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Abstract

We provide necessary and sufficient conditions for stochastic invariance of finite di-
mensional submanifolds with boundary in Hilbert spaces for stochastic partial differ-
ential equations driven by Wiener processes and Poisson random measures.
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1 Introduction

Consider a stochastic partial differential equation (SPDE) of the form{
drt = (Art + α(rt))dt+ σ(rt)dWt +

∫
E
γ(rt−, x)(µ(dt, dx)− F (dx)dt)

r0 = h0

(1.1)

on a separable Hilbert space H driven by some trace class Wiener process W on a
separable Hilbert space H and a compensated Poisson random measure µ on some
mark space E with dt⊗F (dx) being its compensator. Throughout this paper, we assume
that A is the generator of a C0-semigroup on H and that the mappings α, σ = (σj)j∈N
and γ satisfy appropriate regularity conditions.

Given a finite dimensional C3-submanifold M with boundary of H, we study the
stochastic viability and invariance problem related to the SPDE (1.1). In particular, we
provide necessary and sufficient conditions such that for each h0 ∈M there is a (local)
mild solution r to (1.1) with r0 = h0 which stays (locally) on the submanifoldM.

Any finite dimensional invariant submanifold M for the SPDE (1.1) gives rise to a
finite dimensional Markovian realization of the respective particular solution processes
r with initial values in M, i.e. a deterministic C3-function G and a finite dimensional
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Invariant manifolds with boundary for jump-diffusions

Markov process X such that rt = G(Xt) up to some stopping time. This proves to be
useful in applications, since it renders the stochastic evolution model (1.1) analytically
and numerically tractable for initial values in M. An important example is the so-
called Heath-Jarrow-Morton (HJM) SPDE that describes the evolution of the interest
rate curve. Stochastic invariance for the HJM SPDE has been discussed in detail in
[2, 3, 4, 8, 9, 15, 16, 20] for the diffusion case. The present paper completes the results
from [10, 15, 16] by providing explicit stochastic invariance conditions for the general
case of a SPDE with jumps.

Stochastic invariance has been extensively studied also for other sets than mani-
folds. In finite dimension the general stochastic invariance problem for closed sets has
been treated, e.g., in [5] in the diffusion case, and in [22] in the case of jump-diffusions.
In infinite dimension we mention, e.g., the works of [19, 20, 23], where stochastic in-
variance has been established by means of support theorems for diffusion-type SPDEs.

We shall now present and explain the invariance conditions which we derive in this
paper. Let us first consider the situation where the jumps in (1.1) are of finite variation.
Then the conditions

M⊂ D(A), (1.2)

σj(h) ∈

{
ThM, h ∈M \ ∂M,

Th∂M, h ∈ ∂M,
for all j ∈ N, (1.3)

h+ γ(h, x) ∈M for F -almost all x ∈ E, for all h ∈M, (1.4)

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h) (1.5)

−
∫
E

γ(h, x)F (dx) ∈

{
ThM, h ∈M \ ∂M,

(ThM)+, h ∈ ∂M

are necessary and sufficient for stochastic invariance ofM for (1.1).
Condition (1.2) says that the submanifold M lies in the domain of the infinitesimal

generator A. This ensures that the mapping in (1.5) is well-defined. Condition (1.3)
means that the volatilities h 7→ σj(h) must be tangential to M in its interior and tan-
gential to the boundary ∂M at boundary points. Condition (1.4) says that the functions
h 7→ h + γ(h, x) map the submanifold M into its closure M. Condition (1.5) means
that the adjusted drift must be tangential to M in its interior and additionally inward
pointing at boundary points.

In the general situation, where the jumps in (1.1) may be of infinite variation, condi-
tion (1.5) is replaced by the three conditions∫

E

|〈ηh, γ(h, x)〉|F (dx) <∞, h ∈ ∂M, (1.6)

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h) (1.7)

−
∫
E

Π(ThM)⊥γ(h, x)F (dx) ∈ ThM, h ∈M,

〈ηh, Ah+ α(h)〉 − 1

2

∑
j∈N
〈ηh, Dσj(h)σj(h)〉 (1.8)

−
∫
E

〈ηh, γ(h, x)〉F (dx) ≥ 0, h ∈ ∂M,

where ηh denotes the inward pointing normal vector to ∂M at boundary points h ∈ ∂M.
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Invariant manifolds with boundary for jump-diffusions

Condition (1.6) concerns the small jumps of r at the boundary of the submanifold
and means that the discontinuous part of the solution must be of finite variation, unless
it is parallel to the boundary ∂M. Denoting by ΠK the orthogonal projection on a closed
subspace K ⊂ H, we decompose

γ(h, x) = ΠThMγ(h, x) + Π(ThM)⊥γ(h, x).

