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Abstract: Let B(H)(t), t ∈ [−1, 1], be the fractional Brownian motion with Hurst
parameter H ∈

(
1
2
, 1
)
. In this paper we present the series representation

B(H)(t) = a0tξ0 +
∞∑

j=1

aj

(
(1− cos(jπt))ξj + sin(jπt)ξ̃j

)
, t ∈ [−1, 1],

where aj, j ∈ N ∪ {0}, are constants given explicitly, and ξj, j ∈ N ∪ {0}, ξ̃j, j ∈ N, are
independent standard Gaussian random variables. We show that the series converges
almost surely in C[−1, 1], and in mean-square (in L2(Ω)), uniformly in t ∈ [−1, 1].
Moreover we prove that the series expansion has an optimal rate of convergence.
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1 Introduction

Let B(H)(t), t ∈ R, denote the H-fractional Brownian motion (H-FBM, FBM). We
recall that the H-FBM is the only Gaussian process with H-self-similar and stationary
increments, and almost surely (a.s.) continuous sample paths. H-self-similarity means
that for all c > 0

B(H)(ct)
d
= cHB(H)(t), (1)

i.e. the processes on the two sides of the sign
d
= have the same finite dimensional

distributions. The parameter H, called Hurst parameter, can be in the interval (0, 1).
For H ∈

(
1
2
, 1
)
the stationary increment processes of B(H)(t) are long-memory, while for

H ∈
(
0, 1

2

)
they are not. Thus the former case is more important, therefore we consider

that case, i.e. for the rest of the paper H ∈
(
1
2
, 1
)
is assumed.

It is clear that self-similarity makes it possible to derive the FBM on any finite interval
[−c, c] from its version on [−1, 1]. By this reason we regard the statements for B (H)(t)
defined on [−1, 1].
Since process B(H)(t), t ∈ [−1, 1], has a.s. square integrable sample paths, i.e. B(H)(·) ∈
L2 ([−1, 1]), it seems to be useful to deal with its Fourier series expansions. For example,
one can evidently use the complete orthonormal system

{
1√
2
, sin(jπt), cos(jπt) : j ∈ N

}
, (2)

and expand B(H)(t) into the form

B(H)(t) = ζ0 +
∞∑

j=1

(
ζj sin(jπt) + ζ̃j cos(jπt)

)
, t ∈ [−1, 1], (3)

where coefficients ζj, j ∈ N∪{0}, ζ̃j, j ∈ N, are obviously random variables with centered
Gaussian distribution. However, they are not uncorrelated, meaning that neither are
independent. Thus, the obvious expansion (3) is of little use, e.g. when the aim is to
simulate FBM. Of course one could use an other system of deterministic functions of
some sort, but it is an important requirement that the coefficient random variables be
independent. (E.g. the Karhunen–Loève representation would be suitable, if it were
known.) Nevertheless, it is far from trivial to find such an expansion for the FBM. In
this paper we present one, which is of the form

B(H)(t) = a0tξ0 +
∞∑

j=1

aj

(
(1− cos(jπt))ξj + sin(jπt)ξ̃j

)
, t ∈ [−1, 1], (4)

where

a0 =

√
Γ(2− 2H)

B
(
H − 1

2
, 3
2
−H

) 1

2H − 1
,

aj =

√
Γ(2− 2H)

B
(
H − 1

2
, 3
2
−H

)2Re (ie−iπHγ(2H − 1, ijπ)) (jπ)−H−
1
2 , j ∈ N,
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Γ, B, and γ are the gamma, beta, and complementary (lower) incomplete gamma func-

tions, respectively. Moreover, ξj, j ∈ N ∪ {0}, ξ̃j, j ∈ N, are independent standard
Gaussian random variables.

Note that if one found the form of (4) in which function t is also expanded (with respect
to system (2)), i.e. the form of pure sine and cosine expansion (3), one would have no
luck since the coefficient random variables

ζ0 =
∞∑

j=1

ajξj,

ζj = (−1)j+1 2

jπ
a0ξ0 + aj ξ̃j, j ∈ N,

ζ̃j = −ajξj, j ∈ N,

would not be independent.

It must be stressed that recently Dzhaparidze and van Zanten have given a series ex-
pansion for the FBM, which is similar to (4) without the term a0tξ0, see [1]. It is based
on sine and cosine functions also, but the frequencies are the roots of Bessel functions,
so it is somewhat more complicated than (4).

