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Abstract

In this paper we study multidimensional fractional advection-dispersion equations in-
volving fractional directional derivatives both from a deterministic and a stochastic
point of view. For such equations we show the connection with a class of multidi-
mensional Lévy processes. We introduce a novel Lévy-Khinchine formula involving
fractional gradients and study the corresponding infinitesimal generator of multi-
dimensional random processes. We also consider more general fractional transport
equations involving Frobenius-Perron operators and their stochastic solutions. Fi-
nally, some results about fractional power of second order directional derivatives
and their applications are also provided.
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1 Introduction

Fractional calculus is a developing field of the applied mathematics regarding integro-
differential equations involving fractional integrals and derivatives. The increasing
interest in fractional calculus has been motivated by many applications of fractional
equations in different fields of research (see for example [6, 16, 17, 22]). However,
most of the papers in this field are focused on the analysis of fractional equations and
processes in one dimension, there are few works regarding fractional vector calculus
and its applications in theory of electromagnetic fields, fluidodynamics and multidimen-
sional processes. A first attempt to give a formulation of fractional vector calculus is
due to Ben Adda [3]. Recently a different approach in the framework of multidimen-
sional fractional advection-dispersion equation has been developed by Meerschaert et
al. [18, 19, 20]. They present a general definition of gradient, divergence and curl,
in relation to fractional directional derivatives. In their view, the fractional gradient is
a weighted sum of fractional directional derivatives in each direction. We notice that
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Multidimensional fractional advection-dispersion equations

this general approach to fractional gradient, depending on the choice of the mixing
measure, includes also the definition of fractional gradient given by Tarasov in [29, 30]
(see also the recent book [28]) as a natural extension of the ordinary case. Starting
from these works, many authors have been interested in understanding the applica-
tions of this fractional vector calculus in the theory of electromagnetic fields in fractal
media (see for example [2] and [23]) and in the analysis of multidimensional advection-
dispersion equation ([5, 20]). Moreover, in [11], the authors study the application of
fractional vector calculus to the multidimensional Bloch-Torrey equation.

In this paper we study multidimensional fractional advection and dispersion equa-
tions involving fractional directional derivatives, both from the deterministic and stochas-
tic point of view. We show some consequences of our approach, to treat multidimen-
sional fractional differential equations. From a physical point of view, we present a
formulation of the fractional advection equation based on the fractional conservation of
mass, introduced in [32]. In this framework we also find the stochastic solution for the
multidimensional fractional advection equation with random initial data.

Furthermore, the properties of a class of multidimensional Lévy processes related to
fractional gradients are investigated. Some results about a new Lévy-Khinchine formula
(and the corresponding generators) are presented. It is well known that long jump ran-
dom walks lead to limit processes governed by the fractional Laplacian. We establish
some connections between compound Poisson processes with given jumps and the cor-
responding limit processes which are driven by our Lévy-Khinchine formula involving
fractional gradient.

A general translation semigroup and the related Frobenius-Perron operator are also
introduced and the associated advection equations are investigated. As in the previous
cases, we find relation with compound Poisson processes.

We finally study the fractional power of the second order directional derivative
(θ · ∇)

2 and the heat-type equation involving this operator.

2 Fractional gradient operators and fractional directional deriva-
tives

In the general approach developed by Meerschaert et al. [20] in the framework of
the multidimensional fractional advection-dispersion equation, given a scalar function
f(x), the fractional gradient can be defined as

∇βMf(x) =

∫
||θ||=1

θDβ
θf(x)M(dθ), x ∈ Rd, β ∈ (0, 1) (2.1)

where θ = (θ1, ...., θd) is a unit column vector; M(dθ) is a positive finite measure, called
mixing measure;

Dβ
θf(x) = (θ · ∇)βf(x), (2.2)

is the fractional directional derivative of order β (see for example [8]).
The Fourier transform of fractional directional derivatives (2.2) (in our notation) is

given by

D̂β
θf(k) = ̂(θ · ∇)βf(k) = (−iθ · k)β f̂(k),

where

f̂(k) =

∫
Rd
eik·xf(x)dx.

Hence the Fourier transform of (2.1) is written as

∇̂βMf(k) =

∫
||θ||=1

θ(−ik · θ)β f̂(k)M(dθ). (2.3)
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Multidimensional fractional advection-dispersion equations

This is a general definition of fractional gradient, depending on the choice of the mixing
measure M(dθ). We can infer the physical and geometrical meaning of this definition: it
is a weighted sum of the fractional directional derivatives in each direction on a unitary
sphere. The definition (2.1) is really general and directly related to multidimensional
stable distributions. The divergence of (2.1) is given by

DαMf(x) := ∇ · ∇α−1
M f(x) =

∫
||θ||=1

Dα
θ f(x)M(dθ), x ∈ Rd, α ∈ (1, 2], (2.4)

whose Fourier transform, from (2.3), is written as

D̂αMf(k) =

∫
||θ||=1

(−ik · θ)αf̂(k)M(dθ).

The scalar operator DαM plays the role of fractional Laplacian in the fractional diffusion
equation, introducing a more general class of processes depending on the choice of
the measure M . For the sake of clarity we refer to Meerschaert et al. [18] about
multidimensional fractional diffusion-type equations involving this kind of operators.

Let us consider the multidimensional fractional diffusion-type equation involving
DαM , given by

∂u

∂t
(x, t) = DαMu(x, t), (2.5)

with initial condition
u(x, 0) = δ(x).

We obtain by Fourier transform

∂û

∂t
(k, t) =

∫
||θ||=1

(−ik · θ)αM(dθ)û(k, t).

Then, the solution of (2.5) in the Fourier space is given by

û(k, t) = exp

(
t

∫
||θ||=1

(−ik · θ)αM(dθ)

)
,

which is strictly related with multivariate stable distributions, as the following well
known result entails

Theorem 2.1 ([26], pag. 65). Let α ∈ (0, 2), then θ = (θ1, ..., θd) is an α-stable random
vector in Rd if and only if there exists a finite measure Γ on the unitary sphere and a
vector µ0 = (µ0

1, ....µ
0
d) such that its characteristic function is given by

E exp{i(k · θ)} = e−σψ(k),

where σ = cos(πα2 ), and

ψ(k) =

{∫
||θ||=1

|θ · k|α(1− isign(θ · k) tan πα
2 )Γ(dθ) + i(k · µ0), if α 6= 1,∫

||θ||=1
|θ · k|(1 + i 2

π sign(θ · k) ln |(θ · k)|)Γ(dθ) + i(k · µ0), if α = 1.

The pair (Γ,µ0) is unique.

In light of Theorem 2.1 and the fact that

(−iζ)α = |ζ|αe−i
π
2 α

ζ
|ζ| = |ζ|αe−iπ2 αsign(ζ),

the solution of (2.5) can be interpreted as the law of a d-dimensional α-stable vector,
whose characteristic function is given, for α 6= 1, by the pair (M,0), i.e. the vector µ0
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Multidimensional fractional advection-dispersion equations

is null and the measure M is the spectral measure of the random vector θ. This is a
general approach to multidimensional fractional differential equations, suggesting the
geometrical and probabilistic meaning of (2.5). On the other hand it includes a wide
class of processes, depending on the spectral measure M . As a first notable example,
being M(dθ) = m(θ)dθ, if we take m(θ) = const. in (2.4), then we obtain the well known
Riesz derivative (see e.g. [25], pag. 500 formula (25.62)). In the framework of fractional
vector calculus we obtain a geometric interpretation of the fractional Laplacian which
is strictly related to uniform isotropic measure.

We also notice that the definition of fractional gradient given by Tarasov [29] is a
special case of (2.1), corresponding to the case in which the mixing measure is a point
mass at each coordinate vector ei, for i = 1, ...., d. In this case the fractional gradient
seems to be a formal extension of the ordinary to the fractional case, i.e.

∇βf(x) =

d∑
i=1

∂βf(x)

∂xβi
ei, (2.6)

where ∂βf

∂xβi
is the Weyl partial fractional derivative of order β ∈ (0, 1), defined as ([25],

pag. 95)

dβf

dxβ
=

1

Γ(1− β)

d

dx

∫ x

−∞
(x− y)−βf(y)dy, x ∈ R.

Formula (2.6) seems to be a natural way to generalize the definition of gradient of frac-
tional order. Indeed, for β = 1 we recover the ordinary gradient. From a geometrical
point of view this is an integration centered on preferred directions given by the Carte-
sian set of axes. From a probabilistic point of view this is the unique case in which an
α-stable random vector has independent components as shown by Samorodnitsky and
Taqqu ([26], Example 2.3.5, pag. 68). It corresponds to a choice of the spectral mea-
sure Γ discrete and concentrated on the intersection of the axes with the unitary sphere.

