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Abstract

Typically, a stochastic model relates stochastic “inputs” and, perhaps, controls to
stochastic “outputs”. A general version of the Yamada-Watanabe and Engelbert the-
orems relating existence and uniqueness of weak and strong solutions of stochastic
equations is given in this context. A notion of compatibility between inputs and out-
puts is critical in relating the general result to its classical forebears. The usual
formulation of stochastic differential equations driven by semimartingales does not
require compatibility, so a notion of partial compatibility is introduced which does
hold. Since compatibility implies partial compatibility, classical strong uniqueness
results imply strong uniqueness for compatible solutions. Weak existence arguments
typically give existence of compatible solutions (not just partially compatible solu-
tions), and as in the original Yamada-Watanabe theorem, existence of strong solutions
follows.
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1 Introduction and main theorem

This paper is essentially a rewrite of Kurtz (2007) following a realization that the
general, abstract theorem in that paper was neither as abstract as it could be nor as
general as it should be. The reader familiar with the earlier paper may not be pleased
by the greater abstraction, but an example indicating the value of the greater generality
will be given in Section 2. To simplify matters for the reader, proofs of several lemmas
that originally appeared in the earlier paper are included, but the reader should refer
to the earlier paper for more examples and additional references.

As with the results of the earlier paper, the main theorem given here generalizes
the famous theorem of Yamada and Watanabe (1971) giving the relationship between
weak and strong solutions of an Itô equation for a diffusion and their existence and
uniqueness. A second reason for this rewrite is that the main observation ensuring that
the main theorem gives the Yamada-Watanabe result is buried in a proof in the earlier
paper. Here it is stated separately as Lemma 2.11.

The motivation of the original Yamada-Watanabe result arises naturally in the pro-
cess of proving existence of solutions of a stochastic differential equation or, in the
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Weak and strong solutions

context of the present paper, existence of a stochastic model determined by constraints
that may but need not be equations. The basic existence argument starts by identifying
a sequence of approximations to the equation (or model) for which existence of solu-
tions is simple to prove, proving relative compactness of the sequence of approximating
solutions, and then verifying that any limit point is a solution of the original equation
(model). The issue addressed by the Yamada-Watanabe theorem is that the kind of com-
pactness verified is frequently weak or distributional compactness. Consequently, what
can be claimed about the limit is that there exists a probability space on which pro-
cesses are defined that satisfy the original equation. Such solutions are called weak
solutions, and their existence leaves open the question of whether there exists a solu-
tion on every probability space that supports the stochastic inputs of the model, that
is, the Brownian motion and initial position in the original Itô equation context. The
assertion of the Yamada-Watanabe theorem and Theorem 1.5 below is that if a strong
enough form of uniqueness can be verified, then existence of a weak solution implies
existence on every such probability space.

A stochastic model describes the relationship between stochastic inputs and stochas-
tic outputs. For example, in the case of the Itô equation,

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds,

X(0) andW are the stochastic inputs and the solutionX gives the outputs. Typically, the
distribution of the inputs is specified (for example, the initial distribution is given and
X(0) is assumed independent of the Brownian motion W ), and the model is determined
by a set of constraints (possibly, but not necessarily, equations) that relate the inputs to
the outputs. In the general setting here, the inputs will be given by a random variable
Y with values in a complete, separable metric space S2 and the outputs X will take
values in a complete, separable metric space S1. For the Itô equation, we could take
S2 = Rd × CRd [0,∞) and S1 = CRd [0,∞).

Let P(S1×S2) be the space of probability measures on S1×S2, and for random vari-
ables (X,Y ) in S1 × S2, let µX,Y ∈ P(S1 × S2) denote their joint distribution. Our model
is determined by specifying a distribution ν for the inputs Y and a set of constraints Γ

relating X and Y . Let Pν(S1 × S2) be the set of µ ∈ P(S1 × S2) such that µ(S1 × ·) = ν,
and let SΓ,ν be the subset of Pν(S1 × S2) such that µX,Y ∈ SΓ,ν implies (X,Y ) meets the
constraints in Γ. Of course, since we are not placing any restriction on the nature of
the constraints, SΓ,ν could be any subset of Pν(S1 × S2).

For a second example, consider a typical stochastic optimization problem.

Example 1.1. Suppose Γ0 is a collection of constraints of the form

E[ψ(X,Y )] <∞ and E[fi(X,Y )] = 0, i ∈ I,

where ψ ≥ 0 and |fi(x, y)| ≤ ψ.
Let 0 ≤ c(x, y) ≤ ψ(x, y), and let Γ be the set of constraints obtained from Γ0 by

adding the requirement∫
c(x, y)µ(dx× dy) = inf

µ′∈SΓ0,ν

∫
c(x, y)µ′(dx× dy).

It is natural to ask if the infimum is achieved with X of the form X = F (Y ). 2

In the terminology of Engelbert (1991) and Jacod (1980), µ ∈ SΓ,ν is a joint solution
measure for our model (Γ, ν). A weak solution (or simply a solution) for (Γ, ν) is any pair
of random variables (X,Y ) defined on any probability space such that Y has distribution
ν and (X,Y ) meets the constraints in Γ, that is, µX,Y ∈ SΓ,ν . We have the following
definition for a strong solution.
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Weak and strong solutions

Definition 1.2. A solution (X,Y ) for (Γ, ν) is a strong solution if there exists a Borel
measurable function F : S2 → S1 such that X = F (Y ) a.s.

If a strong solution exists on some probability space, then a strong solution exists
for any Y with distribution ν. It is important to note that being a strong solution is a
distributional property, that is, the joint distribution of (X,Y ) is determined by ν and
F . The following lemma helps to clarify the difference between a strong solution and a
weak solution that does not correspond to a strong solution.

Lemma 1.3. Let µ ∈ Pν(S1 × S2).

a) There exists a transition function η such that µ(dx× dy) = η(y, dx)ν(dy).

b) There exists a Borel measurable G : S2× [0, 1]→ S1 such that if Y has distribution
ν and ξ is independent of Y and uniformly distributed on [0, 1], (G(Y, ξ), Y ) has
distribution µ.

c) µ corresponds to a strong solution if and only if η(y, dx) = δF (y)(dx).

Proof. Statement (a) is a standard result on the disintegration of measures. A par-
ticularly nice construction that gives the desired G in Statement (b) can be found in
Blackwell and Dubins (1983). Statement (c) is immediate.

We have the following notions of uniqueness.

