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1 Introduction and Results

Nearly fifty years ago, R. Dobrushin proved in his thesis [2] an important central limit
theorem (CLT) for Markov chains in discrete time that are not necessarily homogeneous in
time. Previously, Markov, Bernstein, Sapagov, and Linnik, among others, had considered
the central limit question under various sufficient conditions. Roughly, the progression of
results relaxed the state space structure from 2 states to an arbitrary set of states, and also
the level of asymptotic degeneracy allowed for the transition probabilities of the chain.

After Dobrushin’s work, some refinements and extensions of his CLT, some of which
under more stringent assumptions, were proved by Statuljavicius [16] and Sarymsakov [13].
See also Hanen [6] in this regard. A corresponding invariance principle was also proved by
Gudinas [4]. More general references on non-homogeneous Markov processes can be found
in Isaacson and Madsen [7], Iosifescu [8], Iosifescu and Theodorescu [9], and Winkler [18].

We now define what is meant by “degeneracy.” Although there are many measures of
“degeneracy,” the measure which turns out to be most useful to work with is that in terms of
the contraction coefficient. This coefficient has appeared in early results concerning Markov
chains, however, in his thesis, Dobrushin popularized its use, and developed many of its
important properties. [See Seneta [14] for some history.]

Let (X,B(X)) be a Borel space, and let π = π(x, dy) be a Markov transition probability
on (X,B(X)). Define the contraction coefficient δ(π) of π as

δ(π) = sup
x1,x2∈X

‖π(x1, ·)− π(x2, ·)‖Var

= sup
x1,x2∈X

A∈B(X)

|π(x1, A)− π(x2, A)|

=
1

2
sup

x1,x2∈X

‖f‖L∞≤1

|

∫
f(y)[π(x1, dy)− π(x2, dy)]|.

Also, define the related coefficient α(π) = 1− δ(π).
Clearly, 0 ≤ δ(π) ≤ 1, and δ(π) = 0 if and only if π(x, dy) does not depend on x. It

makes sense to call π “non-degenerate” if 0 ≤ δ(π) < 1. We use the standard convention
and denote by µπ and πu the transformations induced by π on countably additive measures
and bounded measurable functions respectively,

(µπ)(A) =

∫
µ(dx)π(x,A) and (πu)(x) =

∫
π(x, dy)u(y).

One can see that δ(π) has the following properties.

δ(π) = sup
x1,x2∈X

u∈U

|(πu)(x1)− (πu)(x2)| (1.1)
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with U = {u : supy1,y2 |u(y1) − u(y2)| ≤ 1}. It is the operator norm of π with respect to
the Banach (semi-) norm Osc(u) = supx1,x2

|u(x1) − u(x2)|, namely the oscillation of u. In
particular, for any transition probabilities π1, π2 we have

δ(π1 π2) ≤ δ(π1) δ(π2) (1.2)

where π1π2 is the two-step transition probability π1π2(x, ·) =
∫
π1(x, dy)π2(y, ·).

By a non-homogeneous Markov chain of length n on state space (X,B(X)) corresponding
to transition operators {πi,i+1 = πi,i+1(x, dy) : 1 ≤ i ≤ n − 1} we mean the Markov process
P on the product space (Xn, B(Xn)),

P [Xi+1 ∈ A|Xi = x] = πi,i+1(x,A),

where {Xi : 1 ≤ i ≤ n} are the canonical projections. In particular, under the initial
distribution X1 ∼ µ, the distribution at time k ≥ 1 is µπ1,2π2,3 · · · πk−1,k. For i < j we will
define

πi,j = πi,i+1πi+1,i+2 · · · πj−1,j .

We denote by E[Z] and V (Z) the expectation and variance of the random variable Z with
respect to P .

