non-random points. Then for any
bounded measurable test function Φ: C([x−, x+])→ R, we get the following identity:

E
µε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,x̂−] ∨ F[x̂+,x+]

)
= E

µε,u
(x̂−,x̂+)

(
Φ
)
. (3.7)

Here F[x−,x̂−] ∨ F[x̂+,x+] denotes the smallest sigma-algebra that contains all sets in
F[x−,x̂−] and F[x̂+,x+].

We will typically use (3.7) in the following way: For given points x− ≤ x1 ≤ x2 ≤
. . . ≤ x2n ≤ x+ and given events Ai ∈ F[x2i−1,x2i], we can write

E
µε,u−,u+

(x−,x+)

(
1A1

. . .1An

)
(3.8)

=

∫
R2n

νx1,...,x2n
(du1, . . . , du2n)Eµε,u1,u2

(x1,x2)

(
1A1

)
. . .E

µε,u2n−1,u2n

(x2n−1,x2n)

(
1An

)
.

Here νx1,...,x2n
denotes the distribution of the random vector (u(x1), . . . , u(x2n)) under

µ−1,1
ε,(x−,x+). Formula (3.8) follows directly by applying (3.7) n times.

To state the strong Markov property, we additionally need the notion of left and right
stopping points. These are defined analogously to stopping times for Markov processes.
A random variable χ− taking values in [x−, x+] will be called a left stopping point if for
all x ∈ [x−, x+] the event {χ− ≤ x} is contained in F[x−,x]. In the same way a random
variable χ+ is called a right stopping point if for all x the event {χ+ ≥ x} is contained in
F[x,x+]. In all of our applications the stopping points χ± are going to be left or rightmost
hitting points of a closed set. It is easy to check that these random points are indeed
left and right stopping points as defined above.

For given left and right stopping points χ±, we define the sigma-algebra F[x−,χ−] of
events that occur left of χ− and the sigma-algebra F[χ+,x+] of events that happen to the
right of χ+ by

F[x−,χ−] :=
{
A ∈ F[x−,x+] : ∀x A ∩ {χ− ≤ x} ∈ F[x−,x]

}
,

F[χ+,x+] :=
{
A ∈ F[x−,x+] : ∀x A ∩ {χ+ ≥ x} ∈ F[x,x+]

}
.

The strong Markov property can be stated in an analogous way to (3.7).

Lemma 3.3. Suppose χ− and χ+ are left and right stopping points with χ− < χ+

almost surely. Suppose that Φ: C([x−, x+]) → R is measurable and bounded. Then for
any u± ∈ R, we get the following identities

E
Wε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χ−] ∨ F[χ+,x+]

)
= E

Wε,u
(χ−,χ+)

(
Φ
)

(3.9)
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and
E
µε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χ−] ∨ F[χ+,x+]

)
= E

µε,u
(χ−,χ+)

(
Φ
)
. (3.10)

The strong Markov property is a crucial ingredient in the proofs of both Theorem 1.5
and Theorem 1.9. Let us illustrate how it is used in the proof of Theorem 1.5. Let χ− be
the leftmost hitting of zero to the right of a given point x− and χ+ the rightmost hitting
of zero to the left of a given point x+. The values u(χ±) in the formulas (3.9) and (3.10)
are almost surely 0. Then we can use the invariance of W0,0

ε,(χ−,χ+) and µ0,0
ε,(χ−,χ+) under

vertical reflection R to conclude that the whole right-hand side of (3.9) and (3.10) is
invariant under vertical reflection on [χ−, χ+]. In Section 4, we will use this observation
to reduce the problem of calculating the probability of transition layers to computing
the probability of wasted excursions (see Definition 2.4).

3.2 Large deviations

Large deviation estimates for the measures µ
u−,u+

ε,(x−,x+) constitute an important ingre-
dient for our argument. Large deviation bounds for Gaussian measures with a small
variance, e.g., for Wu−,u+

ε,(x−,x+), are well-known (see e.g. [4, Sec. 4.9]). They can be ex-

tended to the measures µ
u−,u+

ε,(x−,x+) with an “exponential tilting" argument (see e.g. [22],

or [7, p.34] ) in a standard way. Let Abc represent the set of continuous paths u on
[x−, x+] that satisfy u(x±) = u±. The estimates then state that for every closed set
A ⊆ Abc and every γ > 0, there exists ε0 > 0 such that, for ε ≤ ε0, we have

µ
u−,u+

ε,(x−,x+)(A) ≤ exp
(
− 1

ε

(
∆E(A)− γ

))
. (3.11)

Similarly, for every open set A ⊆ Abc and γ > 0 there exists ε0 > 0 such that, for ε ≤ ε0,
we have

µ
u−,u+

ε,(x−,x+)(A) ≥ exp
(
− 1

ε

(
∆E(A) + γ

))
. (3.12)

Here the energy difference ∆E(A) is defined as

∆E(A) := inf
u∈A

E(u)− inf
u∈Abc

E(u). (3.13)

Here and in the sequel, all topological notions like open and closed refer to the uniform
topology, i.e., the topology generated by

‖u‖∞ := sup
x∈[x−,x+]

|u(x)|. (3.14)

Although we will not make use of it here, we remark that the bounds (3.11) and (3.12)
are also true for different choices of topology. The Gaussian large deviation bounds
hold for any separable Banach space that supports the Gaussian measure, and the “ex-
ponential tilting" works as soon as the exponential density is continuous.

A priori, the choice of ε0 depends not only on γ but also on the interval length ` :=

x+ − x−, the boundary data u±, and even the set A itself. As pointed out in Subsection
1.3, however, our argument requires integrating probabilities for different boundary
conditions. Therefore, we need to know that we can choose the same ε0 for these
different boundary conditions simultaneously. Moreover, in Lemma 5.1 we will need
uniform estimates for measures with different potentials. Hence, we require uniform
large deviation estimates, which is the content of the following two propositions. They
deliver local uniformity with respect to `, u±,A, and even with respect to the potential
function V . To state the result, it is convenient to introduce the notation

Iu±x± := I(h
u−,u+

(x−,x+)) =
1

2

(u+ − u−)2

x+ − x−
(3.15)
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for the minimal Gaussian energy with the given boundary conditions. We will also write

B(A, δ) =
{
u : ∃v ∈ A, ‖v − u‖∞ ≤ δ

}
for the δ neighborhood of a set A.

Proposition 3.4 (Large deviation upper bound). Fix constants 1 < M,R < ∞ and
0 < `− < `+ < ∞. For any x± ∈ R with x+ − x− ∈ [`−, `+] and any u± ∈ [−M,M ], let
A be a measurable subset of C([x−, x+]) consisting of paths u that satisfy the boundary
conditions u(x±) = u±. Additionally, assume that

inf
u∈A

E(u)− Iu±x± ≤ R. (3.16)

Then for any δ, γ > 0 there exists an ε0 > 0 such that for all ε ≤ ε0 we have

µ
u−,u+

ε,(x−,x+)(A) ≤ exp
(
− 1

ε

(
∆E

(
B(A, δ)

)
− γ
))
, (3.17)

where ∆E is defined in (3.13). This ε0 depends on M,R, `±, δ, and γ but not on the
particular choice of x±, u±. It only depends on the set A through the choice of R in
condition (3.16). Furthermore, ε0 depends on V only through the local Lipschitz norm

sup
|v|≤M+

√
2−1(`+R+1)+1

|V ′(v)|.

In particular, the same bounds hold for the same ε0 if V varies over a set of potentials
with uniformly bounded local C1-norm. This uniformity of (3.17) with respect to V will
be used in Subsection 6.6. There, it will be applied to the family

{
4kV (2−k(u−1)+1): k ∈

N
}

of rescaled versions of V .
We also get the corresponding lower bounds without a condition on the minimal

energy of E(u) for u ∈ A.

Proposition 3.5 (Large deviation lower bound). Fix constantsM and 0 < `− < `+ <∞.
Suppose that ` = x+ − x− ∈ [`−, `+] and u± ∈ [−M,M ]. Assume that there exists an
energy minimizer

u∗ = argmin
u∈A

E(u)

satisfying u∗ ∈ [−M,M ]. Then, for any γ > 0 and δ > 0 small enough, there exists ε0 > 0

such that for all ε ≤ ε0 there holds

µ
u−,u+

ε,(x−,x+)

(
B(A, δ)

)
≥ exp

(
− 1

ε

(
∆E

(
A
)

+ γ
))
, (3.18)

where ∆E is defined in (3.13). As above, ε0 depends on M, `±, δ, and γ, but not on the
particular choice of x±, u± or the set A.

The same remark about the uniform dependence on V holds for the lower bounds.

Remark 3.6. The existence of energy minimizers u∗ in A satisfying u∗ ∈ [−M,M ] is
not necessary and it can be replaced by an approximation. Actually, we will show the
Proposition under the slightly weaker assumption that for every γ > 0 there exists a
profile uγ ∈ A with uγ(x) ∈ [−M,M ] for all x ∈ [x−, x+] and such that

E(uγ) ≤ inf
u∈A

E(u) + γ. (3.19)
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The proofs of these Propositions are essentially a careful copy of the classical proofs
and can be found in Subsection 6.3. Let us remark here that we do not expect the
bounds (3.11) and (3.12) to hold uniformly for all open or closed sets. In fact, the argu-
ment for the classical statements makes use of qualitative properties such as existence
of coverings by finitely many open sets. One sums over this finite number and uses the
fact that, for ε small enough, only the largest summand matters. For different open or
closed sets, this finite number will in general be different, and the choice of ε0 will also
be different. We can resolve this issue by taking the δ neighborhood of A in the bounds
(3.17) and (3.18) as a uniform version of the topological assumptions on A.

4 Proofs of Theorem 1.5: Domination by single transition layer
of minimal energy

In this section we prove Theorem 1.5. This theorem estimates the exponentially
small probability of having more than one layer (with the correct entropic effect and
exponential factor). One consequence is that the most likely functions are those with
only one transition layer.

As outlined in Subsection 1.3, at the heart of the method is the idea of decomposing
the invariant measure into conditional measures and the corresponding marginals, so
that we can reduce to estimating the probability of transition layers on order-one subin-
tervals. When the boundary data of the subinterval falls within a compact set [−M,M ],
large deviation theory will allow us to estimate probabilities in the spirit of∫ M

−M

∫ M

−M
ν(du−, du+) µ

u−,u+

ε,(−2`,2`)

(
there is a transition layer in (−`, `)

)
.

On the other hand, the probability that |u(±2`)| ≥M is uniformly small. Before turning
to the proofs of the main theorems, we introduce this fact about the decay of the one-
point distribution.

Lemma 4.1. There exist M1 ∈ (0,∞), C2 ∈ (0,∞) (depending only on V ) such that the
following holds. For any M ≥M1, there exists ε0 > 0 such that for all ε ≤ ε0 and any x0

in (−Lε, Lε) there holds

µ−1,1
ε,(−Lε,Lε)

(
|u(x0)| ≥M

)
≤ exp

(
− M

εC2

)
. (4.1)

The proof of the lemma is given in Subsection 6.4. With this preliminary estimate in
hand, we turn now to the proof of Theorem 1.5. We consider separately the upper and
lower bounds.

Proof of Theorem 1.5. Fix γ > 0. Fix a corresponding δ > 0 sufficiently small. Let `
and M be large constants to be specified later. To begin with, let ` be large enough so
that (2.4) and (2.6) hold for the given δ. We will divide the system into 2Nε intervals
with

Nε :=

⌊
Lε
`

⌋
, (4.2)

labelling the endpoints:

x±k :=

{
±k `, k = 0, . . . , (Nε − 1),

±Lε, k = ±Nε.
(4.3)
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We will work with this grid for the rest of this paper.
Then we consider the (overlapping) intervals

Ik := [xk−1, xk+1], for k = −(Nε − 1),−(Nε − 2), . . . , (Nε − 1). (4.4)

Notice that x±Nε is separated from x±(Nε−1) by up to length 2`, while the rest of the
points are separated by length `. Since our energetic estimates will all hold uniformly
for subsystems that are sufficiently large, and our large deviation bounds will all hold
uniformly for subsystems whose length vary within a compact set, it will not matter
that the boundary points may be up to 2` away from the neighboring points and we will
ignore this issue for the rest of the proof.

Upper bound.

Here we will prove the upper bound, i.e., that

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
. (Lε)

2n exp

(
−2nc0 − γ

ε

)
.

As explained in Section 2, for the upper bound we will work with δ− transition layers,
and it will be sufficient to show that for any sufficiently small γ > 0 and some sufficiently
small δ > 0, there is an ε0 > 0 such that for all ε ≤ ε0 we have

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) δ− transition layers

)
. (Lε)

2n exp

(
−2nc0 − γ

ε

)
. (4.5)

Since the probability of transition layers is less than the probability of δ− transition
layers, the proof of the upper bound follows immediately.

The subtle part of the proof will be estimating the probability of a transition layer
on a subsystem. Recall from Subsection 1.3 that we cannot get the expected cost c0 by
estimating the probability

µ
u−,u+

ε,(−2`,2`)

(
u has a δ− transition layer in (−`, `)

)
because of the nontrivial dependence of this probability on the boundary conditions u±.
To avoid this problem, we will use reflection operators to transform δ− transition layers
into wasted δ− excursions (see Definition 2.4 and the accompanying discussion).

With this scheme in mind, let us now begin our estimates.

Step 1. Fix γ > 0. Let δ > 0 be a small constant and M < ∞ be a large constant
to be chosen below. Our first step will be to decompose the set of functions in which
we are interested. Namely, we notice that the set of continuous paths u : [−Lε, Lε] →
R satisfying the boundary conditions u(±Lε) = ±1 and exhibiting at least (2n + 1)

δ− transition layers is contained in the union of the following three sets:
• The set of paths that exhibit an atypically large value at one of the xk:

A1 :=
{
u : ∃k ∈

{
− (Nε − 1), . . . , (Nε − 1)

}
: |u(xk)| ≥M

}
. (4.6)

• The complementary set intersected with the set of paths that are bounded away
from ±1 on all of [xk, xk+1] for some k:

A2 := {A1 ∩
{
u : ∃k ∈

{
−(Nε − 1), . . . , (Nε − 2)

}
: (4.7)

u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]
}
.
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• The complement of A1 intersected with the set of paths performing (2n + 1) δ−

transitions, each of which is completely contained in (at least) one of the overlapping
intervals Ik. We denote this set

A3 := {A1 ∩
{
u : there exist 2n integers

−Nε + 1 ≤ k1 ≤ k2 ≤ · · · ≤ k2n ≤ Nε − 1 such that

in each interval Iki there is a δ− layer
}
.

Note that there might be more than one layer in a single interval; the 2n-tuple (k1, . . . , k2n)

allows for a possible higher multiplicity. There may also be more than 2n layers; the
statement is that there are at least 2n layers.

Above, we have made use of the boundary conditions. Indeed, for A1, we have
omitted the points x±Nε since u(±Lε) = ±1. For A2 we have omitted the boxes at the
boundary since the boundary conditions make it impossible that u(x) ∈ [−1 + δ, 1 − δ]
for all x in the box. For A3 we have recalled that the boundary conditions force there to
be at least one transition. Even though u has 2n+ 1 layers, we can expect an additional
cost only for the 2n “extra” layers and hence only keep track of 2n layers.

Because the set of interest is contained within the above-mentioned sets, it suffices
to bound

µ−1,1
ε,(−Lε,Lε)

(
A1

)
+ µ−1,1

ε,(−Lε,Lε)
(
A2

)
+ µ−1,1

ε,(−Lε,Lε)
(
A3

)
. (4.8)

Step 2. We first give a bound on the probability of A1. This bound follows directly
from Lemma 4.1. In fact, we get

µ−1,1
ε,(−Lε,Lε)

(
A1

)
≤

Nε−1∑
k=−(Nε−1)

µ−1,1
ε,(−Lε,Lε)

(
|u(xk)| ≥M

)
(4.1)
≤

(
2
Lε
`
− 1

)
exp

(
− M

εC2

)
≤ Lε exp

(
− M

εC2

)
. (4.9)

In particular, we can choose M large enough so that M/C2 ≥ 2nc0 and

µ−1,1
ε,(−Lε,Lε)

(
A1

)
≤ Lε exp

(
− 2nc0

ε

)
.

Hence, the probability of A1 is of higher order with respect to the right-hand side
of (4.5).

We remark that it is here where M (and therefore also ε0) acquires a dependence on
n.

Step 3. To bound the second probability in (4.8), we write

µ−1,1
ε,(−Lε,Lε)

(
A2

)
≤

Nε−2∑
k=−(Nε−1)

µ−1,1
ε,(−Lε,Lε)

(
u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

and u(xk−1), u(xk+2) ∈ [−M,M ]
)
. (4.10)
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Using the Markov property (3.8), we can write for any k

µ−1,1
ε,(−Lε,Lε)

(
u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

and u(xk−1), u(xk+2) ∈ [−M,M ]
)

=

∫ M

−M

∫ M

−M
νk−1,k+2(du−, du+)

× µu−,u+

ε,(xk−1,xk+2)

(
u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

)
, (4.11)

where νk−1,k+2 denotes the marginal distribution of the pair (u(xk−1), u(xk+2)). We now
want to invoke the large deviation bound (3.17) and the energy bound from Lemma 2.3
for the measures µ

u−,u+

ε,(xk−1,xk+2). To this end, we observe that a δ/2 ball around functions

contained in [−1+δ, 1−δ] consists of functions contained in [−1+δ/2, 1−δ/2]. Redefining
C1 by up to a factor of 8 to account for the parameter δ/2 and interval length (here `

rather than 2`), we have that, for any γ > 0 and δ > 0, there exists an ε0 > 0 such that,
for all ε ≤ ε0 and all u−, u+ ∈ [−M,M ], there holds

µ
u−,u+

ε,(xk−1,xk+2)

(
u(x) ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

)
≤ exp

(
− 1

ε

(2δ2`

C1
− γ
))
. (4.12)

(Here we have used the fact that Lε � 1, so that we can choose ` > `∗ to sat-
isfy Lemma 2.3.) Letting γ = 1 and choosing ` so that δ2` ≥ C1, the combination
of (4.10), (4.11), and (4.12) gives

µ−1,1
ε,(−Lε,Lε)

(
A2

)
≤ Lε exp

(
− δ2`

C1 ε

)
, (4.13)

where we have trivially bounded the integral of ν by 1. In particular, for ` large but
order-one (and depending on n, δ), we have that the probability of A2 is also of higher
order with respect to the right-hand side of (4.5).

Step 4. Finally, we arrive at the subtler part, in which we will need the reflection
operators. To begin with, let k̄ = (k1, . . . , k2n) and write

µ−1,1
ε,(−Lε,Lε)

(
A3

)
≤
∑
k̄∈I

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
, (4.14)

where I is the set of nondecreasing 2n-tuples, i.e.,

I :=
{
k̄ = (k1, k2, . . . , k2n) ∈

{
− (Nε − 1), . . . , (Nε − 1)

}2n

with ki−1 ≤ ki
}
,

and

Ak̄3 := {A1 ∩
{

in each Iki there is a δ− layer
}
. (4.15)

The right-hand side of (4.15) is slightly ambiguous if several indices coincide or in the
case of overlapping intervals, i.e. if ki+1 = ki + 1 for some i. If j subsequent indices
coincide, the right-hand side of (4.15) has to be interpreted as saying that there are at
least j δ− transitions in the corresponding interval. In the case of overlapping intervals,
for instance if ki+1 = ki + 1, the right-hand side of (4.15) should be interpreted to mean
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that there are at least two transitions in the interval [(ki − 1)`, (ki + 2)`] and, moreover,
one is fully contained in [(ki − 1)`, (ki + 1)`] and one is fully contained in [ki`, (ki + 2)`].