In this paper we adopt an intermediate approach between the special case treated
by Tarasov in [28] and the most general one treated by Meerschaert et al. in [20].
Indeed, we consider the following subcase of the general definition (2.1)

Definition 2.2. For β ∈ (0, 1) and a “good” scalar function f(x), x ∈ Rd, being (θ1, .......,θd),
with θj ∈ Rd, for j = 1, 2, .., d, an orthonormal basis, the fractional gradient is written
as

∇βθ f(x) =

d∑
l=1

θl(θl · ∇)βf(x), f ∈ L1(Rd), (2.7)

where we use the subscript θ to underline the connection with the mixing measure M
which is a point mass measure at each coordinate vectors θl, l = 1, · · · , d.

This is a superposition of fractional directional derivatives, taking into account all
the directions θi, it is a more general approach than that adopted by Tarasov. However,
also in this case, for β = 1 we recover the definition of the ordinary gradient. An explicit
representation of the fractional gradient (2.7) is given by means of operational methods.
Indeed, in [8], it was shown that the fractional power of the directional derivative is
given by

(θ · ∇)
β
f(x) =

β

Γ(1− β)

∫ ∞
0

(f(x)− f(x− sθ)) s−β−1ds, β ∈ (0, 1),
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Multidimensional fractional advection-dispersion equations

so that (2.7) has the following representation

∇βθ f(x) =

d∑
l=1

β θl
Γ(1− β)

∫ ∞
0

(f(x)− f(x− sθl)) s−β−1ds.

Our specialization of (2.1) provides useful and manageable tools to treat fractional equa-
tions in multidimensional spaces in order to find explicit solutions. We notice that each
vector in the orthonormal basis (θ1, .......,θd) can be expressed in terms of the canonical
basis ei by applying a rotation matrix, such that

θi =

d∑
k=1

θikek.

The Fourier transform of (2.7) is given by

∇̂βθ f(k) =

d∑
l=1

θl(−ik · θl)β f̂(k). (2.8)

A relevant point to understand the consequence of this definition in the framework of
fractional vector calculus is given by the definition of fractional Laplacian. For β ∈
(1, 2], given a scalar function f(x), with x ∈ Rd, the fractional directional operator
corresponding to the definition (2.7) is given by

D
β
θ f(x) = ∇θ · ∇β−1

θ f(x),

that is the inverse Fourier transform of

D̂
β
θ f(k) =

d∑
l=1

(−ik · θl)β f̂(k). (2.9)

We remark that the fractional operator (2.9) is given by the sum of fractional directional
derivatives of order β ∈ (1, 2]. Indeed, by inverting (2.9), we get

D
β
θ f(x) =

d∑
l=1

(θl · ∇)βf(x).

In the same way we can give a definition of fractional divergence of a vector field as
follows

divβu(x, t) = ∇βθ · u =

d∑
l=1

(θl · ∇)βθl · u(x, t),

with β ∈ (0, 1).

Example 2.3. Let us consider the case x ∈ R2. In this case we denote θ1 ≡ (cos θ1, sin θ1)

and θ2 ≡ (cos θ2, sin θ2). By definition, these two vectors must be orthonormal, hence
θ2 = θ1 + π

2 . These two fixed directions are given by a rotation of the cartesian axes. In
this case the fractional gradient is given by

∇βθ f(x) ≡
[
(cos θ1, sin θ1)(cos θ1∂x + sin θ1∂y)β + (cos θ2, sin θ2)(cos θ2∂x + sin θ2∂y)β

]
f(x).

An interesting discussion about this two-dimensional case can be found in [10].
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Multidimensional fractional advection-dispersion equations

Remark 2.4. We observe that in the case θi ≡ ei, we have the definition of fractional
gradient given by Tarasov. The divergence of this operator brings to the analog of the
fractional Laplacian, given by

∇θ · ∇βθ f(x) =

d∑
k=1

∂

∂xk

∂β

∂xβk
f(x), (2.10)

which means that, for β = 1, we recover the classical definition of Laplacian. We
remark that the operator (2.10) strongly differs from the fractional Laplacian. From
an analytical point of view, the sum of fractional derivatives clearly differs from the
fractional power of the sum of second order ordinary derivatives. From a probabilistic
point of view, the operator appearing in (2.10) is the governing operator of a random
vector with independent components, while the fractional Laplacian is the generator of
a random vector with dependent components.
Moreover, we observe that in some cases the Riemann-Liouville derivative does not
satisfy the law of exponent,

∂

∂x

∂β

∂xβ
f(x) 6= ∂1+β

∂x1+β
f(x).

Hence, in this case the fractional heat equation, for d = 2, has the following form

∂

∂t
f(x, y, t) =

(
∂

∂x

∂β

∂xβ
+

∂

∂y

∂β

∂yβ

)
f(x, y, t),

i.e. a multidimensional heat equation with fractional sequential derivatives. We ob-
serve that (2.10) leads to the Riemann-Liouville fractional analog of the Laplace opera-
tor recently studied by Dalla Riva and Yakubovich in [7]. The physical and probabilistic
meaning of this formulation will be discussed below in relation to the general formula-
tion concerning Definition 2.2.

Remark 2.5. An interesting generalization of the fractional gradient defined in (2.1)
can be given in the case where the fractional order depends by the direction. In this
case we have the following definition

∇β(θ)
M f(x) =

∫
||θ||=1

θD
β(θ)
θ f(x)M(dθ), x ∈ Rd, β(·) ∈ (0, 1). (2.11)

As a special case of this definition, that can be more simple and suitable for the appli-
cations, one can consider the following operator

∇β(θ)
θ f(x) =

d∑
l=1

θl(θl · ∇)βlf(x), f ∈ L1(Rd). (2.12)

This directional-dependent fractional operator should be object of further investiga-
tions.

3 Multidimensional fractional directional advection equation

We study the d-dimensional fractional advection equation by following the approach
to fractional vector calculus suggested in the previous section. From a physical point of
view we get inspiration from [20], where the fractional vector calculus has been applied
in order to study the flow of contaminants in an heterogeneous porous medium. First
of all we derive the fractional multidimensional advection equation, starting from the
continuity equation, that is

∂ρα
∂t

= −divαV, α ∈ (0, 1), (3.1)
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Multidimensional fractional advection-dispersion equations

where ρα(x, t) is the density of contaminant particles and V(x, t) is the flux, that is the
vector rate at which mass is transported through a unit surface. The physical meaning
of this fractional conservation of mass can be directly related to the recent paper by
Wheatcraft and Meerschaert [32]. The relation between flux and density of contami-
nants is given by the classical Fick’s law, its form in absence of dispersion is simply

V(x, t) = uρα(x, t),

where u is the velocity field of contaminant particles; for simplicity in the following
discussion we take this velocity field constant in all directions. By substitution we find
the n-dimensional fractional advection equation in the following form

∂ρα
∂t

= −divα(uρα) = −∇αθ · (uρα).

We observe that, even if we roughly consider a constant velocity field u, this apparently
unrealistic assumption, is considered and discussed also in the literature about the
applications of fractional advection-dispersion in geophysics (see for example [27] and
references therein).

Hereafter we denote by χD the characteristic function of the set D. We are now
ready to state the following

Theorem 3.1. Let us consider the d-dimensional fractional advection equation

∂

∂t
ρα +∇αθ · (uρα) = 0, x ∈ Rd, t > 0, (3.2)

where α ∈ (0, 1), and u ≡ (u1, ....., ud) is the velocity field, with ui, i = 1, ..., d, constants.
The solution to (3.2), subject to the initial condition

ρα(x, 0) = f(x) ∈ L1(Rd),

is written as

ρα(x, t) =

∫
Rd
f(y)

d∏
l=1

Uα(θl · (x− y), (u · θl)t)χ{θl·(x−y)≥0}(y)dy, (3.3)

where Uα is the solution to(
∂

∂t
+ λ

∂α

∂xα

)
Uα(x, t) = 0, x ∈ R+, t > 0, λ ∈ R+, (3.4)

with initial condition Uα(x, 0) = δ(x).

Proof. We start by taking the Fourier transform of equation (3.2), given by

∂

∂t
ρ̂α(k, t) + u · ∇̂αθ ρα(k, t) = 0.