As we will show, condition (1.4) implies∫
E

‖Π(ThM)⊥γ(h, x)‖F (dx) <∞, h ∈M. (1.9)

The essential idea is to perform a second order Taylor expansion for a parametrization
around h to obtain

‖Π(ThM)⊥γ(h, x)‖ = ‖γ(h, x)−ΠThMγ(h, x)‖ ≤ C‖γ(h, x)‖2

for some constant C ≥ 0. By virtue of (1.9), the integral in (1.7) exists, and hence,
conditions (1.7), (1.8) correspond to (1.5).

As in previous papers on this subject we are dealing with mild solutions of SPDEs,
i.e. stochastic processes taking values in a Hilbert space whose drift characteristic is
quite irregular (e.g., not continuous with respect to the state variables). Therefore, the
arguments to translate stochastic invariance into conditions on the characteristics are
not straightforward. The arguments to prove our stochastic invariance results can be
structured as follows: First, we show that we can (pre-)localize the problem by separat-
ing big and small jumps. Second, prelocal invariance of parametrized submanifolds can
be pulled back to Rm by a linear projection argument tracing back to [11]. Both steps
require a careful analysis of jump structures, which leads to the involved invariance
conditions.

The remainder of this paper is organized as follows. In Section 2 we state our main
results. In Section 3 we provide some notation and auxiliary results about stochastic
invariance. In Section 4 we perform local analysis of the invariance problem on half
spaces, in Section 5 we perform local analysis of the invariance problem on subman-
ifolds with boundary, and in Section 6 we perform global analysis of the invariance
problem on submanifolds with boundary and prove our main results. For convenience
of the reader, the proofs of some technical auxiliary results are deferred to the appendix
[14].

2 Statement of the main results

In this section we introduce the necessary terminology and state our main results.
We fix a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions and
let H be a separable Hilbert space.

Let W be a Q-Wiener process (see [6, pages 86, 87]) on some separable Hilbert
space H, where the covariance operator Q is a trace class operator.

Let (E, E) be a measurable space which we assume to be a Blackwell space (see
[7, 17]). We remark that every Polish space with its Borel σ-field is a Blackwell space.
Furthermore, let µ be a time-homogeneous Poisson random measure on R+ × E, see
[18, Definition II.1.20]. Then its compensator is of the form dt ⊗ F (dx), where F is a
σ-finite measure on (E, E).

In [14] we review some basic facts about SPDEs of the type (1.1) and we recall the
concepts of (local) strong, weak and mild solutions. In particular, equation (1.1) can be
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Invariant manifolds with boundary for jump-diffusions

rewritten equivalently
drt = (Art + α(rt))dt+

∑
j∈N σ

j(rt)dβ
j
t

+
∫
E
γ(rt−, x)(µ(dt, dx)− F (dx)dt)

r0 = h0,

(2.1)

where (βj)j∈N is a sequence of real-valued independent standard Wiener processes. We
next formulate the concept of stochastic invariance.

Definition 2.1. A non-empty Borel set B ⊂ H is called prelocally (locally) invariant for
(2.1), if for all h0 ∈ B there exists a local mild solution r = r(h0) to (2.1) with lifetime
τ > 0 such that up to an evanescent set1

(rτ )− ∈ B and rτ ∈ B(
rτ ∈ B

)
.

The following standing assumptions prevail throughout this paper:

• A generates a C0-semigroup (St)t≥0 on H.

• The mapping α : H → H is locally Lipschitz continuous, that is, for each n ∈ N
there is a constant Ln ≥ 0 such that

‖α(h1)− α(h2)‖ ≤ Ln‖h1 − h2‖, h1, h2 ∈ H with ‖h1‖, ‖h2‖ ≤ n. (2.2)

• For each n ∈ N there exists a sequence (κjn)j∈N ⊂ R+ with
∑
j∈N(κjn)2 < ∞ such

that for all j ∈ N the mapping σj : H → H satisfies

‖σj(h1)− σj(h2)‖ ≤ κjn‖h1 − h2‖, h1, h2 ∈ H with ‖h1‖, ‖h2‖ ≤ n, (2.3)

‖σj(h)‖ ≤ κjn, h ∈ H with ‖h‖ ≤ n. (2.4)

Consequently, for each j ∈ N the mapping σj is locally Lipschitz continuous.