The index set satisfies ∣∣I∣∣ . N2n
ε . (Lε)

2n. (4.16)

(Recall our convention for the use of the symbol . introduced in Notation 1.4.) Hence,
to complete the proof of (4.5), it suffices to show that for fixed k̄ ∈ I, we have

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
. exp

(
−2nc0 − γ

ε

)
. (4.17)

As explained above, the main step is to reduce the problem of estimating the prob-
ability of δ− layers to estimating the probability of wasted δ− excursions. This will be
achieved through suitable reflections.

Let us at first assume that the Ik are well-separated in the sense that

ki ≥ ki−1 + 4 for all i.

Let us also assume that we are away from the boundary, i.e., that

k1 ≥ −Nε + 2, k2n ≤ Nε − 2.

We will consider the possibilities of (a) intervals that overlap or are nearby, (b) intervals
that are the same (ki = ki+1), and (c) boundary intervals at the end of Step 5.

We start by defining n left stopping points χ1, . . . , χn in the following manner. For
i = 1, . . . , n we set

χi := inf
{
y ≥ xki−1 : u(y) = 0 and |u(x)| = 1− δ
for some x ∈ (xki−1, y)

}
. (4.18)

Here we set χi = Lε if the corresponding set is empty. It is easy to see that these
random points are all left stopping points. In a similar fashion, for i = n + 1, . . . , 2n we
set

χi := sup
{
y ≤ xki+1 : u(y) = 0 and |u(x)| = 1− δ
for some x ∈ (y, xki+1)

}
. (4.19)

Here we set χi = −Lε if the corresponding set is empty. Then χi is a right stopping
point for all i = n+ 1, . . . 2n. For any u in Ak̄3 , all the left and right stopping points χi are
contained in the corresponding intervals Iki and, furthermore, we have

χ1 < χ2 < . . . < χn < χn+1 < . . . < χ2n. (4.20)

Finally, note that as soon as χi 6= ±Lε, we have that u(χi) = 0.
For any left stopping point χl ∈ {χ1, . . . χn} and any right stopping point χr ∈

{χn+1, . . . , χ2n}, we now define the reflection operator Rχrχl . If χl < χr (which is the

case for any u ∈ Ak̄3 as remarked above), we set

Rχrχl u(x) :=

{
−u(x) for x ∈ [χl, χr],

u(x) for x /∈ [χl, χr].

If χl ≥ χr we set Rχrχl u := u. We clearly have RχrχlR
χr
χl

= Id; hence, Rχrχl is injective

and onto. In order to show that Rχrχl preserves µ−1,1
ε,(−Lε,Lε), we observe that for any
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xR R
χ1 χ2 χ3 χ4

Figure 3: A typical path in A3. The reflection operator R turns the up and down transi-
tions in the intervals Iki into wasted excursions in the same intervals.

measurable and bounded test function Φ: C([−Lε, Lε])→ R, we have

E
µε,−1,1
(−Lε,Lε)

(
Φ ◦Rχrχl

)
= E

µε,−1,1
(−Lε,Lε)

(
1{χl<χr}Φ ◦R

χr
χl

)
+ Eµε,−1,1

(−Lε,Lε)
(
1{χl≥χr}Φ ◦R

χr
χl

)
= E

µε,−1,1
(−Lε,Lε)

(
1{χl<χr}E

µε,−1,1
(−Lε,Lε)

(
Φ ◦Rχrχl

∣∣F[−Lε,χl] ∨ F[χr,Lε]

))
+Eµε,−1,1

(−Lε,Lε)
(
1{χl≥χr}Φ

)
(3.10)

= E
µε,−1,1
(−Lε,Lε)

(
1{χl<χr}E

µε,u
(χl,χr)

(
Φ ◦Rχrχl

) )
+Eµε,−1,1

(−Lε,Lε)
(
1{χl≥χr}Φ

)
.

Now we can use the fact that on the set {χl < χr} we have almost surely that u(χl) =

u(χr) = 0 and the invariance of the measure µ0,0
ε,(χl,χr) under the reflection R : u 7→ −u.

Note that the latter property relies on the symmetry of the double-well potential V . We
get

E
µε,−1,1
(−Lε,Lε)

(
1{χl<χr}E

µε,u
(χl,χr)

(
Φ ◦Rχrχl

) )
+ Eµε,−1,1

(−Lε,Lε)
(
1{χl≥χr} Φ

)
= E

µε,−1,1
(−Lε,Lε)

(
1{χl<χr}E

µε,u
(χl,χr)

(
Φ
))

+ Eµε,−1,1
(−Lε,Lε)

(
1{χl≥χr}Φ

)
(3.10)

= E
µε,−1,1
(−Lε,Lε)

(
Φ
)
. (4.21)

Now we are finally ready to define the reflection operator as the composition

R := Rχ2n
χ1
◦ · · · ◦Rχn+2

χn−1
◦Rχn+1

χn . (4.22)

We have again that R2 = Id. For any profile u ∈ Ak̄3 , the operator R acts in the following
way: In intervals of the form (χi, χi+1) for i odd, u is replaced by −u, and on the rest
of the system, u is left invariant. The action of the operator R on a typical path in A3 is
illustrated in Figure 3.

Finally, define the reflection of a set A as

RA = {v : v = Ru for some u ∈ A}.

As a composition of measure-preserving transformations, the operator R preserves
µ−1,1
ε,(−Lε,Lε) as well. Hence, we have in particular that

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)

= µ−1,1
ε,(−Lε,Lε)

(
RAk̄3

)
. (4.23)

This is useful because for u ∈ Ak̄3 the profile Ru has a wasted δ− excursion on each
interval Iki (as is easy to check). In other words, we note that RAk̄3 is a (proper) subset
of the functions with wasted δ− excursions in the given intervals.
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Step 5. It remains to bound the probability of the sets RAk̄3 . Again, let us at first as-
sume that the Ik are well-separated and away from the boundary in the sense described
above. We consider the more general case at the end of this step.

Using the Markov property again, we have

µ−1,1
ε,(−Lε,Lε)

(
RAk̄3

)
≤ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and in each Iki there is a wasted δ− excursion

)
=

∫ M

−M
· · ·
∫ M

−M
νk1−2,k1+2,k2−2,...,k2n+2

(
duk1−2, duk1+2, duk2−2, . . . , duk2n+2

)
2n∏
i=1

µ
uki−2,uki+2

ε,(xki−2,xki+2)

(
there is a wasted δ− excursion in Iki

)
, (4.24)

where νk1−2,k1+2,k2−2,...,k2n+2 denotes the distribution of the 4n-dimensional marginal
u
(
xk1−2

)
, u
(
xk1+2

)
, u
(
xk2−2

)
, . . . , u

(
xk2n+2

)
.

Now we would like to apply the large deviation bound (3.17) and the energy bound
from Lemma 2.5. We observe that a δ ball around paths with a wasted δ− excursion is
equal to the set of paths with a wasted (2δ)− excursion. As a result, we get that for any
γ > 0 and δ > 0 there exists an ε0 > 0 such that for all ε ≤ ε0 and for all boundary data
contained in [−M,M ], the probability of a wasted δ− excursion is bounded by

µ
uki−2,uki+2

ε,(xki−2,xki+2)

(
there is a wasted δ− excursion in Iki

)
≤ exp

(
− 1

ε

(
c0 − 2Cδ − γ

))
. (4.25)

Choosing δ sufficiently small with respect to γ and estimating the integral of ν by 1 as
usual, we have from the combination of (4.23), (4.24), and (4.25) that (4.17) holds (up
to a redefinition of γ). Thus, finally, (4.14), (4.16), and (4.17) imply

µ−1,1
ε,(−Lε,Lε)

(
A3

)
. (Lε)

2n exp

(
−2nc0 − γ

ε

)
,

which concludes the proof of the upper bound in the well-separated case.
It remains to consider the three special cases: (a) intervals that overlap or are

nearby, (b) intervals that are the same (ki = ki+1), (c) intervals that are boundary inter-
vals.

Case (a) If two or more intervals overlap (i.e., if ki = ki−1 + 1) or are nearby (i.e.,
if ki−1 + 2 ≤ ki ≤ ki−1 + 3), then we lump them together into a single, larger interval
and proceed as in (b), below. The size of the largest possible interval formed in this
way is (4 + 3(2n − 1))`. Our energy estimates require only that the interval length be
sufficiently large and our large deviation estimates are uniform as long as the interval
length falls within a compact set. (Here we rely on the fact that n is order-one with
respect to ε.)

Case (b) If a multi-index k̄ has repeated indices so that there is more than one
δ− transition layer in a single interval, then we will use large deviation estimates for
the event of having more than one wasted δ− excursion in a single interval.

Assume that we have kj = kj+1 = . . . kj+m for some j < 2n and some 1 ≤ m ≤ 2n.
Furthermore, assume that the set of m + 1 indices is maximal in the sense that either
j = 1 or kj−1 ≤ kj − 4 and similarly that either j +m = 2n or kj+m+1 ≥ kj+m + 4. In this
case, we define the m+ 1 stopping points χj , . . . χj+m in the following way.
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Consider any index i ∈ {j, . . . , j + m} that satisfies i ≤ n. For i = j, we define χj as
in (4.18). On the other hand, for i > j, we define

χi := inf
{
y ≥ xkj−1 : u(y) = 0 and there are (i− j) δ− layers in (xkj−1, y)

}
.

As usual, we define χi = Lε if the set above is empty.
Now consider any index i ∈ {j, . . . , j + m} that satisfies i > n. For i = j + m, we

define χj+m as in (4.19). On the other hand, for i < j +m, we define

χi := sup
{
y ≤ xkj+1 : u(y) = 0

and there are (m− (i− j)) δ− layers in (y, xkj+1)
}
.

Again, we take the usual definition χi = −Lε if the set above is empty.
As above these random points χi are left stopping points for i ≤ n and right stopping

points for i ≥ n + 1. Furthermore, we still have that (4.20) holds for all u ∈ Ak̄3 . The
measure preserving reflection operator R can be defined as above in (4.22), and R maps
each u ∈ Ak̄3 to a path that has m+1 wasted δ− excursions in Ikj . (Specifically, we mean
m + 1 wasted δ− excursions on intervals (xi−, x

i
+) ⊂ Ikj for i ∈ {j, . . . , j + m} that are

mutually disjoint except for possibly the endpoints.)
We leave it to the reader to verify that a generalization of Lemma 2.5 is:

Lemma 4.2. There exists C <∞ such that, for every M ∈ (0,∞) and δ ∈ (0, 1/2), there
exists `∗ <∞ with the following property. For any system sizes `1, `2 ≥ `∗ and boundary
conditions u± ∈ [−M,M ], set

Abc := {u ∈ C([−`1 − `2, `1 + `2]) : u(−`1 − `2) = u−, u(`1 + `2) = u+},
Abc

0 := {u ∈ Abc : uhas m disjoint wasted δ− excursions in (−`1, `1)}.

Define the optimal cost

c` :=
1

m

(
inf
Abc

0

E(−`1−`2,`1+`2)(u)− inf
Abc

E(−`1−`2,`1+`2)(u)

)
.

Then we have

c` − c0 ≥ −C δ.

Case (c) Suppose for instance that there is a transition layer in (x−Nε , x−Nε+1).
Then we know the boundary value u(x−Nε) = u(−Lε) = −1, while the boundary value
u(xNε−2) at the other end of the subinterval is unknown. This is easily handled by a
suitable “one-sided” generalization of Lemma 2.5, which is easy to prove.

Using the facts from above, the proof of the upper bound is completed by decompos-
ing Ak̄3 into the various cases and recovering the correct (and identical) bounds in each
case.

Lower bound.

We turn now to the matching lower bound, i.e., that

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
& (Lε)

2n exp

(
−2nc0 + γ

ε

)
.
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As explained in Subsection 2, for the lower bound we will work with δ+ transition
layers (cf. Definition 2.6). Because of the boundary conditions and the definition of δ+

layers, it will be sufficient to show that, for some δ ∈ (0, 1/2), we have

µ−1,1
ε,(−Lε,Lε)

(
u has (2n) δ+ transition layers

)
& (Lε)

2n exp

(
−2nc0 + γ

ε

)
. (4.26)

Indeed, in analogy with the upper bound, the probability of δ+ layers is bounded above
by the probability of transition layers, and because of the boundary conditions there
must be an odd number of transitions.

Step 1. Once again, we will use the gridpoints xk defined in (4.3). Our first step is to
get some control on the values of u at the gridpoints. The following lemma, used below,
is established via techniques similar to those used for the upper bound.

Lemma 4.3. For any M < ∞ sufficiently large, there exists `∗ < ∞ and ε0 > 0 such
that, for ` ≥ `∗ and ε ≤ ε0, we have for any Lε satisfying (1.10) that

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 : u(x) ≤ 0 for all x ∈ [−Lε,−2`]

)
≥ 1

3
. (4.27)

Recall the definition of A1 in (4.6).

The proof is similar to the proof of the upper bound, and is deferred to Subsec-
tion 6.5. The main idea is that while the boundary conditions force there to be a transi-
tion layer, with high probability, there is only one transition layer. Moreover, by symme-
try, this layer is as likely to appear on [0, Lε] as it is on [−Lε, 0] (hence neither probability
can be more than 1/2). On the other hand, for u to hit zero away from the transition
layer is energetically unlikely, by arguments similar to those used for the upper bound.

Step 2. With Lemma 4.3 in hand, we turn to the basic set-up for the lower bound. In
this case, we will not want to use overlapping subintervals. We will also not work with
the full system, but only with intervals on the left-hand side. Specifically, we will work
with

Ik = [xk−1, xk+1] for k ∈ {−(Nε − 4),−(Nε − 8), . . . ,−4} =: E.

We have assumed without loss of generality that 4 divides Nε. (If not, then Nε = 4j + r

for some j ∈ N and r ∈ {1, 2, 3}. Replace Nε by Nε − r throughout.)
We remark that, as usual, for an event falling in the interval Ik, we will condition on

the boundary values on a larger interval. Specifically, we will use a Markov decomposi-
tion in which we condition on the boundary values of the enlarged interval

Ĩk := [xk−2, xk+2].

Notice that for all k ∈ E, the enlarged intervals Ĩk are nonintersecting. For future
reference, let us denote the set of boundary indices

Eb := {−(Nε − 2),−(Nε − 6), . . . ,−2}.

The rough idea is to consider sets of functions having 2n layers with a layer in one
of the intervals Ik for 2n distinct values of k ∈ E. Unfortunately, because we work with
functions u that have at least 2n + 1 transitions rather than exactly 2n + 1 transitions,
a given function u may have more than 2n + 1 layers and belong to more than one of
the sets we have just described. Hence we cannot translate the probability of the union
into the sum of the probabilities. In order to work around this, we will work with more
restrictive sets.
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Analogous to the set A1 defined in (4.6) above, we define the following set. Rather
than keeping track of all the boundary values, it will be convenient to track only the
boundary values for the extended intervals described above. That is, we consider

Ã1 :=
{
u : |u(xk)| ≥M for some k ∈ Eb

}
.

We now introduce a set that is analogous to the set Ak̄3 defined above in (4.15) (but
more restrictive, for the reason we have explained). For ease of notation, we do not
introduce a new label. Let k̄ = (k1, . . . , k2n) and consider the set

Ak̄3 :={Ã1 ∩
{

in each Iki with i odd there exists a δ+ up layer

and in each Iki with i even there exists a δ+ down layer and

for k ∈ E \ {ki, 1 ≤ i ≤ 2n} u does not have a δ+ layer in Ik
}
.

Clearly, we have the following inclusion of sets of paths:{
u has (2n) δ+ transition layers

}
⊇
⋃
k̄∈I

Ak̄3 , (4.28)

where I is the following set of well-separated indices on the negative x-axis:

I :=
{
k̄ = (k1, k2, . . . , k2n) ∈ E2n : for all i, ki−1 < ki

}
.

Moreover, the sets Ak̄3 for k̄ ∈ I are disjoint, so that (4.28) implies

µ−1,1
ε,(−Lε,Lε)

(
u has (2n) δ+ transition layers

)
≥
∑
k̄∈I

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
. (4.29)

The set on the right-hand side of (4.28) is certainly smaller than the set on the left-
hand side, but the bound will be good enough on the level of scaling since

|I| & N2n
ε & (Lε)

2n. (4.30)

Step 3. Given (4.29) and (4.30), we will be done if we can establish that for any γ > 0

and for ε > 0 sufficiently small, we have

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
& exp

(
− 2nc0 + γ

ε

)
. (4.31)

To this end, fix any multi-index k̄ ∈ I. We will now bound the probability of Ak̄3 using
reflections, as we did for the upper bound. Indeed, let

χ2i−1 := inf
{
y ∈ Ik2i−1

: u(y) = 0, u(x) = −1− δ

for some x ∈ (xk(2i−1)−1, y)
}
,

χ2i := sup
{
y ∈ Ik2i

: u(y) = 0, u(x) = −1− δ

for some x ∈ (y, xk2i+1)
}
.

Then we define the reflection operator R as

R = Rχ2n
χ2n−1

◦ · · ·Rχ2
χ1
.
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By the same argument as above in (4.21) it can be seen that this operator preserves the
measure µ−1,1

ε,(−Lε,Lε). Notice that R creates δ+ wasted excursions in the intervals Iki and

cannot create layers in any interval Ik for k ∈ E \ {ki, 1 ≤ i ≤ 2n}. We recover

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)

= µ−1,1
ε,(−Lε,Lε)

(
RAk̄3

)
=

∫ M

−M
· · ·
∫ M

−M
ν−(Nε−2),−(Nε−6),...,−2

(
du−(Nε−2), du−(Nε−6), . . . , du−2

)
2n∏
i=1

µ
uki−2,uki+2

ε,(xki−2,xki+2)

(
there is a wasted δ+ excursion in Iki

)
∏

k∈E\{ki,1≤i≤2n}

µ
uk−2,uk+2

ε,(xk−2,xk+2)

(
there is no δ+ layer in Ik

)
≥
∫ 0

−M
· · ·
∫ 0

−M
ν−(Nε−2),−(Nε−6),...,−2

(
du−(Nε−2), du−(Nε−6), . . . , du−2

)
2n∏
i=1

µ
uki−2,uki+2

ε,(xki−2,xki+2)

(
there is a wasted δ+ excursion in Iki

)
∏

k∈E\{ki,1≤i≤2n}

µ
uk−2,uk+2

ε,(xk−2,xk+2)

(
there is no δ+ layer in Ik

)
. (4.32)

As usual, ν denotes the distribution of boundary values, here at the boundary points of
each extended interval Ĩk for k ∈ E. Note that the second equality follows from the
definition of wasted δ+ excursions. The definition of wasted δ− excursions is different
and led to an inequality in the analogous estimate, cf. (4.24).

We remark that we do not actually need to condition on the boundary values for
every k ∈ E—it would be enough to consider the intervals Ĩk for k ∈ k̄ and the comple-
mentary intervals—but doing it this way keeps notation simple and because of (1.10), it
does not affect our bound by more than an exponentially small amount.

We now turn to the lower large deviation bound (3.18) and the energy bound from
Lemma 2.8 (where we use that the boundary values are in [−M, 0]). We recall that the
set Abc

δ,pre from (2.7) was defined precisely so that

B(Abc
δ,pre, δ) = {u : u has a wasted δ+ excursion in [−`, `]}.

Therefore, applying the large deviation estimate to (4.32), we conclude that for any
γ > 0 and δ > 0 small enough, there exists an ε0 > 0 such that for any k̄ ∈ I and any
ε ≤ ε0, we have

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
≥ exp

(
−2nc0 + γ

ε

)
µ−1,1
ε,(−Lε,Lε)

(
Ak̄4
)
, (4.33)

where

Ak̄4 :=
{
u : u(xk) ∈ [−M, 0] for all k ∈ Eb and

u has no layer in Ik for any k ∈ E \ {ki, 1 ≤ i ≤ 2n}
}
.