The main result of this paper is Theorem 1, in which representation (4) is stated exactly.
The proof is based on the fact that the FBM can be approximated by scaled integrated
gamma-mixed Ornstein–Uhlenbeck (ΓMOU) processes; see [3] for the ΓMOU process
and this approximation. On the other hand the ΓMOU process can be simply expanded
into a pure sine and cosine function series of the form

c0ξ0 +
∞∑

j=1

cj

(
sin(jπt)ξj + cos(jπt)ξ̃j

)
, t ∈ [−1, 1],

where cj, j ∈ N ∪ {0}, are constants, and ξj, j ∈ N ∪ {0}, ξ̃j, j ∈ N, are independent
Gaussian random variables. Thus, the scaled integrated ΓMOU process can be repre-
sented in the form

c0tξ0 +
∞∑

j=1

cj

(
(1− cos(jπt))ξj + sin(jπt)ξ̃j

)
, t ∈ [−1, 1].

Notation ∼
N→∞

is used frequently hereafter, which means that the quotient of its two

sides converges to 1 when N →∞.

We remark that the above mentioned expansion in [1] is rate-optimal in the sense intro-
duced in [4]; the proof can be found in [2]. Rate-optimality means the following:

Definition 1 Let us consider the a.s. uniformly convergent series expansions of B (H)(t),
t ∈ [−1, 1], of the form

B(H)(t) =
∞∑

j=1

ξjfj(t), t ∈ [−1, 1], (5)
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with independent Gaussian random variables ξj, j ∈ N, and continuous deterministic
functions fj(t), j ∈ N. Such a series expansion is called rate-optimal if it holds for its
convergence speed that

E sup
t∈[−1,1]

∣∣∣∣∣

∞∑

j=N

ξjfj(t)

∣∣∣∣∣ ∼
N→∞

const.N−H
√

log(N). (6)

In [4] it is proven that this convergence speed is really optimal, i.e. there can be no series
expansion of the form (5) with a convergence speed faster than (6), and convergence
speed (6) can be achieved.

Now expansion (4) is also rate-optimal. This statement as well as the one about the
mean square convergence rate are formulated in Theorem 2. The method for proving
the rate-optimality part is taken from [2].

The outline of the rest of the paper is the following. In Section 2 the main theorem,
Theorem 1 is stated and proved. Section 3 includes Theorem 2 about the rates of
convergences. In Section 4 an application, the simulation of FBM, is presented.

2 The series expansion

Let us first fix a few notations and conditions. The stochastic processes in this paper
are considered on the time interval [−1, 1]. The beta function is denoted by B(p, q),

Γ(p, z) =

∞∫

z

zp−1e−zdz,

and

γ(p, z)
.
=

z∫

0

zp−1e−zdz (7)

are the incomplete gamma function, and the complementary incomplete gamma func-
tion, respectively, with complex argument z. In both cases the principal branches are
considered. Do not confuse the former gamma function with the gamma distribution
Γ(p, λ) with density function

fΓ(p,λ)(x) =
λp

Γ(p)
xp−1e−λx, x > 0,

which is also used in the following. The space of continuous functions on [−1, 1] is
denoted by C[−1, 1]. Every random element is defined on the same probability space Ω.
L2(Ω) denotes the space of square integrable random variables. See [3] for the ΓMOU
process to be discussed later. The notation ΓMOU

(
H − 1

2
, λ
)
is also used when it is
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important to indicate the long-memory parameter H − 1
2
∈
(
0, 1

2

)
2 and scale parameter

λ > 0. The ΓMOU
(
H − 1

2
, λ
)
process is denoted by Yλ(t). Not all the constants are

denoted individually; in many cases they act simply as ‘const.’, always understood as
positive constants.

The main statement of the paper is the following theorem.

Theorem 1 Let H ∈
(
1
2
, 1
)
. Then the FBM B(H)(t), t ∈ [−1, 1], can be represented in

the form

B(H)(t) = a0tξ0 +
∞∑

j=1

aj

(
(1− cos(jπt))ξj + sin(jπt)ξ̃j

)
, t ∈ [−1, 1], (8)

where

a0 =

√
Γ(2− 2H)

B
(
H − 1

2
, 3
2
−H

) 1

2H − 1
, (9)

aj =

√
Γ(2− 2H)

B
(
H − 1

2
, 3
2
−H

)2Re (ie−iπHγ(2H − 1, ijπ)) (jπ)−H−
1
2 , j ∈ N, (10)

and ξj, j ∈ N ∪ {0}, ξ̃j, j ∈ N, are independent standard Gaussian random variables.
The series converges a.s. in C[−1, 1], and also in L2(Ω), uniformly in t ∈ [−1, 1].