• The mapping γ : H × E → H is measurable, and for each n ∈ N there exists a
measurable function ρn : E → R+ with∫

E

(
ρn(x)2 ∨ ρn(x)4

)
F (dx) <∞ (2.5)

such that for all x ∈ E the mapping γ(•, x) : H → H satisfies

‖γ(h1, x)− γ(h2, x)‖ ≤ ρn(x)‖h1 − h2‖, h1, h2 ∈ H with ‖h1‖, ‖h2‖ ≤ n, (2.6)

‖γ(h, x)‖ ≤ ρn(x), h ∈ H with ‖h‖ ≤ n. (2.7)

Consequently, for each x ∈ E the mapping γ(•, x) is locally Lipschitz continuous.

• We assume that for each j ∈ N the mapping σj : H → H is continuously differen-
tiable, that is

σj ∈ C1(H) for all j ∈ N. (2.8)

The first four conditions ensure that we may apply the results about SPDEs from [14].
We furthermore assume that:

1A random set A ⊂ Ω × R+ is called evanescent if the set {ω ∈ Ω : (ω, t) ∈ A for some t ∈ R+} is a
P-nullset, cf. [18, 1.1.10].
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• M is a finite-dimensional C3-submanifold with boundary of H; that is, for all h ∈
M there exist an open neighborhood U ⊂ H of h, an open set V ⊂ Rm+ = R+ ×
Rm−1 (where m ∈ N is the dimension of M) and a map φ ∈ C3(V ;H) (which we
will call a parametrization ofM around h and also denote as φ : V ⊂ Rm+ → U∩M)
such that

1. φ : V → U ∩M is a homeomorphism;
2. Dφ(y) is one to one for all y ∈ V .

We refer to [14, Section 3] for further details.

Remark 2.2. We impose that M is of class C3, because this ensures that the coeffi-
cients a, (bj)j∈N, c and Θ, (Σj)j∈N, Γ of the SDEs (5.26), (4.1), which we will define in
(5.38)–(5.40) and (5.44)–(5.46), satisfy the regularity conditions (2.2)–(2.4) and (2.6)–
(2.8) as well; see Lemma 5.6.

Remark 2.3. Similarly, instead of (2.5) one would expect the weaker condition∫
E

ρn(x)2F (dx) <∞. (2.9)

The reason is that (2.5) is required in order to ensure that the above-mentioned coef-
ficients also satisfy the regularity conditions (2.2)–(2.4) and (2.6)–(2.8), but with (2.5)
being replaced by (2.9); see Lemma 5.6.

Our first main result now reads as follows.

Theorem 2.4. The following statements are equivalent:

(1) M is prelocally invariant for (2.1).

(2) We have (1.2)–(1.4) and (1.6)–(1.8).

In either case, A and the mapping in (1.7) are continuous onM, and for each h0 ∈ M
there is a local strong solution r = r(h0) to (2.1). Moreover, if instead of (1.4) we even
have

h+ γ(h, x) ∈M for F -almost all x ∈ E, for all h ∈M, (2.10)

thenM is locally invariant for (2.1).

Remark 2.5. It follows from Theorem 2.4 that (pre-)local invariance ofM is a property
which only depends on the parameters {α, σj , γ, F} – that is, on the law of the solution
to (2.1). It does not depend on the actual stochastic basis {(Ω,F , (Ft)t≥0,P),W, µ}.

Note that local invariance of M does not imply (2.10), as the following example
illustrates:

Example 2.6. Let H = R, (E, E) = (R,B(R)),M = [0, 1) and consider the SDE{
drt = dt+

∫
R
γ(rt−, x)µ(dt, dx)

r0 = h0,
(2.11)

where the compensator dt ⊗ F (dx) of µ is given by the Dirac measure F = δ1 concen-
trated in 1, and

γ : R×R→ R, γ(h, x) = 1− 2h.
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Then M is locally invariant for (2.11). Indeed, let h0 ∈ M be arbitrary. There exists
ε > 0 with h0 + ε < 1. We define the stopping time τ > 0 as

τ := inf{t ≥ 0 : rt = h0 + ε} ∧ inf{t ≥ 0 : µ([0, t]×R) = 1}.

Then we have (r(h0))τ ∈M up to an evanescent set, because

h+ γ(h, x) = 1− h ∈M, h ∈ (0, 1)

showing thatM is locally invariant for (2.11). However, the jump condition (2.10) is not
satisfied, because for h = 0 we have

h+ γ(h, x) = 1 /∈M.

Nevertheless, we see that condition (1.4) holds true, because 1 ∈M.

If M is a closed subset of H and global Lipschitz conditions are satisfied, then we
obtain global invariance. This is the content of our second main result, for which we
recall the following definition:

Definition 2.7. The semigroup (St)t≥0 is called pseudo-contractive, if

‖St‖ ≤ eωt, t ≥ 0

for some constant ω ∈ R.