Definition 1.4. Pointwise (pathwise for stochastic processes) uniqueness holds, if
X1, X2, and Y defined on the same probability space with µX1,Y , µX2,Y ∈ SΓ,ν implies
X1 = X2 a.s.

Joint uniqueness in law (or weak joint uniqueness) holds, if SΓ,ν contains at most one
measure.

Uniqueness in law (or weak uniqueness) holds if all µ ∈ SΓ,ν have the same marginal
distribution on S1.

We have the following generalization of the theorems of Yamada and Watanabe
(1971) and Engelbert (1991).

Theorem 1.5. The following are equivalent:

a) SΓ,ν 6= ∅, and pointwise uniqueness holds.

b) There exists a strong solution, and joint uniqueness in law holds.

Remark 1.6. In the special case that all constraints are given by simple equations, for
example,

fi(X,Y ) = 0 a.s. i ∈ I, (1.1)

Proposition 2.10 of Kurtz (2007) shows that pointwise uniqueness, joint uniqueness in
law, and uniqueness in law are equivalent. Note that stochastic differential equations
are not of the form (1.1) (see Section 2) since (1.1) does not involve any adaptedness
requirements. Consequently, the equivalence of uniqueness in law and joint uniqueness
in law does not follow from this proposition in that setting; however, Cherny (2003)
has shown the equivalence of uniqueness in law and joint uniqueness in law for Itô
equations for diffusion processes.

Proof. Assume (a). If µ1, µ2 ∈ SΓ,ν , then there exist Borel measurable functions G1(y, u)

and G2(y, u) on S2 × [0, 1] such that for Y with distribution ν and ξ1, ξ2 uniform on [0, 1],
all independent, (G1(Y, ξ1), Y ) has distribution µ1 and (G2(Y, ξ2), Y ) has distribution µ2.
By pointwise uniqueness,

G1(Y, ξ1) = G2(Y, ξ2) a.s.
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Weak and strong solutions

From the independence of ξ1 and ξ2, it follows that there exists a Borel measurable F
on S2 such that F (Y ) = G1(Y, ξ1) = G2(Y, ξ2) a.s. (See Lemma A.2 of Kurtz (2007).)

Assume (b). Suppose X1, X2, Y are defined on the same probability space and
µX1,Y , µX2,Y ∈ SΓ,ν . By Lemma 1.3, the unique µ ∈ SΓ,ν must satisfy µ(dx × dy) =

δF (y)(dx)ν(dy), so X1 = F (Y ) = X2 almost surely, giving pointwise uniqueness.

The main result in Kurtz (2007), Theorem 3.14, was stated assuming the compatibil-
ity condition to be discussed in the next section and under the assumption that SΓ,ν was
convex. Neither assumption is needed for Theorem 1.5. The compatibility condition is
critical to showing that Theorem 1.5 implies the classical Yamada-Watanabe result as
well as a variety of more recent results for other kinds of stochastic equations. (See
Kurtz (2007) for references.) The convexity assumption is useful in giving the following
additional result.

Corollary 1.7. Suppose SΓ,ν is nonempty and convex. Then every solution is a strong
solution if and only if pointwise uniqueness holds.

Proof. By Theorem 1.5, pointwise uniqueness implies SΓ,ν contains only one distribu-
tion and the corresponding solution is strong. Conversely, suppose every solution is a
strong solution. If µ1, µ2 ∈ SΓ,ν , then µ0 = 1

2µ1 + 1
2µ2 ∈ SΓ,ν . Let Y have distribution ν.

Then there exist Borel Functions F1 and F2 such that (F1(Y ), Y ) has distribution µ1 and
(F2(Y ), Y ) has distribution µ2. Let ξ be uniformly distributed on [0, 1] and independent
of Y . Define

X =

{
F1(Y ) ξ > 1/2

F2(Y ) ξ ≤ 1/2.

Then (X,Y ) has distribution µ0 and must satisfy X = F (Y ) a.s. for some F . Since
ξ is independent of Y , we must have F1(Y ) = F (Y ) = F2(Y ) a.s., giving pointwise
uniqueness.

2 Compatibility

It is not immediately obvious that Theorem 1.5 gives the classical Yamada-Watanabe
theorem since proofs of pathwise uniqueness require appropriate adaptedness condi-
tions in order to compare two solutions. This leads us to introduce the notion of compat-
ibility. In what follows, if S is a metric space, then B(S) will denote the Borel σ-algebra
and B(S) will denote the space of bounded, Borel measurable functions; if M is a σ-
algebra, B(M) will denote the space of bounded,M-measurable functions.

Let E1 and E2 be complete, separable metric spaces, and let DEi [0,∞), be the Sko-
rohod space of cadlag Ei-valued functions. Let Y be a process in DE2 [0,∞). By FYt , we
mean the completion of σ(Y (s), s ≤ t).

Definition 2.1. A process X in DE1
[0,∞) is temporally compatible with Y if for each

t ≥ 0 and h ∈ B(DE2
[0,∞)),

E[h(Y )|FX,Yt ] = E[h(Y )|FYt ] (2.1)

where {FX,Yt } denotes the complete filtration generated by (X,Y ) and {FYt } denotes
the complete filtration generated by Y .

This definition is essentially (4.5) of Jacod (1980) which is basic to the statement of
Theorem 8.3 of that paper which gives a version of the Yamada-Watanabe theorem for
general stochastic differential equations driven by semimartingales. If Y has indepen-
dent increments, then X is compatible with Y if Y (t+ ·)− Y (t) is independent of FX,Yt

for all t ≥ 0. (See Lemma 2.4 below.)
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We will consider a more general notion of compatibility. If BS1
α is a sub-σ-algebra of

B(S1) and X is an S1-valued random variable on a complete probability space (Ω,F , P ),
then FXα ≡ the completion of {{X ∈ D} : D ∈ BS1

α } is the complete sub-σ-algebra
of F generated by {h(X) : h ∈ B(BS1

α )}. FYα is defined similarly for a sub-σ-algebra
BS2
α ⊂ B(S2).

Definition 2.2. Let A be an index set, and for each α ∈ A, let BS1
α be a sub-σ-algebra

of B(S1) and BS2
α be a sub-σ-algebra of B(S2). The collection C ≡ {(BS1

α ,BS2
α ) : α ∈ A}

will be referred to as a compatibility structure.
Let Y be an S2-valued random variable. An S1-valued random variable X is C-

compatible with Y if for each α ∈ A and each h ∈ B(S2) (or equivalently, each h ∈
L1(ν)),

E[h(Y )|FXα ∨ FYα ] = E[h(Y )|FYα ] (2.2)

Remark 2.3. Temporal compatibility, as defined above, is a special case of compatibil-
ity, and we will reserve this terminology for the case in which {FXt } and {FYt } are the
complete filtrations generated by X and Y . Of course, in this setting FX,Yt = FXt ∨FYt .

