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a conditional Ewens-Pitman sampling model

Stefano Favaro∗ Shui Feng†

Abstract

The study of random partitions has been an active research area in probability over
the last twenty years. A quantity that has attracted a lot of attention is the number of
blocks in the random partition. Depending on the area of applications this quantity
could represent the number of species in a sample from a population of individuals or
the number of cycles in a random permutation, etc. In the context of Bayesian non-
parametric inference such a quantity is associated with the exchangeable random
partition induced by sampling from certain prior models, for instance the Dirichlet
process and the two parameter Poisson-Dirichlet process. In this paper we general-
ize some existing asymptotic results from this prior setting to the so-called posterior,
or conditional, setting. Specifically, given an initial sample from a two parameter
Poisson-Dirichlet process, we establish conditional fluctuation limits and conditional
large deviation principles for the number of blocks generated by a large additional
sample.
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1 Introduction

Among various definitions of the Ewens-Pitman sampling model, a simple and intu-
itive one arises from Zabell [27] in terms of the following urn model. See also Feng and
Hoppe [10]. Let X be a complete and separable metric space and let ν be a nonatomic
probability measure on X. Let α ∈ [0, 1) and consider an urn that initially contains a
black ball with mass θ > 0. Balls are drawn from the urn successively with probabili-
ties proportional to their masses. When a black ball is drawn, it is returned to the urn
together with a black ball of mass α and a ball of a new color, which is sampled from
ν, with mass (1 − α). When a non-black ball is drawn, it is returned to the urn with
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Asymptotics in a conditional Ewens-Pitman sampling model

an additional ball of the same color with mass one. If (Xi)i≥1 denotes the sequence of
non-black colors, then

P[Xi+1 ∈ · |X1, . . . , Xi] =
θ + jα

θ + i
ν(·) +

1

θ + i

j∑
l=1

(nl − α)δX∗
l
(·) (1.1)

for any i ≥ 1, with X∗1 , . . . , X
∗
j being the j distinct colors in (X1, . . . , Xi) with frequencies

n = (n1, . . . , nj). The predictive distribution (1.1) was first introduced in Pitman [21]
for any α ∈ (0, 1) and θ > −α, and it is referred to as the Ewens-Pitman sampling model
with parameter (α, θ, ν). In particular, Pitman [21] showed that the sequence (Xi)i≥1
generated by (1.1) is exchangeable and its de Finetti measure Π is the distribution of
the two parameter Poisson-Dirichlet process P̃α,θ in Perman et al. [20]. Accordingly, we
can write

Xi | P̃α,θ,ν
iid∼ P̃α,θ,ν i = 1, . . . , n (1.2)

P̃α,θ,ν ∼ Π,

for any n ≥ 1. See Pitman and Yor [23] for details on P̃α,θ,ν . For α = 0 the urn model
generating the Xi’s reduces to the one in Hoppe [15], and the Ewens-Pitman sampling
model reduces to the celebrated sampling model by Ewens [5]. Accordingly, for α = 0

the two parameter Poisson-Dirichlet process reduces to the Dirichlet process by Fer-
guson [11]. The Ewens sampling model and its two parameter generalization play an
important role in many research areas such as population genetics, machine learning,
Bayesian nonparametrics, combinatorics and statistical physics. We refer to the mono-
graph by Pitman [25] and references therein for a comprehensive account on these
sampling models.

According to (1.1) and (1.2), a sample (X1, . . . , Xn) from P̃α,θ,ν induces a random
partition of the set {1, . . . , n} into Kn blocks with corresponding frequencies Nn =

(N1, . . . , NKn). The exchangeable sequence (Xi)i≥1, then, induces an exchangeable
random partition of the set of natural numbers N. See Pitman [21] for details. Such a
random partition has been the subject of a rich and active literature and, in particular,
there have been several studies on the large n asymptotic behavior of Kn. For any
α ∈ (0, 1) and q > −1, let Sα,qα be a positive and finite random variable with density
function of the form

gSα,qα(y) =
Γ(qα+ 1)

αΓ(q + 1)
yq−1−1/αfα(y−1/α),

where fα denotes the density function of a positive α-stable random variable. Sα,qα is
referred to as polynomially tilted α-stable. For any α ∈ (0, 1) and θ > −α Pitman [22]
showed that

lim
n→+∞

Kn

nα
= Sα,θ a.s. (1.3)

See Pitman [25] and references therein for various generalizations and refinements of
the fluctuation limit (1.3). In contrast, for α = 0 and θ > 0, Korwar and Hollander [17]
showed that

lim
n→+∞

Kn

log n
= θ a.s. (1.4)

See Arratia et al. [1] for details. Weak convergence versions of (1.4) and (1.3) can
also be derived from general asymptotic results for urn model with weighted balls. The
reader is referred to Proposition 16 in Flajolet et al. [12] and Theorem 5 in Janson [16]
for details. Fluctuation limits (1.4) and (1.3) display the crucial role of α in determining
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both the clustering structure and the large n asymptotic behaviour of Kn. In general,
α ∈ (0, 1) controls the flatness of the distribution of Kn: the bigger α the flatter is the
distribution of Kn.