Now our second main result reads as follows:

Theorem 2.8. Assume that the semigroup (St)t≥0 is pseudo-contractive and that con-
ditions (2.2)–(2.7) hold globally, i.e. the coefficients Ln, (κjn)j∈N, ρn do not depend on
n ∈ N, and with the right-hand sides of (2.4), (2.7) multiplied by (1 + ‖h‖). If M is a
closed subset of H, then (1.2)–(1.4) and (1.6)–(1.8) imply that for any h0 ∈ M there
exists a unique strong solution r = r(h0) to (2.1) and r ∈M up to an evanescent set.

Remark 2.9. Let us comment on the pseudo-contractivity of the semigroup, which we
have imposed for Theorem 2.8. Together with the global Lipschitz conditions, it ensures
existence and uniqueness of mild solutions to the SPDE (2.1) with càdlàg sample paths,
which we require for the proof. In the general situation, where the semigroup fulfills
the estimate

‖St‖ ≤Meωt, t ≥ 0

for constants M ≥ 1 and ω ∈ R, the global Lipschitz conditions ensure existence and
uniqueness of mild solutions, but it is generally not known whether they have a càdlàg
version. However, we remark that in the continuous case γ ≡ 0 we obtain the existence
of continuous mild solutions without the pseudo-contractivity of the semigroup; see,
e.g., [6].

Remark 2.10. Note that we have not imposed the pseudo-contractivity of the semi-
group for Theorem 2.4. Under the conditions of this result, the existence of locally
invariant mild solutions to the SPDE (2.1) follows from the existence of locally invariant
strong solutions to the finite dimensional SDEs (4.1), (5.26), and this does not require
assumptions on the semigroup.

The above two theorems simplify in the case of jumps with finite variation:
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Theorem 2.11. Assume that∫
E

‖γ(h, x)‖F (dx) <∞ for all h ∈M. (2.12)

Then the following statements are true:

1. Theorems 2.4 and 2.8 remain true with (1.6)–(1.8) being replaced by (1.5).

2. Suppose that even the following stronger condition than (2.12) is satisfied: For
each n ∈ N there exists a measurable function θn : E → R+ with

∫
E
θn(x)F (dx) <

∞ such that

‖γ(h, x)‖ ≤ θn(x) for all h ∈M with ‖h‖ ≤ n and all x ∈ E. (2.13)

Then, in addition to statement (1), the mapping in (1.5) is continuous onM.

3 Notation and auxiliary results about stochastic invariance

In this section, we provide some notation and auxiliary results about stochastic in-
variance which we will use for the proofs our main results. In the sequel, for h0 ∈ H
and ε > 0 we denote by Bε(h0) the open ball

Bε(h0) = {h ∈ H : ‖h− h0‖ < ε}.

For technical reasons, we will also need the following concept of prelocal invariance:

Definition 3.1. Let B1 ⊂ B2 ⊂ H be two nonempty Borel sets. B1 is called prelocally
invariant in B2 for (2.1), if for all h0 ∈ B1 there exists a local mild solution r = r(h0) to
(2.1) with lifetime τ > 0 such that (rτ )− ∈ B1 and rτ ∈ B2 up to an evanescent set.

Remark 3.2. Note that any non-empty Borel set B ⊂ H is prelocally invariant for (2.1)
in the sense of Definition 2.1 if and only if B is prelocally invariant in B for (2.1) in the
sense of Definition 3.1.

We proceed with some auxiliary results about stochastic invariance which we will
use later on. For the proofs we refer to [14, Lemmas 2.11–2.16].

Lemma 3.3. Let B1 ⊂ B2 ⊂ H be two Borel sets such that B1 is prelocally invariant in
B2 for (2.1). Then we have

h+ γ(h, x) ∈ B2 for F -almost all x ∈ E, for all h ∈ B1.

Lemma 3.4. Let B1 ⊂ B2 ⊂ H be two Borel sets such that

h+ γ(h, x) ∈ B2 for F -almost all x ∈ E, for all h ∈ B1.

Let h0 : Ω → H be a F0-measurable random variable and let r = r(h0) be a local mild
solution to (2.1) with lifetime τ > 0 such that (rτ )− ∈ B1 and rτ1[[0,τ [[ ∈ B2 up to an
evanescent set. Then we have rτ ∈ B2 up to an evanescent set.

Lemma 3.5. Let B ⊂ C ⊂ H be two Borel sets such that C is closed in H and

h+ γ(h, x) ∈ C for F -almost all x ∈ E, for all h ∈ B.