Compatibility conditions do arise that have index set A = [0,∞) but which are not
temporal compatibility. For example, for a time-change equation

X(t) = Y (

∫ t

0

β(X(s))ds),

the natural compatibility condition sets

FYα = the completion of σ(Y (u) : 0 ≤ u ≤ α)

but takes

FXα = the completion of σ({
∫ t

0

β(X(s))ds ≤ r} : r ≤ α, t ≥ 0),

so that compatibility ensures τ(t) =
∫ t

0
β(X(s))ds is a stopping time with respect to the

filtration {FXα ∨ FYα , α ≥ 0}.

Lemma 2.4. Suppose that for each α ∈ A there exist random variables (Yα, Y
α) with

values in some measurable space Rα × Rα such that σ(Y ) = σ(Yα, Y
α), Yα is FYα -

measurable, and Y α is independent of FXα ∨ FYα . Then X is compatible with Y .

Proof. If h ∈ B(S2), then there exist hα ∈ B(Rα × Rα) such that h(Y ) = hα(Yα, Y
α) a.s.

Then

E[h(Y )|FXα ∨ FYα ] = E[hα(Yα, Y
α)|FXα ∨ FYα ]

= E[

∫
Rα

hα(Yα, y)µY α(dy)|FXα ∨ FYα ]

=

∫
Rα

hα(Yα, y)µY α(dy)

= E[

∫
Rα

hα(Yα, y)µY α(dy)|FYα ].

In the temporal setting, Buckdahn, Engelbert, and Răşcanu (2005) employ a condi-
tion that requires every {FYt }-martingale to be a {FX,Yt }-martingale. More generally,
{FYα , α ∈ A} is a filtration if A is partially ordered and α1 ≺ α2 implies FYα1

⊂ FYα2
. We

consider the following condition.
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Condition 2.5. {FYα , α ∈ A} and {FXα , α ∈ A} are filtrations and every {FYα }-martingale
is a {FYα ∨ FXα } martingale.

Lemma 2.6. If {FYα , α ∈ A} and {FXα , α ∈ A} are filtrations, then C-compatibility
implies Condition 2.5.

Remark 2.7. The earlier paper (Kurtz (2007)) and the original version of the current
paper casually claimed equivalence of the martingale condition and compatibility. A
referee has pointed out that the claim was not only casual, but false. Condition 2.5 gives
an example of what we will call partial compatibility conditions, that is, (2.2) holds for a
subset of h ∈ L1(ν). Partial compatibility conditions will be discussed further in Section
3.

Proof. Let {M(α), α ∈ A} be a {FYα }-martingale. For each α ∈ A, there exists a Borel
function hα such that M(α) = hα(Y ) a.s. Suppose α1 ≺ α2. Then

E[M(α2)|FXα1
∨ FYα1

] = E[hα2
(Y )|FXα1

∨ FYα1
] = E[hα2

(Y )|FYα1
] = M(α1).

Note that (2.2) is equivalent to requiring that for each h ∈ B(S2),

inf
f∈B(BS1

α ×B
S2
α )

E[(h(Y )− f(X,Y ))2] = inf
f∈B(BS2

α )

E[(h(Y )− f(Y ))2], (2.3)

so compatibility is a property of the joint distribution of (X,Y ). Consequently, compati-
bility is a constraint on joint distributions. To emphasize the special role of compatibility,
SΓ,C,ν will denote the collection of joint distributions that satisfy the constraints in Γ and
the C-compatibility constraint.

Example 2.8. Let U be a process in DRd [0,∞), V an Rm-valued semimartingale with
respect to the filtration {FU,Vt }, and H : DRd [0,∞)→ DMd×m [0,∞) (Md×m the space of
d×m-dimensional matrices) be Borel measurable and satisfy H(x, t) = H(x(· ∧ t), t) for
all x ∈ DRd [0,∞) and t ≥ 0. Then X is defined to be a solution of

X(t) = U(t) +

∫ t

0

H(X, s−)dV (s) (2.4)

if X is temporally compatible with Y = (U, V ) (ensuring that the stochastic integral
exists) and

lim
n→∞

E[1 ∧ |X(t)− U(t)−
∑
k

H(X,
k

n
)(V (

k + 1

n
∧ t)− V (

k

n
∧ t))|] = 0, t ≥ 0.

Note that this definition assumes more regularity than is necessary or is assumed in
Jacod (1980).

To prove pointwise (pathwise) uniqueness, we still need some way of comparing
compatible solutions.

Definition 2.9. Let the random variables X1, X2, and Y be defined on the same
probability space with X1 and X2, S1-valued, and Y , S2-valued. (X1, X2) are jointly
C-compatible with Y if

E[h(Y )|FX1
α ∨ FX2

α ∨ FYα ] = E[h(Y )|FYα ], α ∈ A, h ∈ B(S2). (2.5)

(Note that if (X1, X2) are jointly C-compatible with Y , then each of X1 and X2 is C-
compatible with Y .)

Pointwise uniqueness for jointly C-compatible solutions holds if for every triple of
processes (X1, X2, Y ) defined on the same probability space such that µX1,Y , µX2,Y ∈
SΓ,C,ν and (X1, X2) is jointly C-compatible with Y , X1 = X2 a.s.
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With reference to Lemma 2.4, uniqueness for jointly temporally compatible solutions
is the usual kind of uniqueness considered for stochastic differential equations driven
by Brownian motion, Lévy processes, and/or Poisson random measures. For example,
let Y = (X(0), Z), where Z is a Lévy process. Consider the equation

X(t) = X(0) +

∫ t

0

H(X(s−))dZ(s),

where we require X and Z to be adapted to a filtration {Ft} such that Z(t+ ·)− Z(t) is
independent of Ft, t ≥ 0. If there exist two such solutions with X1(0) = X2(0) = X(0)

adapted to {Ft}, then since FX1
t ∨ FX2

t ∨ FZt ⊂ Ft,

E[h(Z(t+ ·)− Z(t), Z(· ∧ t))|FX1
t ∨ FX2

t ∨ FZt ]

= E[E[h(Z(t+ ·)− Z(t), Z(· ∧ t))|Ft]|FX1
t ∨ FX2

t ∨ FZt ]

= E[

∫
h(z, Z(· ∧ t))µZ(t+·)−Z(t)(dz)|FX1

t ∨ FX2
t ∨ FZt ]

=

∫
h(z, Z(· ∧ t))µZ(t+·)−Z(t)(dz)

= E[

∫
h(z, Z(· ∧ t))µZ(t+·)−Z(t)(dz)|FZt ∨ σ(X(0))],

which gives the joint compatibility of X1 and X2 with (X(0), Z).
The following lemma ensures that pointwise uniqueness of jointly compatible so-

lutions is equivalent to the notion of pointwise uniqueness used in Theorem 1.5 and
hence, for example, Theorem 1.5 implies the classical Yamada-Watanabe theorem.