At the same time, for any k̄ ∈ I we have

Ak̄4 ⊇ {u ∈ {A1 : u(x) ≤ 0 for all x ∈ [−Lε,−2`]},
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where A1 includes all the gridpoints, as defined in (4.6). Hence by the estimate (4.27)
from Lemma 4.3, the lower bound (4.33) improves to

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
≥ 1

3
exp

(
− 2nc0 + γ

ε

)
, (4.34)

which establishes (4.31) and completes the proof of the lower bound.

5 Proof of Theorem 1.9: The uniform distribution of the layer
location

As pointed out in Subsection 1.3, the proof of Theorem 1.9 relies on the construction
of a measure-preserving operator Ry,z. This operator maps paths that exhibit a transi-
tion near y to paths that exhibit a transition near z. It is constructed by performing a
point reflection between hitting points of ±1 near y and z.

The main difficulty of the proof is to show that these hitting points exist with very
high probability on the set of paths that perform a transition near y. The argument for
this is provided in the following two lemmas.

The first lemma states, roughly speaking, that in the “bulk,” fluctuations around ±1

are of order ε1/2. The system needs O(| log ε|) space to relax to this scale. For simplicity,
we state the lemma for paths that stay close to 1. By symmetry, the analogous statement
holds near −1.

Lemma 5.1. There exists C ∈ (0,∞) with the following property. For every `0 < ∞
sufficiently large, there exists ε′0 > 0 such that the following holds. For every ε and ε0

with ε ≤ ε0 ≤ ε′0, there exists Kε ∈ N with

Kε ∼ log

(√
ε0

ε

)
such that for

`ε := (2Kε + 1)`0

and all u± ∈ [1/2, 3/2], we have

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]

|u(x)− 1| ≥
√

ε

ε0

∣∣∣∣
|u(±(2k − 1)`0)− 1| ≤ 1

2
, k = 1, 2, . . . ,Kε

)
≤ 4 exp

(
− 1

Cε0

)
.

We present the proof in Subsection 6.6. Next we need a lemma that says that with
positive probability, the path actually hits ±1. Again, we state the result for hitting
points of +1. By symmetry, the analogous statement holds for hitting points of −1.

Lemma 5.2. For any `0 < ∞ sufficiently large, there exist ε0 > 0 and λ ∈ (0, 1) such
that the following holds. For any u± ∈ [1/2, 3/2], any ε ≤ ε0, and Kε, `ε as in Lemma 5.1,
we get

µ
u−,u+

ε,(−`ε,`ε)

(
∃x ∈ [−`0, `0] such that u(x) = 1∣∣∣|u(±(2k − 1)`0)− 1| ≤ 1

2
, k = 1, 2, . . . ,Kε

)
≥ 1− λ.
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The proof of this lemma, also presented in Subsection 6.6, follows as a corollary to
the previous result by a rescaling argument.

Proof of Theorem 1.9. We will show that for some δ ∈ (0, 1/2) and any α > 0, we have
for ε sufficiently small that

1− α ≤ Lε
dε

µ−1,1
ε,(−Lε,Lε)

(
at least one δ− up layer of length ≤ 2`

in [y − dε, y + dε]
)
≤ 1 + α. (5.1)

At the end of the proof, it will not be hard to improve from a δ− up layer of length less
than or equal to 2` to a full up transition layer.

Notation 5.3. For brevity, we will often say “a transition layer ≤ 2`” as shorthand for
“a transition layer of length less than or equal to 2`.”

For ε small enough we consider intervals of type Jy,ε = [y− dε, y+ dε] ⊆ [Lε, Lε]. The
main step of our argument consists of proving that the probabilities of transitions in
these intervals Jy,ε for different values of y are roughly the same. Hence fix two points
y, z such that Jy,ε, Jz,ε ⊆ [−Lε, Lε]. Without loss of generality, assume that y ≤ z.

As above in the proof of Theorem 1.5, let ` and M be large constants to be fixed later,
and let Nε and x±k be as defined in (4.2) and (4.3). Moreover, consider the overlapping
intervals Ik = [xk−1, xk+1] as in (4.4). Finally, define as in (4.6) the “bad set” A1 of
functions that have boundary values larger than M in magnitude. In (4.9) above, we
have already established that there is a universal constant C2 ∈ (0,∞) such that

µ−1,1
ε,(−Lε,Lε)

(
A1

)
≤ Lε exp

(
− M

C2 ε

)
.

Hence, for the system sizes Lε that we consider, the probability of A1 can be made
arbitrarily small by choosing M large.

We now define the set of functions

Jy,ε :=
{
u ∈ {A1 : u has a δ− up layer ≤ 2` in Jy,ε

}
. (5.2)

The set Jz,ε is defined analogously. In Steps 1–3 below, we will establish that the prob-
abilities of the Jy,ε and Jz,ε are roughly the same. The bounds that we obtain will be
uniform with respect to y and z. Finally, in Step 4 we will show how this implies (5.1),
and in Step 5 we will improve to the statement of Theorem 1.9.

Step 1. The first step consists of proving that on the set Jy,ε, with high probability,
the profile u is close to −1 on a sufficiently large interval Jεy,− just to the left of Jy,ε and
close to +1 on a sufficiently large interval Jεz,+ just to the right of Jz,ε.

The length hε of each of these auxiliary intervals J εy,− and J εz,+ will be chosen below
such that

| log ε| � hε � dε.

We first fix the “inner" boundary points of Jεy,− and Jεz,+: In units of `, we set

kεy,+ := max
{
k : xk ≤ y − dε

}
− 2,

kεz,− := min
{
k : xk ≥ z + dε

}
+ 2.

Let Kε be as in the statement of Lemma 5.1. The idea is to make the probability of
hitting ±1 on the auxiliary intervals large by concatenating many subintervals of length
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x

2dεhε

Jy,εJεy,−

xkεy,+xkεy,−

Figure 4: The interval Jy,ε and the auxiliary interval Jεy,− to its left.

Kε` and applying Lemma 5.2 on each subinterval. With this end in mind, we fix integers
K̄ε such that

K̄ε � 1 and hε := `(2Kε + 1)K̄ε � dε. (5.3)

Then we set

kεy,− := kεy,+ − (2Kε + 1)K̄ε and kεz,+ := kεz,− + (2Kε + 1)K̄ε,

and finally
Jεy,− := [kεy,−`, k

ε
y,+`] and Jεz,+ := [kεz,−`, k

ε
z,+`].

(See Figure 4 for an illustration of Jy,ε and Jεy,−.)
We also define the following sets of indices

Iε− :=
{
k : kεy,− ≤ k ≤ kεy,+

}
, Iε+ :=

{
k : kεz,− ≤ k ≤ kεz,+

}
.

For later use in (6.81) in the proof of Lemma 5.5, we will make the additional growth
assumption

|Iε±| = (2Kε + 1)K̄ε + 1 ≤ exp(c1/4ε), (5.4)

where c1 > 0 is defined in (6.86), below. This is not a strong condition; we will typically
think of hε as being much smaller.

Finally, we define another set of “unlikely" paths, paths that have extra δ− layers to
the left of Jy,ε or to the right of Jz,ε:

A−y,3 :=
{
u ∈ Jy,ε : there exists x ≤ (kεy,+ + 1) ` with u(x) ≥ 1− δ

}
,

A+
y,3 :=

{
u ∈ Jy,ε : there exists x ≥ (kεz,− − 1) ` with u(x) ≤ −1 + δ

}
,

Ay,3 := A−y,3 ∪ A
+
y,3. (5.5)

We now introduce two lemmas. The proofs of both lemmas are given in Subsection
6.6. The first lemma is an extension of the upper bound in Theorem 1.5 and states
roughly speaking that conditioned on having a transition in a given interval, the proba-
bility of extra layers somewhere else is small.

Lemma 5.4. Let Y be a subinterval of [−Lε, Lε] and let x− = k−` and x+ = k+` be two
gridpoints (cf. (4.3)) to the left and to the right of Y respectively with distance ≥ ` from
Y . We denote by JY and AY,3 the sets

JY :=
{
u ∈ {A1 : u has a δ− up layer in Y

}
,

AY,3 :=
{
u ∈ JY and u has another δ− layer outside of [x−, x+]

}
.

Fix any γ > 0 and any M < ∞ sufficiently large. For any δ > 0 sufficiently small and
` <∞ sufficiently large, there exists ε0 > 0 such that, for all ε ≤ ε0, we have

µ−1,1
ε,(−Lε,Lε)

(
AY,3

)
. Lε exp

(
− c0 − γ

ε

)
µ−1,1
ε,(−Lε,Lε)

(
JY
)
. (5.6)
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We now apply Lemma 5.4 for Y = Jy,ε and for x− = (kεy,+ + 1)` and x+ = (kεz,− − 1)`.
Because of the boundary conditions, the absence of layers to the left of x− and the right
of x+ implies in particular that u ≤ 1−δ to the left of x− and that u ≥ −1+δ to the right
of x+. Hence we deduce that

µ−1,1
ε,(−Lε,Lε)

(
Ay,3

)
. Lε exp

(
− c0 − γ

ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
. (5.7)

The second lemma establishes that, on the other hand, when there are no extra lay-
ers, there is only a small probability of making an excursion from −1 at some gridpoint
in Jεy,− (respectively, an excursion from 1 at some gridpoint in Jεz,+). The result from
the second lemma is exactly the necessary ingredient that we need in Step 2 in order
to invoke Lemma 5.2.

Lemma 5.5. Fix any M < ∞ sufficiently large. For any δ > 0 sufficiently small and
` <∞ sufficiently large, there exists ε0 > 0 such that for all ε ≤ ε0 we have

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε ∩ {A−y,3 : |u(xk) + 1| ≥ 1

2
for some k ∈ Iε−

)
≤ exp

(
− c1

2ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
, (5.8)

and, similarly,

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε ∩ {A+

y,3 : |u(xk)− 1| ≥ 1

2
for some k ∈ Iε+

)
≤ exp

(
− c1

2ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
, (5.9)

where c1 is defined in (6.86), below.

Step 2. The second step of the proof consists of showing that paths in the set Jy,ε
have hitting points of −1 in Jεy,− and hitting points of +1 in Jεz,+ with large probability.
This is captured by the following lemma, which is also proved in Subsection 6.6.

Lemma 5.6. There exists C ∈ (0,∞) with the following property. Fix any γ > 0 and any
M < ∞ sufficiently large. For any δ > 0 sufficiently small and ` < ∞ sufficiently large,
there exists ε0 > 0 and 0 < λ < 1 such that, for all ε ≤ ε0, we have

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε : no hitting of −1 in Jεy,−

)
≤ 1

2
E(ε)µ−1,1

ε,(−Lε,Lε)
(
Jy,ε

)
, (5.10)

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε : no hitting of +1 in Jεz,+

)
≤ 1

2
E(ε)µ−1,1

ε,(−Lε,Lε)
(
Jy,ε

)
, (5.11)

where the error term satisfies

E(ε) := C

(
λK̄ε + Lε exp

(
− c0 − γ

ε

)
+ exp

(
− c1

2ε

))
, (5.12)

and c1 is defined in (6.86), below.

Step 3. Now we are ready to define the reflection operator Ry,z. First, we define the
following left and right stopping points

χ− := inf
{
x ∈ Jεy,− : u(x) = −1

}
,

χ+ := sup
{
x ∈ Jεz,+ : u(x) = 1

}
.
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x

Jy,εJεy,−

Jz,ε

Jez,ε

χ+χ−

Figure 5: The reflection operator Ry,z performs a point reflection of the path between
the left and right hitting points χ±. In this way the δ− transition in Jy,ε is mapped into
Jez,ε.

Here we use the convention that χ− = Lε if there is no hitting point of −1 in Jεy,− and
similarly χ+ = −Lε if there is no hitting point of 1 in Jεz,+. We use these hitting points
to define the reflection operator

Ry,zu(x) :=


u(x) for x ≤ χ−,
−u(χ− + χ+ − x) for χ− < x < χ+,

u(x) for x ≥ χ+,

(5.13)

if χ− ≤ χ+. We set Ry,z to be the identity otherwise. In other words the operator Ry,z
performs a point reflection of the graphs of u between the left and right stopping points
χ±. As in Step 4 of the proof of the upper bound in Theorem 1.5, one argues that the
strong Markov property (3.10) implies that Ry,z leaves the measure µ−1,1

ε,(−Lε,Lε) invariant.
The action of the reflection operator is illustrated in Figure 5.

Assume that u ∈ Jy,ε is a path that admits a hitting point of −1 in Jεy,− and a hitting
point of +1 in Jεz,+. Recall that if u ∈ Jy,ε, then u has a δ− up transition layer of length
≤ 2` in Jy,ε. Under Ry,z the δ− up transition layer is mapped from Jy,ε to near Jz,ε and
we would like to conclude that the reflected path is contained within Jz,ε.

Unfortunately, the layer does not necessarily fall within Jz,ε. What is true is that
there is a δ− up layer of length less than 2` in the extended interval

Jez,ε := [z − dε − 3`− hε, z + dε + 3`+ hε]. (5.14)

(Recall that hε, the length of the auxiliary intervals, was defined above in (5.3).)
Let us denote by J ez,ε the set of functions with a δ− up transition layer of length less

than 2` in Jez,ε:
J ez,ε :=

{
u : u has a δ− up layer ≤ 2` in Jez,ε

}
.

In Step 2, we had established that

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε : no hitting of −1 in Jεy,− or no hitting of +1 in Jεz,+

)
≤ E(ε)µ−1,1

ε,(−Lε,Lε)
(
Jy,ε

)
.

Hence, as Ry,z leaves µ−1,1
ε,(−Lε,Lε) invariant, we can conclude that

µ−1,1
ε,(−Lε,Lε)

(
J ez,ε

)
≥
(
1− E(ε)

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
. (5.15)

An analogous construction to turn transitions in Jz,ε into transitions near Jy,ε can be
performed to obtain the same bound with Jy,ε and Jz,ε interchanged.
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Step 4. In this step, we establish the bound (5.1). For notational convenience we will
establish the bound in the case of the center interval [−dε, dε], but our argument does
not depend on this. More precisely, what we show is that for some δ > 0 and any α > 0,
there exists an ε0 > 0 such that, for ε ≤ ε0, we have∣∣∣∣Lεdε µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 : at least one δ− up layer

of length ≤ 2` in [−dε, dε]
)
− 1

∣∣∣∣ ≤ α. (5.16)

The main ingredient will be the estimate (5.15). We will also make use of Lemma
5.4 but except for that, the argument is completely elementary and only consists of
choosing the right intervals and sets of paths.

We first split up the system into smaller blocks. Actually, it will useful to define two
different partitions {Jk,ε, k = −Mε, . . . ,Mε − 1} and {Jem,ε,m = −M̃ε, . . . , M̃ε − 1} of
[−Lε, Lε]. The lengths of the intervals Jk,ε will be chosen small relative to dε but still
large relative to | log ε|. These intervals will be overlapping and play the role of Jy,ε
when we apply (5.15). The intervals Jem,ε will be slightly larger than the intervals Jk,ε
and will be of distance 2` away from each other. They will be used as Jez,ε when applying
(5.15).

We fix integers Mε and kε such that

| log ε| �M−1
ε Lε � dε,

and kεM
−1
ε Lε ≤ dε < (kε + 1)M−1

ε Lε. (5.17)

Then we set d̃ε := Lε/Mε and define the overlapping intervals

Jk,ε := [kd̃ε − 2`, (k + 1)d̃ε + 2`], k = −(Mε − 1), . . . ,Mε − 2.

The boundary intervals are defined as

J−Mε,ε :=[−Lε,−(Mε − 1)d̃ε + 2`] and

JMε−1,ε :=[(Mε − 1)d̃ε − 2`, Lε].

As above in (5.2), we then define the associated sets of paths as

Jk,ε :=
{
u ∈ {A1 : u has δ− up layer of length ≤ 2` in Jk,ε

}
. (5.18)

In order to define the slightly longer intervals, in analogy to the parameters hε and

K̄ from Steps 1–3, we choose parameters h̃ε and ˜̄Kε such that

˜̄Kε � 1 and h̃ε := `(2Kε + 1) ˜̄Kε � min

{
d̃, exp

(
c1
4ε

)}
. (5.19)

These parameters then define the error term (as for E(ε) in (5.12), above). We now
define the integers M̃ε and mε such that

Mε

(
1

1 + (h̃εMε)L−1

)
− 1 ≤ M̃ε < Mε

(
1

1 + (h̃εMε)L−1

)
and mεM̃

−1
ε Lε ≤ dε < (mε + 1)M̃−1

ε Lε. (5.20)

As above, we define the intervals

Jem,ε := [mM̃−1
ε Lε + 2`, (m+ 1)M̃−1

ε Lε − 2`], m = −M̃ε, . . . , M̃ε − 1.
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Each of these intervals Jem,ε is of length

Lε

M̃ε

− 4` =
Lε
Mε

+ h̃ε − 4`, (5.21)

and in particular these intervals are long enough to use them as Jez,ε in (5.15). Actually,
when comparing (5.21) to (5.14), one notices a discrepancy in the length of 10` but this
can easily be treated by making h̃ε a bit larger.

We define the associated sets of paths

J em,ε :=
{
u : u has a δ− up layer ≤ 2` in Jem,ε

}
,

J e,∗m,ε :=
{
u ∈ J em,ε : u has no δ− up layer in any Jen,ε for any n 6= m

}
.

After these preliminary definitions, we are now ready to proceed to the proof of
(5.16).

As mentioned above, the intervals Jk,ε are overlapping. In particular, every δ− layer
≤ 2` in [−dε, dε] must be contained in at least one of the Jk,ε. This implies that

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 : δ− up layer ≤ 2` in [−dε, dε]

)
≤

kε∑
k=−(kε+1)

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
. (5.22)

In the same way we see that every possible path on [−Lε, Lε] must be either

• in one of the unlikely sets A1 or A2 defined above in (4.6) and (4.7)

• or in at least one of the sets Jk,ε.

This implies that

Mε−1∑
k=−Mε

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
≥ 1− µ−1,1

ε,(−Lε,Lε)
(
A1 ∪ A2

)
, (5.23)

and hence we have

max
k

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
≥

1− µ−1,1
ε,(−Lε,Lε)

(
A1 ∪ A2

)
2Mε

. (5.24)

On the other hand, applying (5.15) gives that for any k and m

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
≤
(
1− E(ε)

)−1
µ−1,1
ε,(−Lε,Lε)

(
J em,ε

)
. (5.25)

Then, applying Lemma 5.4 with Y = Jem,ε, we have for every m that(
1− E(ε)

)
µ−1,1
ε,(−Lε,Lε)

(
J em,ε

)
≤ µ−1,1

ε,(−Lε,Lε)
(
J e,∗m,ε

)
. (5.26)

Finally, the sets J e,∗m,ε are all disjoint and in particular, we have

M̃ε−1∑
m=−M̃ε

µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
≤ 1,

which implies that

min
m

µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
≤ 1

2M̃ε

. (5.27)
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We now collect ingredients to deduce the upper bound

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 : u has a δ− up layer ≤ 2` in [−dε, dε]

)
(5.22)
≤

kε∑
k=−(kε+1)

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
≤ (2kε + 2) max

k
µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
(5.25)
≤ (1− E(ε))−1(2kε + 2) min

m
µ−1,1
ε,(−Lε,Lε)

(
J em,ε

)
(5.26)
≤ (1− E(ε))−2(2kε + 2) min

m
µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
(5.27)
≤ (1− E(ε))−2 (kε + 1)

M̃ε

. (5.28)

The proof of the lower bound now follows along similar lines:

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 : u has a δ− up layer ≤ 2` in [−dε, dε]

)
+µ−1,1

ε,(−Lε,Lε)
(
A1

)
(5.20)
≥

mε−1∑
m=−mε

µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
≥ 2mε min

m
µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
(5.26)
≥

(
1− E(ε)

)
2mε min

m
µ−1,1
ε,(−Lε,Lε)

(
J em,ε

)
(5.25)
≥

(
1− E(ε)

)2
2mε max

k
µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
(5.24)
≥

(
1− E(ε)

)2(
1− µ−1,1

ε,(−Lε,Lε)(A1 ∪ A2)
)mε

Mε
. (5.29)

Now, from the assumptions (5.17) on kε and Mε as well as the assumptions (5.20) on
mε and M̃ε, we have that

1 /
mε

Mε

Lε
dε
≤ 1 and 1 ≤ kε + 1

M̃ε

Lε
dε

/ 1. (5.30)

Moreover, if we choose for instance M ≥ 4C2 c0 in the bound (4.9) on A1, we recover

Lε µ
−1,1
ε,(−Lε,Lε)

(
A1

)
� 1� dε. (5.31)

Combining (5.28), (5.29), (4.13), (5.30), and (5.31) establishes (5.16), as desired.