Let h0 : Ω → H be a F0-measurable random variable and let r = r(h0) be a local mild
solution to (2.1) with lifetime τ > 0 such that (rτ )− ∈ B up to an evanescent set. Then
we have rτ ∈ C up to an evanescent set.
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Lemma 3.6. Let G1, G2 be metric spaces such that G1 is separable. Let B ⊂ G1 be a
Borel set, let C ⊂ G2 be a closed set and let δ : G1 × E → G2 be a measurable mapping
such that δ(•, x) : G1 → G2 is continuous for all x ∈ E. Suppose that

δ(h, x) ∈ C for F -almost all x ∈ E, for all h ∈ B.

Then we even have

δ(h, x) ∈ C for all h ∈ B, for F -almost all x ∈ E.

Lemma 3.7. Let (G,G, ν) be a σ-finite measure space, let C ⊂ H be a closed, convex
cone and let f ∈ L1(G;H) be such that f(x) ∈ C for ν-almost all x ∈ G. Then we have∫

G

fdν ∈ C.

Lemma 3.8. Let C ⊂ H be a closed, convex cone and let δ : Ω × R+ × E → H be an
optional process satisfying

P

(∫ t

0

∫
E

‖δ(s, x)‖µ(ds, dx) <∞
)

= 1 for all t ≥ 0

such that

δ(•, x) ∈ C up to an evanescent set, for F -almost all x ∈ E.

Then we have X ∈ C up to an evanescent set, where X denotes the integral process

Xt :=

∫ t

0

∫
E

δ(s, x)µ(ds, dx), t ≥ 0.

4 Local analysis of the invariance problem on half spaces

As a first building block for the proof of Theorem 2.4, our goal of this section is the
proof of Theorem 4.1, which provides a local version of Theorem 2.4 in the particular
situation where the manifold is an open subset of a half space. More precisely, fix an
arbitrary m ∈ N and consider the Rm-valued SDE{

dYt = Θ(Yt)dt+
∑
j∈N Σj(Yt)dβ

j
t +

∫
E

Γ(Yt−, x)(µ(dt, dx)− F (dx)dt)

Y0 = y0.
(4.1)

We assume that the mappings Θ : Rm → Rm, Σj : Rm → Rm, j ∈ N and Γ : Rm × E →
Rm satisfy the regularity conditions (2.2)–(2.4) and (2.6)–(2.8). Instead of (2.5), we only
demand that the mappings ρn : E → R+, n ∈ N appearing in (2.6), (2.7) satisfy (2.9).

Let V be an open subset of the half spaceRm+ = R+×Rm−1, on which we consider the
relative topology. Let ∂V = {y ∈ V : y1 = 0} be the set of all boundary points of V . Let
OV ⊂ CV ⊂ V be subsets such that OV is open in V and CV is compact. In the sequel,
we equip Rm with the Euclidean inner product and denote by e1 = (1, 0, . . . , 0) ∈ Rm the
first unit vector.

Theorem 4.1. The following statements are equivalent:

(1) OV is prelocally invariant in CV for (4.1).
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(2) We have

Σj(y) ∈ Ty∂V, y ∈ OV ∩ ∂V, for all j ∈ N, (4.2)

y + Γ(y, x) ∈ CV for F -almost all x ∈ E, for all y ∈ OV , (4.3)∫
E

|〈e1,Γ(y, x)〉|F (dx) <∞, y ∈ OV ∩ ∂V, (4.4)

〈e1,Θ(y)〉 −
∫
E

〈e1,Γ(y, x)〉F (dx) ≥ 0, y ∈ OV ∩ ∂V. (4.5)

Proof. For the sake of simplicity, we agree to write O := OV , ∂O := O∩∂V and C := CV
during the proof.
(1) ⇒ (2): Let y ∈ O be arbitrary. Since O is prelocally invariant in C for (4.1), there
exists a local strong solution Y = Y (y) to (4.1) with lifetime τ > 0 such that (Y τ )− ∈ O
and Y τ ∈ C up to an evanescent set. Thus, Lemma 3.3 yields (4.3), and for every finite
stopping time % ≤ τ we have

P(〈e1, Y%〉 ≥ 0) = 1. (4.6)

From now on, we assume that y ∈ ∂O. Let (Φj)j∈N ⊂ R be a sequence with Φj 6= 0

for only finitely many j ∈ N, and let Ψ : E → R be a measurable function of the form
Ψ = c1B with c > −1 and B ∈ E satisfying F (B) < ∞. Let Z be the Doléans-Dade
exponential

Z = E
(∑
j∈N

Φjβj +

∫ •
0

∫
E

Ψ(x)(µ(ds, dx)− F (dx)ds)

)
.