Proof. The proof is based on the fact that the H-FBM can be approximated by scaled
integrated ΓMOU

(
H − 1

2
, λ
)
processes, see [3]. On the other hand the ΓMOU

(
H − 1

2
, λ
)

process Yλ(t) can be expanded simply into a pure sine and cosine function series of the
form

Yλ(t) = c0(λ)ξ0 +
∞∑

j=1

cj(λ)
(
sin(jπt)ξj + cos(jπt)ξ̃j

)
, t ∈ [−1, 1],

where cj(λ), j ∈ N ∪ {0}, are constants, and ξj, j ∈ N ∪ {0}, ξ̃j, j ∈ N, are independent
standard Gaussian random variables. Hence, the scaled integrated ΓMOU

(
H − 1

2
, λ
)

process can be represented in the form

1

Γ
(
H− 1

2

)λH− 3
2

t∫

0

Yλ(u) du = c0(λ)tξ0 +
∞∑

j=1

cj(λ)
(
(1− cos(jπt))ξj + sin(jπt)ξ̃j

)
,

t ∈ [−1, 1].

These steps will be detailed in the following.

2Note that in the original paper [3] the parameter h = H − 1
2

is used.
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First the ΓMOU process Yλ(t) is expanded into a sine and cosine function series. For
this purpose let Xα(t) be a stationary Ornstein–Uhlenbeck (OU) process with parameter
α < 0, that is,

Xα(t) =

t∫

−∞

eα(t−u)dB(u),

where B(t) is a Brownian motion. The covariance function of process Xα(t),

RXα
(t) =

1

−2αe
α|t|,

being an even function in L2[−1, 1], has the following Fourier cosine series expansion:

RXα
(t) =

1

−2αe
α|t|

=
1

2α2
(1− eα) +

∞∑

j=1

1− (−1)jeα
α2 + j2π2

cos(jπt), t ∈ [−1, 1].
(11)

Now we use the fact that the covariance function of the ΓMOU
(
H − 1

2
, λ
)
process is

the mixture of OU covariance functions, where the mixing distribution has the density
function

f−α(x) = 2xfΓ( 3
2
−H,λ)(x)

∞∫

0

1

x+ y
fΓ( 3

2
−H,λ)(y)dy, (12)

see [3], Section 2.1. The mixing parameter is −α. Thus, using (11), for the covariance
function of the ΓMOU

(
H − 1

2
, λ
)
process Yλ(t)we have

RYλ(t) =

∞∫

0

RX
−x
(t)f−α(x)dx

=

∞∫

0

(
1

2x2
(
1− e−x

)
+

∞∑

j=1

1− (−1)je−x
x2 + j2π2

cos(jπt)

)
f−α(x)dx

= c20(λ) +
∞∑

j=1

c2j(λ) cos(jπt),

(13)

where

c20(λ)
.
=

∞∫

0

1

2x2
(
1− e−x

)
f−α(x)dx (14)

c2j(λ)
.
=

∞∫

0

1− (−1)je−x
x2 + j2π2

f−α(x)dx, j ∈ N. (15)
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The exponent 2 used in the previous notations can be clarified by observing the non-
negativity of the right hand sides of (14) and (15). It is also easy to see that in (13)
it was legitimate to change the order of the integral and the infinite sum by Fubini’s
theorem. Due to (13) RYλ(t− s) can be factorized as

RYλ(t− s) = c20(λ) +
∞∑

j=1

c2j(λ) (cos(jπt) cos(jπs) + sin(jπt) sin(jπs)) , s, t ∈ [−1, 1],

(16)
which results in the sine and cosine series representation

Yλ(t) = c0(λ)ξ0 +
∞∑

j=1

cj(λ)
(
cos(jπt)ξj + sin(jπt)ξ̃j

)
, t ∈ [−1, 1], (17)

with independent standard Gaussian random variables ξj, j ∈ N ∪ {0}, ξ̃j, j ∈ N. Here
the function series also converges a.s. in L2[−1, 1], on the one hand by virtue of Parseval’s
relation, on the other hand because

∞∑

j=1

c2j(λ)
(
ξ2j + ξ̃2j

)
<∞ a.s.

owing to Kolmogorov’s two series theorem. Now let us integrate (17) to obtain

t∫

0

Yλ(u) = c0(λ)tξ0 +
∞∑

j=1

cj(λ)

jπ

(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

)
a.s.,

t ∈ [−1, 1].