Feng and Hoppe [10] further investigated the large n asymptotic behaviour of Kn

and established a large deviation principle for n−1Kn. Specifically, for any α ∈ (0, 1)

and θ > −α, they showed that n−1Kn satisfies a large deviation principle with speed n
and rate function of the form

Iα(u) = sup
λ
{λu− Λα(λ)} (1.5)

where Λα(λ) = − log(1−(1−e−λ)1/α)1(0,+∞)(λ). Equation (1.3) shows that Kn fluctuates
at the scale of nα. This is analogous to a central limit type theorem where the fluctua-
tion occurs at the scale of

√
n. Then the large deviation scaling of n can be understood

through a comparison with the classical Cramér theorem where the law of large num-
bers is at the scale of n. In contrast, for α = 0 and θ > 0, Equation (1.4) is analogous to
a law of large numbers type limit. In particular, it was shown in Feng and Hoppe [10]
that (log n)−1Kn satisfies a large deviation principle with speed log(n) and rate function
of the form

Iθ(u) =


u log u

θ − u+ θ u > 0

θ u = 0

+∞ u < 0.

(1.6)

It is worth pointing out that rate function (1.5) depends only on the parameter α which
displays the different roles of the two parameters at different scales. We refer to Feng
and Hoppe [10] for an intuitive explanation in terms of an embedding scheme for the
Ewens-Pitman sampling model. See also Tavaré [26] for a similar embedding scheme in
the Ewens sampling model.

In this paper we present conditional counterparts of the aforementioned asymptotic
results. The problem of studying conditional properties of exchangeable random parti-
tions has been first considered in Lijoi et al. [19]. This problem consists in evaluating,
conditionally on an initial sample (X1, . . . , Xn) from P̃α,θ,ν , the distribution of statis-
tics of an additional sample (Xn+1, . . . , Xn+m), for any m ≥ 1. Lijoi et al. [19] mainly
focused on statistics of the so-called new Xn+i’s, namely Xn+i’s that do not coincide
with observations in (X1, . . . , Xn). Note that, according to (1.1), for any α ∈ (0, 1) and
θ > −α these statistics depend on (X1, . . . , Xn) via the sole Kn. For α = 0 and θ > 0

these statistics are independent of Kn. A representative example is given by the num-
ber K(n)

m of new blocks generated by (Xn+1, . . . , Xn+m), given Kn. As discussed in Lijoi
et al. [18], this statistic has direct applications in Bayesian nonparametric inference for
species sampling problems arising from ecology, biology, genetics, linguistics, etc. In
such a statistical context the distribution P[K

(n)
m ∈ · |Kn = j] takes on the interpreta-

tion of the posterior distribution of the number of new species in the additional sample,
given an observed sample featuring j species. Hence, the expected value with respect
to P[K

(n)
m ∈ · |Kn = j] provides the corresponding Bayesian nonparametric estimator.

See, e.g., Griffiths and Spanò [14], Favaro et al. [6], Favaro et al. [7] and Bacallado et
al. [2] for other contributions at the interface between Bayesian nonparametrics and
species sampling problems.

For any m ≥ 1, let (X1, . . . , Xn, Xn+1, . . . , Xm) be a sample from P̃α,θ,ν . Within the
conditional framework of Lijoi et al. [19], we investigate the large m asymptotic be-
haviour of the number T (n)

m of blocks generated by (Xn+1, . . . , Xn+m), conditionally on
the initial part (X1, . . . , Xn). With a slight abuse of notation, throughout the paper
we write X |Y to denote the random variable whose distribution corresponds to the

conditional distribution of X given Y . The random variable T (n)
m consists of K(n)

m plus
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the number R(n)
m of old blocks, namely blocks generated by the Xn+i’s that coincide

with observations in (X1, . . . , Xn). Hence, differently from K
(n)
m , for any α ∈ [0, 1) and

θ > −α the statistic T (n)
m depends on (X1, . . . , Xn) via the random partition (Kn,Nn).

In other words, Kn does not provide a sufficient statistic for T (n)
m . Intuitively Kn and

T
(n)
m | (Kn,Nn) should have different asymptotic behaviour as n and m tends to infinity,

respectively. This turns out to be the case in terms of fluctuation limits. But in terms of
large deviations Kn and T

(n)
m | (Kn,Nn) have the same asymptotic behaviour. In order

to detect the impact on large deviations of the given initial sample one may have to con-
sider different limiting mechanisms. In Bayesian nonparametric inference for species
sampling problems, large m conditional asymptotic analysis are typically motivated by
the need of approximating quantities of interest from the posterior distribution. See
Favaro et al. [6] for a thorough discussion. With this regards, our fluctuation limit pro-
vides a useful tools since, as we will see, computational burden for an exact evaluation
of posterior distribution P[T

(n)
m ∈ · |Kn = j,Nn = n] becomes overwhelming for large j,

n and m.
In Section 2 we introduce the random variable T (n)

m | (Kn,Nn) and we present some
distributional results for a finite sample size m. In Section 3 we study the large m

asymptotic behaviour of T (n)
m | (Kn,Nn) in terms of fluctuation limits and large devia-

tion principles. In Section 4 we discuss our results with a view toward Bayesian non-
parametric inference for species sampling problems. Some open problems are also
discussed.