By [18, Theorem I.4.61] the process Z is a solution of

Zt = 1 +
∑
j∈N

Φj
∫ t

0

Zsdβ
j
s +

∫ t

0

∫
E

Zs−Ψ(x)(µ(ds, dx)− F (dx)ds), t ≥ 0

and, since Ψ > −1, the process Z is a strictly positive local martingale. There exists a
strictly positive stopping time τ1 such that Zτ1 is a martingale. Integration by parts (see
[18, Theorem I.4.52]) yields

〈e1, Yt〉Zt =

∫ t

0

〈e1, Ys−〉dZs +

∫ t

0

Zs−d〈e1, Ys〉

+ 〈〈e1, Y
c〉, Zc〉t +

∑
s≤t

〈e1,∆Ys〉∆Zs, t ≥ 0.
(4.7)

Taking into account the dynamics (4.1), we have

〈〈e1, Y
c〉, Zc〉t =

∑
j∈N

Φj
∫ t

0

Zs〈e1,Σ
j(Ys)〉ds, t ≥ 0, (4.8)

∑
s≤t

〈e1,∆Ys〉∆Zs =

∫ t

0

∫
E

Zs−Ψ(x)〈e1,Γ(Ys−, x)〉µ(ds, dx), t ≥ 0. (4.9)

Incorporating (4.1), (4.8) and (4.9) into (4.7), we obtain

〈e1, Yt〉Zt = Mt +

∫ t

0

Zs−

(
〈e1,Θ(Ys−)〉+

∑
j∈N

Φj〈e1,Σ
j(Ys−)〉

+

∫
E

Ψ(x)〈e1,Γ(Ys−, x)〉F (dx)

)
ds, t ≥ 0,

(4.10)
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Invariant manifolds with boundary for jump-diffusions

where M is a local martingale with M0 = 0. There exists a strictly positive stopping
time τ2 such that Mτ2 is a martingale.

By the continuity of Θ there exist a strictly positive stopping time τ3 and a constant
Θ̃ > 0 such that

|〈e1,Θ(Y(t∧τ3)−)〉| ≤ Θ̃, t ≥ 0.

Suppose that Σj(y) /∈ Ty∂V , i.e. 〈e1,Σ
j(y)〉 6= 0, for some j ∈ N. By the continuity of Σ

there exist η > 0 and a strictly positive stopping time τ4 ≤ 1 such that

|〈e1,Σ
j(Y(t∧τ4)−)〉| ≥ η, t ≥ 0.

Let (Φk)k∈N ⊂ R be the sequence given by

Φk =

{
−sign(〈e1,Σ

k(y)〉) Θ̃+1
η , k = j,

0, k 6= j.

Furthermore, let Ψ := 0 and % := τ ∧ τ1 ∧ τ2 ∧ τ3 ∧ τ4. Taking expectation in (4.10) yields
E[〈e1, Y%〉Z%] < 0, implying P(〈e1, Y%〉 < 0) > 0, which contradicts (4.6). This proves
(4.2).

Now suppose
∫
E
|〈e1,Γ(y, x)〉|F (dx) = ∞. By the Cauchy-Schwarz inequality, for all

B ∈ E with F (B) <∞ the map y 7→
∫
B

Γ(y, x)F (dx) is continuous. Using the σ-finiteness
of F , there exist B ∈ E with F (B) <∞ and a strictly positive stopping time τ4 ≤ 1 such
that

−1

2

∫
B

|〈e1,Γ(Y(t∧τ4)−, x)〉|F (dx) ≤ −(Θ̃ + 1), t ≥ 0.

Let Φ := 0, Ψ := − 1
21B and % := τ∧τ1∧τ2∧τ3∧τ4. Taking expectation in (4.10) we obtain

E[〈e1, Y%〉Z%] < 0, implying P(〈e1, Y%〉 < 0) > 0, which contradicts (4.6). This yields (4.4).
Since F is σ-finite, there exists a sequence (Bn)n∈N ⊂ E with Bn ↑ E and F (Bn) <∞,

n ∈ N. We shall show for all n ∈ N the relation

〈e1,Θ(y)〉+

∫
E

Ψn(x)〈e1,Γ(y, x)〉F (dx) ≥ 0, (4.11)

where Ψn := −(1− 1
n )1Bn . Suppose, on the contrary, that (4.11) is not satisfied for some

n ∈ N. Then there exist η > 0 and a strictly positive stopping time τ4 ≤ 1 such that

〈e1,Θ(Y(t∧τ4)−)〉+

∫
E

Ψn(x)〈e1,Γ(Y(t∧τ4)−, x)〉F (dx) ≤ −η, t ≥ 0.