From (2.8), we obtain that(
∂

∂t
+

(
d∑
l=1

(u · θl)(−ik · θl)α
))

ρ̂α(k, t) = 0,

and by integration we find

ρ̂α(k, t) = f̂(k) exp

(
−t

d∑
l=1

(u · θl)(−ik · θl)α
)

(3.5)

= f̂(k)

d∏
l=1

exp (−t(u · θl)(−ik · θl)α) .
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If we take the Fourier transform of equation (3.4), then we obtain(
∂

∂t
+ λ(−iγ)α

)
Ûα(γ, t) = 0, (3.6)

where we used the fact that
∂̂α

∂xα
f(γ) = (−iγ)αf̂(γ).

By integrating (3.6), and by taking into account the initial condition, we obtain

Ûα(γ, t) = exp(−λt(−iγ)α).

Thus, we can rearrange (3.5) as follows

ρ̂α(k, t) = f̂(k)

d∏
l=1

exp
(
− t(u · θl)(−ik · θl)α

)
= f̂(k)

d∏
l=1

Ûα(γl, λlt)|γl=k·θl,λl=u·θl .

Finally, we observe that the inverse Fourier transform of any

Ûα(k · θl, λlt), l = 1, 2, · · · , d,

is given by
Uα(x · θl, λlt)χ{(x·θl)≥0} l = 1, 2, · · · , d,

and therefore, we get that
ρα(x, t) = (f ∗G)(x, t), (3.7)

where the symbol ∗ stands for Fourier convolution, and

G(x, t) =

d∏
l=1

Uα(x · θl, (u · θl)t)χ{(x·θl)≥0}.

Formula (3.7) can be explicitly written as

ρα(x, t) =

∫
Rd
f(y)G(x− y, t)dy, (3.8)

therefore (3.8) coincides with (3.3) and the proof is completed.

Let us consider the Lévy process (Xt)t≥0, with infinitesimal generator A and transi-

tion semigroup Pt = etA. The transition law of (Xt)t≥0 is written as

Ptu0(x) = Eu0(Xt + x),

and solves the Cauchy problem{
∂
∂tu(x, t) = (Au)(x, t),

u(x, 0) = u0(x).
(3.9)

We say that the process (Xt)t≥0 is the stochastic solution of (3.9). We also consider the
integral representation of A, given by

(Af)(x) =
1

(2π)d

∫
Rd
e−ik·xΦ(k)f̂(k)dk, (3.10)
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Multidimensional fractional advection-dispersion equations

for all functions f in the domain

D(A) =
{
f(x) ∈ L1

loc(R
d, dx) :

∫
Rd

Φ(k)|f̂(k)|2dk <∞
}

Then, we say that Pt, with symbol P̂t = exp(tΦ), is the semigroup associated with the
pseudo-differential operator A and Φ is the Fourier multiplier of A. Furthermore from
the characteristic function of the process (Xt)t≥0, we obtain that[

∂

∂t
Eeik·Xt

]
t=0

= Φ(k).

We also recall that a stable subordinator (Hαt )t>0, α ∈ (0, 1), is a Lévy process with non-
negative, independent and stationary increments, whose law, say hα(x, t), x ≥ 0, t ≥ 0,
has the Laplace transform

h̃α(s, t) =

∫ +∞

0

e−sxhα(x, t)dx = e−ts
α

, s ≥ 0. (3.11)

For more details on this topic we refer to [4].

Let Pt be the semigroup associated with (3.2), then, for all t > 0

‖Ptf‖∞ ≤ d‖f‖L1 . (3.12)

Indeed, from the fact that
‖Uα(·, t)‖∞ ≤ 1, uniformly

and, from (3.7),
‖G(·, t)‖∞ ≤ d‖Uα(·, t)‖∞,

we have that
‖Ptf‖∞ ≤ d‖Uα(·, t)‖∞‖f‖L1 ≤ d‖f‖L1 .

We present the following result concerning the equation (3.2).

Theorem 3.2. The stochastic solution to the d-dimensional fractional advection equa-
tion (3.2), subject to the initial condition ρα(x, 0) = δ(x), is given by the process

Zt =

d∑
l=1

θlH
α
l (λlt), t ≥ 0,

which is a random vector in Rd, where for l = 1, ..., d, λl = u · θl and Hαl (t), t > 0, are
independent α-stable subordinators.

Proof. We recall that

ρ̂α(k, t) =

d∏
l=1

exp
(
− t(u · θl)(−ik · θl)α

)
, (3.13)

is the Fourier transform of the solution to (3.2), with initial condition ρ0(x) = δ(x). By
using (3.11), formula (3.13) can be written as

ρ̂α(k, t) =

d∏
l=1

E exp
(
(ik · θl)Hαl (λlt)

)
(3.14)

= E exp

(
i

d∑
l=1

(k · θl)Hαl (λlt)

)

= E exp

(
ik ·

d∑
l=1

θlH
α
l (λlt)

)
= Eeik·Zt .
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Multidimensional fractional advection-dispersion equations

Hence ρα is the law of the process Zt =
∑d
l=1 θlH

α
l (λlt), that is a random vector whose

components are given by different linear combination of d independent α-stable subor-
dinators.

We observe that these processes can be studied in the general framework of Lévy
additive processes.

We now study the Cauchy problem for the multidimensional fractional advection
equation with random initial data. The theory of random solutions of partial differential
equations has a long history, starting from the pioneeristic works of Kampé de Fériet
[14].

Theorem 3.3. Let us consider the Cauchy problem{
∂
∂tρα +∇αθ · (uρα) = 0, x ∈ Rd, t > 0, α ∈ (0, 1),

ρα(x, 0) = X(x) ∈ L2(R),
(3.15)

where the random field X(x), x ∈ Rd+, is a random initial condition X : (Ω,A, P ) →(
R,B(R), e−x

2/2/
√

2π
)
, such that

X(x) =
∑
j∈N

cjϕj(x), cj =

∫
Rd
X(x)ϕj(x)dx, (3.16)

where {ϕj} is dense in L2(R). Then, the stochastic solution of (3.15) is given by

ρα(x, t) =
∑
j∈N

cjPtϕj(x),

where Pt is the transition semigroup associated with (3.2).

Proof. Since X ∈ L2, then there exists an orthonormal system {ϕj : j ∈ N} such that
(3.16) holds true in L2. Indeed the first identity in (3.16) must be understood in L2(dP ×
dx) sense as follows

lim
L→∞

E

∫
Rd

X(x)−
L∑
j=0

cjϕj(x)

2

dx

 = 0.

From Theorem 3.2, we know that Zt is the stochastic solution to the d-dimensional
fractional advection equation (3.2). In view of these facts we write the solution of (3.15)
as follows

ρα(x, t) = E [X(x + Zt)|FX ] (3.17)

= E

∑
j∈N

cjϕj(x + Zt)

∣∣∣∣FX


=
∑
j∈N

cjEϕj(x + Zt),

where FX is the σ-algebra generated by X and we recall that

cj =

∫
Rd
X(x)ϕj(x)dx.
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Multidimensional fractional advection-dispersion equations

We observe that
Eϕj(x + Zt) = Ptϕj(x),

is the solution to the Cauchy problem{
∂
∂tρα +∇αθ · (uρα) = 0, x ∈ Rd+, t > 0,

ρα(x, 0) = ϕj(x).
(3.18)

Therefore, (3.17) becomes
ρα(x, t) =

∑
j∈N

cjPtϕj(x),

and solves (3.15) as claimed, being (3.18) satisfied term by term. Also, from the fact
that P0 = Id, we get that

ρα(x, 0) =
∑
j∈N

cjP0ϕj(x) =
∑
j∈N

cjϕj(x) = X(x).

If X is represented as (3.16), then X is square-summable, that is∫
Rd
X2(x)dx =

∑
j∈N

c2j <∞.

Thus, from (3.12), we have that

‖ρα(·, t)‖∞ ≤
∑
j∈N
|cj |‖ϕj‖∞ <∞.

3.1 Multidimensional fractional advection-dispersion equation

We follow our approach to study a general fractional advection-dispersion equation
(FADE). We provide a multidimensional nonlocal formulation of the Fick’s law, written
as follows

V(x, t) = −ν∇β−1
θ ρβ(x, t), β ∈ (1, 2), ν ∈ R+, (3.19)

such that
∇ ·V(x, t) = −νDβθ ρβ(x, t).

The one-dimensional fractional Fick’s law has been at the core of many recent papers
(see for example [24] and the references therein). The total flux in the conservation of
mass (3.1) is given by the sum of the advective flux and the dispersive flux. Hence we
obtain the formulation of the FADE investigated in the next theorem.