Dobrushin’s theorem concerns the fluctuations of an array of non-homogeneous Markov
chains. For each n ≥ 1, let {X

(n)
i : 1 ≤ i ≤ n} be n observations of a non-homogeneous

Markov chain on X with transition matrices {π
(n)
i,i+1 = π

(n)
i,i+1(x, dy) : 1 ≤ i ≤ n − 1} and

initial distribution µ(n). Let also

αn = min
1≤i≤n−1

α
(
π

(n)
i,i+1

)
.

In addition, let {f
(n)
i : 1 ≤ i ≤ n} be real valued functions on X. Define, for n ≥ 1, the sum

Sn =
n∑

i=1

f
(n)
i (X

(n)
i ).

Theorem 1.1 Suppose that for some finite constants Cn,

sup
1≤i≤n

sup
x∈X

|f
(n)
i (x)| ≤ Cn.

Then, if

lim
n→∞

C2
nα
−3
n

[ n∑

i=1

V
(
f

(n)
i (X

(n)
i )

)]−1

= 0, (1.3)

we have the standard Normal convergence

Sn − E[Sn]√
V (Sn)

⇒ N(0, 1). (1.4)

Also, there is an example where the result is not true if condition (1.3) is not met.
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In [2], Dobrushin also states the direct corollary which simplifies some of the assumptions.

Corollary 1.1 When the functions are uniformly bounded, i.e. supnCn = C < ∞ and the

variances are bounded below, i.e. V (f
(n)
i (X

(n)
i )) ≥ c > 0, for all 1 ≤ i ≤ n and n ≥ 1, then

we have the convergence (1.4) provided

lim
n→∞

n1/3αn =∞.

We remark that in [2] (e.g. Theorems 3, 8) there are also results where the bounded-

ness condition on f
(n)
i is replaced by integrability conditions. As these results follow from

truncation methods and Theorem 1.1 for bounded variables, we only consider Dobrushin’s
theorem in the bounded case.

Also, for the ease of the reader, and to be complete, we will discuss in the next section
an example, given in [2] and due to Bernstein and Dobrushin, of how the convergence (1.4)
may fail when the condition (1.3) is not satisfied.

We now consider Dobrushin’s methods. The techniques used in [2] to prove the above
results fall under the general heading of the “blocking method.” The condition (1.3) ensures
that well-separated blocks of observations may be approximated by independent versions
with small error. Indeed, in many remarkable steps, Dobrushin exploits the Markov prop-
erty and several contraction coefficient properties, which he himself derives, to deduce error
bounds sufficient to apply CLT’s for independent variables. However, in [2], it is difficult to
see, even at the technical level, why condition (1.3) is natural.

The aim of this note is to provide a different, shorter proof of Theorem 1.1 which ex-
plains more why condition (1.3) appears in the result. The methods are through martingale
approximations and martingale CLT’s. These methods go back at least to Gordin [3] in
the context of homogeneous processes, and have been used by others in mostly “stationary”
situations (e.g. Kifer [10], Kipnis and Varadhan [11], Pinsky [12], and Wu and Woodroofe
[19]). The approximation with respect to the non-homogeneous setting of Theorem 1.1 makes
use of three ingredients: (1) negligibility estimates for individual components, (2) a law of
large numbers (LLN) for conditional variances, and (3) lower bounds for the variance V (Sn).
Negligibility bounds and a LLN are well known requirements for martingale CLT’s (cf. Hall-
Heyde [5, ch. 3]), and in fact, as will be seen, the sufficiency of condition (1.3) is transparent
in the proofs of these two components (Lemma 3.2, and Lemmas 3.3 and 3.4). The variance
lower bounds which we will use (Proposition 3.2) were as well derived by Dobrushin in his
proof. However, using some martingale and spectral tools, we give a more direct argument
for a better estimate.

We note also, with this martingale approximation, that an invariance principle for the
partial sums holds through standard martingale propositions, Hall-Heyde [5], among other
results. In fact, from the martingale invariance principle, it should be possible to derive
Gudynas’s theorems [4] although this is not done here.