Let Φ := 0 and % := τ ∧ τ1 ∧ τ2 ∧ τ3 ∧ τ4. Taking expectation in (4.10) we obtain
E[〈e1, Y%〉Z%] < 0, implying P(〈e1, Y%〉 < 0) > 0, which contradicts (4.6). This yields
(4.11). By (4.11), (4.4) and Lebesgue’s dominated convergence theorem, we conclude
(4.5).
(2)⇒ (1): The metric projection Π = ΠRm+ : Rm → Rm+ on the half space Rm+ is given by

Π(y1, y2, . . . , ym) = ((y1)+, y2, . . . , ym), (4.12)

and therefore, it satisfies

‖Π(y1)−Π(y2)‖ ≤ ‖y1 − y2‖ for all y1, y2 ∈ Rm.

Consequently, the mappings ΘΠ : Rm → Rm, ΣjΠ : Rm → Rm, j ∈ N and ΓΠ : Rm × E →
Rm defined as

ΘΠ := Θ ◦Π, ΣjΠ := Σj ◦Π and ΓΠ(•, x) := Γ(•, x) ◦Π
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Invariant manifolds with boundary for jump-diffusions

also satisfy the regularity conditions (2.2)–(2.4) and (2.6)–(2.8), which ensures existence
and uniqueness of local strong solutions to the SDE

dYt = ΘΠ(Yt)dt+
∑
j∈N ΣjΠ(Yt)dβ

j
t

+
∫
E

ΓΠ(Yt−, x)(µ(dt, dx)− F (dx)dt)

Y0 = y0.

(4.13)

Now, let y0 ∈ O be arbitrary. Then there exists a local strong solution Y to (4.13) with
Y0 = y0 and some lifetime τ > 0. First, suppose that y0 /∈ ∂O. Then there exists ε > 0

such that Bε(y0) ⊂ O. We define the strictly positive stopping time

% := inf{t ≥ 0 : Yt /∈ Bε(y0)} ∧ τ.

Then we have

(Y %)− ∈ Bε(y0) ⊂ O.

Using (4.3) and Lemma 3.4 we obtain Y % ∈ C up to an evanescent set.

From now on, we suppose that y0 ∈ ∂O. Then there exists ε > 0 such that Bε(y0) ∩
Rm+ ⊂ O. We define the strictly positive stopping time

% := inf{t ≥ 0 : Yt /∈ Bε(y0)} ∧ τ.

Setting

P := Bε(y0) and Rm− := {y ∈ Rm : y1 ≤ 0},

by taking into account that the metric projection Π on Rm+ is given by (4.12), we have

Π(y) ∈ ∂O, y ∈ P ∩Rm− . (4.14)

By (4.12) and (4.3), for all y ∈ P ∩Rm+ we have

〈e1, y + ξΓΠ(y, x)〉 = (1− ξ)〈e1, y〉+ ξ(〈e1, y〉+ 〈e1,ΓΠ(y, x)〉)
= (1− ξ)〈e1, y〉+ ξ〈e1, y + Γ(y, x)〉 ≥ 0 for all ξ ∈ [0, 1],

for F -almost all x ∈ E.

(4.15)

Furthermore, by (4.2)–(4.5) and (4.14), for all y ∈ P ∩Rm− we have

〈e1,Σ
j
Π(y)〉 = 〈e1,Σ

j(Π(y))〉 = 0, for all j ∈ N, (4.16)

〈e1,ΓΠ(y, x)〉 = 〈e1,Π(y)〉+ 〈e1,Γ(Π(y), x)〉 (4.17)

= 〈e1,Π(y) + Γ(Π(y), x)〉 ≥ 0, for F -almost all x ∈ E,∫
E

|〈e1,ΓΠ(y)〉|F (dx) =

∫
E

|〈e1,Γ(Π(y))〉|F (dx) <∞, (4.18)

〈e1,ΘΠ(y)〉 −
∫
E

〈e1,ΓΠ(y, x)〉F (dx) (4.19)

= 〈e1,Θ(Π(y))〉 −
∫
E

〈e1,Γ(Π(y), x)〉F (dx) ≥ 0.