Lemma 2.10. Pointwise uniqueness for jointly C-compatible solutions in SΓ,C,ν is equiv-
alent to pointwise uniqueness in SΓ,C,ν .

Recall that for µ1, µ2 ∈ SΓ,C,ν and Y , ξ1, and ξ2 independent, Y with distribution ν

and ξ1 and ξ2 uniform on [0, 1], there exist Borel measurable G1 : S2 × [0, 1] → S1 and
G2 : S2 × [0, 1] → S1 such that (G1(Y, ξ1), Y ) has distribution µ1 and (G2(Y, ξ2), Y ) has
distribution µ2.

Clearly pointwise uniqueness in SΓ,C,ν implies pointwise uniqueness for jointly C-
compatible solutions. The converse follows by repeating the reasoning in the proof of
Theorem 1.5 now using the following lemma.

Lemma 2.11. If µ1, µ2 ∈ SΓ,C,ν and (G1(Y, ξ1), Y ) has distribution µ1 and (G2(Y, ξ2), Y )

has distribution µ2, where ξ1 and ξ2 are independent and independent of Y , then
G1(Y, ξ1), G2(Y, ξ2) are jointly compatible with Y .

In order to prove Lemma 2.11, we need the following technical lemma.

Lemma 2.12. X is C-compatible with Y if and only if for each α ∈ A and each g ∈
B(BS1

α ),
E[g(X)|Y ] = E[g(X)|FYα ] (2.6)

Proof. Suppose that X is C-compatible with Y . Then for f ∈ B(S2) and g ∈ B(BS1
α ),

E[f(Y )g(X)] = E[E[f(Y )|FXα ∨ FYα ]g(X)]

= E[E[f(Y )|FYα ]g(X)]

= E[E[f(Y )|FYα ]E[g(X)|FYα ]]

= E[f(Y )E[g(X)|FYα ]],
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and (2.6) follows. Conversely, for f ∈ B(S2), g ∈ B(BS1
α ), and h ∈ B(BS2

α ), we have

E[E[f(Y )|FYα ]g(X)h(Y )] = E[E[f(Y )|FYα ]E[g(X)|FYα ]h(Y )]

= E[f(Y )E[g(X)|Y ]h(Y )]

= E[f(Y )g(X)h(Y )],

and compatibility follows.

Proof. [of Lemma 2.11] For g ∈ B(BS1
α ), by the independence of ξ2 from (Y, ξ1) (and

hence from X1 = G1(Y, ξ1)) and Lemma 2.12,

E[g(X1)|Y, ξ2] = E[g(X1)|Y ] = E[g(X1)|FYα ]. (2.7)

Consequently, for X1 = G1(Y, ξ1), X2 = G2(Y, ξ2), f ∈ B(S2), g1, g2 ∈ B(BS1
α ), and

g3 ∈ B(BS2
α ),

E[f(Y )g1(X1)g2(X2)g3(Y )]

= E[f(Y )E[g1(X1)|Y, ξ2]g2(X2)g3(Y )]

= E[f(Y )E[g1(X1)|FYα ]g2(X2)g3(Y )]

= E[E[f(Y )|FX2
α ∨ FYα ]E[g1(X1)|FYα ]g2(X2)g3(Y )]

= E[E[f(Y )|FYα ]E[g1(X1)|Y, ξ2]g2(X2)g3(Y )]

= E[E[f(Y )|FYα ]g1(X1)g2(X2)g3(Y )],

giving the joint compatibility.

Lemma 2.12 also gives the following result.

Proposition 2.13. If X is a strong, compatible solution, then FXα ⊂ FYα for each α ∈ A.
(In particular, in the temporal compatibility setting, X is adapted to the filtration {FYt }.)
Conversely, if FXα ⊂ FYα for each α ∈ A and σ(X) ⊂ ∨α∈AFXα , then X is a strong,
compatible solution.

Proof. Since X = F (Y ), by (2.6), for each g ∈ B(BS1
α ),

g(X) = g(F (Y )) = E[g(F (Y ))|Y ] = E[g(X)|Y ] = E[g(X)|FYα ] a.s.

Consequently, g(X) is FYα -measurable and hence FXα ⊂ FYα .
Conversely, the assumption that FXα ⊂ FYα for each α ∈ A implies X is compatible

with Y , and the additional assumption implies

σ(X) ⊂ ∨α∈AFXα ⊂ ∨α∈AFYα ⊂ σ(Y ),

so there exists a Borel measurable function F such that X = F (Y ) a.s.

Example 2.14. McKean-Vlasov limits lead naturally to stochastic differential equations
of the form

X(t) = X(0) +

∫ t

0

σ(X(s), µX(s))dW (s) +

∫ t

0

b(X(s), µX(s))ds (2.8)

where µX(s) is required to be the distribution of X(s). Alexander Veretennikov raised
the question of a Yamada-Watanabe type result for equations of this form. Setting
Y = (X(0),W ) and requiring temporal compatibility, the set of joint solution measures
SΓ,C,ν may not be convex. Consequently, the results of Kurtz (2007) may not apply. The-
orem 1.5, however, does not assume convexity of SΓ,C,ν , and hence weak existence and
pathwise uniqueness imply the existence of a strong solution of (2.8).
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3 Partial compatibility and existence of compatible solutions.

Let H ⊂ B(S2) (or H ⊂ L1(ν)). We will say that a random variable X is (C,H)-
partially compatible with Y if (2.2) holds for each h ∈ H but not necessarily for all h ∈
B(S2). Similarly, we define joint (C,H)-partial compatibility by requiring the identity in
(2.5) to hold for h ∈ H. As above, let SΓ,(C,H),ν denote the collection of joint distributions
for partially compatible solutions. The analog of the Engelbert theorem ((b) implies (a)
in Theorem 1.5) follows as before.