2 Preliminaries

Let (X1, . . . , Xn) be an initial sample from P̃α,θ,ν . In order to introduce the con-
ditional framework of Lijoi et al. [19], one needs to consider an additional sample
(Xn+1, . . . , Xn+m) from P̃α,θ,ν . Let X∗1 , . . . , X

∗
Kn

be the labels identifying the Kn blocks
in (X1, . . . , Xn) and let

L(n)
m =

m∑
i=1

Kn∏
k=1

1{X∗
k}c(Xn+i) (2.1)

be the number of observations belonging to (Xn+1, . . . , Xn+m) and not coinciding with

observations in (X1, . . . , Xn). In particular, we denote by K(n)
m the number of new blocks

generated by the L(n)
m observations and by X∗Kn+1, . . . , X

∗
Kn+K

(n)
m

their identifying labels.

Moreover, let
M

L
(n)
m

= (M1, . . . ,MK
(n)
m

) (2.2)

where

Mi =

m∑
l=1

1{X∗
Kn+i}(Xn+l),

for any i = 1, . . . ,K
(n)
m , are the frequencies of the K(n)

m blocks detected among the L(n)
m

observations in the additional sample. Specifically, (2.2) provides the random parti-
tions induced by those observations in the additional sample generating new blocks.
Analogously, let

S
m−L(n)

m
= (S1, . . . , SKn) (2.3)

where

Si =

m∑
l=1

1{X∗
i }(Xn+l),

for any i = 1, . . . ,Kn, are the frequencies of the blocks detected among the m − L(n)
m

observations in the additional sample. Specifically, (2.3) provides the updating for the
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random partition induced by the initial sample. See Lijoi et al. [19] for the distribution
of (2.1), (2.2) and (2.3).

The random variables in (2.1), (2.2) and (2.3), together with K
(n)
m , completely de-

scribe the conditional random partition induced by (Xn+1, . . . , Xn+m), given (X1, . . . , Xn).

In addition, let R(n)
m =

∑Kn
i=1 1{Si>0} be the number of old blocks detected among the

m − L(n)
m observations in the additional sample. These blocks are termed “old" to be

distinguished from the new blocks detected among the L
(n)
m observations. Hence, we

introduce
T (n)
m = R(n)

m +K(n)
m ,

which is the number of blocks generated by the additional sample. Hereafter we inves-
tigate the conditional distribution of T (n)

m given the random partition (Kn,Nn). We start

by deriving falling factorial moments of T (n)
m | (Kn,Nn). The resulting moment formulae

are expressed in terms of noncentral generalized factorial coefficients C and noncen-
tral Stirling numbers of the first kind s. Furthermore, we denote by S the noncentral
Stirling numbers of the second kind. See Charalambides [3] for an account on these
numbers.

Proposition 2.1. Let (X1, . . . , Xn) be a sample from P̃α,θ,ν featuring Kn = j blocks
with frequencies Nn = n. Then

i) for any α ∈ (0, 1) and θ > −α

E[(T (n)
m )r↓1 |Kn = j,Nn = n] (2.4)

=
r!

(θ + n)m↑1

r∑
i=0

(−1)r−i
(
θ

α
+ j

)
(r−i)↑1

i∑
v=0

(
j − v
i− v

)
(−1)v

×
∑

(c1,...,cv)∈Cj,v

C (m, r − i;−α,−θ − n+

v∑
i=1

nci − vα);

ii) for α = 0 and θ > 0

E[(T (n)
m )r↓1 |Kn = j,Nn = n] (2.5)

=
r!

(θ + n)m↑1

r∑
i=0

(θ)r−i
i∑

v=0

(
j − v
i− v

)
(−1)v

×
∑

(c1,...,cv)∈Cj,v

|s(m, r − i; θ + n−
v∑
i=1

nci)|;

where we defined Cj,0 = ∅ and Cj,v = {(c1, . . . , cv) : ck ∈ {1, . . . , j}, ck 6= c`, if k 6= `} for
any v ≥ 1.

Proof. The random variables K(n)
m | (L(n)

m ,Kn) and R(n)
m | (L(n)

m ,Kn,Nn) are independent.
See Proposition 1 and Corollary 1 in Lijoi et al. [19] for details. Then, by a direct
application of the Vandermonde identity, we can factorize the falling factorial moment
as follows

E[(T (n)
m )r↓1 |L(n)

m = s,Kn = j,Nn = n] (2.6)

=

r∑
i=0

(
r

i

)
E[(K(n)

m )(r−i)↓1 |L(n)
m = s,Kn = j]

× E[(R(n)
m )i↓1 |L(n)

m = s,Kn = j,Nn = n],
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and

P[L(n)
m = s |Kn = j,Nn = n] =

1

(θ + n)m↑1

(
m

s

)
(n− jα)(m−s)↑1(θ + jα)s↑1. (2.7)

Let α ∈ (0, 1) and θ > −α. We first consider the falling factorial moment of the number
of new blocks. For any r ≥ 0, Equation 25 in Lijoi et al. [19] and Proposition 1 in [6]
lead to

E[(K(n)
m )r↓1 |L(n)

m = s,Kn = j] (2.8)

=

r∑
l=0

(−1)r−l
(
j +

θ

α

)
l↑1

(θ + jα+ lα)s↑1
(θ + jα)s↑1

r∑
i=l

|s(r, i, 0)|S
(
i, l; j +

θ

α

)
= r!(−1)r

(
θ

α
+ j

)
r↑1

C (s, r;−α,−θ − jα)

(θ + jα)s↑1
,

where the last identity is obtained by means of Equation 2.57 and Equation 2.60 in
Charalambides [3]. With regards to the falling factorial moment of the number of old
blocks, for any r ≥ 0, Equation 25 in Lijoi et al. [19] and Theorem 1 in Baccalado et al.
[2] lead to

E[(R(n)
m )r↓1 |L(n)

m = s,Kn = j,Nn = n] (2.9)

= r!

r∑
v=0

(
j − v
r − v

)
(−1)v

∑
(c1,...,cv)∈Cj,v

(n−
∑v
i=1 nci − (j − v)α)(m−s)↑1

(n− jα)(m−s)↑1
.