Step 5. It remains to remove the restriction on the length of the layer and improve
from a δ− up layer to a full up layer.
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The upper bound is immediate, since

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and there exists an up layer in [y − dε, y + dε]

)
≤ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and there exists a δ− up layer in [y − dε, y + dε]

)
≤ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and there exists a δ− up layer ≤ 2` in

[y − dε, y + dε]
)

+µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and u ∈ [−1 + δ, 1− δ] on

all of [xk, xk+1] for some k
)

(5.1),(4.13)
≤ (1 + α)

dε
Lε

+ Lε exp
(
− δ2`

C1ε

)
≤ (1 + 2α)

dε
Lε
,

for ` large enough with respect to 1/δ2.
For the lower bound, on the other hand, we use Step 2 once more. To this end, we

will consider layers falling strictly interior to Jy,ε on the subset J�y,ε := [y − dε + hε +

3`, y + dε − hε − 3`]. Then, according to Step 2, there is a high probability of hitting ±1

on Jy,ε \ J�y,ε. More precisely, notice that we can estimate

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and there exists an up layer in [y − dε, y + dε]

)
≥ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and there exists a δ− up layer ≤ 2` in J�y,ε

and u hits −1 in (y − dε, y − dε + hε + 3`)

and u hits +1 in (y + dε − hε − 3`, y + dε)
)

≥
(
1− E(ε)

)
µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and

there exists a δ− up layer ≤ 2` in J�y,ε
)
, (5.32)

where in the last line, we have applied Lemma 5.6. On the other hand the probability
on the last line can be estimated

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and δ− up layer ≤ 2` in J�y,ε

)
≥ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and δ− up layer ≤ 2` in Jy,ε

)
− µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and δ− up layer ≤ 2`

in (y − dε, y − dε + hε + 5`)
)

− µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and δ− up layer ≤ 2`

in (y + dε − hε − 5`, y + dε)
)
. (5.33)

Applying the bound (5.1) to each term in (5.33) and substituting into (5.32) completes
the lower bound.

Finally, recalling the bound (4.9) on the probability of A1 completes the proof of
Theorem 1.9.

6 Proofs of the Lemmas

6.1 Proofs of preliminary energy lemmas

The energy lemmas rely on upper bounds and lower bounds for the energy over var-
ious sets. The upper bounds are derived based on constructions. (The minimum value
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of the energy is necessarily less than or equal to the value that we can achieve with any
given construction.) The lower bound, on the other hand, describes the best possible
value for any function and is based on the so-called Modica-Mortola trick discussed in
Section 2. Before we begin, we make a remark about our constructions.

Remark 6.1. In addition to giving us an ODE for the energy minimizer on R, equa-
tion (2.1) serves as the backbone for the constructions that are used to establish upper
bounds for energy minimization problems on finite systems. For instance, suppose we
want to minimize the energy on (−`, `) subject to u(±`) = ±1. For ` large, we can
build a construction that almost achieves the cost c0. Specifically, consider the cen-
tered solution of (2.2) on (−`+ a, `− a) for a = 1/`. Linearly interpolate from its value
at −` + a to −1 at −`, and symmetrically at the other end. Because of the exponential
convergence of the minimizer to ±1 (cf., Lemma 2.1), the energy on (−`,−` + a) and
(` − a, `) is o(1) as ` ↑ ∞. Similarly, if we minimize the energy over functions satisfying
u(±`) = ±M for M large, we can build a piecewise-defined construction that goes from
−M at −` to a neighborhood of −1 at −`/2, goes from a neighborhood of −1 at −`/2 + a

to a neighborhood of 1 at `/2 − a, and goes from a neighborhood of 1 at `/2 to M at `,
with linear interpolation near ±`/2 to make the function continuous. The cost of such a
construction is∫ −1

−M

√
2V (u) du+

∫ 1

−1

√
2V (u) du+

∫ M

1

√
2V (u) du+ o(1)`↑∞,

where we write the integrals separately to emphasize the additivity of the energy over
the three subintervals described above. Because according to (2.1) we can get a good
bound using increasing or decreasing functions, the analogous bounds hold for u(±`) =

∓M , u(±`) = M , et cetera.
If M is very large, the constant `∗ in the energy lemmas may also need to be very

large in order to make the o(1) term small. The idea in all of the following proofs is to
make this term small enough so that it can be absorbed into a δ-dependent term, so the
ordering of the constants is important: We fix M (large) and δ (small) and then choose
`∗ large enough so that the term(s) that are o(1) with respect to ` can be absorbed.

In what follows, it will be convenient to introduce the notation:

ϕ−1(u) =

∣∣∣∣ ∫ u

−1

√
2V (s) ds

∣∣∣∣, ϕ+1(u) =

∣∣∣∣ ∫ 1

u

√
2V (s) ds

∣∣∣∣.
Proof of Lemma 2.3. We will establish (2.4) via an upper bound on the energy over Abc

and a lower bound on the energy over Abc
0 . Because of the extra condition in Abc

0 , the
energy on (−`, `) is large (of order δ2`), and we do not have to be as careful about the
boundary conditions as usual. A rough bound will suffice.

Step 1. As explained in Remark 6.1, the upper bound relies on a construction. Given
any u− ∈ [−M,M ], we can use the solution of (2.1) to connect to a neighborhood of 1

or −1, and similarly for u+. If the optimal connection for u− is to −1 and the optimal
connection for u+ is to +1, then in order to build a continuous construction, we incur
the additional cost ϕ−1(1) = c0, where we have used the notation introduced above
and recalled the value of c0 from (1.9). (If the optimal connection for u− and u+ is
to the same value, then the construction does not incur this extra cost, but the upper
bound is still valid.) Putting together these three pieces of the construction and the
small correction terms for continuity (see Remark 6.1), we can express the upper bound
derived in this way as:

inf
u∈Abc

E(−2`,2`)(u) ≤ min{ϕ−1(u−), ϕ+1(u−)}

+ min{ϕ−1(u+), ϕ+1(u+)}+ c0 + o(1)`↑∞. (6.1)
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Note that Assumption 1.1 allows that o(1)`↑∞ may depend on M : If u− is very large, the
(near) optimal connection from u− to 1 requires a lot of space. This explains why `∗ in
the statement of the lemma depends on M .

Step 2. Now we turn to the lower bound over Abc
0 . On the one hand, on (−`, `), the

condition in Abc
0 implies that the integral of V over (−`, `) cannot be too small. Using

the quadratic behavior of V near ±1 (see Assumption 1.1), we have for δ small enough

E(−`,`)(u) ≥
∫ `

−`
V (u) dx ≥ V ′′(1) ` δ2

2
. (6.2)

To integrate over the rest of the interval, we recall the trick of Modica and Mortola
that was explained in Section 2. Consider first (−2`,−`). We divide into two cases:
|u−| > 1 and the complement.

If u ∈ Abc
0 and |u−| > 1, then there is a point x− ∈ (−2`,−`) such that |u(x−)| = 1. In

this case, the Modica-Mortola trick on (−2`, x−) gives

E(−2`,−`)(u) ≥ E(−2`,x−)(u) ≥ min{ϕ−1(u−), ϕ+1(u−)}. (6.3)

On the other hand if |u−| ≤ 1, then for ` large enough, we have

min{ϕ−1(u−), ϕ+1(u−)} ≤ V ′′(1) ` δ2

8
. (6.4)

If |u−| > 1, then adding the contributions from (6.2) and (6.3) and subtracting the
contribution from (6.1) gives

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u)

≥ V ′′(1) ` δ2

2
−min{ϕ−1(u+), ϕ+1(u+)} − c0 + o(1)`↑∞.

On the other hand if |u−| ≤ 1, then the contributions from (6.2) and (6.1) together with
the bound from (6.4) imply

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u)

≥ 3V ′′(1) ` δ2

8
−min{ϕ−1(u+), ϕ+1(u+)} − c0 + o(1)`↑∞.

Since this is a weaker bound, it holds in either case.
Repeating the identical argument on (`, 2`) and in addition absorbing c0 by V ′′(1)`δ2/8

gives

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u)

≥ V ′′(1) ` δ2

8
+ o(1)`↑∞,

which completes the proof of Lemma 2.3.

Proof of Lemma 2.5. We rewrite the set Abc
0 as

Abc
0 = A− ∪ A+,

where the A± are the sets of paths that perform a wasted excursion starting from a
neighborhood of ±1. We will prove the bound on the energy difference for A+. The
corresponding bound for A− follows in the same way.
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As usual, our task is to produce appropriate upper and lower bounds.
Step 1. The upper bound on infAbc E(−2`,2`)(u) is by construction. Consider the

function ū that minimizes E(−2`,2`) subject to

u(±2`) = u±, u(0) = 1,

and notice that

E(−2`,2`)(ū) = inf

{∫ 0

−2`

1

2
(∂xu)2 + V (u) dx : u(0) = 1, u(−2`) = u−

}
+ inf

{∫ 2`

0

1

2
(∂xu)2 + V (u) dx : u(0) = 1, u(2`) = u+

}
= ϕ+1(u−) + ϕ+1(u+) + o(1)`↑∞,

uniformly for u± ∈ [−M,M ]. (This can be established by building a construction by
hand, as we have explained in Remark 6.1 and the proof of Lemma 2.3.) Hence, since
ū ∈ Abc, we have the (not necessarily tight) upper bound

inf
Abc

E(−2`,2`)(u) ≤ E(−2`,2`)(ū)=ϕ+1(u−) + ϕ+1(u+) + o(1)`↑∞. (6.5)

Step 2. We now turn to the lower bound on infA+
E(−2`,2`)(u). Recall the points x±

that follow from the definition of A+ and Definition 2.4. Because of the properties of the
potential, we may without loss of generality assume that u(x±) = 1− δ and u(x0) = δ.

We now use the Modica-Mortola trick on (−2`, x−) ∪ (x+, 2`) to recover

E(−2`,x−)(u) + E(x+,2`)(u)

≥ ϕ+1(u−) + ϕ+1(u+)− Cδ2

(6.5)
≥ inf

u∈Abc
E(−2`,2`)(u)− Cδ2 − o(1)`↑∞. (6.6)

On the other hand, applying the Modica-Mortola trick on (x−, x0) ∪ (x0, x+) gives

E(x−,x0)(u) + E(x0,x+)(u) ≥ 2

∫ 1−δ

δ

√
2V (u) du

(1.9)
= c0 − Cδ. (6.7)

Combining (6.6) and (6.7) completes the proof of Lemma 2.5.

Proof of Lemma 2.8. Step 1. For the upper bound over Abc
δ,pre, we use the function ū

that minimizes the energy subject to

u(±2`) = u±, u(±`) = −1− 2δ, u(0) = δ.

As in the proof of Lemma 2.5, we observe that ū ∈ Abc
δ,pre and hence the construction

gives an upper bound

inf
Abc
δ,pre

E(−2`,2`)(u) ≤ ϕ−1(u−) + ϕ−1(u+) + 2ϕ+1(0) + Cδ + o(1)`↑∞

(1.9)
= ϕ−1(u−) + ϕ−1(u+) + c0 + Cδ + o(1)`↑∞. (6.8)

Step 2. For the lower bound over Abc, we observe that for any u ∈ Abc, either there
is a point x− ∈ (−2`, 0) and a point x+ ∈ (0, 2`) such that u(x±) is in a δ neighborhood
of 1 or −1, or else the energy (by the same argument as in the proof of Lemma 2.3) is
bounded below by δ2`V ′′(1)/2 for δ small enough. We can choose ` so large that this is
greater than ϕ−1(u−) + ϕ−1(u+) and hence dominates the boundary terms in (6.8). On
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the other hand, if the points x± exist, then by the usual trick of Modica and Mortola, we
recover

inf
Abc

E(−2`,2`)(u)

≥ min{ϕ−1(u−), ϕ+1(u−)}+ min{ϕ−1(u+), ϕ+1(u+)} − Cδ
= ϕ−1(u−) + ϕ−1(u+)− Cδ, (6.9)

where the second line follows by virtue of the boundary conditions u± ∈ [−M, 0] and the
symmetry of the potential.

The combination of (6.8) and (6.9) completes the proof of Lemma 2.8.

6.2 Proof of the strong Markov property

Proof of Lemma 3.1. By subtracting h
u−,u+

(x−,x+), we can reduce the problem to the case of

zero boundary conditions. Under W0,0
ε,(x−,x+), u − u

x̂+

x̂−
and u

x̂+

x̂−
are jointly Gaussian and

centered, because they are both linear images of u. So it is sufficient to calculate their
covariances. Using (3.1), it is easy to see that, for all x1, x2 ∈ [x−, x+], one has

E
Wε,0,0
(x−,x+)

(
(u− ux̂+

x̂−
)
(
x1

)
u
x̂+

x̂−

(
x2

))
= 0,

and for x1, x2 ∈ [x̂−, x̂+], one has

E
Wε,0,0
(x−,x+)

(
(u− ux̂+

x̂−
)
(
x1

)
(u− ux̂+

x̂−
)
(
x2

))
=

ε

x̂+ − x̂−

(
(x1 − x̂−)(x̂+ − x2) ∧ (x2 − x̂−)(x̂+ − x1)

)
.

This shows the claim.

Proof of Lemma 3.2. We start by observing that the statement of Lemma 3.1 implies
that

E
Wε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,x̂−] ∨ F[x̂+,x+]

)
= E

Wε,u
(x̂−,x̂+)

(
Φ
)
. (6.10)

In order to prove the desired statement (3.7), observe that the density of µ
u−,u+

ε,(x−,x+)

with respect toWu−,u+

ε,(x−,x+) can be written as

exp
(
− 1

ε

∫ x+

x−

V (u) dx
)

= Ψ−Ψ�Ψ+,

where

Ψ− := exp
(
− 1

ε

∫ x̂−

x−

V (u) dx
)
, Ψ+ := exp

(
− 1

ε

∫ x+

x̂+

V (u) dx
)
,

and Ψ� := exp
(
− 1

ε

∫ x̂+

x̂−

V (u) dx
)

are measurable with respect to F[x−,x̂−], F[x̂−,x̂+], and F[x̂+,x+]. Suppose that test func-
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tions Ξ− and Ξ+ are measurable with respect to F[x−,x̂−] and F[x̂+,x+]. Then we get

E
µε,u−,u+

(x−,x+)

(
Φ Ξ− Ξ+

)
(6.11)

=
1

Zu−,u+

ε,(x−,x+)

E
Wε,u−,u+

(x−,x+)

(
Ξ−Ψ−Φ Ψ�Ξ+Ψ+

)
(6.10)

=
1

Zu−,u+

ε,(x−,x+)

E
Wε,u−,u+

(x−,x+)

(
Ξ−Ψ−E

Wε,u
(x̂−,x̂+)

(
Φ Ψ�

)
Ξ+Ψ+

)
=

1

Zu−,u+

ε,(x−,x+)

E
Wε,u−,u+

(x−,x+)

(
Ξ−Ψ−E

Wε,u
(x̂−,x̂+)

(
Ψ�
)
E
µε,u
(x̂−,x̂+)

(
Φ
)
Ξ+Ψ+

)
(6.10)

= E
µε,u−,u+

(x−,x+)

(
Ξ−E

µε,u
(x̂−,x̂+)

(
Φ
)

Ξ+

)
.

This finishes the proof of Lemma 3.2.

We are now ready to give a proof of the strong Markov property.

Proof of Lemma 3.3: We treat only the Gaussian case (3.9). Equation (3.10) then follows
as in the proof of Lemma 3.2.

We start by proving (3.9) in the case in which χ− and χ+ are left and right stopping
points that attain values in a finite set

{
χ1, . . . , χN

}
. Then we can write

E
Wε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χ−] ∨ F[χ+,x+]

)
=

N∑
n=1

N∑
m=1

E
Wε,u−,u+

(x−,x+)

(
Φ1{χ−=χn}1{χ+=χm}

∣∣F[x−,χ−] ∨ F[χ+,x+]

)
=

N∑
n=1

N∑
m=1

1{χ−=χn}1{χ+=χm}E
Wε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χn] ∨ F[χm,x+]

)
(6.10)

=

N∑
n=1

N∑
m=1

1{χ−=χn}1{χ+=χm}E
Wε,u
(χn,χm)

(
Φ
)

= E
Wε,u
(χ−,χ+)

(
Φ
)
.

In the second equality, we have used the fact that the χ± are left and right stopping
points.

In order to see the general case, we approximate the stopping points by

χN− := inf
{
x = i 2−N : i ∈ Z, x ≥ χ−

}
,

χN+ := sup
{
x = i 2−N : i ∈ Z, x ≤ χ+

}
.

Then χN− and χN+ are stopping points taking values in a finite set and, in particular, (3.9)
holds for them. We have

χN− ↓ χ− and χN+ ↑ χ+ as N ↑ ∞.

Now, in order to conclude that (3.9) also holds for χ±, we first observe that for any
continuous, bounded Φ: C([x−, x+])→ R, we have for every path u that

E
Wε,u
(χ−,χ+)

(
Φ
)

= lim
N→∞

E
Wε,u

(χN− ,χ
N
+ )

(
Φ
)

= lim
N→∞

E
Wε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χN− ] ∨ F[χN+ ,x+]

)
= E

Wε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χ−] ∨ F[χ+,x+]

)
.
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In the first step, we have used that, due to the continuity of u, the measuresWu
ε,(χN− ,χ

N
+ )

converge weakly toWu
ε,(χ−,χ+), as can easily be confirmed. In order to see the last line,

it suffices to check that the limit in the third line does indeed satisfy the characteristic
properties of a conditional expectation.

This equality can then be extended to arbitrary test functions Φ with a standard
monotone class argument (see e.g. [18, Ch. 0, Thm 2.2]).

6.3 Proof of large deviation bounds

The large deviation bounds (3.17) and (3.18) are statements about the quotient of
expectations of the form

E
Wε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))
,

see (1.5). Consequently, the results will follow as soon as we establish upper and lower
bounds on these expectations. Throughout this subsection, A will always denote a set
of continuous paths u on [x−, x+] that satisfy the boundary conditions u(x±) = u±,
and topological notions like open or closed will always refer to the topology of uniform
convergence. We will frequently use Ix−,x+

(u), the Gaussian energy of a path (defined
in (3.2)), and I

u±
x± , the minimal Gaussian energy given the boundary conditions (defined

in (3.15)).

The upper bound for the Gaussian expectation can then be stated as follows.

Lemma 6.2 (Upper bound). Fix constants M < ∞, 0 < `− < `+ < ∞ and R < ∞.
Suppose that ` = (x+ − x−) ∈ [`−, `+] and u± ∈ [−M,M ]. Then for any δ, γ > 0, there
exists an ε0 > 0 such that for any measurable set A satisfying

inf
u∈B(A,δ)

E(u)− Iu±x± ≤ R (6.12)

and for any ε ≤ ε0, we have

E
Wε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≤ exp
(
− 1

ε

(
inf

u∈B(A,δ)
E(u)− Iu±x± − γ

))
. (6.13)

Here ε0 depends on M, `±, sup|v|≤M+
√

2−1(`+R+1)+1
|V ′(v)|, δ, and γ but not on the par-

ticular choice of x±, u±, and it depends on A only through condition (6.12).