We now explain the structure of the article. In section 2, we give the Bernstein-Dobrushin
example of a Markov chain with anomalous behavior. In section 3, we state a martingale
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CLT and prove Theorem 1.1 assuming a lower bound on the variance V (Sn). Last, in section
4, we prove this variance estimate.

2 Bernstein-Dobrushin Example

Here, we summarize the example in Dobrushin’s thesis, attributed to Bernstein, which shows
that condition (1.3) is sharp.

Example 2.1 Let X = {1, 2}, and consider the 2× 2 transition matrices on X,

Q(p) =

(
1− p p
p 1− p

)

for 0 ≤ p ≤ 1. The contraction coefficient δ(Q(p)) of Q(p) is |1− 2p|. Note that δ(Q(p)) =
δ(Q(1 − p)). The invariant measures for all the Q(p) are the same µ(1) = µ(2) = 1

2
. We

will be looking at Q(p) for p close to 0 or 1 and the special case of p = 1
2
. However, when

p is small, the homogeneous chains behave very differently under Q(p) and Q(1− p). More
specifically, when p is small there are very few switches between the two states whereas when
1− p is small it switches most of the time. In fact, this behavior can be made more precise
(see Dobrushin [1], or from direct computation). Let Tn =

∑n
i=1 1{1}(Xi) count the number

of visits to state 1 in the first n steps.

Case A. Consider the homogeneous chain under Q(p) with p = 1
n
and initial distribution

µ(1) = µ(2) = 1
2
. Then,

Tn
n
⇒ G and lim

n→∞
n−2 V (Tn) = VA (2.1)

where 0 < VA <∞ and G is a non-degenerate distribution supported on [0, 1].

Case B. Consider the homogeneous chain run under Q(p) with p = 1 − 1
n
and initial

distribution µ(1) = µ(2) = 1
2
. Then,

Tn −
n

2
⇒ F and lim

n→∞
V (Tn) = VB (2.2)

where 0 < VB <∞ and F is a non-degenerate distribution.

Let a sequence αn → 0 with αn ≥ n−
1
3 be given . To construct the anomalous Markov

chain, it will be helpful to split the time horizon [1, 2, . . . , n] into roughly nαn blocks of
size α−1

n . We interpose a Q( 1
2
) between any two blocks that has the effect of making the

blocks independent of each other. More precisely let k
(n)
i = i[α−1

n ] for 1 ≤ i ≤ mn where

mn = [n/[α−1
n ]]. Also, define k

(n)
0 = 0, and k

(n)
mn+1 = n.
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Define now, for 1 ≤ i ≤ n,

π
(n)
i,i+1 =





Q(αn) for i = 1, 2, . . . , k
(n)
1 − 1

Q(1
2
) for i = k

(n)
1 , k

(n)
2 , . . . , k

(n)
mn

Q(1− αn) for all other i.

Consider the non-homogeneous chain with respect to {π
(n)
i,i+1 : 1 ≤ i ≤ n − 1} starting

from equilibrium µ(n)(0) = µ(n)(1) = 1
2
. ¿From the definition of the chain, one observes, as

Q(1
2
) does not distinguish between states, that the process in time horizons {(k

(n)
i +1, k

(n)
i+1) :

0 ≤ i ≤ mn} are mutually independent. For the first time segment 1 to k
(n)
1 , the chain is in

regime A, while for the other segments, the chain is in case B.
Once again, let us concentrate on the number of visits to state 1. Denote by T (n) =∑n

i=1 1{1}(X
(n)
i ) and T (n)(k, l) =

∑l
i=k 1{1}(X

(n)
i ) the counts in the first n steps and in steps

k to l respectively. It follows from the discussion of independence above that

T (n) =
mn∑

i=0

T (n)(k
(n)
i + 1, k

(n)
i+1)

is the sum of independent sub-counts where, additionally, the sub-counts for 1 ≤ i ≤ mn− 1
are identically distributed, the last sub-count perhaps being shorter. Also, as the initial
distribution is invariant, we have V (1{1}(X

(n)
i )) = 1/4 for all i and n. Then, in the notation

of Corollary 1.1, C = 1 and c = 1/4.
¿From (2.1), we have that

V (T (n)(1, k
(n)
1 )) ∼ α−2

n VA as n ↑ ∞.