The proof of the part i) is completed by combining expressions (2.8) and (2.9) with (2.6)
and then by integrating with respect to the distribution (2.7). Specifically, we can write

E[(T (n)
m )r↓1 |Kn = j,Nn = n] (2.10)

=
r!

(θ + n)m↑1

r∑
i=0

(−1)r−i
(
θ

α
+ j

)
(r−i)↑1

i∑
v=0

(
j − v
i− v

)
(−1)v

×
∑

(c1,...,cv)∈Cj,v

m∑
s=0

(
m

s

)
C (s, r − i;−α,−θ − jα)(n−

v∑
i=1

nci − (j − v)α)(m−s)↑1

=
r!

(θ + n)m↑1

r∑
i=0

(−1)r−i
(
θ

α
+ j

)
(r−i)↑1

i∑
v=0

(
j − v
i− v

)
(−1)v

×
∑

(c1,...,cv)∈Cj,v

C (m, r − i;−α,−θ − n+

v∑
i=1

nci − vα)

where in the second equality the sum over the index 0 ≤ s ≤ m is obtained by exploiting
the fact that (n−

∑v
i=1 nci − (j− v)α)(m−s)↑1 = C (m− s, 0;−α,−n+

∑v
i=1 nci + (j− v)α)

and noting (
y + c

y

)
C (x, y + c; d, a+ b) =

x−c∑
j=y

(
x

j

)
C (j, y; d, a)C (x− j, c; d, b).

for any x ≥ 0 and 0 ≤ y ≤ x, for any a > 0, b > 0, c > 0 and for any real number d. For
α = 0 and θ > 0 the result follows by taking the limit of (2.10) as α → 0. Specifically,
in taking such a limit we make use of Equation 2.63 in Charalambides [3]. The proof is
completed.
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A direct application of Proposition 2.1 lead to the distribution of T (n)
m | (Kn,Nn). In-

deed, by exploiting the relationship between probabilities and falling factorial moments
in the case of discrete distributions, formulae (2.4) and (2.5) lead to the following ex-
pressions

P[T (n)
m = x |Kn = j,Nn = n] (2.11)

=
(−1)x+j

(θ + n)m↑1

j∑
v=0

x∑
y=0

(−1)y−v
(

v

x− y − (j − v)

)(
θ

α
+ j

)
y

×
∑

(c1,...,cv)∈Cj,v

C (m, y;α, jα− n+

v∑
i=1

nci − vα)

and

P[T (n)
m = x |Kn = j,Nn = n] (2.12)

=
(−1)x+j

(θ + n)m↑1

j∑
v=0

x∑
y=0

(−1)y−x
(

v

x− y − (j − v)

)
θy

×
∑

(c1,...,cj)∈Cj,v

|s(m, y;n−
v∑
i=1

nci)|,

respectively. Moment formulae for T (n)
m | (Kn,Nn) can be derived from Proposition 2.1

and by means of well-known relationships between falling factorial moments and mo-
ments.

3 Asymptotics for the conditional number of blocks

We start our conditional asymptotic analysis by establishing a fluctuation limit, as
m tends to infinity, for T (n)

m | (Kn,Nn). First, recall that T (n)
m = R

(n)
m + K

(n)
m . For any

α ∈ (0, 1) and θ > −α, limm→+∞ n−αR
(n)
m | (Kn,Nn) = 0 almost surely. Hence, the

fluctuation limit for T (n)
m | (Kn,Nn) reduces to the fluctuation limit for K(n)

m |Kn; such
a fluctuation limit was established in Proposition 2 in Favaro et al. [6]. Similarly, for
α = 0 and θ > 0 one has limm→+∞(logm)−1R

(n)
m | (Kn,Nn) = 0 almost surely and,

furthermore, K(n)
m is independent of Kn. Hence, the fluctuation limit for K(n)

m coincides
with the fluctuation limit for Kn in (1.4). For any a, b > 0 let Ba,b a random variable
distributed according to a Beta distribution with parameter (a, b). Then, we can state
the following theorem.