(18)

When obtaining (18) from (17), it was legitimate to change the order of the integral
and the infinite sum, because—as it was mentioned above—the function series in (17)
converges a.s. in L2[−1, 1], thus its integral from zero to t, considered as an L2[−1, 1]
inner product converges a.s..

In the next step the convergence

1

Γ
(
H − 1

2

)λH− 3
2

t∫

0

Yλ (u) du →
λ→0

B(H)(t) a.s.,
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(see [3] Section 3, Property 4) is applied. Together with (18) it yields

B(H)(t) = lim
λ→0


 1

Γ
(
H − 1

2

)λH− 3
2

t∫

0

Yλ (u) du




=
1

Γ
(
H − 1

2

)
(
lim
λ→0

(
λH−

3
2 c0(λ)

)
tξ0

+ lim
λ→0

∞∑

j=1

λH−
3
2 cj(λ)

jπ

(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

))
a.s.,

t ∈ [−1, 1].

(19)

Now the question is whether the following limits exist, and if they do, whether they have
any closed form:

lim
λ→0

(
λH−

3
2 cj(λ)

)
= ?, j ∈ N ∪ {0}. (20)

Using (14) and (12), in the case j = 0 we obtain

λ2H−3c20(λ) = λ2H−3
∞∫

0

1− e−x

2x2
2xfΓ( 3

2
−H,λ)(x)

∞∫

0

1

x+ y
fΓ( 3

2
−H,λ)(y)dydx

=
1

(
Γ
(
3
2
−H

))2

∞∫

0

∞∫

0

(
1− e−x

)
x−H−

1
2y

1
2
−H 1

x+ y
e−λ(x+y)dydx

→
λ→0

1
(
Γ
(
3
2
−H

))2

∞∫

0

∞∫

0

(
1− e−x

)
x−H−

1
2y

1
2
−H 1

x+ y
dydx (21)

by Lebesgue’s dominated convergence theorem. After a change of variables the inner
integral can be put into closed form:

∞∫

0

y
1
2
−H 1

x+ y
dy = x

1
2
−HB

(
3

2
−H,H − 1

2

)
. (22)

Replacing (22) into (21) yields

lim
λ→0

(
λ2H−3c20(λ)

)
=
B
(
3
2
−H,H − 1

2

)
(
Γ
(
3
2
−H

))2

∞∫

0

(
1− e−x

)
x−2Hdx

=
B
(
H − 1

2
, 2− 2H

)

2H − 1
.
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Similarly for j ∈ N we have

λ2H−3c2j(λ) = λ2H−3
∞∫

0

1− (−1)je−x
x2 + j2π2

2xfΓ( 3
2
−H,λ)(x)

∞∫

0

1

x+ y
fΓ( 3

2
−H,λ)(y)dydx

=
2

(
Γ
(
3
2
−H

))2

∞∫

0

∞∫

0

1− (−1)je−x
x2 + j2π2

x
3
2
−Hy

1
2
−H 1

x+ y
e−λ(x+y)dydx

(23)

→
λ→0

2
(
Γ
(
3
2
−H

))2

∞∫

0

∞∫

0

1− (−1)je−x
x2 + j2π2

x
3
2
−Hy

1
2
−H 1

x+ y
dydx

=
2B
(
3
2
−H,H − 1

2

)
(
Γ
(
3
2
−H

))2

∞∫

0

1− (−1)je−x
x2 + j2π2

x2−2Hdx

=
2B
(
3
2
−H,H − 1

2

)
(
Γ
(
3
2
−H

))2




∞∫

0

1

x2+j2π2
x2−2Hdx− (−1)j

∞∫

0

e−x

x2+j2π2
x2−2Hdx




(24)

also by Lebesgue’s dominated convergence theorem. Using the Fourier transform and a
bit of integral calculus one can show that

∞∫

0

e−tx
1

x2 + b2
x2−2Hdx = Γ(2− 2H)b1−2HRe

(
ei(π(H−

1
2)−bt)Γ(2H − 1,−ibt)

)
,

t ≥ 0, b > 0.