Theorem 3.4. Let us consider the d-dimensional fractional advection-dispersion equa-
tion

∂

∂t
ρα,β +∇αθ · (uρα,β) = D

β
θ ρα,β , x ∈ Rd, t > 0, (3.20)

where α ∈ (0, 1), β ∈ (1, 2) and u ≡ (u1, ....., ud) is the velocity field, with ui, i = 1, ..., d,
are constants. The solution to (3.20), subject to the initial condition

ρα,β(x, 0) = δ(x),

is written as

ρα,β(x, t) =

d∏
l=1

Uα(θl · x, (u · θl)t) ∗ Uβ(θl · x, t)χ{(x·θl)≥0},
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where ∗ stands for convolution with respect to x, Uα is the solution to the one-dimensional
fractional advection equation(

∂

∂t
+ λ

∂α

∂xα

)
Uα(x, t) = 0, x ∈ R+, t > 0, λ ∈ R+,

with initial condition Uα(x, 0) = δ(x) and Uβ is the solution of the space-fractional diffu-
sion equation (

∂

∂t
− ∂β

∂xβ

)
Uβ(x, t) = 0, x ∈ R+, t > 0, β ∈ (1, 2). (3.21)

Proof. The proof follows the same arguments of Theorem 3.1. To begin with, we take
the Fourier transform of equation (3.20): by using (2.8), we obtain(

∂

∂t
+ (

d∑
l=1

(u · θl)(−ik · θl)α)

)
ρ̂α,β(k, t) =

(
d∑
l=1

(−ik · θl)β
)
ρ̂α,β(k, t)

and by integration we find

ρ̂α,β(k, t) = exp

(
−t

d∑
l=1

(u · θl)(−ik · θl)α
)

exp

(
t

d∑
l=1

(−ik · θl)β
)

(3.22)

=

d∏
l=1

exp (−t(u · θl)(−ik · θl)α) exp
(
t(−ik · θl)β

)
.

On the other hand, if we take the Fourier transform of equation (3.21), we obtain(
∂

∂t
− (−iγ)β

)
Ûβ(γ, t) = 0, β ∈ (1, 2),

then, integrating, we obtain

Ûβ(γ, t) = exp(t(−iγ)β).

Thus, we can rearrange (3.20) in the following way

ρ̂α,β(k, t) =

d∏
l=1

(
Ûα(γl, λlt)

∣∣∣∣
γl=k·θl,λl=u·θl

)(
Ûβ(γl, t)

∣∣∣∣
γl=k·θl

)

=

d∏
l=1

exp (−t(u · θl)(−ik · θl)α) exp
(
t(−ik · θl)β

)
.

Finally, from the convolution theorem, we conclude the proof.

For the reader’s convenience, we recall that the explicit form of the fundamental
solution of the Riemann-Liouville space-fractional equation (3.21) can be found for ex-
ample in [16]. It is also possible to give an explicit form to the solution of (3.20) in terms
of one-sided stable probability density function.

We also notice that in (3.19) we have considered two different order α 6= β, respec-
tively for the advection and dispersion term. Indeed, from a physical point of view the
two orders α and β can be different, although they are certainly related. The parameter
α was introduced from the fractional conservation of mass, hence it depends by the
geometry of the porous medium. The parameter β takes into account nonlocal effects
in the Fick’s law. Both of them are physically related to the heterogeneity of the porous
medium; an explicit relation between them must be object of further investigations.
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Remark 3.5. The stochastic solution to (3.20) is given by the sum of a random vector
whose components are given by different linear combination of d independent α-stable
subordinators (Zt in Theorem 3.2) and a multivariable α-stable random vector with
discrete spectral measure. This second term corresponds to the unique case in which
an α-stable random vector has independent components (see [26]). The proof is a direct
consequence of theorems 2.1 and 3.2.

4 Fractional power of operators and fractional shift operator

In order to highlight the applications of the fractional gradient, we recall some gen-
eral results about fractional power of operators. The final aim is to find an operational
rule for a shift operator involving fractional gradients, in analogy with the exponential
shift operator. A power α of a closed linear operator A can be represented by means of
the Dunford integral [15]

Aα =
1

2πi

∫
Γ

dλλα (λ−A)−1, <{α} > 0 (4.1)

under the conditions

(i) λ ∈ ρ(A) (the resolvent set of A) for all λ > 0;

(ii) ‖λ(λI +A)−1‖ < M <∞ for all λ > 0

where Γ encircles the spectrum σ(A) counterclockwise avoiding the negative real axis
and λα takes the principal branch. For <{α} ∈ (0, 1), the integral (4.1) can be rewritten
in the Bochner sense as follows

Aα =
sinπα

π

∫ ∞
0

dλλα−1(λ+A)−1A. (4.2)

By inserting (Hille-Yosida theorem)

(λ+A)−1 =

∫ ∞
0

dt e−λte−tA

into (4.2) we get that∫ ∞
0

dλλα−1(λ+A)−1 =

(∫ ∞
0

s−αe−sds

)(∫ ∞
0

ds sα−1e−sA
)

where ∫ ∞
0

s−αe−sds = Γ(1− α), α ∈ (0, 1)

and
1

Γ(α)

∫ ∞
0

ds sα−1e−sA = Aα−1

which holds only if 0 < α < 1. The representation (4.2) can be therefore rewritten as

Aα = Aα−1A, α ∈ (0, 1).

and, for α ∈ (0, 1), we get that

Aα = AAα−1 = A
[

1

Γ(1− α)

∫ ∞
0

ds s−αe−sA
]
.

On the other hand we can write the fractional power of the operator A as follows

Aα = AnAα−n, n− 1 < α < n, n ∈ N,
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and therefore, we can immediately recover the Riemann-Liouville fractional derivative
of order α ∈ (0, 1) as a fractional power of the ordinary first derivative A = ∂x (see for
example [25]). We also remark that, given the operator A as before, the strong solution
to the space fractional equation (

∂

∂t
+Aα

)
u(x, t) = 0

subject to a good initial condition u(x, 0) = u0(x), can be represented as the convolution

u(x, t) = e−tA
α

u0(x) = Ee−H
α
t A u0(x), (4.3)

in the sense that

lim
t→0

∥∥∥∥∥e−tA
α

u− u
t

−Aαu

∥∥∥∥∥
Lp(µ)

= 0,

for some p ≥ 1, with a Radon measure µ. In (4.3), we recall that Hαt , with t > 0, is the
α-stable subordinator and

Ee−H
α
t A =

∫ ∞
0

ds hα(s, t) e−sA, (4.4)

where hα is the density law of the stable subordinator. For α = 1, we obtain the solution

u(x, t) = e−tAu0(x),

from the fact that, we formally have that

lim
α→1

hα(x, s) = δ(x− s).

Indeed, for α → 1, we get that Hαt
a.s.−→ t which is the elementary subordinator ([4]).

Equation (4.3) appears of interest in relation to operatorial methods in quantum me-
chanics and, generally to solve differential equations. Actually, we recall the notion of
exponential shift operator. It is well known that

eθ∂xf(x) = f(x+ θ), θ ∈ R,

for f(x) ∈ Cb(0,+∞), that is the space of continuous bounded functions (see [12]).
This operational rule comes directly from the Taylor expansion of the analytic function
f(x) near x. It provides a clear physical meaning to this operator as a generator of
translations in quantum mechanics.

In a recent paper, Miskinis [21] discusses the properties of the generalized one-
dimensional quantum operator of the momentum in the framework of the fractional
quantum mechanics. This is a relevant topic because of the role of the momentum oper-
ator as a generator of translation. In its analysis he suggested the following definition
of the generealized momentum

p̂ = C
∂α

∂xα
, α ∈ (0, 1), (4.5)

with C a complex coefficient, such that, if α = 1 then we have the classical quantum
operator p̂ = −i~∂x. In the same way, under the previous analysis we can introduce a
fractional shift operator as

e−θ∂
α
x f(x) =

∫ ∞
0

ds hα(s, θ) e−s∂xf(x) =

∫ ∞
0

ds hα(s, θ) f(x− s), θ > 0. (4.6)
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This fractional operator does not give a pure translation, it is a convolution of the initial
condition with the density law of the stable subordinator, stressing again the possible
role of this stochastic analysis in the framework of the fractional quantum mechanics.
However, in the special case α = 1, it gives again the classical shift operator. This
operational rule has a direct interpretation in relation to the definition of a general-
ized quantum operator, similar to that of (4.5). This stochastic view of the generator of
translations can be, in our view, a good starting point for further investigations. More-
over, we can generalize these considerations to multidimensional fractional operators
and give the operational solution of a general class of fractional equations as follows

Proposition 4.1. Consider the multidimensional fractional advection equation(
∂

∂t
+

d∑
i=1

∂α

∂xαi

)
ρα(x, t) = 0, α ∈ (0, 1), x ∈ Rd+, t > 0,

subject to the initial and boundary conditions

ρα(x, 0) =

d∏
i=1

ρ0(xi), ρα(0, t) = 0.