Theorem 3.1. Let S(n,j)
α,θ be the product of independent random variables Sα,θ+n and

Bj+θ/α,n/α−j . Then

• for any α ∈ (0, 1) and θ > −α

lim
m→+∞

T
(n)
m

mα
| (Kn = j,Nn = n) = S

(n,j)
α,θ a.s. (3.1)

• for α = 0 and θ > 0

lim
m→+∞

T
(n)
m

logm
| (Kn = j,Nn = n) = θ a.s. (3.2)

As for the unconditional fluctuation limits in (1.3) and (1.4), weak convergence ver-
sions of (3.1) and (3.2) can alternatively be derived from general asymptotic results for
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urn models. See Proposition 16 in Flajolet et al. [12] and Theorem 5 in Janson [16] for
details. For any α ∈ (0, 1) and θ > −α, if n = j = 0 then we recover (1.3) as special case

of (3.1). Note that the dependence on n and j in the limiting random variable S
(n,j)
α,θ

indicates a long lasting impact of the given initial sample (X1, . . . , Xn) to fluctuations.

Furthermore, it is clear from Theorem 3.1 that one has limm→+∞m−1T
(n)
m | (Kn,Nn) = 0

almost surely. Hereafter we establish a large deviation principle associated with this
limiting procedure.

The study of large deviations for m−1T (n)
m | (Kn,Nn) reduces to the study of large

deviations for m−1K(n)
m |Kn. Indeed note that K(n)

m ≤ T
(n)
m ≤ K

(n)
m + n. Then by Corol-

lary B.9 in Feng [9], m−1T (n)
m | (Kn,Nn) and m−1K

(n)
m |Kn satisfy the same large devi-

ation principle. As in Feng and Hoppe [10], we establish a large deviation principle
for m−1K(n)

m |Kn by studying the moment generating of K(n)
m |Kn. For any λ > 0 let

x = 1− e−λ and let

G
K

(n)
m

(x;α, θ) = E

[(
1

1− x

)K(n)
m

|Kn = j

]
(3.3)

be the moment generating function K(n)
m |Kn. We focus on α ∈ (0, 1) and θ > 0. For α =

0 and θ > 0 the random variables K(n)
m and Kn are independent and, therefore, the large

deviation principle for m−1K(n)
m coincides with the large deviation principle for n−1Kn

recalled in the Introduction. We start with two lemmas on the moment generating
function G

K
(n)
m

.

Lemma 3.2. Let (X1, . . . , Xn) be a sample from P̃α,θ,ν featuring Kn = j blocks. Then,
for any α ∈ (0, 1) and θ > −α

G
K

(n)
m

(x;α, θ) = (1− x)j+
θ
α

∑
v≥0

xv

v!

(
j +

θ

α

)
v↑1

(
n+θ+vα+m−1
n+θ+m−1

)(
n+θ+vα−1
n+θ−1

) .

Proof. The proof reduces to a straightforward application of Proposition 2.1. Indeed,
the right-hand side of (3.3) can be expanded in terms of falling factorial moments of
K

(n)
m |Kn, i.e.,

G
K

(n)
m

(x;α, θ) =
∑
i≥0

xiE

[(
i+K

(n)
m − 1

K
(n)
m − 1

)
|Kn = j

]
(3.4)

=
∑
i≥0

xi

i!

i∑
l=0

|s(i, l, 0)|
l∑
t=0

S(l, t, 0)E[(K(n)
m )t↓1 |Kn = j]

where the falling factorial moment E[(K
(n)
m )t↓1 |Kn = j] is read in (2.4) with r = t at the

index i = 0. Then, by Equation 2.60 and Equation 2.15 in Charalambides [3], we can
write

i∑
l=0

|s(i, l, 0)|
l∑
t=0

S(l, t, 0)E[(K(n)
m )t↓1 |Kn = j] (3.5)

=

i∑
v=0

(−1)i−v
(
j +

θ

α

)
v↑1

(θ + n+ vα)m↑1
(θ + n)m↑1

×
i∑
l=v

(−1)i−l|s(i, l, 0)|S
(
l, v; j +

θ

α

)
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=

i∑
v=0

(
i

v

)(
j +

θ

α

)
v↑1

(
−j − θ

α

)
(i−v)↑1

(θ + n+ vα)m↑1
(θ + n)m↑1

,

where the last equality is obtained by means of Equation (2.57) in Charalambides [3].
The proof is completed by combining (3.4) with (3.5) and by standard algebraic manip-
ulations.

Lemma 3.3. For any α ∈ (0, 1) and θ = 0,

lim sup
m→+∞

1

m
logG

K
(n)
m

(x;α, 0) ≤ Λα(λ) =

{
− log(1− (1− e−λ)

1
α ) if λ > 0

0 othewise .

Proof. Let (an)n≥1 be a sequence of increasing positive numbers satisfying an/n→ 1 as
n → +∞. Then we can find two increasing sequences of positive integers, say (bn)n≥1
and (cn)n≥1, such that bn ≤ an ≤ cn and limn→+∞ bn/n = limn→+∞ cn/n = 1. Then, by
combining Lemma 3.1 with Equation (3.5) in Feng and Hoppe [10], for any 0 < α and
x < 1 one obtains

lim
n→+∞

1

n
log
∑
i≥0

xi
Γ(an + αi)

Γ(an)Γ(αi+ 1)
= Λα(− log(1− x)). (3.6)

Consider the moment generating function G
K

(n)
m

(x; 0, α). Direct calculations one obtains
the identity

(j)v↑1

v!
(
n+vα−1
n−1

) =
(n− 1)!

(j − 1)!