As usual in large deviation theory, the derivation of lower bounds for integrals is
reduced to the case of a ball

B(u∗, δ) :=
{
u : ‖u− u∗‖∞ ≤ δ

}
around a suitably chosen profile u∗.

Lemma 6.3 (Lower bound). Fix constants M and `+ <∞. Suppose that ` = x+ − x− ≤
`+, u± ∈ [−M,M ]. Then for any profile u∗ with

sup
x∈(x−,x+)

|u∗(x)| ≤M (6.14)
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and any δ, γ > 0, there exists an ε0 > 0 such that for ε ≤ ε0

E
Wε,u−,u+

(x−,x+)

(
1B(u∗,δ)(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
)

≥ exp
(
− 1

ε

(
E(u∗)− Iu±x± + γ

))
. (6.15)

Here ε0 depends on sup|v|≤M+1 |V ′(v)|, `+, δ, and γ but not on the particular choice of
x±, u± and it depends on u∗ only through the condition (6.14).

Now we give the proofs of Lemmas 6.2 and 6.3. The proofs of Propositions 3.4 and
3.5 are given afterwards.

In order to prove the upper bound, we will invoke the known upper bound for Gaus-
sian large deviations. In the current context, this can be stated as follows.

Proposition 6.4 (Gaussian large deviation, see e.g. [4, Cor. 4.9.3 ]). For every closed
set A and for any γ > 0, there exists an ε0 > 0 such that for every ε ≤ ε0 we have

W0,0
ε,(0,1)

(
A
)
≤ exp

(
− 1

ε

(
inf
u∈A

I0,1(u)− γ
))
. (6.16)

The argument for Lemma 6.2 is an adaptation of the proof of [7, p. 34].

Proof of Lemma 6.2. Step 1. We start by reducing the general problem to the case of
homogeneous boundary conditions on [0, 1]. To this end, we introduce the following
affine transformation. We define the transformation T : u 7→ û, where for a given path
u : [x−, x+]→ R we denote by û ∈ C([0, 1]) the function

û(x) := u
(
x− + ` x

)
− hu−,u+

0,1 (x). (6.17)

Recall from (3.4) that h
u−,u+

0,1 (x) = xu++(1−x)u−. It is clear that T is a bijection between
the set of continuous paths u on [x−, x+] with boundary conditions u(x±) = u± and
C([0, 1]), the space of continuous paths on [0, 1] with homogeneous boundary conditions.
Furthermore, if u is distributed according toWu−,u+

ε,(x−,x+), then û is distributed according

toW0,0
`ε,(0,1). Note that the variance changes due to the rescaling by `.

The expectation that we want to bound can be expressed in terms of û as

E
Wε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

= E
W`ε,0,0
(0,1)

(
1Â(û) exp

(
− `

ε

∫ 1

0

V
(
û+ h

u−,u+

0,1

)
dx
))
, (6.18)

where Â :=
{
Tu : u ∈ A

}
. On the other hand, the condition (6.12) and the right-hand

side of the desired bound (6.13) can also be expressed in terms of û, as we will now do.
We have for every u that

E(u) = E
u±
` (û) + Iu±x± ,

where, for convenience, we have introduced the notation

E
u±
` (û) :=

∫ 1

0

1

2`

(
∂xû

)2
+ `V

(
û+ h

u−,u+

0,1

)
dx.

(Note that we have not included I
u±
x± in the definition of the rescaled energy E

u±
` , be-

cause this way E
u±
` will appear as the natural rate functional.) Condition (6.12) can

now be expressed as
inf

u∈B(Â,δ)
E
u±
` (û) ≤ R, (6.19)
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and for the right-hand side of (6.13), we get

exp
(
− 1

ε

(
inf

u∈B(A,δ)
E(u)− Iu±x± − γ

))
= exp

(
− 1

ε

(
inf

û∈B(Â,δ)
E
u±
` (û)− γ

))
.

Relabelling Â as A and û as u, we conclude that it suffices to show that for every set
A ⊆ C([0, 1]) satisfying

inf
u∈B(A,δ)

E
u±
` (u) ≤ R, (6.20)

we have for ε ≤ ε0 that

E
W`ε,0,0
(0,1)

(
1A(u) exp

(
− `

ε

∫ 1

0

V
(
u+ h

u±
0,1

)
dx
))

≤ exp
(
− 1

ε

(
inf

u∈B(A,δ)
E
u±
` (u)− γ

))
. (6.21)

This bound will be established in Steps 2-4.
Step 2.The strategy to prove (6.21) consists of decomposing C([0, 1]) into a set of

paths with high Gaussian energy and a finite number of small balls with lower Gaussian
energy. One can use the Gaussian large deviation bound (6.16) to bound the probability
of the set of high Gaussian energy, which we will make to be a term of higher expo-
nential order by choosing the Gaussian energy high enough. Then for the balls with
lower Gaussian energy, the expectation over a given ball can be estimated by bounding
an exponential factor by its supremum on that ball, and then bounding the Gaussian
probability of the set using (6.16) again. Finally, one has to sum over all the balls. As
the total number of balls is finite and the bounds decay exponentially, the largest of the
summands determines the behavior.

The main difference with respect to the classical argument in [7] is that we choose
a partition of C([0, 1]) into sets that do not depend on A. This is necessary to ensure
that the number of balls is independent of A. The price we have to pay is that on the
right-hand side of (6.21) we take the infimum over the small neighborhood B(A, δ) of A
instead of taking it over A only, as in the classical argument.

Let us now give the details: First, fix a γ < 1 and let

δ̃ := γ

(
`+ sup
|v|≤
√

2−1(`+R+1)+M+1

|V ′(v)|
)−1

∧ δ ∧ 1

2
. (6.22)

The sublevel set

K`+R :=
{
u : I0,1 ≤ `+R

}
is compact in C([0, 1]), and we can cover it by a finite number Nδ̃,`+R of open balls

B(uk, δ̃) of radius δ̃, where uk ∈ K`+R for each k. Note that A does not enter here, so
both the profiles uk and the number Nδ̃,`+R depend only on γ, δ, `+R, and

sup
|v|≤
√

2−1(`+R+1)+M+1

|V ′(v)|,

not on the set A or the specific choice of x±, u±. Actually, it can be checked using
the Hölder continuity of functions with bounded H1-norm that this number grows like
exp

(
C
(
R`+δ̃

−1
)2)

.
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Using this covering and the positivity of V , we have for any set A that

E
W`ε,0,0
(0,1)

(
1A(u) exp

(
− `

ε

∫ 1

0

V
(
u+ h

u±
0,1

)
dx
))

≤
Nδ̃,`+R∑
k=1

E
W`ε,0,0
(0,1)

(
1B(uk,δ̃)∩A(u) exp

(
− `

ε

∫ 1

0

V
(
u+ h

u±
0,1

)
dx
))

+W0,0
`ε,(0,1)

(
A \ ∪kB(uk, δ̃)

)
. (6.23)

Step 3. The last term in (6.23) can now easily be bounded:

W0,0
`ε,(0,1)

(
A \ ∪kB(uk, δ̃)

)
≤ W0,0

`ε,(0,1)

(
{ ∪k B(uk, δ̃)

)
. (6.24)

The set B := { ∪k B(uk, δ̃) is closed and by definition infu∈B I0,1(u) ≥ `+R. Hence, the
Gaussian large deviation bound (6.16) implies that there exists an ε̃0 > 0 such that, for
ε ≤ ε̃0, we have

W0,0
ε,(0,1)

(
B
)
≤ exp

(
− 1

ε

(
`+R− γ

))
.

Now we choose ε0 = ε̃0`
−1
+ . Then, for ε ≤ ε0, we can conclude that

W0,0
`ε,(0,1)

(
A \ ∪kB(uk, δ̃)

)
≤ exp

(
− 1

`ε

(
`+R− γ

))
≤ exp

(
− 1

ε

(
R− γ

`−

))
(6.19)
≤ exp

(
− 1

ε

(
inf

u∈B(A,δ)
E
u±
` (u)− γ

`−

))
. (6.25)

Step 4. It remains to bound the sum on the right-hand side of (6.23). Since the
number of summands Nδ̃,`+R remains constant as ε ↓ 0, the sum is dominated by the
largest summand. Specifically, after fixing γ, δ, `+R and M , we can choose ε0 > 0

sufficiently small so that ε ≤ ε0 implies

Nδ̃,`+R = exp

(
1

ε

(
ε log

(
Nδ̃,`+R

)))
≤ exp

(γ
ε

)
. (6.26)

Hence, up to an extra factor of γ, it is sufficient to obtain a good exponential bound on
the largest summand on the right-hand side of (6.23).

If B(uk, δ̃) ∩ A is empty, the largest summand is zero. Otherwise, we have

E
W`ε,0,0
(0,1)

(
1B(uk,δ̃)∩A(u) exp

(
− `

ε

∫ 1

0

V
(
u+ h

u±
0,1

)
dx
))

≤ sup
u∈B(uk,δ̃)

exp
(
− `

ε

∫ 1

0

V
(
u+ h

u±
0,1

)
dx
)
W0,0
`ε,(0,1)

(
B(uk, δ̃)

)
. (6.27)

Due to the lower semi-continuity of I0,1, we can choose ũk ∈ B(uk, δ̃) so that

I0,1(ũk) ≤ inf
u∈B(uk,δ̃)

I0,1(u) + γ. (6.28)

Then the first factor in (6.27) can be bounded above by

exp
(
− 1

ε

(
`

∫ 1

0

V
(
ũk + h

u±
0,1

)
dx− 2δ̃`+ sup

|v|≤‖ũk‖∞+M+1

|V ′(v)|
))
, (6.29)
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and we need a bound on ||ũk||∞. First we recall that uk ∈ K`+R, which by definition
gives I0,1(uk) ≤ `+R. Together with the definition of ũk, this gives

I0,1(ũk)
(6.28)
≤ `+R+ γ.

Recalling the homogeneous boundary conditions, this implies that

||ũk||∞ ≤
1

2

∫ 1

0

|∂xũk| dx ≤
1

2

(∫ 1

0

|∂xũk|2 dx
)1/2

≤
√

2−1(`+R+ 1).

Hence, the definition (6.22) of δ̃ implies that the bound in (6.29) improves to

exp
(
− 1

ε

(
`

∫ 1

0

V
(
ũk + h

u±
0,1

)
dx− 2γ

))
. (6.30)

On the other hand, the Gaussian large deviation bound (6.16) and the definition (6.28)
of ũk imply that for every k there exists an ε0 > 0 such that for `+ε ≤ ε0 we have

W0,0
`ε,(0,1)

(
B(uk, δ̃)

)
≤ exp

(
− 1

`ε

(
I0,1
(
ũk
)
− 2γ

))
. (6.31)

As there are only finitely many uk (the selection of which does not depend on A), we
can find an ε0 such that this bound holds for all ũk simultaneously and such that (6.25)
holds as well.

Substituting (6.30) and (6.31) into (6.27) gives for each k that

E
W`ε,0,0
(0,1)

(
1B(uk,δ̃)∩A exp

(
− 1

ε
`

∫ 1

0

V
(
u+ h

u±
0,1

)
dx
))

≤ exp
(
− 1

ε

(
E
u±
` (ũk)−

(
2 +

2

`−

)
γ
))

≤ exp
(
− 1

ε

(
inf

u∈B(uk,δ̃)
E
u±
` (u)−

(
2 +

2

`−

)
γ
))

(6.22)
≤ exp

(
− 1

ε

(
inf

u∈B(uk,δ)
E
u±
` (u)−

(
2 +

2

`−

)
γ
))
.

After relabelling γ (for instance by a factor of 6), the above bound together with (6.23),
(6.25), and (6.26) finishes the proof of (6.21).

The proof of the lower bound (6.15) relies on the classical Cameron-Martin Theorem.
In the current context it can be stated as follows.

Theorem 6.5 (Cameron-Martin Thm. e.g.[13, Thm 3.41]). For a fixed f ∈
C([x−, x+]), define the shift map Tf : C([x−, x+]) → C([x−, x+]) by Tf (u) = u + f . Then
the image measure T ∗fW

0,0
ε,(x−,x+) is absolutely continuous with respect to W0,0

ε,(x−,x+) if

and only if f ∈ H1
0 (x−, x+). In that case the Radon-Nykodym derivative is given by

d T ∗fW
0,0
ε,(x−,x+)

dW0,0
ε,(x−,x+)

(u) = exp
(
− 1

ε
Ix−,x+

(f) +
1

ε

∫ x+

x−

∂xf(x) du(x)
))
. (6.32)

Here, as in the case of Brownian motion, the stochastic integral term
1
ε

∫ x+

x−
∂xf(x) du(x) can be defined as the limit of Riemann sums in L2

(
W0,0
ε,(x−,x+)

)
. In

particular, it is a linear mapping in u defined for all u in a measurable subspace of
C([x−, x+]) of full measure (See e.g. [13, Sec. 3]).

Note that (6.32) can formally be derived by expanding the square in the non-
rigorous expression (3.3).
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Proof of Lemma 6.3 . We can assume that u∗ ∈ H1, because otherwise the bound is
trivial. As in the proof of the upper bound, (6.15) only gets stronger when we take a
smaller δ. Therefore, it is sufficient to show (6.15) with δ replaced by

δ̃ := γ

(
sup

|v|≤M+1

|V ′(v)|`+
)−1

∧ δ ∧ 1. (6.33)

We begin by stating the simplistic bound

E
Wε,u−,u+

(x−,x+)

(
1B(u∗,δ̃)

(u) exp
(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ exp
(
− 1

ε
sup

u∈B(u∗,δ̃)

∫ x+

x−

V (u) dx
)
Wu−,u+

ε,(x−,x+)

(
B(u∗, δ̃)

)
. (6.34)

Due to the assumption (6.14) on u∗ and the definition (6.33) of δ̃, we get that

sup
u∈B(u∗,δ̃)

∫ x+

x−

V (u) dx ≤
∫ x+

x−

V (u∗) dx+ sup
|v|≤M+1

|V ′(v)| δ̃ `+

≤
∫ x+

x−

V (u∗) dx+ γ.

It only remains to derive a lower bound onWu−,u+

ε,(x−,x+)

(
B(u∗, δ̃)

)
in terms of the Gaussian

energy. To this end, we again transform u∗ to an interval of length one and shift it in
a way that it satisfies homogenous boundary conditions, as in the proof of Lemma 6.2.
To be more precise, we assume that u is distributed according to Wu−,u+

ε,(x−,x+) and ap-
ply the affine transformation T defined in (6.17). Then Tu = û is distributed accord-
ing to W0,0

`ε,(0,1). Therefore, we have to bound the probability W0,0
`ε,(0,1)

(
B(û∗, δ̃)

)
, where

û∗ := Tu∗. This can be obtained using the Cameron-Martin Theorem 6.5 with f := û∗.
According to (6.32), we have

W0,0
`ε,(0,1)

(
B(û∗, δ̃)

)
= exp

(
− 1

`ε
I0,1
(
û∗
))

E
W`ε,0,0
(0,1)

(
1B(0,δ̃)(û) exp

( 1

`ε

∫ 1

0

∂xû∗(x) dû(x)
))
.

Now we will use the trick of sneaking in a cosh function. To this end, we remark that
the map û 7→

∫ 1

0
∂xû∗(x) dû(x) is linear in û. Also, the measure W0,0

`ε,(0,1) is invariant

under the mapping û 7→ −û and this mapping leaves the ball B(0, δ̃) invariant. Hence,
the last expectation is equal to

E
W`ε,0,0
(0,1)

(
1B(0,δ̃)(û) exp

(
− 1

`ε

∫ 1

0

∂xû∗(x) dû(x)
))
.

Therefore, we can write

E
W`ε,0,0
(0,1)

(
1B(0,δ̃)(û) exp

( 1

`ε

∫ 1

0

∂xû∗(x) dû(x)
))

=
1

2
E
W`ε,0,0
(0,1)

(
1B(0,δ̃)(û)

[
exp

( 1

`ε

∫ 1

0

∂xû∗(x) dû(x)
)

+ exp
(
− 1

`ε

∫ 1

0

∂xû∗(x) dû(x)
)])

= E
W`ε,0,0
(0,1)

(
1B(0,δ̃)(û) cosh

( 1

`ε

∫ 1

0

∂xû∗(x) dû(x)
))

≥ W0,0
`ε,(0,1)

(
B(0, δ̃)

)
.
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We claim that there exists an ε0 > 0 such that for all ` ≤ `+ and all ε ≤ ε0 this
probability is larger than exp

(
− ε−1γ

)
. Actually, (6.16) even implies that for any γ̃ > 0

there exists ε̃0 > 0 such that, for `ε ≤ ε̃0, we have the stronger bound

W0,0
`ε,(0,1)

(
{B(0, δ̃)

)
≤ exp

(
− 1

`ε

(
inf

û∈{B(0,δ̃)
I0,1(û)− γ̃

))
.

Note that this ε0 also depends on sup|v|≤M+1 |V ′(v)| as we have potentially decreased
δ in the first step. Then in order to conclude, it is sufficient to observe that

1

`ε
I0,1
(
û∗
)

=
1

ε

(
Ix−,x+

(
u∗
)
− Iu±x±

)
.

Now the proofs of Propositions 3.4 and 3.5 are straightforward. We begin with the
upper bound, Proposition 3.4.

Proof of Proposition 3.4. We want to derive a bound on

µ
u−,u+

ε,(x−,x+)

(
A
)

=
E
Wε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−
V (u) dx

))
E
Wε,u−,u+

(x−,x+)

(
exp

(
− 1

ε

∫ x+

x−
V (u) dx

)) . (6.35)

The assumptions on A in Proposition 3.4 are identical to those in Lemma 6.2, so we can
conclude from (6.13) that

E
Wε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≤ exp
(
− 1

ε

(
inf

u∈B(A,δ)
E(u)− Iu±x± − γ

))
for ε ≤ ε0. Also this ε0 depends on M,R, , `+, δ, and γ but not on the particular choice
of x±, u±. It only depends on A through the condition (6.12) and on V through the local
Lipschitz constant.

To get a lower bound on the denominator in (6.35), we observe that for every set
of boundary conditions u±, there exists at least one minimizer u∗ of E given these
boundary conditions. Furthermore, this minimizer attains only values in [−M,M ]. This
is clear because replacing u∗ by u∗ ∧M ∨ (−M) only decreases the energy. Therefore,
for any δ > 0, we get from (6.15) that

E
Wε,u−,u+

(x−,x+)

(
exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ E
Wε,u−,u+

(x−,x+)

(
1B(u∗,δ)(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ exp
(
− 1

ε

(
E(u∗)− Iu±x± + γ

))
for ε ≤ ε0, where ε0 satisfies the same uniformity assumptions as above. This finishes
the argument.

The proof of the lower bound is similar.
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Proof of Proposition 3.5. To derive a lower bound on µ
u−,u+

ε,(x−,x+)

(
A
)

for a given γ we
choose uγ as in (3.19). Then we can write using (6.15)

E
Wε,u−,u+

(x−,x+)

(
1B(A,δ)(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ EWε,u−,u+

(x−,x+)

(
1B(uγ ,δ)(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ exp
(
− 1

ε

(
inf
u∈A

E(u)− Iu±x± + 2γ
))
,

for ε ≤ ε0 where ε0 can again be chosen uniformly.
To derive a uniform upper bound on the normalization constant we only need to

observe that for any M ∈ (0,∞) there exists an R < ∞ such that for all u± ∈ [−M,M ],
we have

inf
u∈Abc

E(u) ≤ R.

Then (6.13) implies that there exists ε0 > 0 such that uniformly for ε ≤ ε0

E
Wε,u−,u+

(x−,x+)

(
exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≤ exp
(
− 1

ε

(
inf

u∈Abc
E(u)− Iu±x± + γ

))
.

This establishes (3.18).

6.4 Proof of the one-point distribution lemma

Proof of Lemma 4.1. First we remark that, heuristically, the “most difficult” point to
consider is x0 = 0. We present the following proof for precisely this case. The same
proof carries over for any point x0 (with only trivial modifications), but we present it for
x0 = 0 since it simplifies the notation slightly and makes the main ideas stand out.