Then, its analytic solution is given by

ρα(x, t) = e−t
∑d
i=1 ∂

α
xiρα(x, 0).

Proof. We can write

ρα(x, t) = e−t
∑d
i=1 ∂

α
x ρ0(x, 0)

=

d∏
i=1

e−t∂
α
xiρ0(xi, 0).

Hence, by direct application of (4.6) we have

ρα(x, t) =

d∏
i=1

∫ ∞
0

ds hα(s, t) ρ0(xi − s)

=

∫ ∞
0

ds hα(s, t) ρ0(x− s).

Thus, we conclude that

ρα(x, t) =

∫ ∞
0

dshα(s, t)ρ0(x− s) = e−t
∑d
i=1 ∂

α
xiρα(x, 0),

as claimed.

Let us recall definition and main properties of the compound Poisson process. Con-
sider a sequence of independent Rn-valued random variables Yi, i ∈ N, with identical
law ν(·). Let (Nt)t≥0 be a Poisson process with intensity λ > 0. The compound Poisson
process is the Lévy process

Xt =

N(t)∑
i=1

τ(Yi)

with infinitesimal generator (see for example [13], pag.131)

(Af)(x) =

∫
Rn

(f(x+ τ(y))− f(x)) ν(dy).

We state the following result about the stochastic processes driven by equations involv-
ing the fractional gradient (2.7).

EJP 19 (2014), paper 61.
Page 15/31

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2854
http://ejp.ejpecp.org/


Multidimensional fractional advection-dispersion equations

Theorem 4.2. Let us consider the random vector (Zt)t≥0 in Rd, given by

Zt =

d∑
j=1

θjH
α
j (Xt), (4.7)

where Hαj are independent α-stable subordinators, with α ∈ (0, 1) and (Xt)t≥0 is an
independent compound Poisson process

Xt =

N(t)∑
i=1

τ(Yi),

with τ : Rd 7→ R+. The infinitesimal generator of the process (4.7) is given by

(Af)(x) =

d∑
j=1

∫
Rd

[
(e−τ(y)(θj ·∇)α − 1)f(x)

]
ν(dy).

Moreover assuming that θj ≡ ej , ∀j ∈ N and

f(x) =

d∏
i=0

gi(xi),

where gi(xi) are analytic functions, we find

(Af)(x) =

d∑
j=1

∫
Rd

{[∫ +∞

0

ds hα(s, τ(y))gj(xj − s)
]
− gj(xj)

}
ν(dy), (4.8)

where hα is the density law of a stable subordinator.

Proof. The characteristic function of the random vector (4.7) is

Eeik·Zt = E exp

i d∑
j=1

k · θjHαj (Xt)


=

d∏
j=1

E exp
(
ik · θjHαj (Xt)

)
=

d∏
j=1

E exp (−Xt(−ik · θj)α)

=

d∏
j=1

exp
(
−λt(1− Ee−(−ik·θj)ατ(Y ))

)
.

Then, by differentiation, we can find the Fourier multiplier

Φ(k) =
[
∂tEe

ik·Zt
]
t=0

= λ

d∑
j=1

∫
Rd

(
e−(−ik·θj)ατ(y) − 1

)
ν(dy),

of the generator A, where ν(·) is the law of the jumps of the compound Poisson process.
Finally, by inverse Fourier transform we have

(Af)(x) =

d∑
j=1

∫
Rd

[
(e−τ(y)(θj ·∇)α − 1)f(x)

]
ν(dy).
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In order to prove (4.8), we notice that

e−t∂
α
x f(x) = Ee−H

α
t ∂xf(x),

where

Ee−H
α
t ∂x =

∫ +∞

0

ds hα(s, t)e−s∂x

and hα is the density law of the stable subordinator. Recalling that, given an analytic
function, the exponential operator acts as a shift operator, i.e.

e−t∂xf(x) = f(x− t),

we find that

e−τ(y)∂αxi f(xi) =

∫ +∞

0

ds hα(s, τ(y))f(xi − s)ds.

Hence, assuming that

f(x) =

d∏
k=1

gi(xi),

in the case θj ≡ ej , ∀j ∈ N, we conclude that

(Af)(x) =

d∑
j=1

∫
Rd

{[∫ +∞

0

ds hα(s, τ(y))gj(xj − s)
]
− gj(xj)

}
ν(dy).

5 Lévy-Khinchine formula with fractional gradient

In this section we discuss some results about Markov processes related to the above
definition of fractional gradient. We present a new version of the Lévy-Khinchine for-
mula involving fractional operators and we discuss some possible applications. It is
well known that the Lévy-Khinchine formula provides a representation of characteristic
functions of infinitely divisible distributions. Let us recall that, given a one-dimensional
Lévy process (Xt)t≥0, we have

EeikXt = eΦ(k)t

with characteristic exponent given by

Φ(k) = ikb− k2c

2
+

∫
R

(
eikx − 1− (ikx)χ{|x|<1}

)
ν(dx),

where b ∈ R is the drift term, c ∈ R is the diffusion term and ν(·) is a Lévy measure.
In the following we will consider the case b = c = 0. In this case the infinitesimal

generator of (Xt)t≥0, is given by

(Af)(x) =
1

(2π)

∫
R

e−ikxΦ(k)f̂(k)dk =

∫
R

(
f(x+ y)− f(x)− y∂xf(x)χ{|y|<1}

)
ν(dy).

(5.1)

Hereafter the symbols "∼" or "
d
=" stand for equality in law or equality in distribution.

Let us consider the random vector (Zt)t≥0 in Rd, given by

Zt =

N(t)∑
j=1

Yj −
d∑
l=1

θl(θl · EY)1/αHαl (λt)χD(Y), (5.2)
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where
D = {Y ∈ Rd : E(θl ·Y) > 0, l = 1, · · · , d},

Hαl are i.i.d α-stable subordinators, with α ∈ (0, 1), and Yj are d-dimensional i.i.d. ran-
dom vectors such that Yj ∼ Y, for all j ∈ N and P (Y ∈ A) =

∫
A
ν(dy), as before. We

recall that (Nt)t≥0 in (5.2) is a Poisson process with intensity λ > 0. We also observe
that the following equality in distribution holds

Zt
d
=

N(t)∑
j=1

Yj −
d∑
l=1

θl(θl · EYj)
1/αHαl (λt)χD(Yj).

We are now ready to state the following

Theorem 5.1. The infinitesimal generator of the process (5.2) is given by

(Lθf)(x) =

∫
Rd

[
(f(x + y)− f(x)− y ·∇α

θ f(x)χD(θ)(y)
]
ν(dy), (5.3)

where ∇α
θ is the fractional gradient in the sense of equation (2.7), and

D(θ) =

d⋂
l=1

{y ∈ Rd : θl · y ≥ 0}.

Proof. We consider the characteristic function of the random vector (5.2)

Eeik·Zt = E exp

iN(t)∑
j=1

Yj · k

 E exp

(
i

d∑
l=1

(θl · EY)1/αHαl (λt)(k · θl)χD(Y)

)
. (5.4)

The first term can be written as follows

E exp

iN(t)∑
j=1

Yj · k

 = E
(
Eei

∑N(t)
j=1 Yj ·k

)
,

and, from the fact that Yj ∼ Y, we have

E
(
Eei

∑n
j=1 Yj ·k|N(t) = n

)
= E

(
(EeiY·k)n|N(t) = n

)
(5.5)

=

∞∑
n=0

[EeiY·k]nPr{N(t) = n}

=

∞∑
n=0

[EeiY·k]n
(λt)n

n!
e−λt

= e−λt(1−Ee
iY ·k).

Regarding the second term in (5.4), we notice that

(θl · EY)1/αHαl (λt)χD(Y)
d
= Hαl ((θl · EY)λt)χD(Y).