(25)

The substitutions b = jπ, t = 0, and b = jπ, t = 1 in (25) lead to

∞∫

0

1

x2 + j2π2
x2−2Hdx =

1

2
Γ

(
H − 1

2

)
Γ

(
3

2
−H

)
(jπ)1−2H ,

and

∞∫

0

e−x

x2 + j2π2
x2−2Hdx = (−1)jΓ(2− 2H) (jπ)1−2H Re

(
ie−iπHΓ(2H − 1, ijπ)

)
,
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respectively. Thus, (24) can be rewritten as

lim
λ→0

(
λ2H−3c2j(λ)

)
=

2B
(
3
2
−H,H − 1

2

)
(
Γ
(
3
2
−H

))2
(
1

2
Γ

(
H − 1

2

)
Γ

(
3

2
−H

)
(jπ)1−2H

−Γ(2− 2H) (jπ)1−2H Re
(
ie−iπHΓ(2H − 1, ijπ)

))

=

(
Γ

(
H − 1

2

))2

×
(
1− 2

Γ(2− 2H)

Γ
(
H − 1

2

)
Γ
(
3
2
−H

)Re
(
ie−iπHΓ(2H − 1, ijπ)

)
)
(jπ)1−2H

= 2B

(
H − 1

2
, 2− 2H

)
Re
(
ie−iπHγ(2H − 1, ijπ)

)
(jπ)1−2H ,

j ∈ N.

To sum up, the answers to the question raised in (20) are the following:

lim
λ→0

(
λH−

3
2 c0(λ)

)
=

√
B

(
H − 1

2
, 2− 2H

)
1√

2H − 1

lim
λ→0

(
λH−

3
2 cj(λ)

)
=

√
B

(
H − 1

2
, 2− 2H

)√
2Re (ie−iπHγ(2H − 1, ijπ)) (jπ)

1
2
−H

,

j ∈ N. (26)
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Returning to (19) we obtain the representation of B(H)(t), t ∈ [−1, 1]:

B(H)(t) =
1

Γ
(
H − 1

2

)
(
lim
λ→0

(
λH−

3
2 c0(λ)

)
tξ0

(27)

+ lim
λ→0

∞∑

j=1

λH−
3
2 cj(λ)

jπ

(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

))

=
1

Γ
(
H − 1

2

)
(
lim
λ→0

(
λH−

3
2 c0(λ)

)
tξ0

+
∞∑

j=1

lim
λ→0

(
λH−

3
2 cj(λ)

) 1

jπ

(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

))

=

√
Γ(2− 2H)

B
(
H − 1

2
, 3
2
−H

)
(

1√
2H − 1

tξ0 +
∞∑

j=1

√
2Re (ie−iπHγ(2H − 1, ijπ))

× (jπ)−H−
1
2

(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

))
, (28)

which coincides with (8-9-10). The limit and the infinite sum in (27) could be changed
for the following reason. On the one hand for each j ∈ N the convergence in (26) is
monotone increasing (see (23)), and on the other hand for all t ∈ [−1, 1] the series in
(28) is a.s. absolutely convergent. The latter a.s. absolute convergence follows from the
fact that

√
2Re (ie−iπHγ(2H − 1, ijπ)) =

√√√√√2

jπ∫

0

v2H−2 cos(v)dv

≤

√√√√√2

∞∫

0

v2H−2 cos(v)dv

=
√

2Γ(2H − 1) sin(πH) <∞,

(29)

and from Kolmogorov’s two series theorem.

The series in (28) converges in L2(Ω), uniformly in t ∈ [−1, 1]. To prove this, take into
account that the terms of the series in (28) are orthogonal random variables, and use
(29) to obtain

E
(√

2Re (ie−iπHγ(2H − 1, ijπ)) (jπ)−H−
1
2

(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

))2

≤ 8Γ(2H − 1) sin(πH) (jπ)−1−2H , j ∈ N.
(30)
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With regard to the a.s. convergence in C[−1, 1], it follows from the inequality

sup
t∈[−1,1]

∣∣∣
√

2Re (ie−iπHγ(2H − 1, ijπ)) (jπ)−H−
1
2

(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

)∣∣∣

≤
√

2Γ(2H − 1) sin(πH) (jπ)−H−
1
2

(
2 |ξj|+

∣∣∣ξ̃j
∣∣∣
)

and from Kolmogorov’s two series theorem.