Also, from (2.2) and independence of mn sub-counts, we have that

V (T (n)(k
(n)
1 + 1, n)) ∼ nαnVB as n ↑ ∞.

¿From these calculations, we see if n1/3αn → ∞, then α−2
n << nαn, and so the major

contribution to T (n) is from T (n)(k
(n)
1 +1, n). However, since this last count is (virtually) the

sum of mn i.i.d. sub-counts, we have that T (n), properly normalized, converges to N(0, 1),
as predicted by Dobrushin’s Theorem 1.1.

On the other hand, if αn = n−1/3, we have α−2
n = nαn, and count T (n)(1, k

(n)
1 ), in-

dependent of T (n)(k
(n)
1 , n), also contributes to the sum T (n). After centering and scaling,

then, T (n) approaches the convolution of a non-trivial non-normal distribution and a normal
distribution, and therefore is not Gaussian.

3 Proof of Theorem 1.1

The CLT for martingale differences is a standard tool. We quote the following form of the
result implied by Corollary 3.1 in Hall and Heyde [5].
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Proposition 3.1 For each n ≥ 1, let {(W
(n)
i ,G

(n)
i ) : 0 ≤ i ≤ n} be a martingale relative to

the nested family G
(n)
i ⊂ G

(n)
i+1 with W

(n)
0 = 0. Let ξ

(n)
i = W

(n)
i −W

(n)
i−1 be their differences.

Suppose that

max1≤i≤n ‖ξ
(n)
i ‖L∞ → 0 and∑n

i=1 E[(ξ
(n)
i )2|G

(n)
i−1] → 1 in L2.

Then,
W (n)

n ⇒ N(0, 1).

The first and second limit conditions are the so called “negligibility” assumption on the
sequence, and LLN for conditional variances mentioned in the introduction.

Consider now the non-homogeneous setting of Theorem 1.1. To simplify notation, we will
assume throughout that the functions {f

(n)
i } are mean-zero, E[f

(n)
i (X

(n)
i )] = 0 for 1 ≤ i ≤ n

and n ≥ 1. Define

Z
(n)
k =

n∑

i=k

E[f
(n)
i (X

(n)
i )|X

(n)
k ]

so that

Z
(n)
k =

{
f

(n)
k (X

(n)
k ) +

∑n
i=k+1 E[f

(n)
i (X

(n)
i )|X

(n)
k ] for 1 ≤ k ≤ n− 1

f
(n)
n (X

(n)
n ) for k = n.

(3.1)

Remark 3.1 Before going further, we remark that the sequence {Z
(n)
k } can be thought of

as a type of “Poisson-resolvent” sequence often seen in martingale approximations Namely,
when the array {X

(n)
i } is formed from the sequence {Xi}, f

(n)
i = f for all i and n, and

the chain is homogeneous, Pn = P for all n, then indeed Z
(n)
k reduces to Z

(n)
k = f(Xk) +∑n−k

i=1 (P
if)(Xk) which approximates the Poisson-resolvent solution

∑∞
i=0(P

if)(Xk) = [(I −
P )−1f ](Xk) usually used to prove the CLT in this case (cf. p. 145-6 Varadhan [17]).

Returning to the full non-homogeneous setting of Theorem 1.1, by rearranging terms in
(3.1), we obtain for 1 ≤ k ≤ n− 1 that

f
(n)
k (X

(n)
k ) = Z

(n)
k − E[Z

(n)
k+1|X

(n)
k ] (3.2)

which for 2 ≤ k ≤ n−1 further equals [Z
(n)
k −E[Z

(n)
k |X

(n)
k−1]]+ [E[Z

(n)
k |X

(n)
k−1]−E[Z

(n)
k+1|X

(n)
k ]].