(v + 1)(j−1)↑1

(vα+ 1)(n−1)↑1
= C0(n, j, α, v)vj−n, (3.7)

where C0(n, j, α, v) is uniformly bounded in v from above and below by positive con-
stants. Then,

lim sup
m→+∞

1

m
logG

K
(n)
m

(x;α, 0)

= lim sup
m→+∞

1

m
log

(1− x)j
∑
v≥0

C0(n, j, α, v)vj−nxv
(
n+ vα+m− 1

n+m− 1

)
≤ lim sup

m→+∞

1

n+m
log
∑
v≥0

xv
(
n+ vα+m− 1

n+m− 1

)
= Λα(λ)

where the last equality is obtained by a direct application of (3.6). The proof is com-
pleted.

Proposition 2.1, Lemma 3.2 and Lemma 3.3 are exploited in order to derive the large
deviation principle for m−1K(n)

m |Kn and, hence, for m−1T (n)
m | (Kn,Nn). We can state

the following theorem.

Theorem 3.4. For any α ∈ (0, 1) and θ > −α, m−1T (n)
m | (Kn,Nn) satisfies a large

deviation principle with speed m and rate function Iα in (1.5). For α = 0 and θ > 0,
(logm)−1(T

(n)
m |Kn,Nn)m≥1 satisfies a large deviation principle with speed logm and

rate function Iθ in (1.6).

Proof. We only need to prove the large deviation principle for m−1K(n)
m |Kn with α ∈

(0, 1) and θ > −α. Let us consider the first moment of K(n)
m |Kn. Such a moment is

read in (2.6) with r = 1 at the index i = 0. Specifically one has E[K
(n)
m |Kn = j] =
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(j + θ/α) ((θ + n+ α)m↑1/(θ + n)m↑1 − 1) = O(mα). For any λ ≤ 0, Jensen’s inequality
leads to

0 ≥ lim
m→+∞

1

m
logE[eλK

(n)
m |Kn = j] (3.8)

≥ lim
m→+∞

1

m
E[λK(n)

m |Kn = j] ≥ lim
m→+∞

λmα

m
= 0.

For any λ > 0, we start by considering G
K

(n)
m

(x;α, 0) and then we move to the general

case θ > −α. For any n ≥ 1 and 1 ≤ j ≤ n let Hm(x;α, 0) = 1 +
∑
v≥1 x

vvj−n
(
n+vα+m−1
n+m−1

)
.

If n = j, then Hm(x;α, 0) can be estimated as in (3.6). On the other hand, for n > j the
(n − j)-th order derivative of Hm(x;α, 0) with respect to x coincides with the following
expression

H(n−j)
m (x;α, 0) =

dn−j

dxn−j
Hm(x;α, 0)

=
∑

v≥n−j

xv−(n−j)(n− j)!(v)(n−j)↓1v
j−n
(
n+ vα+m− 1

n+m− 1

)

≥ g(n, j)
∑
v≥0

xv
(
n+ vα+m− 1

n+m− 1

)
− g(n, j)

n−j−1∑
v=0

(
n+ vα+m− 1

n+m− 1

)
where g(n, j) = (n− j)!/(n− j)n−j . For x ∈ (0, 1) and ε ∈ (0, x), integrating (n− j) times
over (0, x) lead to

Hm(x;α, 0) ≥ Hm(x;α, 0)−
n−j−1∑
i=0

H
(i)
m (0;α, 0)

i!
xi

=

∫ x

0

∫ x1

0

· · ·
∫ xn−j−1

0

H(n−j)
m (y;α, 0)dy · · ·dx1

≥
∫ x

x−ε

∫ x1

x−ε
· · ·
∫ xn−j−1

x−ε
H(n−j)
m (y;α, 0)dy · · ·dx1

≥ g(n, j)εn−j
∑
v≥0

xv
(
n+ vα+m− 1

n+m− 1

)
− g(n, j)εn−j

n−j−1∑
v=0

(
n+ vα+m− 1

n+m− 1

)

where we used the monotonicity of the function
∑
v≥0 x

v
(
n+vα+m−1
n+m−1

)
in the last inequal-

ity. Also, since

lim
m→+∞

1

m
log

(
g(n, j)

n−j−1∑
v=0

(
n+m+ vα− 1

n+m− 1

))
= 0

it follows

lim inf
m→+∞

1

m
logG

K
(n)
m

(x;α, 0) = lim inf
m→+∞

1

m
logHm(x;α, 0)

≥ lim inf
m→+∞

1

m
log
∑
v≥0

xv
(
n+m+ vα− 1

n+m− 1

)
= Λα(λ).

Accordingly, by means of Lemma 3.3, the proof is completed for the case of α ∈ (0, 1)

and θ = 0. Now we consider the case θ 6= 0. By means of arguments similar to (3.7) we
can write (

j + θ
α

)
v↑1

v!
(
n+θ+vα−1
n+θ−1

) = Cθ(n, j, α, v)vj+
θ
α−n
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where Cθ(n, j, α, v) is uniformly bounded in v from above and below and it has a strict
positive lower bound. Accordingly, by choosing an ε small and two positive constants c1
and c2 such that xeε < 1 and such that c1e−εv ≤ Cθ(n, j, α, v)vj+

θ
α−n ≤ c2e

εv, it follows
that

c2(1− x)j+
θ
α

∑
v≥0

(xe−ε)v
(
n+ θ + vα+m− 1

n+ θ +m− 1

)
(3.9)

≤ G
K

(n)
m

(x;α, θ) ≤ c3(1− x)j+
θ
α

∑
v≥0

(xeε)v
(
n+ θ + vα+m− 1

n+ θ +m− 1

)
.