Theorem 3.1. Suppose there exists a strong solution in SΓ,(C,H),ν and joint uniqueness
in law holds. Then pointwise uniqueness holds.

We could prove the analog of the Yamada-Watanabe theorem ((a) implies (b) in The-
orem 1.5) for SΓ,(C,H),ν the same way we handled SΓ,C,ν if the analog of Lemma 2.11
held. Unfortunately, that is not in general the case.

Example 3.2. Let ζ1, . . . , ζ4 be independent with distribution P{ζi = 1} = P{ζi = −1} =
1
2 , and let

Y = (Y1, Y2, Y3, Y4) = (ζ1ζ2, ζ2ζ3, ζ3ζ4, ζ4ζ1).

Note that any three of the components are independent but the four are not. Assume
that the index set A consists of a single element α. Let FYα = σ(Y1), and for ξ indepen-
dent of Y and uniformly distributed on [0, 1], let

X = G(Y, ξ) = 1{ξ< 1
2}
Y2 + 1{ξ≥ 1

2}
Y3,

and FXα = σ(G(Y, ξ)). For h0(Y ) = Y4,

E[h0(Y )|FYα ∨ FXα ] = 0 = E[h0(Y )|FYα ],

so X is (C,H)-partially compatible with Y for H = {h0}. However, if ξ1 and ξ2 are
independent, uniform [0, 1] random variables and we define

X1 = G(Y, ξ1) and X2 = G(Y, ξ2),

then

E[h0(Y )|FYα ∨ FX1
α ∨ FX2

α ] = 1{X1 6=X2}Y1X1X2 +
1

3
1{X1=X2}Y1,

and the corresponding joint partial compatibility condition fails.

We do have the following modification of Lemma 2.11 that gives the desired coupling
if one of the solutions is compatible.

Lemma 3.3. If µ1 ∈ SΓ,C,ν and µ2 ∈ SΓ,(C,H),ν , and (G1(Y, ξ1), Y ) has distribution µ1 and
(G2(Y, ξ2), Y ) has distribution µ2, where ξ1 and ξ2 are independent and independent of
Y , then X1 = G1(Y, ξ1) and X2 = G2(Y, ξ2) are jointly (C,H)-partially compatible with
Y .

Proof. Since X1 is compatible with Y , (2.7) still holds. Consequently, for h ∈ H, g1, g2 ∈
B(BS1

α ), and g3 ∈ B(BS2
α ), as in the proof of Lemma 2.11,

E[h(Y )g1(X1)g2(X2)g3(Y )]

= E[h(Y )E[g1(X1)|Y, ξ2]g2(X2)g3(Y )]

= E[h(Y )E[g1(X1)|FYα ]g2(X2)g3(Y )]

= E[E[h(Y )|FX2
α ∨ FYα ]E[g1(X1)|FYα ]g2(X2)g3(Y )]

= E[E[h(Y )|FYα ]E[g1(X1)|Y, ξ2]g2(X2)g3(Y )]

= E[E[h(Y )|FYα ]g1(X1)g2(X2)g3(Y )],

giving the joint (C,H)-partial compatibility.
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The construction in Lemma 3.3 gives the proof of the following theorem which states
that weak existence of a compatible solution and pointwise uniqueness for jointly (C,H)-
partially compatible solutions implies that the only solution is a strong, compatible so-
lution.

Theorem 3.4. Suppose that if X1 and X2 are jointly (C,H)-partially compatible with
Y and µX1Y , µX2,Y ∈ SΓ,(C,H),ν , then X1 = X2 a.s. and that there exists a compatible
solution, that is, SΓ,C,ν 6= ∅. Then there exists a unique, partially compatible solution
and it is strong and compatible.

Proof. The uniqueness assumption for jointly partially compatible solutions implies unique-
ness for jointly compatible solutions. Consequently, there exists a unique, strong, com-
patible solution, X = F (Y ). But Lemma 3.3 implies that every partially compatible
solution and the unique strong, compatible solution can be constructed to be jointly
(C,H)-partially compatible and hence the partially compatible solution must also be
F (Y ).

Theorem 3.4 is relevant not only under Condition 2.5 but also for the general stochas-
tic differential equation given in Example 2.8. Uniqueness results for equations of
the form (2.4) are usually proved under the assumption that solutions X1 and X2 and
Y = (U, V ) are adapted to a filtration {Ft} under which V is a semimartingale. V can
always be written as V = M +A, where M is a local martingale with jumps bounded by
1 and A is a finite variation process. The localizing sequence for M can be taken to be
τn = inf{t : sups≤t |M(s)| ≥ n}, and an appropriate joint partial compatibility condition
follows from the observation that for t > s,

E[M(t ∧ τn)|FX1
s ∨ FX2

s ∨ FYs ] = E[E[M(t ∧ τn)|Fs]|FX1
s ∨ FX2

s ∨ FYs ]

= M(s ∧ τn)

= E[M(t ∧ τn)|FYs ].

Consequently, pathwise uniqueness results in settings of this form imply pathwise unique-
ness for jointly compatible solutions.

To apply Theorem 3.4 when pointwise uniqueness is known under partial compati-
bility conditions still requires existence of a compatible solution. The following lemma
gives a general approach to the required existence.

Lemma 3.5. Suppose there exist CS2
α ⊂ Cb(S2) and CS1

α ⊂ Cb(S1) such that BS2
α = σ(g ∈

CS2
α ) and BS1

α = σ(g ∈ CS1
α ). (Without loss of generality, we can assume CS1

α and CS2
α

are algebras.) Suppose (Xn, Y ) ∈ S1×S2, Xn is C-compatible with Y , (Xn, Y )⇒ (X,Y ).
Then X is C-compatible with Y .

Remark 3.6. With reference to the continuous mapping theorem (for example, Ethier
and Kurtz (1986), Corollary 3.1.9), the continuity assumption on the functions generat-
ing BS1

α and BS2
α can be weakened. For BS1

α , it is enough for the functions g to be contin-
uous almost everywhere with respect to µX , and for BS2

α , the functions g only need to
be continuous almost everywhere with respect to µY . This observation is particularly
relevant for cadlag processes since the evaluation function x ∈ DE [0,∞) → x(t) ∈ E is
not continuous, but it will be almost everywhere continuous for the process of interest
provided t is not a fixed point of discontinuity, that is, provided P{X(t) 6= X(t−)} = 0.