Then, we have the decomposition,

Sn =
n∑

k=1

f
(n)
k (X

(n)
k )

=
n∑

k=2

[Z
(n)
k − E[Z

(n)
k |X

(n)
k−1]] + Z

(n)
1 (3.3)
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and so in particular V (Sn) =
∑n

k=2 V (Z
(n)
k −E[Z

(n)
k |X

(n)
k−1])+V (Z

(n)
1 ). Let us now define the

scaled differences

ξ
(n)
k =

1√
V (Sn)

[
Z

(n)
k − E[Z

(n)
k |X

(n)
k−1]

]
(3.4)

and the martingale M
(n)
k =

∑k
l=2 ξ

(n)
l with respect to F

(n)
k = σ{X

(n)
l : 1 ≤ l ≤ k} for

2 ≤ k ≤ n. The plan to obtain Theorem 1.1 will now be to approximate Sn/
√
V (Sn) by

M
(n)
n and use Proposition 3.1. Condition (1.3) will be a sufficent condition for “negligibility”

(Lemma 3.2) and “LLN” (Lemmas 3.3 and 3.4) with regard to Proposition 3.1.

Lemma 3.1 We have, for 1 ≤ i < j ≤ n,

∥∥πi,jf (n)
j

∥∥
L∞

≤ 2Cn(1− αn)
j−i and Osc

(
πi,j(f

(n)
j )2

)
≤ 2C2

n(1− αn)
j−i

and, for 1 ≤ l < i < j ≤ n,

Osc
(
πl,i(f

(n)
i πi,jf

(n)
j )

)
≤ 6C2

n (1− αn)
i−l(1− αn)

j−i.

Proof. As ‖f
(n)
j ‖L∞ ≤ Cn its oscillation Osc(f

(n)
j ) ≤ 2Cn. From definition of δ(·) (cf.

(1.1)) and (1.2),

Osc(πi,jf
(n)
j ) ≤ Osc(f

(n)
j ) δ(πi,j) ≤ 2Cn(1− αn)

j−i.

Because E[(πi,jf
(n)
j )(X

(n)
i )] = E[f

(n)
j (X

(n)
j )] = 0, the first bound follows as

‖πi,jf
(n)
j ‖L∞ ≤ Osc(πi,jf

(n)
j ) ≤ 2Cn(1− αn)

j−i.

The second bound is analogous. For the third bound, write

Osc
(
πl,i(f

(n)
i πi,jf

(n)
j )

)
≤ (1− αn)

i−l Osc
(
f

(n)
i πi,jf

(n)
j

)

≤ (1− αn)
i−l

[
Osc(f

(n)
i ) ‖πi,jf

(n)
j ‖L∞

+‖f
(n)
i ‖L∞ Osc(πi,jf

(n)
j )

]

≤ 6C2
n (1− αn)

i−l(1− αn)
j−i.

¤

We now state a lower bound for the variance proved in the next section. For comparison,
we remark that in [2] the bound V (Sn) ≥ (αn/8)

∑n
i=1 V (f

(n)
i (X

(n)
i )) is given (see also section

1.2.2 [9]).
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Proposition 3.2 For n ≥ 1,

V (Sn) ≥
αn
4

n∑

i=1

V
(
f

(n)
i (X

(n)
i )

)
. (3.5)

The next estimate shows that the asymptotics of Sn/
√
V (Sn) depend only on the mar-

tingale approximant M
(n)
n , and that the differences ξ

(n)
k are negligible.

Lemma 3.2 Under condition (1.3), we have that

lim
n→∞

sup
1≤k≤n

‖Z
(n)
k ‖L∞√
V (Sn)

= 0.