The proof in completed by letting m → +∞ and ε → 0 in (3.9). Indeed by taking
these limits we obtain limm→+∞ logG

K
(n)
m

(x;α, θ) = Λα(λ), which combined with (3.8),

implies limm→+∞m−1 logE[eλK
(n)
m |Kn = j] = Λα(λ). Then, the large deviation principle

for m−1K(n)
m |Kn follows by Gärtner-Ellis theorem. See Dembo and Zeitouni [4] for

details.

According to Theorem 3.4, Kn and its conditional counterparts T (n)
m | (Kn,Nn) be-

have the same in terms of large deviations. However, in terms of fluctuation limits,
Theorem 3.1 shows that the initial sample (X1, . . . , Xn) has a long lasting effect. This
is caused by the two different scalings involved, namely m−1 for large deviations and
m−α for the fluctuations. Since the given initial sample leads to an estimation on the
parameters, one would expect that the large deviation results will be dramatically dif-
ferent if the sample size n is allowed to grow and leads to large parameters. This kind
of behaviour is discussed in Feng [8] where the parameter θ and the sample size n grow
together and the large deviation result will depend on the relative growth rate between
n and θ.

Note that, if m depends on n and both approach infinity then one can expect very dif-
ferent behaviours in terms of law of large numbers and fluctuations. The large deviation
principle for m−1T (n)

m | (Kn,Nn) may not be easily derived from that of m−1K(n)
m |Kn by

a direct comparison argument. Hence, it is helpful to study the moment generating of
T

(n)
m | (Kn,Nn), namely

G
T

(n)
m

(x;α, θ) = E

[(
1

1− x

)T (n)
m

|Kn = j,Nn = n

]
. (3.10)

We intend to pursue this study further in a subsequent project. Here, we conclude by
providing an explicit expression for (3.10). As in Lemma (3.2), this expression follows
by applying Proposition 2.1.

Lemma 3.5. Let (X1, . . . , Xn) be a sample from P̃α,θ,ν featuring Kn = j blocks with
frequencies Nn = n. Then

i) for any α ∈ (0, 1) and θ > −α

G
T

(n)
m

(x;α, θ)

= (1− x)
θ
α

j∑
v=0

(−x)v
∑

(c1,...,cv)∈Cj,v

∑
l≥0

xl

l!

(
j +

θ

α

)
l↑1

(n−∑v
i=1 nci+θ+vα+lα+m−1

n+θ+m−1
)(n−∑v

i=1 nci+θ+vα+lα−1
n+θ−1

) ;

ii) for α = 0 and θ > 0

G
T

(n)
m

(x; 0, θ)
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1

(1− x)j

j∑
v=0

(−1)v
∑

(c1,...,cv)∈Cj,v

(n−∑v
i=1 nci+

θ
1−x+m−1

n+θ+m−1

)
(n−∑v

i=1 nci+
θ

1−x−1
n+θ−1

) ;

where we defined Cj,0 = ∅ and Cj,v = {(c1, . . . , cv) : ck ∈ {1, . . . , j}, ck 6= c`, if k 6= `} for
any v ≥ 1.

Proof. We expand the right-hand side of (3.10) in terms of falling factorial moments of
T

(n)
m | (Tn,Nn) and we apply Proposition 2.1 in which an expression for these moments

is given. Specifically,

G
T

(n)
m

(x;α, θ) =
∑
i≥0

xiE

[(
i+ T

(n)
m − 1

T
(n)−1
m

)
|Kn = j,Nn = n

]
(3.11)

=
∑
i≥0

xi

i!

i∑
l=0

|s(i, l, 0)|
l∑
t=0

S(l, t, 0)E[(T (n)
m )t↓1 |Kn = j,Nn = n].

For any α ∈ (0, 1) and θ > −α the falling factorial moment E[(T
(n)
m )t↓1 |Kn = j,Nn = n]

is read in (2.4) with r = t. Then, by Equation 2.60 and Equation 2.15 in Charalambides
[3], we can write

i∑
l=0

|s(i, l, 0)|
l∑
t=0

S(l, t, 0)E[(T (n)
m )t↓1 |Kn = j,Nn = n] (3.12)

=
1

(θ + n)m↑1

i∑
l=0

i−l∑
v=0

(−1)v
(
j +

θ

α

)
l↑1

∑
(c1,...,cv)∈Cj,v

(θ + n−
v∑
i=1

nci + vα+ lα)m↑1

×
i−l∑
w=v

w!

(
i

i

)(
i− w
l

)(
w + j − v − 1

w − v

)(
−j − θ

α

)
(i−w−l)↑1

=
1

(θ + n)m↑1

i∑
l=0

i−l∑
v=0

(−1)v
(
j +

θ

α

)
l↑1

× i!

l!(i− l − v)!

(
− θ
α

)
(i−l−v)↑1

∑
(c1,...,cv)∈Cj,v

(θ + n−
v∑
i=1

nci + vα+ lα)m↑1.

The proof of i) is completed by combining (3.11) with (3.12) and by standard algebraic
manipulations. Finally, for α = 0 and θ > 0 the result in ii) follows by exploiting similar
arguments.