From the fact that Hαl are i.i.d α-stable subordinators, we obtain

E exp

(
i

d∑
l=1

(θl · EY)1/αHαl (λt)k · θlχD(Y)

)
=

d∏
l=1

E exp
(
i(θl · EY)1/αHαl (λt)(k · θl)χD(Y)

)
=

d∏
l=1

exp (−λt(−ik · θl)α(θl · EY)χD(Y))
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Finally, we get

Eeik·Zt = exp

(
λt(Eeik·Y − 1−

d∑
l=1

(−ik · θl)α(θl · EY)χD(Y))

)
,

where the Fourier multiplier −Φ(k), of Lθ, is given by

Φ(k) =
[
∂tEe

ik·Zt
]
t=0

= λ

(
Eeik·Y − 1−

d∑
l=1

(−ik · θl)α(θl · EY)χD(Y)

)

= λ

∫
Rd

[
eik·y − 1−

(
d∑
l=1

(−ik · θl)α(θl · y)

)
χD(θ)(y)

]
ν(dy).

We recall that ν(·) is the law of Y. Then, we can use equation (3.10) and, by inverse
Fourier transform, we get

(Lθf)(x) =

∫
Rd

[
(f(x + y)− f(x))− y ·∇α

θ f(x)χD(θ)(y)
]
ν(dy),

which is the claim.

Remark 5.2. In the case θl ≡ el, for all l,

D(θ) =

d⋂
l=1

{y ∈ Rd : el · y ≥ 0} ≡ Rd+

and (5.3) becomes

(Lθf)(x) =

∫
Rd

(f(x + y)− f(x))−
d∑
j=1

yj∂
α
xjf(x)χR+(y)

 ν(dy).

Remark 5.3. We observe that in the special case d = 1, α = 1, the process (5.2)
becomes the compensated Poisson process

Zt =

N(t)∑
j=1

Yj − λtEY, t > 0.

In this case, the law of (Zt)t≥0 is given by

P (Zt ∈ dy)/dy =

∞∑
n=0

f∗nY (y + λtEY )e−λt
(λt)n

n!
,

where fY is the law of the jumps Yj ∼ Y and f∗n is the n-convolution of fY . Straight-
forward calculations lead to the explicit representation of the law for α 6= 1. Indeed, for
α ∈ (0, 1), we have that

P (Zt ∈ dy)/dy =

∞∑
n=0

Ef∗nY (y + (λEY )1/αHαt ).

Let us consider the random vector W, whose components are independent folded
Gaussian random variables with variance rEβ , where rEβ is the inverse Gamma distri-
bution, with probability density function given by

P{rEβ ∈ ds}/ds =
1

Γ(β)

(s
r

)−β−1

e−
r
s , s ≥ 0
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Multidimensional fractional advection-dispersion equations

where r ≥ 0 is a scale parameter and β > 0 a shape parameter. We observe that

P{W ∈ dy}/dy = 2d
∫ ∞

0

e−
|y|2
4s√

(4πs)d
P{rEβ ∈ ds} (5.6)

=
2drβ√

(4π)dΓ(β)

∫ ∞
0

s−β−1− d2 e−s
−1(

|y|2
4 +r)ds

=
Γ(β + d

2 )

Γ(β)

22(β+d)√
(4π)d

rβ

(|y|2 + 4r)
β+ d

2

= mr(|y|2).

Then we have that

EWj =
1

Γ(β)

2rβ+1

√
4π

∫ ∞
0

∫ ∞
0

y s−β−
3
2 e−s

−1( y2

4 +r)dsdy

=
Γ(β − 1

2 )

Γ(β)

2r
3
2

√
π
.

We assume that the random vectors Yj appearing in (5.2) are taken such that

Yj ∼ εjWj , j ∈ N, (5.7)

where εj is the Rademacher random variable, i.e. P (εj = +1) = p and P (εj = −1) = q

and Wj are the i.i.d random vectors distributed like W. It is worth to notice that, in
this case, the set D is given by

D = {(p− q)(θl · EW) > 0, l = 1, . . . , d}

where EW is positive.

We are now able to state the following theorem.

Theorem 5.4. Let us consider the process (5.2) with jumps (5.7). For p 6= q and
β ∈ (0, 1/2), we have that

Z(t/rβ)
d−−−→

r→0
Q(t),

where Q(t), t ≥ 0, has generator

(Lθp,qf)(x) = Cd(β)

∫
Rd

[
(p f(x + y) + q f(x− y)− f(x)− (p− q)y ·∇α

θ f(x)χD(θ)(y)
] dy

|y|2β+d

(5.8)

= Cd(β)p

∫
Rd

[
(f(x + y)− f(x)− y ·∇α

θ f(x)χD(θ)(y)
] dy

|y|2β+d
(5.9)

+ Cd(β)q

∫
Rd

[
(f(x− y)− f(x) + y ·∇α

θ f(x)χD(θ)(y)
] dy

|y|2β+d
, (5.10)

with p, q ≥ 0 such that p+ q = 1.

Proof. Under the assumption that Yj ∼ εjWj in (5.2) we have that

EY = pEW − qEW = (p− q)EW.

Hence, we have

Zt =

N(t)∑
j=1

εjWj −
d∑
l=1

θl((p− q)θl · EW)1/αHαl (λt)χD(εW).
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Its characteristic function is given by

Eeik·Zt = E exp

iN(t)∑
j=1

εjWj · k

 E exp

(
i

d∑
l=1

((p− q)θl · EW)1/αHαl (λt)k · θl χD(εW)

)
.

(5.11)
The first operand in (5.11) can be written as follows

E exp

iN(t)∑
j=1

εjWj · k

 = E
(
Eei

∑n
j=1 εjYj ·k|N(t) = n

)
= e−λt(1−Ee

iεY ·k)

= e−λt((p+q)−pEe
iY ·k−qEe−iY ·k).

The second term in (5.11), being Hαl i.i.d α-stable subordinators, is given by

E exp

(
i

d∑
l=1

((p− q)θl · EW)1/αHαl (λt)(k · θl)χD(εW)

)

=

d∏
l=1

E exp
(
i((p− q)θl · EW)1/αHαl (λt)k · θl χD(εW)

)
=

d∏
l=1

exp (−λt(−ik · θl)α((p− q)θl · EW)χD(εW)) .

Finally, we have that

Eeik·Zt = exp

(
λt(pEeik·Y + qEe−ik·Y − 1)−

d∑
l=1

(−ik · θl)α((p− q)θl · EW)χD(εW)

)
= etΦr(k),

where

Φr(k) = λ

∫
Rd

[
peik·y + qe−ik·y − 1− (p− q)

d∑
l=1

(−ik · θl)α(θl · y)χD(θ)(y)

]
mr(|y|2) dy

with mr(·) given by equation (5.6).

We now consider the process Z(t/rβ), whose characteristic function is given by

Eeik·Z(t/rβ) = exp

(
t

rβ
Φr(k)

)
.

Then, we get the Fourier symbol[
∂tEe

ik·Z(t/rβ)
]
t=0

=
1

rβ
Φr(k)

=
λ

rβ

(
pEeik·Y + qEe−ik·Y − 1−

d∑
l=1

(−ik · θl)α((p− q)θl · EYχD(εW)

)

= Cd(β)λ

∫
Rd

[
peik·y + qe−ik·y − 1− (p− q)

d∑
l=1

(−ik · θl)α(θl · y)χD(θ)(y)

]
dy

(|y|2 + 4r)
β+ d

2

,

where

Cd(β) =
Γ(β + d

2 )

Γ(β)

22(β+d)√
(4π)d

.
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This implies that the process Q(t), obtained from

Z(t/rβ)
d−−−→

r→0
Q(t),

has a generator with Fourier multiplier

1

rβ
Φr(k)

r→0−−−→ Φ(k) (5.12)

where

Φ(k) = Cd(β)λ

∫
Rd

[
peik·y + qe−ik·y − 1− (p− q)

d∑
l=1

(−ik · θl)α(θl · y)χD(θ)(y)

]
dy

|y|2β+d
.

We conclude that the generator of the process Q(t) is given by the inverse Fourier
transform of Φ in (5.12), i.e.

(Lθp,qf)(x) = Cd(β)

∫
Rd

[
(p f(x + y) + q f(x− y)− f(x)− (p− q)y ·∇α

θ f(x)χD(θ)(y)

]
dy

|y|2β+d
,

(5.13)

as claimed.