Proof. By Lemma 3.1,

‖Z
(n)
k ‖L∞ ≤

n∑

i=k

‖E[f
(n)
i (X

(n)
i )|X

(n)
k ]‖L∞ ≤ 2Cn

n∑

i=k

(1− αn)
i−k ≤ 2Cnα

−1
n .

Then, by Proposition 3.2,

sup
1≤k≤n

‖Z
(n)
k ‖L∞√
V (Sn)

≤ 4Cn

(
α3
n

n∑

i=1

V (f
(n)
i (X

(n)
i ))

)−1/2

which in turn by (1.3) is o(1). ¤

The next two lemmas help prove the LLN part of Proposition 3.1 for array {M
(n)
k }. By

the oscillation of a random variable η we mean Osc(η) = supω,ω′ |η(ω)− η(ω′)|.

Lemma 3.3 Let {Y
(n)
l : 1 ≤ l ≤ n} and {G

(n)
l : 1 ≤ l ≤ n}, for n ≥ 1, be respectively an

array of non-negative variables and σ-fields such that σ{Y
(n)
1 , . . . , Y

(n)
l } ⊂ G

(n)
l . Suppose that

lim
n→∞

E
[ n∑

l=1

Y
(n)
l

]
= 1 and sup

1≤i≤n
‖Y

(n)
i ‖L∞ ≤ εn

where limn→∞ εn = 0. In addition, assume

lim
n→∞

sup
1≤l≤n−1

Osc

(
E
[ n∑

j=l+1

Y
(n)
j |G

(n)
l

])
= 0.

Then,

lim
n→∞

n∑

l=1

Y
(n)
l = 1 in L2.
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Proof. Write

E
[
(

n∑

l=1

Y
(n)
l )2

]
=

n∑

l=1

E
[
(Y

(n)
l )2

]
+ 2

n−1∑

l=1

E
[
Y

(n)
l (

n∑

j=l+1

Y
(n)
j )

]
.

The first sum on the right-hand side is bounded as follows. ¿From non-negativity,

n∑

l=1

E
[
(Y

(n)
l )2

]
≤ εn

n∑

l=1

E
[
Y

(n)
l

]
= εn · (1 + o(1)) → 0 as n ↑ ∞.

For the second sum, write

n−1∑

l=1

E
[
Y

(n)
l

( n∑

j=l+1

Y
(n)
j

)]
=

n−1∑

l=1

E
[
Y

(n)
l E

[ n∑

j=l+1

Y
(n)
j |G

(n)
l

]]
.

¿From the oscillation assumption, we have that

sup
1≤l≤n−1

sup
ω

∣∣E
[ n∑

j=l+1

Y
(n)
j |G

(n)
l

]
(ω)− E

[ n∑

j=l+1

Y
(n)
j

]∣∣ = o(1).

Therefore,

2
n−1∑

l=1

E
[
Y

(n)
l

( n∑

j=l+1

Y
(n)
j

)]
= 2

n−1∑

l=1

E
[
Y

(n)
l ]E[

n∑

j=l+1

Y
(n)
j

]
+ o(1) ·

n−1∑

l=1

E
[
Y

(n)
l

]

=
( n∑

l=1

E
[
Y

(n)
l

])2
−

n∑

l=1

E
[
(Y

(n)
l )2

]
+ o(1)

= 1 + o(1)

finishing the proof. ¤

To apply later this result to v
(n)
j = E[(ξ

(n)
j )2|F

(n)
j−1] measureable with respect to G

(n)
j =

F
(n)
j−1 for 2 ≤ j ≤ n we will need the following oscillation estimate.