Also notice that by the symmetry of the potential (cf. Assumption 1.1) and the rep-
resentation (1.5), it suffices to prove

µ−1,1
ε,(−Lε,Lε)

(
u(x0) ≥M

)
≤ exp

(
− M

εC2

)
.

In fact, it will be convenient to establish the estimate in the form

µ−1,1
ε,(−Lε,Lε)

(
u(0) ≥ 4M

)
≤ exp

(
− M

ε C̃2

)
, (6.36)

which is of course equivalent for C2 := 4C̃2. Thus consider the set of functions

A := {u ∈ C([−Lε, Lε]) : u(−Lε) = −1, u(Lε) = 1, andu(0) ≥ 4M}. (6.37)

Define x3M
± as follows:

x3M
− := sup{x ≤ 0: u(x) ≤ 3M} and x3M

+ := inf{x ≥ 0: u(x) ≤ 3M}.

Notice that we may assume without loss of generality that M ≥ 1, and hence, because
of the boundary conditions u(−Lε) = −1 and u(Lε) = 1, the points x3M

− < 0 < x3M
+ are

well-defined for every u ∈ A. The set A can then be divided into the following two sets:

A1 := {u ∈ A : max{|x3M
− |, x3M

+ } > 1},
A2 := {u ∈ A : max{|x3M

− |, x3M
+ } ≤ 1}.
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x−1 1

4M

3M
x3M
− x3M

+

2M
x2M
− x2M

+

(a) A path in A1.

x−1 1

4M

3M
x3M
− x3M

+

(b) A path in A2.

Figure 6: The two different cases. To show that A1 has small probability, we reflect
between the x2M

± . This decreases the potential energy. The probability of A2 can be
bounded using a large deviation argument.

To bound the probability of A1, we will use bounds on the potential and a reflection
argument. For A2 we will use a rescaling argument and the large deviation bound
(3.17). The two cases are illustrated in Figure 6.

Step 1. We treat A1 first. For u ∈ A1 we have

x3M
+ − x3M

− ≥ 1. (6.38)

The idea is to introduce a reflection over the line u = 2M that preserves the Gaussian
measure, and use the decrease of the energy (1.6) under this reflection.

We begin by collecting some facts about the potential V . To begin with, according to
the growth estimate in (1.3), V grows superlinearly at infinity. Hence, we may choose
C3 sufficiently large so that the following two properties are satisfied. On the one
hand, V grows at least linearly on [C3,∞), i.e., there exists C4 ∈ (0,∞) such that for
u1 ≥ u2 ≥ C3, there holds

V (u1)− V (u2) ≥ 1/C4 (u1 − u2). (6.39)

On the other hand, V (C3) ≥ V (0), so that in particular

V (C3) = sup
u∈[0,C3]

V (u). (6.40)

We will use the fact that (6.39) and (6.40) together imply that as long as u1 ≥ C3, then

u1 ≥ |u2| ⇒ V (u1) ≥ V (|u2|). (6.41)

Now we are ready to reflect. Define x2M
± analogously to x3M

± (noting as above that
they are well-defined for paths in the set of interest). Consider the reflection operator

R
x2M

+

x2M
−

defined as

R
x2M

+

x2M
−
u(x) :=

{
u(x) if x /∈ (x2M

− , x2M
+ )

4M − u(x) if x ∈ (x2M
− , x2M

+ )
, (6.42)
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which for the purposes of this lemma we will abbreviate with R. In order to have R
well-defined for all continuous paths u, we define it to be the identity for those paths u
that never exceed the level 2M .

Notice that x2M
− is a right but not a left stopping point, and similarly x2M

+ is a left
but not a right stopping point. In particular, the strong Markov property (3.9) does
not directly imply that R leaves W−1,1

ε,(−Lε,Lε) invariant. Indeed, it is not true that under

W−1,1
ε,(−Lε,Lε) the conditional distribution of u(x) for x ∈ [x2M

− , x2M
+ ], given the path outside

of this interval, is a Brownian bridge.
Still, it is true that the reflection operator R preserves W−1,1

ε,(−Lε,Lε). To see this,
introduce auxiliary stopping points

χ2M
− := inf{x ≥ −Lε : u(x) = 2M} and χ2M

+ := sup{x ≤ Lε : u(x) = 2M}.

As above in (4.18), we use the convention that χ2M
± = ∓Lε if these sets are empty.

OnA, these points are well-defined and we automatically have [x2M
− , x2M

+ ] ⊆ [χ2M
− , χ2M

+ ].
The points χ2M

± are left and right stopping points. Therefore, (3.9) implies that the re-

flection operators R
χ2M

+

χ2M
−

, R
χ2M

+

x2M
+

, and R
x2M
−
χ2M
−

(defined in the same way as R ) preserve

W−1,1
ε,(−Lε,Lε). Observing that

R = R
χ2M

+

χ2M
−
◦Rχ

2M
+

x2M
+

◦Rx
2M
−
χ2M
−
,

we conclude that R also preservesW−1,1
ε,(−Lε,Lε).

We now develop a quantitative, pointwise estimate of the effect of R on the “bulk
energy” V (u). By the definition of x2M

± , we have that u(x) ≥ 2M for all x ∈ [x2M
− , x2M

+ ],
the set where R acts. Hence, it suffices to consider the effect of R when u(x) ≥ 3M and
when u(x) ∈ [2M, 3M). We will first establish that on the set

{x ∈ [x2M
− , x2M

+ ] : u(x) ≥ 3M},

R decreases the bulk energy significantly. Indeed, on this set, |Ru| ≤ u − 2M and
u− 2M ≥M ≥ C3, so that

V (|Ru|)
(6.41)
≤ V (u− 2M), (6.43)

which together with (6.39) implies that for u(x) ≥ 3M ,

V (u(x))− V (Ru(x))
(1.3)
= V (u(x))− V (|Ru(x)|)

(6.43)
≥ V (u(x))− V (u(x)− 2M)

(6.39)
≥ 2M/C4, (6.44)

which holds in particular on all of [x3M
− , x3M

+ ]. On the other hand, if instead u(x) ∈
[2M, 3M), then the bulk energy still decreases under R. Indeed, we have for u(x) ∈
[2M, 3M) that u(x) ≥ Ru(x) ≥M , so that by (6.41) we know

V (u(x))− V (Ru(x)) ≥ 0. (6.45)

Combining (6.44) and (6.45) implies that for all u ∈ A1, we have∫
(−Lε,Lε)

(
V (u)− V (Ru)

)
dx

=

∫
(x2M
− ,x2M

+ )

(
V (u)− V (Ru)

)
dx

≥ 2M(x3M
+ − x3M

− )/C4

(6.38)
≥ 2M/C4. (6.46)
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We are now ready to estimate the probability of A1. Indeed, we have that

1 ≥ µ−1,1
ε,(−Lε,Lε)

(
RA1

)
(1.5)
=

1

Z
E
Wε,−1,1
(−Lε,Lε)

[
1RA1

(u) exp
(
− 1

ε

∫
V (u) dx

)]
inv. of R

=
1

Z
E
Wε,−1,1
(−Lε,Lε)

[
1A1(u) exp

(
− 1

ε

∫
V (Ru) dx

)]
=

1

Z
E
Wε,−1,1
(−Lε,Lε)

[
1A1

(u) exp
(
− 1

ε

∫ (
V (Ru)− V (u)

)
dx

−1

ε

∫
V (u) dx

)]
(6.46)
≥ exp

(
2M

C4 ε

)
1

Z
E
Wε,−1,1
(−Lε,Lε)

[
1A1(u) exp

(
− 1

ε

∫
V (u) dx

)]
= exp

(
2M

C4 ε

)
µ−1,1
ε,(−Lε,Lε)

(
A1

)
,

where Z = Z−1,1
ε,(−Lε,Lε) is the normalization constant for µ−1,1

ε,(−Lε,Lε) and all of the inte-

grals are over [−Lε, Lε]. Moving the exponential to the other side of the inequality, we
get that

µ−1,1
ε,(−Lε,Lε)

(
A1

)
≤ exp

(
− 2M

C4 ε

)
, (6.47)

which gives (6.36) for A1 with C̃2 = C4/2 .

Step 2. Now consider the set A2. Here we will use a rescaling argument and the
large deviation bound (3.17). For u ∈ A2, we can define

χ− := inf{x ∈ [−1, 0] : u(x) = 3M}, χ+ := sup{x ∈ [0, 1] : u(x) = 3M},

with the understanding that χ± = 0 if these sets are empty. These random variables are
left and right stopping points. Hence, the strong Markov property (3.10) implies that

µ−1,1
ε,(−Lε,Lε)

(
A2

)
= µ−1,1

ε,(−Lε,Lε)

(
u(0) ≥ 4M and χ± 6= 0

)
= E

µε,−1,1
(−Lε,Lε)

(
µ3M,3M
ε,(χ−,χ+)

(
u(0) ≥ 4M

)
1{χ± 6=0}

)
. (6.48)

Therefore, if we can show that

µ3M,3M
ε,(x−,x+)

(
u(0) ≥ 4M

)
≤ exp

(
− M

C̃2ε

)
(6.49)

for all ε sufficiently small (uniformly for −x−, x+ ∈ (0, 1]), then the combination of (6.48)
and (6.49) concludes the proof of (6.36). We can see (6.49) by rescaling. Indeed, if we
transform (x−, x+) into [−1, 1] by applying the affine change of variables x → ∆x

2 x +
x−+x+

2 where ∆x := x+ − x−, we see that

µ3M,3M
ε,(x−,x+)

(
u(0) ≥ 4M

)
=

1

Z
E
Wε,3M,3M
(x−,x+)

(
1{u(0)>4M} exp

(
− 1

ε

∫ x+

x−

V
(
u(x)

)
dx
))

=
1

Z
E
Wε̃,3M,3M
(−1,1)

(
1{û(

x−+x+
2 )>4M} exp

(
− (∆x)2

4ε̃

∫ 1

−1

V
(
û(x)

)
dx
))
, (6.50)
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where Z = Z3M,3M
ε,(x−,x+) is the normalization constant for µ3M,3M

ε,(x−,x+) and ε̃ := 1
2ε∆x. Now,

we observe that the family of potentials{ (∆x)2

4
V : 0 < ∆x ≤ 2

}
is locally uniformly Lipschitz. In particular, applying Proposition 3.4 for γ and δ fixed to
say γ = δ = 1, there exists ε0 > 0 such that, for ε̃ ≤ ε0 and uniformly in x±, we have

µ3M,3M
ε̃,(−1,1)(B

bc
+ ) ≤ exp

(
− 1

ε̃

(
inf

û∈B(Bbc
+ ,1)

E∆x(û)− inf
û∈Bbc

E∆x(û)− 1
))
.

Note that the choice of ε0 depends on M .
Here we use the notation

E∆x(û) :=

∫ 1

−1

(
1

2
(∂xû)2 +

(∆x)2

4
V (û)

)
dx

and

Bbc := {û ∈ C([−1, 1]) : û(±1) = 3M},
Bbc

+ :=
{
û ∈ C([−1, 1]) : û(±1) = 3M, û

(
(x− + x+)/2

)
≥ 4M

}
.

Hence, as ε̃ ≤ ε, to establish (6.49) it will be sufficient for us to show

inf
B(Bbc

+ ,1)
E∆x − inf

Bbc
E∆x ≥

M

C̃2

,

and we will in fact establish the stronger bound

inf
B(Bbc

+ ,1)
E∆x − inf

Bbc
E∆x ≥ (M − 1)2

M≥4

≥ M2

2
.

We will establish the first inequality by way of a variational argument. Notice that
we may assume that the infima are achieved (if not, a simple approximation argument
suffices), and so let

û1 := argmin
B(Bbc

+ ,1)

E∆x, û2 := argmin
Bbc

E∆x.

Observe that automatically û1

(
(x− + x+)/2

)
≥ 4M − 1.

We define the auxiliary function û3 := min{û1, 3M}. Notice that according to the
growth assumption (1.3) (or see (6.39)):

V (û1(x)) ≥ V (3M) on {û1 ≥ 3M}. (6.51)

On the other hand, since û3 ∈ Bbc and as û2 is the minimizer over Bbc, we have

E∆x(û1) − E∆x(û2)

≥ E∆x(û1)− E∆x(û3)

=

∫
{u≥3M}

(
(∂xû1)2 +

(∆x)2

4

(
V (û1)− V (3M)

))
dx

(6.51)
≥

∫ 1

−1

(∂x max{û1 − 3M, 0})2 dx

≥
(

sup
x∈[−1,1]

max{û1 − 3M, 0}
)2

≥ (M − 1)2.

This concludes the proof of (6.36) for A2 and establishes the lemma.
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6.5 Proofs of lemmas from the lower bound of Theorem 1.5.

Proof of Lemma 4.3. Since the proof is similar to (and simpler than) the proof of the
upper bound in Theorem 1.5, we will be somewhat brief. Our goal is to bound above
by 2/3 the complementary event, namely that u(x) > 0 for some x ∈ [−Lε,−2`] or
that |u(xk)| > M for some k in the index set. As in the proof of the upper bound, the
probability that |u(xk)| > M can be shown to be exponentially small in M/ε, cf. (4.9).
It remains to bound above the probability that u(x) > 0 for some x ∈ [−Lε,−2`] and
|u(xk)| ≤M for all k.

Now fix δ > 0 sufficiently small so that the estimates from the upper bound of Theo-
rem 1.5 apply. The set {u ∈ {A1 : u(x) > 0 for some x ∈ [−Lε,−2`]} is contained within
the union of:

1. functions with more than one δ− layer (exponentially unlikely by the upper bound
of Theorem 1.5) ,

2. functions with a δ− layer longer than 2` (exponentially unlikely for δ2` large, ac-
cording to the calculation in Step 3 of the proof of the upper bound, cf. (4.13)),

3. functions with one and only one δ− layer, which is at most length 2` and is con-
tained in [−Lε, 0],

4. functions with one and only one δ− layer, which is at most length 2` and is con-
tained in [−2`, Lε], and such that u(x) > 0 for some x ∈ [−Lε,−2`].

By symmetry properties of the measure, i.e. the symmetry with respect to point reflec-
tion of the graph at x = 0 and u = 0, the probability of a δ− layer contained in [−Lε, 0]

is equal to the probability of a δ− layer contained in [0, Lε], hence neither can be more
than 1/2. Therefore, the probability of the event described in point (3) is less than or
equal to 1/2.

By the calculations referred to above, the sum of the probabilities of the sets de-
scribed in (1)-(3) is bounded by 1/2 plus exponentially small terms, so we are finished if
we can show that the probability of the set described in (4) is also exponentially small,
namely, the probability that: u(x) > 0 for some x ∈ [−Lε,−2`], |u(xk)| ≤ M for all k,
and there is one and only one δ− layer, which is at most 2` and is contained in [−2`, Lε].
Note that the latter implies that u ≤ 1− δ on [−Lε,−2`].

This bound is easy to obtain by breaking into subintervals (using conditioning) and
using the large deviation estimate (3.17). Indeed, we reduce to probabilities of the form

µ
uk−2,uk+2

ε,(xk−2,xk+2)

(
u ≤ 1− δ and u(x̂) = 0 for some x̂ ∈ (xk−1, xk+1)

)
,

where uk−2 and uk+2 are arbitrary boundary values in [−M, 1 − δ] and k ∈ {−(Nε −
2),−(Nε − 3), . . . ,−3}. (We also need to consider the boundary interval, where x̂ ∈
(x−Nε , x−(Nε−2)). As usual, this is no more difficult than the bound for the interior

intervals.) After applying Proposition 3.4 (with δ̃ = δ/2), it remains only to introduce an
energetic bound. The bound from Lemma 6.6 below suffices.

Before stating the energy lemma, we explain the idea in words: If we take a δ/2 ball
around the set of interest, then on [xk−1, xk+1], there is a point x0 such that u(x0) ≥
−δ/2. For ` large, the energy minimizer needs to come very close to ±1 someplace in
[xk−2, xk−1] and [xk+1, xk+2], (say within δ/4), and since it cannot come this close to +1,
it is forced into a small neighborhood of −1. Consequently, the large excursion from −1

at x0 costs almost c0 energy. We give the precise statement below and prove the lemma
at the end of the subsection.
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Lemma 6.6. There exists C <∞ with the following property. For any M large enough
and δ > 0 small enough, consider the boundary conditions u± ∈ [−M, 1 − δ] and define
the sets

Abc := {u ∈ C([−2`, 2`]) : u(−2`) = u− and u(2`) = u+},
Abc

0 := {u ∈ Abc : u(x) ≤ 1− δ/2 for all x ∈ [−2`, 2`] and

there is an x0 ∈ [−`, `] such that u(x0) ≥ −δ/2}.

Then there exists `0 = `0(M, δ) such that for ` ≥ `0 there holds

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u) ≥ c0 − Cδ.

Proposition 3.4 and Lemma 6.6 together give

µ
uk−2,uk+2

ε,(xk−2,xk+2)

(
u ≤ 1− δ and u(x0) > 0 for some x0 ∈ (xk−1, xk+1)

)
≤ exp

(
−c0 − Cδ − γ

ε

)
.

Finally, we now choose γ and δ sufficiently small and sum over the order Nε ∼ Lε
intervals. Bearing in mind the bound (1.10) on Lε, we observe that there is also an
exponentially small probability of the final set that we have studied.

Proof of Lemma 6.6. We will be brief, since the proof is similar to the proof of Lemma 2.5.
First of all, fix M large and δ small. The infimum of the energy over Abc is less than

or equal to the minimum of the energy over functions with u(±2`) = u± and u(0) = −1.
By a standard construction, we have

inf
Abc

E(−2`,2`)(u) ≤ ϕ−1(u−) + ϕ−1(u+) + o(1)`↑∞.

In particular, for `0 large enough and ` ≥ `0, one has

inf
Abc

E(−2`,2`)(u) ≤ ϕ−1(u−) + ϕ−1(u+) + δ. (6.52)

On the other hand, on Abc
0 , either there exist x− ∈ [−2`,−`] and x+ ∈ [`, 2`] such that

|u(x±) + 1| ≤ δ/2

or we have u ∈ [−1 + δ/2, 1 − δ/2] on an interval of length `. In the latter case, we get
easily

E(−2`,2`)(u) & `δ2.

Since this is higher order for ` large, we may assume that we are in the former case.
In the former case, we may assume without loss of generality that u(x±) = −1 + δ

and u(x0) = −δ/2. We then use the Modica-Mortola trick to connect the values (a) u−
and u(x−), (b) u(x−) and u(x0), (c) u(x0) and u(x+), and (d) u(x+) and u+. We conclude
in the usual way that

inf
Abc

0

E(−2`,2`)(u) ≥ ϕ−1(u−) + ϕ−1(u+) + c0 − Cδ.

Together with (6.52), this completes the proof of Lemma 6.6.
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u−
u+

√
ε/ε0

1

1/2

xK−1 xK `εx−K x−(K−1)−`ε −`0 `0

Figure 7: By iterated rescaling and application of the large deviation bounds we show
that the paths relax to a O(ε1/2) - neighbourhood of 1 within a distance of O| log(ε)|.

6.6 Proof of lemmas related to the uniform distribution

Proof of Lemma 5.1. Our argument relies on an iterated rescaling, illustrated in Figure
7.

We will defineK = Kε ≥ 1 below. We begin by enumerating the partition {xk}K+1
k=−(K+1)

of (−`ε, `ε) with width 2`0, so that

x±1 = ±`0, x±2 = ±3`0, . . . , x±K = ±(2K − 1)`0, x±(K+1) = ±`ε.

For brevity of notation, let

A :=
{
u : |u(xk)− 1| ≤ 1

2
for all k ∈ {−(K + 1),−K, . . . ,K + 1}

}
.