We now study the convergence of the integral (5.13). By taking the multidimensional
MacLaurin expansion of the integrand up to the second order term, we have

p f(x + y) + q f(x− y)− (p+ q)f(x)− (p− q)y ·∇α
θ f(x)χD(θ)(y) (5.14)

≈ (p− q)
[
y · ∇f(x)− y · ∇αθ f(x)χD(θ)(y)

]
+ |y|2∆f(x),

hence we obtain

|p f(x + y) + q f(x− y)− (p+ q)f(x)− (p− q)y ·∇α
θ f(x)χD(θ)(y)|

|y|2β+d

≤
|P (|y|)|‖D2,α

p,q f(x)‖∞
|y|2β+d

,

where P (z) is a second order polynomial in the variable z = |y|, arising from the
MacLaurin expansion (5.14). We observe that

|∇βθ f | ≤
∫
Rd
|∇̂βθ f(x)|dx,

and therefore, by definition (see (2.8)),

|∇βθ f | < +∞.

Due to the first order term appearing in |P (|y|)|, we have that

|P (|y|)|‖D2,α
p,q f‖∞

|y|2β+d
≤
‖D2,α

p,q f‖∞
|y|2β+d−1

,

which implies that (5.13) converges for β ∈ (0, 1/2). The same reasoning applies for the
convergence of (5.9) and (5.10).
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We notice that, considering jumps (5.7), the second term in (5.2) reduces to a sum
of orthonormal vectors, whose components are given by independent stable subordina-
tors, that is

d∑
l=1

θl((p− q)θl · EW)1/αHαl (λt)χD(εW) = r
3
2α

d∑
l=1

θl ClH
α
l (λt)χD(εW),

where

Cl =

(
(p− q)

2Γ(β − 1
2 )

√
πΓ(β)

d∑
i=1

θli

)1/α

.

Moreover, we observe that, by considering zero-mean jumps in (5.2), we obtain that
(see for example [9])

Zt/rβ =

N(t/rβ)∑
j=1

Yj
d−→ S2β

t , as r → 0,

where (St)t≥0 is an isotropic vector of stable processes.

Remark 5.5. We recall that the fractional Laplacian is defined as follows

(−∆)αf(x) = Cd(α) p.v.

∫
Rd

f(x)− f(y)

|x− y|2α+d
dy

=
Cd(α)

2

∫
Rd

f(x + y) + f(x− y)− 2f(x)

|y|2α+d
dy,

where α ∈ (0, 1) and “p.v." stands for “principle value". Also, the fractional Laplacian is
commonly defined in terms of its Fourier transform, i.e.

(−∆)αf(x) =
1

(2π)d

∫
Rd
e−ik·x|k|2αf̂(k)dk, (5.15)

with domain given by the Sobolev space of L2 functions for which (5.15) converges.
Formula (5.8), for p = q = 1/2, takes the form

(Lθ1/2,1/2f)(x) =
Cd(β)

2

∫
Rd

[( f(x + y) + f(x− y)− 2f(x)]
dy

|y|2β+d
= −(−∆)βf(x),

(5.16)
which is independent from the direction θ. We observe that (5.16) converges for
β ∈ (0, 1). This comes from the fact that the first order term in P (|y|) disappears and
therefore

|P (|y|)|‖D2,α
p,q f‖∞

|y|2β+d
≤
‖D2,α

p,q f‖∞
|y|2β+d−2

.

Remark 5.6. We notice that formula (5.8) includes as special cases, completely posi-
tively or negatively skewed operators. Indeed, we have the specular cases{

(Lθ1,0f)(x) = Cd(β)
∫
Rd

[
( f(x + y)− f(x)− y ·∇α

θ f(x)χD(θ)(y)
]

dy
|y|2β+d ,

(Lθ0,1f)(x) = Cd(β)
∫
Rd

[
(f(x− y)− f(x) + y ·∇α

θ f(x)χD(θ)(y)
]

dy
|y|2β+d .

The first operator is the infinitesimal generator governing processes with only positive
jumps, the second one with purely negative jumps.

Remark 5.7. It is well known that the generator of the subordinate process (XHαt
)t>0

is given by

− (−L)αf(x) =
α

Γ(1− α)

∫ ∞
0

(Psf(x)− f(x))
ds

sα+1

where Ps = esL is the Feller semigroup of the Lévy process (Xs)s>0 (see for example
[1]).
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6 Frobenius-Perron operator and fractional equations

In this section we recall some results about transport equations involving Frobenius-
Perron operator. Then we show some applications of this approach in the framework of
differential equations involving fractional operators.

Given the measure space (X,B(X), µ), the Frobenius-Perron operator K : L1(X) →
L1(X) corresponds to the non singular transformation T : X 7→ X, satisfying the condi-
tion ∫

E

Kf(x)dx =

∫
T−1(E)

f(x)dx,

for every measurable set E and f ∈ L1(X,B(X), µ).

Let us consider the transport equation

∂u

∂t
= Au− λ(I −K)u, (6.1)

where

Au = −
n∑
k=1

∂

∂xk
(a(x)u),

and K is the Frobenius-Perron operator associated with the map T : x 7→ x − τ(x) (see
for example [31]). This means that the term λ(I −K)u appearing in (6.1) describes the
jumps of the new process obtained by the process driven by A. Then, the stochastic
solution, say (Xt)t≥0, to (6.1) is the solution to the stochastic differential equation

dXt = a(Xt)dt+ τ(Xt)dNt,

where (Nt)t≥0 is the Poisson process such that

dNt =

{
1, Poisson arrival at time t,

0, otherwise.

We notice that, if a(x) = 0, then K is the backward operator B and u(k, t) = pk(t),
k ∈ N, t > 0, becomes the law of the homogeneous Poisson process. Indeed, formula
(6.1) takes the form

∂pk
∂t

(t) = −λ(I −B)pk(t)

= −λ(pk(t)− pk−1(t)).

On the other hand, as already pointed out before, the compound Poisson process

Zt =

N(t)∑
j=1

Yj

has a generator written as

(Af)(x) =

∫
R

(f(x− y)− f(x))P (Y ∈ dy),

where the jump τ equals Y with law P (Y ∈ dy)/dy.

We can now state the following
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Theorem 6.1. Let us consider the process

Zt =

N(t)∑
j=1

Yj (6.2)

with
Yj

d
= Y (1), ∀j ∈ N,

where (Yt)t≥0 is the stochastic process driven by

∂f

∂t
= Gf.

Then (6.2) is the stochastic solution to the equation

∂u

∂t
= −λ(I − eG)u, x ∈ R, t > 0. (6.3)

This means that the law of the jumps in the compound Poisson process is fixed by
the operator G.

Proof. The process (Yt)t≥0 has infinitesimal generator G and transition semigroup Pt =

etG with symbol P̂t = etΦ. The transition law is written as

Ptf0(x) = Ef0(Yt + x),

and solves the Cauchy problem {
∂f
∂t = Gf,
f(x, 0) = f0(x).

Then, we have that P1 = eG . Let us consider the Fourier transform of (6.3),

∂û

∂t
= −λ(1− eΦ(k))û,

where Φ is the Fourier multiplier of the operator G. By integrating with respect to time,
we obtain

û(k, t) = exp
(
−λt(1− eΦ(k))

)
. (6.4)

The characteristic function of the process (Zt)t≥0 is given by (see formula (5.5) above)

EeikZt = exp
[
−λt(1− EeiY (1)k)

]
. (6.5)

Since
EeiY (1)k = eΦ(k),

we have that (6.5) coincides with (6.4), as claimed.

Remark 6.2. We specialize formula (6.3) in order to obtain some connections with
(6.2). In the case G = −∂x, the Perron-Frobenius operator K is associated to the map
T : x 7→ x− 1. Then we have that (6.3) becomes

∂u

∂t
= −λ(I − e−∂x)u = λ(u(x− 1, t)− u(x, t)), (6.6)

and eG = B, is the backward operator. The stochastic solution to (6.6) is therefore

Zt = N(t),
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that is the homogenous Poisson process.
If G = −∂αx , that is the Riemann-Liouville derivative of order α ∈ (0, 1) then, by using

(4.6) we have that

eGf(x) = e−∂
α
x f(x) =

∫ ∞
0

ds hα(s, 1) f(x− s).

Hence, we have that

Yj
d
= Hα(1), ∀j,

so that

Zt
d
=

N(t)∑
j=1

Hαj (1).

Moreover, by using the fact that (see (4.4) above)

e−t∂
α
x f(x) = Ee−H

α
t ∂xf(x),

we have that

−λ(I − e−∂
α
x )f(x) = λE(e−H

α
t ∂x − 1)f(x)

= λ

∫ +∞

0

(
e−y∂xf(x)− f(x)

)
hα(dy, 1)

= λ

∫ +∞

0

(f(x− y)− f(x))hα(dy, 1).