3 Rate of convergence

Let us consider the series expansion of Theorem 1, and introduce a notation for the
truncated series:

B
(H)
N (t)

.
= a0tξ0 +

N∑

j=1

aj

(
(1− cos(jπt))ξj + sin(jπt)ξ̃j

)
. (31)

The following theorem is about the rate of mean square (L2(Ω)) convergence and C[−1, 1]
convergence of B

(H)
N (t) to B(H)(t).

Theorem 2 1) The rate of uniform convergence in L2(Ω) of the truncated series series

B
(H)
N (t) is at least of the order N−H , that is, to be more exact,

sup
t∈[−1,1]

√
E
(
B(H)(t)−B

(H)
N (t)

)2
≤ 2

√√√√
∞∑

j=N+1

(jπ)−1−2H ∼
N→∞

√
2

H
π−1−2HN−H . (32)

2) The rate of convergence in C[−1, 1] can be characterized by the asymptotic relation

E sup
t∈[−1,1]

∣∣∣B(H)(t)−B
(H)
N (t)

∣∣∣ ∼
N→∞

const.N−H
√

log(N). (33)

Proof. 1) We have

sup
t∈[−1,1]

E
(
B(H)(t)−B

(H)
N (t)

)2

=
Γ(2− 2H)

B
(
H − 1

2
, 3
2
−H

) sup
t∈[−1,1]

∞∑

j=N+1

E
(√

2Re (ie−iπHγ(2H − 1, ijπ)) (jπ)−H−
1
2

×
(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

))2

≤ 4
∞∑

j=N+1

(jπ)−1−2H ∼
N→∞

2

H
π−1−2HN−2H ,

(34)
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where the inequality follows from (30).

2) We follow the method of proof of [2]. Consider the partial sum processes

Sn(t)
.
=

2n−1∑

j=2n−1

aj

(
(1− cos(jπt))ξj + sin(jπt)ξ̃j

)
, n ∈ N,

and

Sn,L(t)
.
=

2n−1∑

j=L

aj

(
(1− cos(jπt))ξj + sin(jπt)ξ̃j

)
, n ∈ N, 2n−1 ≤ L < 2n.

Clearly we have
Sn(t) = Sn,2n−1(t), (35)

and

B(H)(t)−B
(H)
N (t) = Sn,N+1(t) +

∞∑

k=n+1

Sk(t), (36)

where n ∈ N is such that 2n−1 ≤ N + 1 < 2n.

First we prove that

E sup
t∈[−1,1]

|Sn,L(t)| = O(
√
n2−nH) as n→∞. (37)

Let ε > 0 be arbitrary. Let us cover the interval [−1, 1] with K(ε) = O( 1
ε
) (as

ε→ 0) intervals of length 2ε. Let us denote the intervals by Ii, and their centers by ti,
i = 1, . . . , K(ε). Then we have

E sup
t∈[−1,1]

|Sn,L(t)| ≤ E sup
1≤i≤K(ε)

|Sn,L(ti)|+ E sup
1≤i≤K(ε)

sup
t,u∈Ii

|Sn,L(t)− Sn,L(u)| . (38)

The two terms on the right hand side are estimated separately.

The first term can be bounded by using the inequality of Lemma 2.2.2 in [5] (with
ψ(x) = ex

2 − 1 there) and the equivalence of the norms of Gaussian random variables:

E sup
1≤i≤K(ε)

|Sn,L(ti)| ≤ const.
√

logK(ε) sup
1≤i≤K(ε)

√
E (Sn,L(ti))

2
. (39)
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Similarly as in (34) we have

E (Sn,L(ti))
2 = E

(
2n−1∑

j=L

aj

(
(1− cos(jπti))ξj + sin(jπti)ξ̃j

))2

=
Γ(2− 2H)

B
(
H − 1

2
, 3
2
−H

)
2n−1∑

j=L

E
(√

2Re (ie−iπHγ(2H − 1, ijπ)) (jπ)−H−
1
2

×
(
(1− cos(jπt)) ξj + sin(jπt)ξ̃j

))2

≤ const.
2n−1∑

j=L

j−1−2H

≤ const.
2n−1∑

j=2n−1

j−1−2H

≤ const.2−2nH .
(40)

(39) and (40) yield the bound

E sup
1≤i≤K(ε)

|Sn,L(ti)| ≤ const.
√

logK(ε)2−nH

for the first term of (38).