In many settings, natural approximations for a solution will satisfy Xn = Fn(Y ) and
FXnα ⊂ FYα and hence will be strong, compatible solutions of approximating models.
(See Proposition 2.13.)
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Proof. For f ∈ Cb(S2), g1 ∈ CS1
α and g2 ∈ CS2

α

E[f(Y )g1(Xn)g2(Y )] = E[E[f(Y )|FYα ]g1(Xn)g2(Y )].

Since Cb(S2) is dense in L1(ν), for each α and ε > 0, there exists fα,ε ∈ Cb(S2) such that

E[|E[f(Y )|FYα ]− fα,ε(Y )|] ≤ ε.

Consequently, it follows that

E[f(Y )g1(X)g2(Y )] = lim
n→∞

E[f(Y )g1(Xn)g2(Y )]

= lim
n→∞

E[E[f(Y )|FYα ]g1(Xn)g2(Y )]

= lim
ε→0

lim
n→∞

E[fα,ε(Y )g1(Xn)g2(Y )]

= lim
ε→0

E[fα,ε(Y )g1(X)g2(Y )]

= E[E[f(Y )|FYα ]g1(X)g2(Y )]

verifying compatibility.

Note that in the proof of the above lemma, we use the fact that Y , or more precisely,
the distribution of Y , does not depend on n in order to obtain the fα,ε.

Problems do arise in which input processes have fixed points of discontinuity and the
application of Lemma 3.5 is problematic even with the observation made in Remark 3.6.
The following definition of RC-compatibility (or more precisely, RC-temporal compati-
bility) avoids this problem. It looks strange, but Lemma 3.8 shows that it is equivalent
to a more natural assumption. ME [0,∞) denotes the collection of Borel measurable
functions x : [0,∞)→ E. Si could be DEi [0,∞) under the usual Skorohod topology, but
other spaces can be useful. (See Example 3.10.)

Definition 3.7. Let A = {(t, ε) : t ∈ [0,∞), ε > 0}, S1 ⊂ME1 [0,∞), and S2 ⊂ME2 [0,∞).
For α = (t, ε), define

CS2
α = {

∫ s+r

s

g(x(u))du : s ≤ t, 0 < r < ε, g ∈ Cb(E2)}

and

CS1
α = {

∫ s

(s−r)∨0

g(x(u))ds : s ≤ t, 0 < r < ε, g ∈ Cb(E1)},

and set BS2
α = σ(g ∈ CS2

α ) and BS1
α = σ(g ∈ CS1

α ). Then CRC ≡ {(BS1
α ,BS2

α ) : α ∈ A}
defines the RC-compatibility structure (RC for “right continuous”) on (S1, S2).

Note that CS1
α and CS2

α differ not only in the choice of range spaces E1 and E2 but
also in the collections of time intervals determining the integrals. If S1 = DE1 [0,∞) and
S2 = DE2 [0,∞), then CS1

α and CS2
α are collections of continuous functions and Lemma

3.5 applies to RC-compatibility.
Assume that X and Y are right continuous, and let {FXt } and {FYt } denote their

natural filtrations. Note that for t > 0, FX(t,ε) =FXt− ≡ ∨s<tFXs , ∩ε>0FY(t,ε) = FYt+ ≡
∩s>tFYs , and FY(t,ε) = FY(t+ε)−. We have the following lemma.

Lemma 3.8. Let X be a right continuous, E1-valued process and Y be a right continu-
ous, E2-valued process. Then X is RC-compatible with Y if and only if

E[h(Y )|FYt+ ∨ FXt−] = E[h(Y )|FYt+] (3.1)

for all t > 0.
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Proof. Since FX(t,ε) = FXt−, RC-compatibility implies

E[h(Y )|FY(t,ε) ∨ F
X
t−] = E[h(Y )|FY(t,ε)].

Taking the limit ε→ 0, we have

E[h(Y )| ∩ε>0 (FY(t,ε) ∨ F
X
t−)] = E[h(Y )|FYt+].

Since ∩ε>0(FY(t,ε) ∨ F
X
t−) ⊃ FYt+ ∨ FXt− ⊃ FYt+, conditioning both sides on FYt+ ∨ FXt− gives

(3.1).
Now assuming (3.1) holds for all t > 0, we have

E[h(Y )|FY(t+s)+ ∨ F
X
(t+s)−] = E[h(Y )|FY(t+s)+],

and letting s→ ε−, we have

E[h(Y )| ∨s<ε (FY(t+s)+ ∨ F
X
(t+s)−)] = E[h(Y )|FY(t+ε)−] = E[h(Y )|FY(t,ε)]. (3.2)

Since
∨s<εFY(t+s)+ ∨ F

X
(t+s)− ⊃ F

Y
(t+ε)− ∨ F

X
(t+ε)− ⊃ F

Y
(t,ε) ∨ F

X
(t,ε),

conditioning both sides of (3.2) on FY(t,ε) ∨ F
X
(t,ε) gives the desired result.

Example 3.9. An Euler approximation gives a natural approach to proving existence
of compatible or RC-compatible solutions for

X(t) = U(t) +

∫ t

0

H(X, s−)dV (s). (3.3)

Set ηn(t) = [nt]
n , and et Un = U ◦ ηn and Vn = V ◦ ηn. Then existence of a solution Xn of

Xn(t) = Un(t) +

∫ t

0

H(Xn, s−)dVn(s), (3.4)

is immediate and Xn is adapted to {FYt }. It follows that Xn is both temporally com-
patible and RC-compatible with Y . Theorem 5.4 of Kurtz and Protter (1991) gives con-
ditions on H that ensure the convergence of (Un, Vn, Xn) to (U, V,X) satisfying (3.3).
Lemma 3.5 then ensures that X is temporally compatible with Y = (U, V ), if Y has no
fixed points of discontinuity, or at least RC-compatible with Y . The constructions of Ja-
cod and Mémin (1980/81) and Lebedev (1983) should give compatible solutions under
different assumptions.