Theorem 6.3. Let us consider the equation

∂v

∂t
+∇αθ (uv) = −λ(I −K)v, x ∈ Rd, t > 0, (6.7)

subject to the initial condition v(x, 0) = δ(x), where α ∈ (0, 1), u is a vector with constant
coefficients and K = e−1·∇. The stochastic solution to (6.7) is given by

Yt = Nt +

d∑
j=1

θjH
α ((θj · u)t) (6.8)

where Nt = 1Nt and 1 = (1, 1, . . . , 1). Furthermore,

v(x, t) =

∞∑
m=0

ρα(x−m1, t)e−λt
(λt)m

m!
, (6.9)

where ρα(x, t) is the fundamental solution of (3.2).

Proof. The characteristic function of (6.8), is given by

Eeik·Y = E exp

ik · 1Nt +

d∑
j=1

ik · θjHα ((θj · u)t)

 (6.10)

= exp

−λt(1− eik·1)−
d∑
j=1

(θj · u)(−ik · θj)αt

 .

From (6.7), by taking the Fourier transform we obtain

∂v̂

∂t
+

d∑
j=1

(θj · u)(−ik · θj)αv̂ = −λ(1− eik·1)v̂,
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which leads to

v̂(k, t) = exp

−λt(1− eik·1)−
d∑
j=1

(θj · u)(−ik · θj)αt

 . (6.11)

Formula (6.11) coincides with (6.10), as claimed.

In order to prove (6.9), we observe that (6.11) can be written as follows

v̂(k, t) = exp
(
−λt(1− eik·1)

)
exp

− d∑
j=1

(θj · u)(−ik · θj)αt

 (6.12)

= exp
(
−λt(1− eik·1)

)
ρ̂α(k, t),

where ρ̂α(k, t) is the Fourier transform of the fundamental solution of (3.2). We now
consider the Fourier transform of (6.9). Recalling the operational rule

ρα(x−m1, t) = e−m(1·∇)ρα(x, t),

we have

ρ̂α(k, t)e−λt
∞∑
m=0

ei(1·k)m (λt)m

m!
= ρ̂α(k, t)e−λt(1−e

ik·1)

which coincides with (6.12).

Remark 6.4. We observe that for λ = 0, we have that

v(x, t) = ρα(x, t)

is the fundamental solution of (3.2).

7 Second order directional derivatives and their fractional power

We start to deepen the meaning of second order directional derivative (θ · ∇)2. We
notice that

(θ · ∇)2 =
∑
i,j

θiθj∂xi∂xj (7.1)

=
∑
i,j

aij∂xi∂xj ,

where the associated matrix {aij} is symmetric and singular. Also we assume that
‖θ‖ = 1.

The solution to the equation

∂

∂t
u(x, t) = (θ · ∇)2u(x, t), x ∈ Rd, t ≥ 0, (7.2)

subject to the initial condition u(x, 0) = δ(θ · x), is given by (see for example [8])

u(x, t) = g((θ · x), t), (7.3)

where

g(x, t) =
e−

x2

4t

√
4πt

,
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is the law of the one-dimensional Brownian motion (Bt)t>0. We will write (Bt)t>0 for
the d-dimensional vector, whose elements are completely correlated one dimensional
Brownian motions. We say that

It = θ ·Bt, t ≥ 0,

is the stochastic solution to (7.2). Notice that It is a Gaussian process with singular
covariance matrix and degenerate multivariate normal distribution.

Therefore, we can write the solution to (7.2), subject to an initial condition u(x, 0) =

u0(x), as

Ptu0(x) =

∫
Rd
u0(y)

e−
|θ·(y−x)|2

4t

√
4πt

dy, (7.4)

where Pt = et(θ·∇)2 is the associated semigroup. We note that: P0 = Id; Pt1 = 1 and
PtPsf = Pt+sf .

We are now ready to present an integral representation of the power α ∈ (0, 1) of
the operator (θ · ∇)2 and a stochastic representation of the related solutions.

Theorem 7.1. The stochastic solution of the fractional differential equation( ∂
∂t

+
(
−(θ · ∇)2

)α )
u(x, t) = 0, x ∈ Rd, t > 0, α ∈ (0, 1), (7.5)

subject to the initial condition u(x, 0) = f(x) ∈ L1(Rd), is given by

Iαt = θ ·BHαt
. (7.6)

In equation (7.5), the power α ∈ (0, 1) of the operator (θ · ∇)2, is given by

−
(
−(θ · ∇)2

)α
f(x) =

C(α)

2

∫
Rd

(f(y + x) + f(x− y)− 2f(x))

|θ · y|2α+1
dy, (7.7)

with

C(α) =
1

π
Γ(2α+ 1) sin(πα).

Proof. Let us prove (7.7). The general expression for the power α of the operator A is
given by (see for example [1, 13])

− (−A)αf(x) =
α

Γ(1− α)

∫ ∞
0

(Psf(x)− f(x))

sα+1
ds, (7.8)

where Ps = esA, is the transition semigroup related to equation (3.9) with representa-
tion (3.10) for A.

By using equation (7.8) and (7.4), we have that

−(−(θ · ∇)2)αf(x) =
α

Γ(1− α)

∫ ∞
0

(Psf(x)− f(x))
ds

sα+1

=
α

Γ(1− α)

∫
Rd

(f(y)− f(x))

[∫ ∞
0

e−
|θ·(y−x)|2

4s

√
4πs

ds

sα+1

]
dy

=
4αα

Γ(1− α)

Γ(α+ 1
2 )

√
π

∫
Rd

f(y)− f(x)

|θ · (y − x)|2α+1
dy

and therefore, we arrive at the following representation

− (−(θ · ∇)2)αf(x) = C(α)

∫
Rd

f(y)− f(x)

|θ · (y − x)|2α+1
dy (7.9)
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where, in view of the duplication formula

Γ(2α) =
4α−1

√
π

Γ(α)Γ(α+
1

2
),

we get that

C(α) =
4αα

Γ(1− α)

Γ(α+ 1
2 )

√
π

=
1

π
Γ(2α+ 1) sin(πα).

We notice that (7.9), must be considered in principal value, due to the singular kernel.
However, we have that

C(α) p.v.

∫
Rd

f(y + x)− f(x)

|θ · y|2α+1
dy (7.10)

=
C(α)

2

∫
Rd

(f(y + x) + f(x− y)− 2f(x))

|θ · y|2α+1
dy.

Indeed, taking the Fourier transform of the last term, we obtain

C(α)

2

∫
Rd

(
eik·y + e−ik·y − 2

)
|θ · y|2α+1

f̂(k)dy

=
C(α)

2

∫
Rd

(
eik·y − 1

)
+
(
e−ik·y − 1

)
|θ · y|2α+1

f̂(k)dy

= C(α)

∫
Rd

(
eik·y − 1

)
|θ · y|2α+1

f̂(k)dy,

which coincides with the Fourier transform of the first term in (7.10).
In order to prove that (7.6) is the stochastic solution of (7.5), let us consider

u(x, t) =

∫ ∞
0

ds hα(s, t)Ps f(x) (7.11)

=

∫ ∞
0

ds hα(s, t)es(θ·∇)2f(x)

=

∫ ∞
0

ds hα(s, t)e−s(−(θ·∇)2)f(x)

= e−t(−(θ·∇)2)
α

f(x).

Then, (7.11) is the solution to (7.5), as claimed.

Remark 7.2. We notice that for d = 1 and α ∈ (0, 1), the equation (7.7) becomes

−

(
−
(
∂

∂x

)2
)α

f(x) = C(α)

∫
R

f(y)− f(x)

|y − x|2α+1
dy =

∂2αf(x)

∂|x|2α
,

that is the Riesz fractional derivative as expected. Also, from equation (7.7), we find
that

d∑
l=1

−(−(θl · ∇)2)αf(x) =

d∑
l=1

∫
Rd

(f(y)− f(x)) J(θl · (x− y))dy, (7.12)

where

J(θl · (x− y)) =
C(α)

|θl · (x− y)|2α+1
.

If θi ≡ ei, i = 1, · · · , d and α ∈ (0, 1), then we have that

d∑
l=1

−(−(el · ∇)2)αf(x) =

d∑
l=1

∂2α

∂|xl|2α
f(x).
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Remark 7.3. Special care must be given to the case α = 1
2 in d = 1. In this case

equation (7.12) becomes a Cauchy integral

−

(
−
(
∂

∂x

)2
)1/2

f(x) =
p.v.

π

∫
R

f(y)− f(x)

|y − x|2
dy,

where, as usual, “p.v." stands for “principal value".
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