4 Discussion

Our results contribute to the study of conditional properties of exchangeable random
partitions induced by the Ewens-Pitman sampling model. While focusing on the number
K

(n)
m of new blocks generated by the additional sample, Lijoi et al. [19] left open the

problem of studying the total number T (n)
m of blocks generated by the additional sample.

In this paper we presented a comprehensive analysis of distributional properties of
T

(n)
m | (Kn,N) for a finite sample size m and for large m. Hereafter we briefly discuss

our results with a view toward Bayesian nonparametric inference for species sampling
problems.

As pointed out in the Introduction, the distribution of T (n)
m | (Kn,N) takes on the in-

terpretation of the posterior distribution of the number of species generated by the ad-
ditional sample, given an initial observed sample featuring Kn species with frequencies
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Nn. Accordingly, the corresponding Bayesian nonparametric estimator, with respect to
a squared loss function, are recovered from (2.4) and (2.5) by setting r = 1. Then, one
obtains

E[T (n)
m |Kn = j,Nn = n] (4.1)

= j −
∑n
i=1mi(θ + n− i+ α)m↑1

(θ + n)m↑1
+

(
j +

θ

α

)(
(θ + n+ α)m↑1

(θ + n)m↑1
− 1

)
and

E[T (n)
m |Kn = j,Nn = n] (4.2)

= j −
∑n
i=1mi(θ + n− i)m↑1

(θ + n)m↑1
+

m∑
i=1

θ

θ + n+ i− 1

respectively, where mi denotes the number of distinct species with frequency i in n.
In particular, Theorem 3.4 shows that probabilities of “large" deviations away from
the point estimations (4.1) and (4.2) decay exponentially with rate functions Iα and Iθ,
respectively. Formulae (4.1) and (4.2) generalize the Bayesian nonparametric estimator
for the number of new species generated by the additional sample. See Favaro et al.
[6] for details.

Besides point estimators (4.1) and (4.2), one would also like to determine highest
posterior density (HPD) intervals since they provide a measure of uncertainty on the
point estimates. The problem of determining HPD intervals for E[T

(n)
m |Kn = j,Nn = n]

reduces to the problem of evaluating the distribution of T (n)
m | (Kn,N). An explicit ex-

pression for this distribution has been determined in (2.11) and (2.12). Then a simula-
tion algorithm can be implemented in order to evaluate quantiles for determining HPD
intervals of E[T

(n)
m |Kn = j,Nn = n]. There are, however, situations of practical inter-

est where j, n and m are very large and the computational burden for evaluating the
posterior distributions (2.11) and (2.12) becomes overwhelming. This happens, for in-
stance, in several genomic applications where one has to deal with relevant portions of
complementary DNA libraries which typically consist of millions of genes. To overcome
this drawback we can exploit Theorem 3.1. Indeed, for instance, for α ∈ (0, 1) and θ > 0

one has
P[T (n)

m = x |Kn = j,Nn = n] ≈ P[S
(n,j)
α,θ = mαx]

for a large m. Then, resorting the simulation algorithm for S(n,j)
α,θ developed in Favaro

et al. [6], we can evaluate appropriate quantiles of the limiting posterior distributions
in order to obtain an approximate evaluation of HPD credible sets for E[T

(n)
m |Kn =

j,Nn = n].

In this paper we focused on distributional properties of T (n)
m | (Kn,N) under the

Ewens-Pitman sampling model. A natural extension of our results consists in consid-
ering more general sampling models. With this regards, a noteworthy generalization
of the Ewens-Pitman sampling model is the so-called Gibbs-type sampling model intro-
duced by Gnedin and Pitman [13]. Specifically, let α ∈ (−∞, 1) and let V = (Vn,j)j≤n,n≥1
be a collection of nonnegative weights satisfying the recursion Vn,j = Vn+1,j+1 + (n −
jα)Vn+1,j , with V1,1 = 1. Then, a Gibbs-type sampling model with parameter (α, V, ν) is
defined as follows

P[Xi+1 ∈ · |X1, . . . , Xi] =
Vn+1,j+1

Vn,j
ν(·) +

Vn+1,j

Vn,j

j∑
l=1

(nl − α)δX∗
l
(·) (4.3)

for any i ≥ 1, with X∗1 , . . . , X
∗
j being the j distinct observations in (X1, . . . , Xi) with

frequencies n = (n1, . . . , nj). If Vn,j =
∏j−1
i=0 (θ + iα)/(θ)n↑1 then (4.3) reduces to (1.1).
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Under the Gibbs-type sampling model with α ∈ (0, 1), we derived an explicit expression

for the distribution of T (n)
m | (Kn,N) and a fluctuation limit as m tends to infinity. The

corresponding unconditional results for Kn are known from Gnedin and Pitman [13]
and Pitman [25]. Work on unconditional and conditional large deviation principles is
ongoing. For any α ∈ (0, 1) our conjecture is that n−1Kn and m−1T (n)

m | (Kn,N) satisfies
a large deviation principle with speed n and m, respectively, and with the same rate
function Iα in (1.5). In other words, we conjectured that large deviation principles for
n−1Kn and m−1T

(n)
m | (Kn,N) are invariant in the class of Gibbs-type sampling models

with α ∈ (0, 1).
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