Lemma 3.4 Under condition (1.3), we have

sup
2≤l≤n−1

Osc

(
E
[ n∑

j=l+1

v
(n)
j |F

(n)
l−1

]
(ω)

)
= o(1).
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Proof. From the martingale property, E[ξ
(n)
r ξ

(n)
s |F

(n)
u ] = 0 for r > s > u, (3.4) and (3.2),

we have

E
[ n∑

j=l+1

v
(n)
j |F

(n)
l−1

]
= E

[ n∑

j=l+1

(
ξ

(n)
j

)2
|F

(n)
l−1

]

= E
[ ( n∑

j=l+1

ξ
(n)
j

)2

|X
(n)
l−1

]

= V (Sn)
−1E

[ ( n∑

j=l+1

f
(n)
j (X

(n)
j )− E

[
Z

(n)
l+1|X

(n)
l

])2
|X

(n)
l−1

]

= V (Sn)
−1E

[ ( n∑

j=l+1

f
(n)
j (X

(n)
j )

)2
|X

(n)
l−1

]

−V (Sn)
−1E

[
E
[
Z

(n)
l+1|X

(n)
l

]2
|X

(n)
l−1

]
. (3.6)

By Lemma 3.2, the last term in (3.6) is bounded sup2≤l≤n−1 V (Sn)
−1‖Z

(n)
l+1‖

2
L∞ = o(1),

and so its oscillation is also uniformly o(1).
To estimate oscillation of the first term on right-side of (3.6), we write

Osc

(
V (Sn)

−1E
[( n∑

j=l+1

f
(n)
j (X

(n)
j )

)2
|X

(n)
l−1

])
(3.7)

≤ V (Sn)
−1

∑

l+1≤j,m≤n

Osc

(
E
[
f

(n)
j (X

(n)
j )f (n)

m (X(n)
m )|X

(n)
l−1

])
.

But, for l + 1 ≤ j ≤ m ≤ n, we have from Lemma 3.1 that

Osc

(
E
[
f

(n)
j (X

(n)
j )f (n)

m (X(n)
m )|X

(n)
l−1

])
≤ 6C2

n (1− αn)
j−l+1(1− αn)

m−j.

Then, (3.7) is bounded, uniformly in l, on order V (Sn)
−1C2

nα
−2
n which from Proposition 3.2

and (1.3) is o(1). ¤

Proof of Theorem 1.1. From Lemma 3.2, we need only show that M
(n)
n /

√
V (Sn) ⇒

N(0, 1). This will follow from martingale convergence (Proposition 3.1) as soon as we show

(1) sup2≤k≤n ‖ξ
(n)
k ‖L∞ → 0 and (2)

∑n
k=2 E[(ξ

(n)
k )2|F

(n)
k−1]→ 1. However, (1) follows from the

negligibility estimate Lemma 3.2, and (2) from LLN Lemmas 3.3 and 3.4 since “negligibility”

(1) holds and
∑n

k=2 E[(ξ
(n)
k )2] = 1+o(1) (from variance decomposition after (3.3) and Lemma

3.2). ¤
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4 Proof of Variance Lower Bound

Let λ be a probability measure on X×X with marginals α and β respectively. Let π(x1, dx2)
and π̂(x2, dx1) be the corresponding transition probabilities in the two directions so that
απ = β and βπ̂ = α.

Lemma 4.1 Let f(x1) and g(x2) be square integrable with respect to α and β respectively.
If ∫

f(x1)α(dx1) =

∫
g(x2)β(dx2) = 0

then, ∣∣∣∣
∫

f(x1)g(x2)λ(dx1, dx2)

∣∣∣∣ ≤
√
δ(π) ‖f‖L2(α)‖g‖L2(β).

Proof. Let us construct a measure on X×X×X by starting with λ on X×X and using
reversed π̂(x2, dx3) to go from x2 to x3. The transition probability from x1 to x3 defined by

Q(x1, A) =

∫
π(x1, dx2)π̂(x2, A)

satisfies δ(Q) ≤ δ(π)δ(π̂) ≤ δ(π). Moreover αQ = α and the operator Q is self-adjoint and
bounded with norm 1 on L2(α). Then, if f is a bounded function with

∫
f(x)α(dx) = 0

(and so Eα[Q
nf ] = 0), we have for n ≥ 1,

‖Qnf‖L2(α) ≤ ‖Q
nf‖L∞ ≤ (δ(Q))nOsc(f). (4.1)

Hence, as bounded functions are dense, on the subspace of functions, M = {f ∈ L2(α) :∫
f(x)α(dx) = 0}, the top of the spectrum of Q is less than δ(Q) and so ‖Q‖L2(α,M) ≤ δ(Q).