We will use the elementary facts from probability that for any sets A1, A2, and A3, we
have

P (A1 ∩A2) ≤ P (A1 ∩ A3) + P ({A3 ∩A2), (6.53)

P (A1 ∩A2 ∩A3) ≤ P (A1 ∩A2|A3). (6.54)

We also use the Markov property from Lemma 3.2 to deduce the following property
for conditional measures. IfAin and Ãin are in F[−x2,x2] andAout is in F[−`ε,−x2]∨F[x2,`ε],
then

µ
u−,u+

ε,(−`ε,`ε)

(
Ain

∣∣∣∣u ∈ Ãin ∩ Aout and u(±x2) = u2
± ∈ (a, b)

)

=

E
µε,u−,u+

(−`ε,`ε)

(
1Aout1u2

±∈(a,b)E
µε,u

2
−,u

2
+

(−x2,x2)

(
1Ain1Ãin

))
E
µε,u−,u+

(−`ε,`ε)

(
1Aout1u2

±∈(a,b)E
µε,u2

−,u
2
+

(−x2,x2)

(
1Ãin

))
≤ sup
u2
±∈(a,b)

µ
u2
−,u

2
+

ε,(−x2,x2)

(
u ∈ Ain

∣∣u ∈ Ãin). (6.55)

Keeping these preliminaries in mind, we now observe that we can make the following
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decomposition:

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]

|u(x)− 1| ≥ 1

2K+1

∣∣∣∣u ∈ A
)

(6.53)
≤ µ

u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]

|u(x)− 1| ≥ 1

2K+1
and

sup
x∈[−x2,x2]

|u(x)− 1| ≤ 1

2K

∣∣∣∣u ∈ A
)

+µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x2,x2]

|u(x)− 1| ≥ 1

2K

∣∣∣∣ u ∈ A
)
.

For the first term, we can now absorb the smallness condition in the boundary con-
ditions in the following way:

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]

|u(x)− 1| ≥ 1

2K+1
and

sup
x∈[−x2,x2]

|u(x)− 1| ≤ 1

2K

∣∣∣∣u ∈ A)
(6.54)
≤ µ

u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]

|u(x)− 1| ≥ 1

2K+1
and

sup
x∈[−x2,x2]

|u(x)− 1| ≤ 1

2K

∣∣∣∣
|u(x)− 1| ≤ 1

2K
forx ∈ {±x1,±x2} and u ∈ A

)
(6.55)
≤ sup

u2
±∈[1−2−K ,1+2−K ]

µ
u2
−,u

2
+

ε,(−x2,x2)

(
sup

x∈[−x1,x1]

|u(x)− 1| ≥ 1

2K+1

and sup
x∈[−x2,x2]

|u(x)− 1| ≤ 1

2K

∣∣∣∣|u(±x1)− 1| ≤ 1

2K

)
≤ sup

u2
±∈[1−2−K ,1+2−K ]

µ
u2
−,u

2
+

ε,(−x2,x2)

(
sup

x∈[−x1,x1]

|u(x)− 1| ≥ 1

2K+1

∣∣∣∣
|u(±x1)− 1| ≤ 1

2K

)
.

We can iterate this argument to reduce the probability to the form:

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]

|u(x)− 1| ≥ 1

2K+1

∣∣∣∣u ∈ A
)

≤
K∑
k=1

sup
uk±∈[1−2−k,1+2−k]

µ
uk−,u

k
+

ε,(x−(K−k+2),xK−k+2)

(
sup

x∈[x−(K−k+1),xK−k+1]

|u(x)− 1| ≥ 1

2k+1

∣∣∣∣
|u(x±(K−k+2))− 1| ≤ 1

2k

)
. (6.56)

Hence it remains to estimate the individual terms in the sum. The argument involves
three steps: a large deviation estimate, concatenation, and an iterated rescaling of the
deviation of u from 1.
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Step 1: Large deviation estimate. The first step is to derive a uniform large deviation
bound for the measures µ

u−,u+

ε,(−3`0,3`0). We show that there exists C ∈ (0,∞) such that for

every `0 <∞ sufficiently large, there exists ε′0 > 0 such that for any u± ∈ [1/2, 3/2] and
ε ≤ ε′0, we get

µ
u−,u+

ε,(−3`0,3`0)

(
sup

x∈[−`0,`0]

|u(x)− 1| ≥ 1

4

∣∣∣∣|u(±`0)− 1| ≤ 1

2

)
≤ exp

(
− 1

Cε

)
. (6.57)

In the next steps, we will always assume ε0 ≤ ε′0 to be sufficiently small in this sense,
and this is the only restriction on ε0 in the proof of the lemma.

To bound the conditional probability in (6.57) it suffices to establish an upper bound
on

µ
u−,u+

ε,(−3`0,3`0)

(
sup

x∈[−`0,`0]

|u(x)− 1| ≥ 1

4
and |u(±`0)− 1| ≤ 1

2

)
(6.58)

and a lower bound on

µ
u−,u+

ε,(−3`0,3`0)

(
|u(±`0)− 1| ≤ 1

2

)
, (6.59)

uniformly with respect to u± ∈ [1/2, 3/2]). To this end, we turn to the uniform large
deviation estimates from Propositions 3.4 and 3.5. In fact, we do not even need the
second condition in (6.58), and it suffices to bound the probability of the larger set

A0 :=
{
u ∈ C([−3`0, 3`0]) : u(±3`0) = u±, sup

x∈[−`0,`0]

|u(x)− 1| ≥ 1

4

}
.

The estimate (3.17) gives that for any γ, δ > 0, we have for sufficiently small ε that

µ
u−,u+

ε,(−3`0,3`0)(A0) ≤ exp
(
− 1

ε

(
∆E

(
B(A0, δ)

)
− γ
))
, (6.60)

where ∆E is defined in (3.13) and

Abc = {u ∈ C([−3`0, 3`0]) : u(±3`0) = u±}.

Consider now a small δ > 0 to be fixed below and a function u ∈ B(A0, δ). Because the
boundary conditions are in [1/2, 3/2] and `0 is large, the infimum of the energy must
take place over functions such that

max

{
min

x∈[−3`0,−`0]
|u(x)− 1|, min

x∈[`0,3`0]
|u(x)− 1|

}
.

1√
`0
. (6.61)

(Indeed, u must be close to either 1 or −1 at some point in each of the intervals, and if
u were instead close to −1 on either interval, satisfying the boundary conditions would
lead to an even greater energetic cost than the one we will arrive at below.) Let us label
the minimizing points x− and x+. Moreover, let us define x∗ to be a point in (−`0, `0)

such that

|u(x∗)− 1| ≥ 1

4
− δ.
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As above in Subsection 6.1, we now define ϕ(u) := |
∫ 1

u

√
2V (s) ds| and apply the “Modica-

Mortola trick” on (−3`0, x−), (x−, x∗), (x∗, x+), and (x+, 3`0) to recover

inf
B(A0,δ)

E(u) ≥ ϕ(u−)− ϕ(u(x−)) + ϕ(u(x∗))− ϕ(u(x−))

+ϕ(u(x∗))− ϕ(u(x+)) + ϕ(u+)− ϕ(u(x+))
(6.61)
≥ 2ϕ(u(x∗)) + ϕ(u−) + ϕ(u+)− o(1)`0↑∞

≥ 2ϕ1/4 + ϕ(u−) + ϕ(u+)− o(1)`0↑∞ − o(1)δ↓0, (6.62)

where
ϕ1/4 := min{ϕ(3/4), ϕ(5/4)}.

On the other hand, a standard construction gives

inf
Abc

E(u) ≤ ϕ(u−) + ϕ(u+) + o(1)`0↑∞. (6.63)

Now fixing δ > 0 and γ > 0 sufficiently small, the combination of (6.60), (6.62), and (6.63)
gives for sufficiently small ε that

µ
u−,u+

ε,(x−,x+)(A0) ≤ exp

(
−

3/2 ϕ1/4

ε

)
. (6.64)

We now remark that the lower bound on (6.59) follows easily from Proposition 3.5.
Indeed, for a fixed 0 < δ < 1

2 , the set of interest can be written as the δ ball around the
set A1 defined as

A1 :=
{
u : u(±3`0) = u±, |u(±`0)− 1| ≤ 1

2
− δ
}
.

We recover for any γ > 0 and for ε > 0 sufficiently small that

µ
u−,u+

ε,(x−,x+)

(
B(A1, δ)

)
≥ exp

(
− 1

ε

(
∆E

(
A1

)
+ γ
))
, (6.65)

where ∆E is defined in (3.13). The standard construction together with the usual
Modica-Mortola estimate gives

∆E
(
A1

)
≤ o(1)`0↑∞.

Plugging back into (6.65) gives

µ
u−,u+

ε,(x−,x+)

(
B(A1, δ)

)
≥ exp

(
− 2γ

ε

)
,

which together with (6.64) gives (6.57) with C = 1/ϕ1/4 as long as γ is chosen suffi-
ciently small.

Step 2: Concatenation. The next step is to prove for any K ∈ N that

µ
u−,u+

ε,(x−(K+1),xK+1)

(
sup

x∈[x−K ,xK ]

|u(x)− 1| ≥ 1

4

∣∣∣∣u ∈ A)
≤ 2K exp

(
− 1

Cε

)
, (6.66)

uniformly for u± ∈ (1/2, 3/2). As usual, the idea is to break up the larger interval by
conditioning on the boundary values. The restriction of the boundary values on each
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subinterval to (1/2, 3/2) because of u ∈ A will allow us to apply the uniform estimate
from Step 1.

We will consider the non-overlapping subintervals [xk, xk+1] for k = −K, . . . ,K − 1.
Decomposing the interval in this way gives

µ
u−,u+

ε,(x−(K+1),xK+1)

(
sup

x∈[x−K ,xK ]

|u(x)− 1| ≥ 1

4

∣∣∣∣u ∈ A)

≤
2K∑
k=1

µ
u−,u+

ε,(x−(K+1),xK+1)

(
sup

x∈[xk,xk+1]

|u(x)− 1| ≥ 1

4

∣∣∣∣u ∈ A). (6.67)

Now the Markov property implies that for k ∈ {−K, . . . ,K − 1} we have

µ
u−,u+

ε,(x−(K+1),xK+1)

(
sup

x∈[xk,xk+1]

|u(x)− 1| ≥ 1

4
andu ∈ A

)

= E
µε,u−,u+

(x−(K+1),xK+1)

 K∏
j=−K

1{|u(xj)−1|≤ 1
2}
1{sup[xk,xk+1] |u(x)−1|≥ 1

4}


(6.55)
≤ sup

uk±∈[1/2,3/2]

µ
uk−,u

k
+

ε,(xk−1,xk+2)

(
sup

x∈[xk,xk+1]

∣∣u(x)− 1
∣∣ ≥ 1

4∣∣∣ max{|u(xk)− 1|, |u(xk+1)− 1|} ≤ 1

2

)
µ
u−,u+

ε,(x−(K+1),xK+1)

(
A
)
.

Hence, using the translational invariance of the measures µ
u−,u+

ε,(x−,x+), we bound the right-
hand side of equation (6.67) by

2K sup
u±∈[1/2,3/2]

µ
u−,u+

ε,(−3`0,3`0)

(
sup

x∈[−`0,`0]

|u(x)− 1| ≥ 1

4

∣∣∣∣|u(±`0)− 1| ≤ 1

2

)
(6.57)
≤ 2K exp

(
− 1

Cε

)
,

which is what we wanted to show.
Step 3: Rescaling and iteration. In this step, we rescale the deviation of u from 1.

We fix k and consider the random variables

û := 2k−1(u− 1) + 1.

For u distributed according to µ
u−,u+

ε,(−`,`),the profile û is distributed according to a rescaled
version of the measure. Indeed, the Radon-Nikodym density with respect to the Brow-
nian bridge measure with modified noise strength ε̂ := 4k−1ε and rescaled boundary
conditions is proportional to

exp

(
−1

ε̂

∫ `

−`
4k−1V

(
2−(k−1)(û− 1) + 1

)
dx

)
. (6.68)

Let us give a name to the modified potential

V̂ (û) := 4k−1V (2−(k−1)(û− 1) + 1)

and the associated energy

Ê(û) :=

∫ `

−`

(
1

2
(∂xû)2 + V̂ (û)

)
dx.
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We now make a series of observations that will allow us to apply the same large devia-
tion bounds from Steps 1 and 2 to the rescaled random variables û.

First consider how the sets involved in (6.56) behave under the rescaling. Notice
that u satisfies

sup
x∈[x−(K−k+2),xK−k+2]

|u(x)− 1| ≥ 1

2k+1

precisely when

sup
x∈[x−(K−k+2),xK−k+2]

|û(x)− 1| ≥ 1

4
.

Similarly, for the set on which we condition, we have that u satisfies

|u(xj)− 1| ≤ 1

2k
for j ∈ {−(K − k + 3), . . . ,K − k + 3}

precisely when û satisfies

|û(xj)− 1| ≤ 1

2
for j ∈ {−(K − k + 3), . . . ,K − k + 3}.

Hence each term in (6.56) can be bounded if we can establish that the bound from Step
2 also holds for the measure governing û.

In order to show that the estimates from Step 1 and 2 hold uniformly for the mea-
sure of the rescaled random variables û, we need to be able to invoke Propositions 3.4
and 3.5 (with uniform constants). This in turn requires uniform control on the bound-
ary values, the minimum energy Ê over the sets of interest, and the Lipschitz constant
of V̂ . The boundary values are easy: On the sets of interest, the boundary values
u± ∈ (1/2, 3/2). On the other hand, the minimum of the energy Ê is bounded uniformly
with respect to k on the sets of interest. Indeed, consider

C :=
{
u : |u(xj)− 1| ≤ 1

2k
for j ∈ {−(K − k + 3), . . . ,K − k + 3}

and sup
x∈[x−(K−k+2),xK−k+2]

|u(x)− 1| ≥ 1

2k+1

}
and let Ĉ denote the image of the set under the transformation u → û. By the usual
method (“Modical Mortola trick” for the lower bound and construction for the upper
bound), one can check that there exists R <∞ such that, for every k ∈ N, one has

inf
û∈Ĉ

Ê(û) = 4k−1 inf
u∈C

E(u) ≤ R.

Finally, because of Assumption 1.1, we have a uniform bound on the Lipschitz constant
of V . Indeed, let C := 3/2+2`0R+1. Then uniformly with respect to k ∈ N, the potential
V̂ satisfies

sup
|û|≤C

|V̂ ′(û)| ≤ sup
|u−1|≤2−k+1(C+1)

2k−1 |V ′(u)|

≤ sup |V ′′(τ)|(C + 1),

where the supremum is taken over τ ∈ [1− 2(C + 1), 1 + 2(C + 1)].

Hence, the potential satisfies the requirements of Propositions 3.4 and 3.5. The
remaining requirement in order to invoke large deviation theory is that

4k−1ε ≤ ε0 for all k ≤ K,
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which is true if
4K−1ε ≤ ε0.

Therefore we choose K to be an integer satisfying

1

2K+1
≤
√

ε

ε0
≤ 1

2K−1
. (6.69)

With the restriction (6.69) on K, the arguments used in Step 1 and Step 2 carry over to
the rescaled measures governing the û.

We are now ready to complete the argument. Indeed, recalling the decomposition
from (6.56), we have

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]

|u(x)− 1| ≥
√

ε

ε0

∣∣∣∣u ∈ A
)

(6.69)
≤ µ

u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]

|u(x)− 1| ≥ 1

2K+1

∣∣∣∣u ∈ A
)

(6.56)
≤

K∑
k=1

sup
uk±∈[1−2−k,1+2−k]

µ
uk−,u

k
+

ε,(x−(K−k+2),xK−k+2)

(
sup

x∈[x−(K−k+1),xK−k+1]

|u(x)− 1| ≥ 1

2k+1

∣∣∣∣
|u(x±(K−k+2))− 1| ≤ 1

2k

)
. (6.70)

From the preceding argument, we can now apply the estimate (6.66) for the rescaled
measures to bound the kth summand above by

2(K − k + 1) exp

(
− 1

C 4k−1ε

)
.

Substituting into the right-hand side of (6.70), we deduce

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]

|u(x)− 1| ≥
√

ε

ε0

∣∣∣∣u ∈ A
)

≤
K∑
k=1

2(K − k + 1) exp

(
− 1

C 4k−1ε

)

= 2

K−1∑
k=0

(K − k)

(
exp

(
− 1

C 4K ε

))4K−k

(6.69)
≤ 2

K−1∑
k=0

(K − k)r4K−k , for r := exp

(
− 1

C ε0

)

≤ 2

∞∑
k′=1

k′rk
′

=
2r

(r − 1)2
≤ 4r for r ∈ (0, 1/4].

Proof of Lemma 5.2. We start by defining some sets. We denote the set of paths that
we condition on by

A := {u ∈ C([−`ε, `ε]) : |u(±(2k − 1)`0)− 1| ≤ 1

2
, k = 1, 2, . . . ,Kε}.
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For ε, ε0 > 0 let us also fix the following subset of A

Aε :=

{
u ∈ A : |u(±`0)− 1| ≤

(
ε

ε0

)1/2}
.

Then Lemma 5.1 implies in particular that, for a small but fixed ε0 > 0 and for ε ≤ ε0,
we have

µ
u−,u+

ε,(−`ε,`ε)
(
Aε
)
≥ 1

2
µ
u−,u+

ε,(−`ε,`ε)
(
A
)
. (6.71)

From now on, we fix an ε0 such that this identity holds. This will be the only restriction
on ε0.

Let us also introduce a notation for the set of paths that have a hitting point of 1 in
[−`0, `0]

B := {u ∈ C([−`ε, `ε]) : ∃x ∈ [−`0, `0] such that u(x) = 1}.

As a slight abuse of notation we will use the same letter B to denote the set of paths
u ∈ B restricted to [−`0, `0].

Using the Markov property (3.7), we get for any u± ∈ [1/2, 3/2] that

µ
u−,u+

ε,(−`ε,`ε)
(
A ∩ B

)
≥ µu−,u+

ε,(−`ε,`ε)
(
Aε ∩ B

)
(6.72)

= E
µε,u−,u+

(−`ε,`ε)

(
1Aε(u)µ

u(−`0),u(+`0)
ε,(−`0,`0)

(
B
) )

.

Our main task is thus to derive a lower bound for the probabilities

µ
u−,u+

ε,(−`0,`0)

(
B
)

(6.73)

that holds uniformly in the boundary conditions. In view of the definition of Aε, it is
sufficient to consider boundary conditions u± that are O(ε1/2) close to 1:

1−
(
ε

ε0

)1/2

≤ u± ≤ 1 +

(
ε

ε0

)1/2

. (6.74)

As in the proof of Lemma 5.1, we rescale the random profile u around 1, this time by a
factor ε−

1
2 . More precisely, we consider the transformation

û(x) := ε−1/2(u(x)− 1) + 1.

According to its definition, a path u is in the set B if and only if û is in B. Hence, we can
express the probability (6.73) in terms of û.

The random variable û is distributed according to a rescaled version of µ
u−,u+

ε,(−`0,`0).
The variance of the Gaussian reference measure becomes one and the rescaled bound-
ary values are

û± := ε−1/2(u± − 1) + 1.

Note that the condition (6.74) implies that these rescaled boundary conditions take val-
ues in an order-one interval around 1. More precisely, the distribution of û is absolutely
continuous with respect to W û−,û+

1,(−`0,`0) and the Radon Nikodym density of the rescaled

measure is proportional to exp
(
−
∫ `0
−`0 V̂

(
û
)
dx
)

, where V̂ (û) := 1
εV
(
ε1/2(û − 1) + 1

)
.