To estimate the second term of (38) we first mention that by (29)

aj ≤ (jπ)−H−
1
2 , j ∈ N. (41)

Thus we have

E sup
1≤i≤K(ε)

sup
t,u∈Ii

|Sn,L(t)− Sn,L(u)|

≤ E sup
1≤i≤K(ε)

sup
t,u∈Ii

2n−1∑

j=L

aj

(
|cos(jπu)− cos(jπt)| |ξj|+ |sin(jπt)− sin(jπu)|

∣∣∣ξ̃j
∣∣∣
)

≤ const.ε
2n−1∑

j=L

j
1
2
−H

≤ const.ε
2n−1∑

j=2n−1

j
1
2
−H

≤ const.ε2n(
3
2
−H).
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Summing up we obtain the estimate

E sup
t∈[−1,1]

|Sn,L(t)| ≤ const.
√

logK(ε)2−nH + const.ε2n(
3
2
−H). (42)

Now, choose ε = 4−n and recall that K(ε) = O( 1
ε
). Then in (42) the first term can be

bounded by const.
√
n2−nH , and the second term by const.2−n(H+

1
2). Hence

E sup
t∈[−1,1]

|Sn,L(t)| ≤ const.
√
n2−nH .

Thus we have proved (37).

It seems now that we can shortly complete the proof of (33), since by (36) we have

E sup
t∈[−1,1]

∣∣∣B(H)(t)−B
(H)
N (t)

∣∣∣ = E sup
t∈[−1,1]

∣∣∣∣∣Sn,N+1(t) +
∞∑

k=n+1

Sk(t)

∣∣∣∣∣

≤ E sup
t∈[−1,1]

|Sn,N+1(t)|+
∞∑

k=n+1

E sup
t∈[−1,1]

|Sk(t)| .
(43)

Now applying (37) and (35) together with (43) yields

E sup
t∈[−1,1]

∣∣∣B(H)(t)−B
(H)
N (t)

∣∣∣ ≤ const.
√
n2−nH + const.

∞∑

k=n+1

√
k2−kH

≤ const.
√
n2−nH

≤ const.
√

logNN−H ,

which was to be proved.

Apart from the constant factors the convergence rates in Theorem 2 are the same as
those in Dzhaparidze and van Zanten’s expansion, see [1] and [2]. In the former pa-
per the authors mention, and in the latter they prove, that their series expansion is
rate-optimal in the sense given in [4]; see Definition 1. By the second statement of
Theorem 2, the expansion of this paper is also rate-optimal.

4 Application: simulation of FBM

Series representations are especially usable for simulation. The truncated series repre-
sentation (31) is of the form of the linear combination of easily computable deterministic
functions. Only the numerical computation of coefficients aj may involve difficulties be-
cause of the complementary incomplete gamma function. We have used the ’gammainc’
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function of MATLAB to compute the complementary incomplete gamma function. Orig-
inally it accepted real arguments only, while in (31) an imaginary argument is needed.
However, after rewriting it works well also for the complex input argument z (see (7)).
This is because it uses the continued fraction expansion of the complementary incomplete
gamma function, and that expansion is convergent for all complex arguments except for
negative reals. The simulation algorithm based on the series expansion of this paper
is fast and easy to program. We have written the simulation program, and here we
demonstrate the fitting of its output to the FBM. The simulated sample path on the
time interval [0, 1] based on 1000 equidistant points was converted by the transformation
(1) into a sample path on the time interval [0, 1000], and the difference series was taken.
In Figure 1 one of the two graphs is the estimated spectrum (averaged periodograms of
10 independent realizations) of the difference series. The other curve is the theoretical
spectrum of the fractional Gaussian noise (FGN, difference series of the FBM). The
value of the Hurst parameter H = 0.9, the accuracy ε = 10−4 (note that the standard
deviation of B(H)(1) is ≈1.39), and the value N = 7308 for the truncation limit was
computed from the equation ε = the right hand side of (32).
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Figure 1: Figure 1 The estimated spectrum of the approximate FGN simulated by (31),

and the theoretical spectrum of the FGN.
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