Indeed, suppose the spectral radius of Q on M is larger than δ(Q) + ε for ε > 0, and f ∈M
is a non-trivial bounded function whose spectral decomposition is with respect to spectral
values larger than δ(Q) + ε. Then, ‖Qnf‖L2(α) ≥ ‖f‖L2(α)(δ(Q) + ε)n which contradicts the
bound (4.1) when n ↑ ∞. [cf. Thm. 2.10 [15] for a proof in discrete space settings.]

Then,

‖π̂f‖2
L2(β) = 〈ππ̂f, f〉L2(α) = 〈Qf, f〉L2(α) ≤ ‖Q‖L2(α,M)‖f‖

2
L2(α) ≤ δ(Q)‖f‖2

L2(α).

Finally,

|

∫
f(x1)g(x2)λ(dx1, dx2)| = |〈π̂f, g〉L2(β)| ≤

√
δ(π) ‖f‖L2(α)‖g‖L2(β).

¤
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Lemma 4.2 Let f(x1) and g(x2) be square integrable with respect to α and β respectively.
Then,

E
[(
f(x1)− g(x2)

)2]
≥ (1− δ(π)) V

(
f(x1)

)

as well as
E
[(
f(x1)− g(x2)

)2]
≥ (1− δ(π)) V

(
g(x2)

)
.

Proof. To get lower bounds, we can assume without loss of generality that f and g have
mean 0 with respect to α and β respectively. Then by Lemma 4.1

E
[(
f(x1)− g(x2)

)2]
= E

[
[f(x1)]

2
]
+ E

[
[g(x2)]

2
]
− 2E

[
f(x1)g(x2)

]

≥ E
[
[f(x1)]

2
]
+ E

[
[g(x2)]

2
]
− 2

√
δ(π) ‖f‖L2(α)‖g‖L2(β)

≥ (1− δ(π))‖f‖2
L2(α).

The proof of the second half is identical. ¤

Proof of Proposition 3.2. Applying Lemma 4.2 to the Markov pairs {(X
(n)
k , X

(n)
k+1) : 1 ≤

k ≤ n− 1} with f(X
(n)
k ) = E[Z

(n)
k+1|X

(n)
k ] and g(X

(n)
k+1) = Z

(n)
k+1, we get

E
[(
Z

(n)
k+1 − E[Z

(n)
k+1|X

(n)
k ]

)2]
≥ αnE

[(
Z

(n)
k+1

)2]
.

On the other hand from (3.2), for 1 ≤ k ≤ n− 1, we have

V (f
(n)
k (X

(n)
k )) ≤ E

[(
f

(n)
k (X

(n)
k )

)2]

≤ 2E
[(
Z

(n)
k

)2]
+ 2E

[(
E
[
Z

(n)
k+1|X

(n)
k

])2]

≤ 2E
[(
Z

(n)
k

)2]
+ 2E

[(
Z

(n)
k+1

)2]
.

Summing over k, and noting f
(n)
n (X

(n)
n ) = Z

(n)
n and variance decomposition after (3.3),

n∑

k=1

V (f
(n)
k (X

(n)
k )) ≤ 4

n∑

k=1

E
[(
Z

(n)
k

)2]

≤
4

αn

[ n−1∑

k=1

E
[(
Z

(n)
k+1 − E[Z

(n)
k+1|X

(n)
k ]

)2]
+ E[(Z

(n)
1 )2]

]
=

4

αn
V (Sn).

¤
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