Hence we can rewrite

µ
u−,u+

ε,(−`0,`0)

(
B
)

=
E
W1,û−,û+

(−`0,`0)

(
1B(û) exp

(
−
∫ `0
−`0 V̂ (û) dx

))
E
W1,û−,û+

(−`0,`0)

(
exp

(
−
∫ `0
−`0 V̂ (û) dx

)) . (6.75)
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The denominator of this expression can be trivially bounded above by 1. To get a lower
bound for the numerator, we can write for example

E
W1,û−,û+

(−`0,`0)

(
1B(û) exp

(
−
∫ `0

−`0
V̂ (û) dx

))
≥ EW1,û−,û+

(−`0,`0)

(
1B∗(û) exp

(
−
∫ `0

−`0
V̂ (û) dx

))
≥ W û−,û+

1,(−`0,`0)

(
B∗
)

inf
û∈B∗

exp
(
−
∫ `0

−`0
V̂ (û) dx

)
. (6.76)

Here we have made the probability smaller by restricting the integration to the set

B∗ :=

{
û ∈ B : sup

x∈[−`0,`0]

|û(x)− 1| ≤ 3ε
−1/2
0

}
.

Using the translation invariance of the Gaussian measures, we can get a lower bound
on the Gaussian probabilities that holds uniformly in the boundary conditions. For
example, set

B∗∗ :=
{
û ∈ C([−`0, `0]) : sup

x∈[−`0,`0]

û(x) ∈ (ε
−1/2
0 , 2ε

−1/2
0 ),

and inf
x∈[−`0,`0]

û(x) ∈ (−2ε
−1/2
0 ,−ε−1/2

0 )
}
.

Then, on the one hand, for every path û ∈ B∗∗ and for all uε,± ∈ [1 − ε−1/2
0 , 1 + ε

−1/2
0 ],

the shifted paths û + h
û−,û+

(−`0,`0) lies in B∗. (Recall the definition (3.4) of the affine profile

h
û−,û+

(−`0,`0)). On the other hand, by definition, shifting by h
û−,û+

(−`0,`0) transforms the measure

W0,0
1,(−`0,`0) intoW û−,û+

1,(−`0,`0). This implies that

W û−,û+

1,(−`0,`0)

(
B∗
)
≥ W0,0

1,(−`0,`0)

(
B∗∗
)

=: c > 0. (6.77)

Hence it remains to get a lower bound on the second term in (6.76). As above in the
proof of Lemma 5.1, Assumption 1.1 on V and Taylor’s formula imply that V̂ satisfies

sup
|u−1|≤3 ε

−1/2
0

sup
ε∈(0,1)

ε−1V
(
ε1/2(u− 1) + 1

)
=: C <∞.

Plugging this into (6.76), we get

inf
û∈B∗

exp
(
−
∫ `0

−`0
V̂ (û) dx

)
≥ exp(−2C`0).

Hence, summarizing this calculation, we get uniformly for all u± satisfying (6.74) that

µ
u−,u+

ε,(−`0,`0)

(
B
)
≥ c exp(−2C`0).

Finally, plugging this back into (6.72), we get

µ
u−,u+

ε,(−`ε,`ε)
(
A ∩ B

)
≥ c exp(−2C`0)µ

u−,u+

ε,(−`ε,`ε)
(
Aε
)

(6.71)
≥ 1

2
c exp(−2C`0)µ

u−,u+

ε,(−`ε,`ε)
(
A
)
.

Thus we get the desired conclusion for 1− λ := 1
2c exp(−2C`0).

EJP 19 (2014), paper 23.
Page 68/76

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2813
http://ejp.ejpecp.org/


Invariant measure on large systems

Proof of Lemma 5.4. Step 1. We begin by ruling out long layers to the left and to the
right of Y . Once we know that layers are bounded in length, we can use a reflection
argument as in the proof of Theorem 1.5 to turn them into wasted excursions and esti-
mate their probability. To this end, we define the set AY,2 of functions that are bounded
away from ±1 on a whole subinterval outside of Y :

AY,2 := {u ∈ JY : there exists a k with

k ≤ k− or k ≥ k+ − 1 such that

u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]} .

As usual, we note that AY,3 is contained within AY,2 ∪ (AY,3 ∩ {AY,2). Our first step is to
show that (5.6) holds for AY,2. In fact, AY,2 is of higher order for M and δ2` sufficiently
large.

The set AY,2 can be written in the obvious way as the union of sets AkY,2 that have
bad behavior on a given subinterval [xk, xk+1]. Without loss of generality, suppose that
k ≤ k−.

Then we introduce the following sets for a Markovian decomposition:

A	k := {u : |u(xj)| ≤M for all j ≤ k − 1} ,
A⊕k := {u : |u(xj)| ≤M for all j ≥ k + 2,

and at least one δ− up layer ≤ 2` in Y
}
,

A�k := {u : |u(xj)| ≤M for j = k − 1, . . . , k + 2} ,
A�δ,k :=

{
u ∈ A�k : u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

}
.

We remark that

A	 ∈ F[−Lε,xk−1], and A⊕ ∈ F[xk+2,Lε],

while A� ∈ F[xk−1,xk+2] and A�δ,k ∈ F[xk−1,xk+2].

Consequently, the decompositions AkY,2 = A	k ∩A
�
δ,k ∩A

⊕
k and JY = A	k ∩A

�
k ∩A

⊕
k lend

themselves to an application of the Markov property from Lemma 3.2. We will often use
such decompositions in the proofs below.

In the proof at hand, the Markov property from Lemma 3.2 gives

µ−1,1
ε,(−Lε,Lε)

(
AkY,2

)
≤ sup
u±∈[−M,M ]

E
µε,u−,u+

(xk−1,xk+2)(1A�δ,k
)

E
µε,u−,u+

(xk−1,xk+2)(1A�k
)
µ−1,1
ε,(−Lε,Lε)(JY ).

It suffices to bound the ratio of expectations on the right-hand side. For the denomina-
tor, we observe that

inf
u±∈[−M,M ]

E
µε,u−,u+

(xk−1,xk+2)(1A�k
) ' 1 (6.78)

for M sufficiently large. In fact, this bound follows immediately from the large deviation
bound (3.17) and a simple energy estimate applied to the complement.

Hence, it suffices to bound the numerator. Recalling the bound (4.12), the expecta-
tion in the numerator can be estimated by

exp

(
−1

ε

(
δ2`

C1
− 2γ

))
≤ exp

(
−δ

2`− 1

εC1

)
.

For δ2` sufficiently large, this drops below the threshold expressed in the exponential
in (5.7). Hence, summing the probabilities of AkY,2 over k, the probability of AY,2 is
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negligible in the sense that, in order to establish (5.7), it suffices to show that it holds
for ÃY,3 := AY,3 \AY,2. For ease of notation, we drop the tildes for the remainder of the
proof of the lemma.

Step 2. We will now show the desired bound for AY,3. That is, we will show that for
any γ > 0 there exists an ε0 > 0 such that for all ε ≤ ε0 we have

µ−1,1
ε,(−Lε,Lε)

(
AY,3

)
. Lε exp

(
− c0 − γ

ε

)
µ−1,1
ε,(−Lε,Lε)

(
JY
)
.

The proof uses a reflection argument very similar to the argument in the proof of the
upper bound in Theorem 1.5.

As above in (5.5) the set AY,3 can be expressed as AY,3 = A−Y,3 ∪ A
+
Y,3 where

A−Y,3 =
{
u ∈ {A1 ∩ {AY,2 : u has a δ− up layer

contained in [−Lε, k−`] and a δ− up layer ≤ 2` in JY
}
,

A+
Y,3 =

{
u ∈ {A1 ∩ {AY,2 : u has a δ− down layer

contained in [k+ `, Lε] and a δ− up layer ≤ 2` in JY
}
.

We will only give the bound for the set A−Y,3. The proof of the corresponding bound for

A+
Y,3 follows in the same way. The set A−Y,3 is contained in the union of k from −(Nε− 1)

to k− of the sets

A−,kY,3 :=
{
u ∈ {A1 : u has a δ− up layer

contained in [xk−1, xk+1] and a δ− up layer ≤ 2` in Y
}
.

As in the proof of Theorem 1.5, we will transform the additional δ− transition layer
into a wasted δ− excursion to control the probability. We need to reflect in such a way
as to (a) create a wasted excursion in [xk−1, xk+1] and (b) leave at least one δ− up layer
in Y . To this end, we define the left stopping point capturing the additional δ− up layer

χ− = inf{x > xk−1 : u(x) = 0

and u(y1) = −1 + δ for some y1 ∈ (xk−1, x)}

and the right stopping point

χ+ := sup
{
x ≤ y+ : u(x) = 0 and there exist y1 < y2

both in (x, y+) with u(y1) = −1 + δ, u(y2) = 1− δ
}
,

where y+ := supY is the right boundary of Y . As before we will use the convention
that χ± = ∓Lε if these sets are empty. As in the proof of Theorem 1.5, the reflection
operator

R = Rχ+
χ− ,

reflects the paths u between the stopping points χ± while preserving µ−1,1
ε,(−Lε,Lε). On the

other hand, it maps the set A−,kY,3 into the set

Â−,kY,3 :=
{
u ∈ {A1 : at least one wasted δ− excursion in [xk−1, xk+1]

and at least one δ− up layer ≤ 2` in JY
}
.

Hence, the estimate (5.7) will follow if we can establish, uniformly in k, that

µ−1,1
ε,(−Lε,Lε)

(
Â−,kY,3

)
≤ exp

(
−c0 − γ

ε

)
µ−1,1
ε,(−Lε,Lε)(JY ), (6.79)
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which will follow from the Markov property and a large deviation estimate. Indeed, let
us define the following sets:

A	k := {u : |u(xj)| ≤M for all j ≤ k − 2 } ,
A⊕k :=

{
u : |u(xj)| ≤M for all j ≥ k + 2 and at least one δ− up layer ≤ 2` in Y

}
,

A�k := {u : |u(xj)| ≤M for j = k − 2, . . . , k + 2} ,
A�w,k :=

{
u ∈ A�k : u has a wasted δ− excursion in [xk−1, xk+1]

}
.

Then we can decompose Â−,kY,3 = A	k ∩ A
�
w,k ∩ A

⊕
k and JY = A	k ∩ A

�
k ∩ A

⊕
k , so that

applying the Markov property as in Lemma 3.2 gives

µ−1,1
ε,(−Lε,Lε)

(
Â−,kY,3

)
≤ sup
u±∈[−M,M ]

E
µε,u−,u+

(xk−2,xk+2)(1A�w,k
)

E
µε,u−,u+

(xk−2,xk+2)(1A�k
)
µ−1,1
ε,(−Lε,Lε)(JY ). (6.80)

It now remains to estimate the ratio of expectations. Recalling (6.78), it suffices to
bound the numerator. For this purpose, we remark that (4.25) yields that for any γ > 0

and for δ > 0 sufficiently small, we have

E
µε,u−,u+

(xk−2,xk+2)(1A�w,k
) ≤ exp

(
− 1

ε
(c0 − γ)

)
(where, as usual, we have redefined γ by a factor of two). Substituting these upper and
lower bounds, (6.80) improves to (6.79), and the proof of Lemma 5.4 is complete.

Proof of Lemma 5.5. We will show (5.8). The proof of (5.9) is similar. We can assume
that the interval Jεy,− is contained in [−Lε, Lε]; if it is not, the proof becomes even
simpler.

Given the bound (5.4) on
∣∣Iε−∣∣, it is clearly sufficient to prove that for any fixed

k ∈ Iε−, we have

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε ∩ {A−3,y : |u(xk) + 1| ≥ 1

2

)
≤ exp

(
− 3c1

4ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
. (6.81)

This in turn will follow trivially from

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε : |u(xk) + 1| ≥ 1

2
, u ≤ 1− δ on [xk−1, xk+1]

)
≤ exp

(
− 3c1

4ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
. (6.82)

In order to establish (6.82), we again introduce a decomposition. This time we define
the sets

A	k := {u : |u(xj)| ≤M for all j ≤ k − 2} ,
A⊕k := {u : |u(xj)| ≤M for all j ≥ k + 2,

at least one δ− up layer ≤ 2` in Jy,ε
}
,

A�k := {u : |u(xj)| ≤M for j = k − 2, k − 1, . . . , k + 2,

u ≤ 1− δ on [xk−1, xk+1]} ,

A�1/2,k :=

{
u ∈ A�k : |u(xk) + 1| ≥ 1

2

}
.
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The set on the left-hand side of (6.82) can be written as A	k ∩A
�
1/2,k ∩A

⊕
k , and we have

the containment

A	k ∩ A
�
k ∩ A

⊕
k ⊆ Jy,ε,

so that applying the Markov property from Lemma 3.2 leads to

µ−1,1
ε,(−Lε,Lε)

(
A	k ∩ A

�
1/2,k ∩ A

⊕
k

)
≤ sup
u±∈[−M,1−δ]

E
µε,u−,u+

(xk−2,xk+2)

(
1A�

1/2,k
(u)
)

E
µε,u−,u+

(xk−2,xk+2)

(
1A�k

(u)
) µ−1,1

ε,(−Lε,Lε)(Jy,ε).

Therefore, to show the desired estimate (6.82), it is sufficient to establish

sup
u±∈[−M,M ]

E
µε,u−,u+

(xk−2,xk+2)

(
1A�

1/2,k
(u)
)

E
µε,u−,u+

(xk−2,xk+2)

(
1A�k

(u)
) ≤ exp

(
− 3c1

4ε

)
. (6.83)

To get a lower bound for the denominator, we will as usual use the large deviation
lower bound from Proposition 3.5. For this, we note that

A�k = B(A, δ)
where A = {u : |u(xj)| ≤M − δ for j = k − 2, . . . , k + 2,

u ≤ 1− 2δ on [xk−1, xk+1]}.

Therefore, the large deviation bound gives that for any γ > 0 and for ε small enough

µ
u−,u+

ε,(xk−2,xk+2)

(
A�k

)
≥ exp

(
−1

ε

(
∆E(A) + γ

))
. (6.84)

To get an upper bound for the numerator of (6.83), on the other hand, we will use
the large deviation upper bound from Proposition 3.4. For this, we observe that the
closed δ/2 ball around A�1/2,k is the set

Ã :=

{
u : |u(xk)| ≤M + δ, for j = k − 2, . . . , k + 2,

u ≤ 1− δ/2 on [xk−1, xk+1], |u(xk) + 1| ≥ 1− δ
2

}
,

so that the large deviation bound gives

µ
u−,u+

ε,(xk−2,xk+2)

(
A�1/2,k

)
≤ exp

(
−1

ε

(
∆E(Ã) + γ

))
. (6.85)

We substitute (6.84) and (6.85) into the ratio on the left-hand side of (6.83) and ob-
serve that there is a cancellation of the second factor in the energy difference (see
equation (3.13)):

µ
u−,u+

ε,(xk−2,xk+2)

(
A�1/2,k

)
µ
u−,u+

ε,(xk−2,xk+2)

(
A�k

) ≤ exp

(
−1

ε

(
inf
u∈Ã

E(u)− inf
u∈A

E(u)− γ
))

.

Hence, the final ingredient that we need is the following energetic fact.
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Lemma 6.7. There exists C < ∞ such that for any M large enough and δ > 0 small
enough, there exists `∗ < ∞ with the following property. Let ` ≥ `∗ and consider the
boundary conditions u± ∈ [−M,M ]. Define the sets A and Ã as

A :={u : |u(x)| ≤M − δ for x = −2`, −`, . . . , 2`,
u ≤ 1− 2δ on [−`, `]},

Ã :=

{
u : |u(x)| ≤M + δ for x = −2`, −`, . . . , 2`,

u ≤ 1− δ/2 on [−`, `], |u(0) + 1| ≥ 1− δ
2

}
.

Then there holds

inf
u∈Ã

E(xk−2,xk+2)(u)− inf
u∈A

E(xk−2,xk+2)(u) ≥ c1 − Cδ,

where

c1 := 2 min

{∫ −1/2

−1

√
2V (s) ds,

∫ −1

−3/2

√
2V (s) ds

}
. (6.86)

This lemma is virtually identical to Lemma 6.6. The principal difference is that here
the excursion from −1 is only of magnitude 1/2. This changes only the leading order
cost (from c0 to c1). We omit the proof of the lemma.

Proof of Lemma 5.6. We will prove only (5.10), the proof of (5.11) being essentially the
same. We will always assume that the left endpoint of the interval Jεy,− is greater than
or equal to −Lε (since otherwise the boundary condition at −Lε trivially implies the
result).

Notice that the set of paths u ∈ Jy,ε that do not hit −1 in Jεy,− is contained in the
following two sets

• The set of paths (a) in A−y,3 (extra δ− layers: recall (5.5)) or (b) without extra layers
but more than 1/2 away from −1 at a gridpoint for some k in Iε−.

• The set A−y,4 of paths in Jy,ε that are within 1/2 of −1 at all gridpoints with k ∈ Iε−
but do not hit −1 in Jεy,−.

Hence, because of the bounds already established in Lemmas 5.4 and 5.5, we will be
done as soon as we show

µ−1,1
ε,(−Lε,Lε)

(
A−y,4

)
≤ λK̄ε µ−1,1

ε,(−Lε,Lε)
(
Jy,ε

)
. (6.87)

We remark for reference below that we may assume M ≥ 3/2 so that |u(xk) − 1| ≤ 1/2

implies |u(xk)| ≤M .

The interval Jεy,− can naturally be divided up into K̄ε subintervals of length `(2Kε+1).
We set

k̄j := kεy,− + j(2Kε + 1) for j = 0, . . . , K̄ε, and Īj := [xk̄j , xk̄j+1
] for j ≤ K̄ε − 1.

We want to use the Markov property and then apply Lemma 5.2 on these subintervals.
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Therefore, as usual, we introduce some sets for a decomposition.

A	 :=
{
u : |u(xk)| ≤M for k ≤ kεy,−

}
,

A⊕ :=
{
u : |u(xk)| ≤M for k ≥ kεy,+, δ− up layer ≤ 2` in Jy,ε

}
,

A�bc :=
{
u : |u(xk̄j )− 1| ≤ 1

2
for j = 0, . . . , K̄ε

}
,

A�j :=
{
u : |u(xk)− 1| ≤ 1

2
for xk ∈ Īj

}
,

A�−1,j :=
{
u ∈ A�j : no hitting of −1 in Īj

}
.

We now write A−y,4 as the intersection

A−y,4 = A	 ∩ A⊕ ∩ A�bc ∩
( K̄ε−1⋂

j=0

A�−1,j

)
, (6.88)

and apply the Markov property (Lemma 3.2) K̄ε times to deduce

µ−1,1
ε,(−Lε,Lε)

(
A	 ∩ A⊕ ∩ A�bc ∩

( K̄ε−1⋂
j=0

A�−1,j

))

= E
µε,−1,1
(−Lε,Lε)

(
1A	(u)1A⊕(u)1A�bc

(u)

K̄ε−1∏
j=0

E
µε,u
(xk̄j ,xk̄j+1

)

(
1A�−1,j

(u)
) )
. (6.89)

According to Lemma 5.2, we have

E
µε,u
(xk̄j ,xk̄j+1

)

(
1A�−1,j

(u)
)
≤ λEµε,u(xk̄j ,xk̄j+1

)

(
1A�j

(u)
)
,

uniformly over all paths u that satisfy u(xk̄j ),u(xk̄j+1
) ∈ [−3/2,−1/2]. We insert this

bound into (6.89) and then use the Markov property once more to recover

µ−1,1
ε,(−Lε,Lε)

(
A	 ∩ A⊕ ∩ A�bc ∩

( K̄ε−1⋂
j=0

A�−1,j

))

≤ λK̄ε Eµε,−1,1
(−Lε,Lε)

(
1A	(u)1A⊕(u)1A�bc

(u)

K̄ε−1∏
j=0

E
µε,u
(xk̄j ,xk̄j+1

)

(
1A�j

(u)
) )

= λK̄εµ−1,1
ε,(−Lε,Lε)

(
A	 ∩ A⊕ ∩ A�bc ∩

( K̄ε−1⋂
j=0

A�j
))
. (6.90)

Since

A	 ∩ A⊕ ∩ A�bc ∩
( K̄ε−1⋂

j=0

A�j
)
⊆ Jy,ε,

the combination of (6.88) and (6.90) completes the proof of (6.87).
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