Example 3.10. Let T > 0 and Y = (U, V ) be a process in DRm×Rd [0, T ]. Let f be a
measurable function

f : [0, T ]×DRm [0, T ]×DRd [0, T ]→ Rm

satisfying f(t, x, v) = f(t, x(· ∨ t), v) for each (t, x, v) ∈ [0, T ]×DRm [0, T ]×DRd [0, T ]. Fol-
lowing Buckdahn, Engelbert, and Răşcanu (2005), we consider the backward stochastic
differential equation

X(t) = U(t) + E[

∫ T

t

f(s,X, V )ds|FYt ∨ FXt ],

where Buckdahn et al. (2005) requires Condition 2.5. We will requireX to be temporally
compatible with Y , or if Y has fixed points of discontinuity, that X be RC-compatible
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with Y . Setting Xn(t) = U(T ) for t ≥ T , there exist solutions to the approximating
problems

Xn(t) = U(t) + E[

∫ T

t

f(s,Xn(·+ 1

n
), V )ds|FYt ].

Assume that |f(s, x, v)| ≤ g(s, v) and E[
∫ T

0
g(s, V )ds] <∞. Set

Zn(t) = E[

∫ T

t

f(s,Xn(·+ 1

n
), V )ds|FYt ].

Recalling the definition of conditional variation, we have

VT (Zn) ≡ sup
{ti}

E[
∑
i

|E[Zn(ti+1)− Zn(ti)|FYti ]|] ≤ E[

∫ T

0

g(s, V )ds],

where the sup is over all partitions of [0, T ]. We also have

sup
0≤t≤T

|Zn(t)| ≤ sup
0≤t≤T

E[

∫ T

0

g(s, V )ds|FYt ] <∞ a.s.,

so the sequence {Zn} satisfies the Meyer-Zheng conditions (see Meyer and Zheng
(1984); Kurtz (1991)), or more precisely, {Zn} is relatively compact in the Jakubowski
topology (see Jakubowski (1997)). The Jakubowski topology is not metrizable, but ver-
sions of the Prohorov theorem and the Skorohod representation theorem still hold. See
Theorem 1.1 of Jakubowski (1997). We will denote the space of cadlag functions under
the Jakubowski topology by DJE [0, T ].

Convergence in the Jakubowski topology implies convergence in measure, that is
convergence in the metric dm(x, y) =

∫ T
0
|x(s)− y(s)| ∧ 1ds which is used in the original

paper, Meyer and Zheng (1984), and in Buckdahn et al. (2005). Relative compactness
of {Zn} in DJRm [0, T ] implies relative compactness of (Zn, Y ) in DJ

Rm×Rm×Rd [0, T ]. In
contrast to the Skorohod topology (that is, the Skorohod J1 topology),

DJ
Rm×Rm×Rd [0, T ] = DJRm [0, T ]×DJ

Rm×Rd [0, T ].

Addition is continuous in the Jakubowski topology, so if (Zn, Y ) converges, then set-
tingXn = U+Zn, (Xn, Zn, Y ) converges. IfXn converges toX, thenXn(·+ 1

n ) converges
to X and for all but at most countably many t, Xn(t) converges to X(t).

For each t ∈ [0, T ], assume that the mapping

(x, v) ∈ DJ
Rm×Rd [0, T ]→

∫ T

t

f(s, x, v)ds ∈ R

is continuous. Assume that we have selected a subsequence such that (Xn, Y )⇒ (X,Y ).
By Theorem 3.11 of Jakubowski (1997) there exists a countable set D such that for
{ti} ⊂ [0, T ] \D

(Xn(t1), . . . , Xn(tk), Y (t1), . . . , Y (tk), Xn, Y )⇒ (X(t1), . . . , X(tk), Y (t1), . . . , Y (tk), Xn, Y )

in (Rm)k × (Rm+d)k ×DJ
Rm×Rm+d [0, T ].

Let gi ∈ Cb(R2m+d). Then for 0 ≤ t1 < · · · < tk ≤ t, {ti}, t ∈ [0, T ] \D,

0 = E[(Xn(t)− U(t)−
∫ T

t

f(s,Xn, V )ds)

k∏
i=1

gi(Xn(ti), Y (ti))]

→ E[(X(t)− U(t)−
∫ T

t

f(s,X, V )ds)

k∏
i=1

gi(X(ti), Y (ti))].
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Note that since

|Xn(t)− U(t)| ≤ E[

∫ T

0

g(s, V )ds|FYt ],

{Xn(t)−U(t)} is uniformly integrable justifying the convergence of the expectations. It
follows that for each t ∈ [0, T ] \D,

X(t) = U(t) + E[

∫ T

t

f(s,X, V )ds)|FXt ∨ FYt ],

and the identity extends to all t ∈ [0, T ] by the right continuity of X and U .
If Y has no fixed points of discontinuity, then X has no fixed points of discontinuity

and X is temporally compatible with Y . In any case, X is RC-compatible with Y .

Example 3.11. The multiple time-change equation

X(t) = X(0) +

m∑
k=1

Wk(

∫ t

0

βk(X(s))ds)ζk +

∫ t

0

F (X(s))ds, (3.5)

arises naturally in the derivation of diffusion approximations for continuous time Markov
chains. (See, for example, Ethier and Kurtz (1986), Chapter 11.) Here the Wk are inde-
pendent, scalar, standard Brownian motions, X(0) is a Rd-valued random variable inde-
pendent of the Wk, ζk ∈ Rd, and the βk and F are measurable functions (typically con-
tinuous) satisfying βk : Rd → [0,∞) and F : Rd → Rd. Setting Y = (X(0),W1, . . . ,Wm)

and τk(t) =
∫ t

0
βk(X(s))ds, for α ∈ [0,∞)m, define

FYα = σ(Wk(sk) : 0 ≤ sk ≤ αk, k = 1, . . . ,m) ∨ σ(X(0))

and
FXα = σ({τ1(t) ≤ s1, τ2(t) ≤ s2, . . .} : si ≤ αi, i = 1, . . . ,m, t ≥ 0).

If the βk are continuous, {FYα } and {FXα } determine a compatibility condition satis-
fying the conditions of Lemma 3.5.

If X is a compatible solution, then τ(t) = (τ1(t), . . . , τm(t)) is a stopping time with
respect to {FXα ∨ FYα } and Wk(

∫ t
0
βk(X(s))ds), k = 1, . . . ,m, are {Fτ(t)}-martingales. It

follows that X is a solution of the martingale problem for

Af(x) =
1

2

∑
i,j

aij(x)∂i∂jf(x) + F (x) · ∇f(x),

a(x) =
∑m
k=1 βk(x)ζkζ

T
k . (Note that m may be infinity provided

∑∞
k=1 βk(x)|ζk|2 <∞.)

Setting ηn(t) = [nt]
n ,

Xn(t) = X(0) +

m∑
k=1

Wk(

∫ ηn(t)

0

βk(Xn(s))ds)ζk +

∫ ηn(t)

0

F (Xn(s))ds

has a unique piecewise constant solution that has the same distribution as the usual
Euler approximation to the corresponding Itô equation. Under appropriate growth con-
ditions on the βk and F (for example, if the βk and F are bounded), {Xn} is relatively
compact for convergence in distribution in DRd [0,∞), and if the βk and F are continu-
ous, any limit point X of {Xn} will satisfy (3.5). Lemma 3.5 gives that X is compatible
with Y .

Uniqueness of the distribution of X would follow from uniqueness for the corre-
sponding martingale problem; however, except for m = 1, no pathwise uniqueness
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result of any generality is known. Let τk(t) =
∫ t

0
βk(X(s))ds and γ(t) =

∫ t
0
F (X(s))ds.

Then

τ̇l(t) = βl(X(0) +
∑
k

Wk(τk(t))ζk + γ(t))

γ̇(t) = F (X(0) +
∑
k

Wk(τk(t))ζk + γ(t)),

which is a random ordinary differential equation. Except in the case βk all constant,
however, the right side is at best Hölder of order 1/2.
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R. Buckdahn, H.-J. Engelbert, and A. Răşcanu. On weak solutions of backward stochastic
differential equations. Theory Probab. Appl., 49(1):16–50, 2005. URL http://dx.
doi.org/10.1137/S0040585X97980877. MR-2141331

A. S. Cherny. On the uniqueness in law and the pathwise uniqueness for stochastic
differential equations. Theory Probab. Appl., 46(3):406–419, 2003. ISSN 0040-361X.
MR-1978664

H. J. Engelbert. On the theorem of T. Yamada and S. Watanabe. Stochastics Stochastic
Rep., 36(3-4):205–216, 1991. ISSN 1045-1129. MR-1128494

Stewart N. Ethier and Thomas G. Kurtz. Markov processes: Characterization and Con-
vergence. Wiley Series in Probability and Mathematical Statistics: Probability and
Mathematical Statistics. John Wiley & Sons Inc., New York, 1986. ISBN 0-471-08186-
8. MR-0838085

Jean Jacod. Weak and strong solutions of stochastic differential equations. Stochastics,
3(3):171–191, 1980. ISSN 0090-9491. MR-0573202

Jean Jacod and Jean Mémin. Existence of weak solutions for stochastic differential
equations with driving semimartingales. Stochastics, 4(4):317–337, 1980/81. ISSN
0090-9491. doi: 10.1080/17442508108833169. URL http://dx.doi.org/10.1080/
17442508108833169. MR-609691

Adam Jakubowski. A non-Skorohod topology on the Skorohod space. Electron. J.
Probab., 2:no. 4, 21 pp. (electronic), 1997. ISSN 1083-6489. doi: 10.1214/EJP.v2-18.
URL http://dx.doi.org/10.1214/EJP.v2-18. MR-1475862

Thomas G. Kurtz. Random time changes and convergence in distribution under the
Meyer-Zheng conditions. Ann. Probab., 19(3):1010–1034, 1991. ISSN 0091-1798.
URL http://www.jstor.org/stable/2244471. MR-1112405

Thomas G. Kurtz. The Yamada-Watanabe-Engelbert theorem for general stochastic
equations and inequalities. Electron. J. Probab., 12:951–965, 2007. ISSN 1083-
6489. doi: 10.1214/EJP.v12-431. URL http://dx.doi.org/10.1214/EJP.v12-431.
MR-2336594

Thomas G. Kurtz and Philip Protter. Weak limit theorems for stochastic integrals and
stochastic differential equations. Ann. Probab., 19(3):1035–1070, 1991. ISSN 0091-
1798. MR-1112406

ECP 19 (2014), paper 58.
Page 15/16

ecp.ejpecp.org

http://dx.doi.org/10.2307/2044607
http://www.ams.org/mathscinet-getitem?mr=718998
http://dx.doi.org/10.1137/S0040585X97980877
http://dx.doi.org/10.1137/S0040585X97980877
http://www.ams.org/mathscinet-getitem?mr=2141331
http://www.ams.org/mathscinet-getitem?mr=1978664
http://www.ams.org/mathscinet-getitem?mr=1128494
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=0573202
http://dx.doi.org/10.1080/17442508108833169
http://dx.doi.org/10.1080/17442508108833169
http://www.ams.org/mathscinet-getitem?mr=609691
http://dx.doi.org/10.1214/EJP.v2-18
http://www.ams.org/mathscinet-getitem?mr=1475862
http://www.jstor.org/stable/2244471
http://www.ams.org/mathscinet-getitem?mr=1112405
http://dx.doi.org/10.1214/EJP.v12-431
http://www.ams.org/mathscinet-getitem?mr=2336594
http://www.ams.org/mathscinet-getitem?mr=1112406
http://dx.doi.org/10.1214/ECP.v19-2833
http://ecp.ejpecp.org/


Weak and strong solutions

V. A. Lebedev. On the existence of weak solutions for stochastic differential equations
with driving martingales and random measures. Stochastics, 9(1-2):37–76, 1983.
ISSN 0090-9491. doi: 10.1080/17442508308833247. URL http://dx.doi.org/10.
1080/17442508308833247. MR-703847

P.-A. Meyer and W. A. Zheng. Tightness criteria for laws of semimartingales. Ann.
Inst. H. Poincaré Probab. Statist., 20(4):353–372, 1984. ISSN 0246-0203. URL http:
//www.numdam.org/item?id=AIHPB_1984__20_4_353_0. MR-0771895

Toshio Yamada and Shinzo Watanabe. On the uniqueness of solutions of stochastic
differential equations. J. Math. Kyoto Univ., 11:155–167, 1971. MR-0278420

ECP 19 (2014), paper 58.
Page 16/16

ecp.ejpecp.org

http://dx.doi.org/10.1080/17442508308833247
http://dx.doi.org/10.1080/17442508308833247
http://www.ams.org/mathscinet-getitem?mr=703847
http://www.numdam.org/item?id=AIHPB_1984__20_4_353_0
http://www.numdam.org/item?id=AIHPB_1984__20_4_353_0
http://www.ams.org/mathscinet-getitem?mr=0771895
http://www.ams.org/mathscinet-getitem?mr=0278420
http://dx.doi.org/10.1214/ECP.v19-2833
http://ecp.ejpecp.org/

	Introduction and main theorem
	Compatibility
	Partial compatibility and existence of compatible solutions.