The function φ : R→ R, φ(y) := (−y3)+ is of class C2(R) and we have φ′(y) < 0 for y < 0
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and φ′(y) = φ′′(y) = 0 for y ≥ 0. By (4.15)–(4.19) and Lemma 3.6, we obtain

φ′(〈e1, y〉)
(
〈e1,ΘΠ(y)〉 −

∫
E

〈e1,ΓΠ(y, x)〉F (dx)

)
≤ 0, y ∈ P (4.20)

φ′′(〈e1, y〉)|〈e1,Σ
j
Π(y)〉|2 = 0, y ∈ P, for all j ∈ N (4.21)

φ′(〈e1, y〉)〈e1,Σ
j
Π(y)〉 = 0, y ∈ P, for all j ∈ N (4.22)(∫ 1

0

φ′(〈e1, y + ξΓΠ(y, x)〉)dξ
)
〈e1,ΓΠ(y, x)〉 ≤ 0 for all y ∈ P , (4.23)

for F -almost all x ∈ E.

Applying Itô’s formula (see [18, Theorem I.4.57]) yields P-almost surely

φ(〈e1, Yt∧%〉) = φ(〈e1, y0〉)

+

∫ t∧%

0

(
φ′(〈e1, Ys〉)〈e1,ΘΠ(Ys)〉+

1

2

∑
j∈N

φ′′(〈e1, Ys〉)|〈e1,Σ
j
Π(Ys)〉|2

+

∫
E

(
φ(〈e1, Ys + ΓΠ(Ys, x)〉)− φ(〈e1, Ys〉)

− φ′(〈e1, Ys〉)〈e1,ΓΠ(Ys, x)〉
)
F (dx)

)
ds

+
∑
j∈N

∫ t∧%

0

φ′(〈e1, Ys〉)〈e1,Σ
j
Π(Ys)〉dβjs

+

∫ t∧%

0

∫
E

(
〈e1, φ(〈e1, Ys− + ΓΠ(Ys−, x)〉)− φ(〈e1, Ys−〉)

)
(µ(ds, dx)− F (dx)ds), t ≥ 0.

By (4.18) and Taylor’s theorem we obtain P-almost surely

φ(〈e1, Yt∧%〉)

=

∫ t∧%

0

[
φ′(〈e1, Ys〉)

(
〈e1,ΘΠ(Ys)〉 −

∫
E

〈e1,ΓΠ(Ys, x)〉F (dx)

)
+

1

2

∑
j∈N

φ′′(〈e1, Ys〉)|〈e1,Σ
j
Π(Ys)〉|2

]
ds

+
∑
j∈N

∫ t∧%

0

φ′(〈e1, Ys〉)〈e1,Σ
j
Π(Ys)〉dβjs

+

∫ t∧%

0

∫
E

(∫ 1

0

φ′(〈e1, Ys− + ξΓΠ(Ys−, x)〉)dξ
)
〈e1,ΓΠ(Ys−, x)〉

µ(ds, dx), t ≥ 0.

By (4.20)–(4.23) and Lemmas 3.7 and 3.8, we deduce that φ(〈e1, Y
%〉) ≤ 0 up to an

evanescent set. Therefore, we obtain on up to an evanescent set

(Y τ )− ∈ Bε(y0) ∩Rm+ ⊂ O.

Using (4.3) and Lemma 3.5 we obtain Y τ ∈ C up to an evanescent set. Since Θ|C =

ΘΠ|C , Σj |C = ΣjΠ|C for all j ∈ N and Γ(•, x)|C = ΓΠ(•, x)|C for all x ∈ E, the process Y is
also a local strong solution to (4.1) with lifetime %, proving that O is prelocally invariant
in C for (4.1).

EJP 19 (2014), paper 51.
Page 12/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2882
http://ejp.ejpecp.org/
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Note that V is a m-dimensional C3-submanifold with boundary of Rm, and that for
y ∈ ∂V the inward pointing normal vector to ∂V at y is given by the first unit vector
e1 = (1, 0, . . . , 0) ∈ Rm. In order to see that for the submanifold V conditions (4.2)–
(4.5) resemble conditions (1.2)–(1.4) and (1.6)–(1.8), we require the following auxiliary
result.

Lemma 4.2. Suppose that (4.2) is satisfied. Then for all j ∈ N we have

〈e1, DΣj(y)Σj(y)〉 = 0, y ∈ OV ∩ ∂V.

Proof. The statement is a consequence of [14, Lemma 3.13].

5 Local analysis of the invariance problem on submanifolds with
boundary

As next building block for the proof of Theorem 2.4, our goal of this section is the
proof of Theorem 5.3, which provides a local version of Theorem 2.4. We assume that
for the m-dimensional C3-submanifoldM with boundary of H there exist

• a m-dimensional C3-submanifold N with boundary of Rm,

• parametrizations φ : V ⊂ Rm+ →M and ψ : V ⊂ Rm+ → N ,

• and elements ζ1, . . . , ζm ∈ D(A∗) such that the mapping f := φ ◦ψ−1 : N →M has
the inverse

f−1 :M→N , f−1(h) = 〈ζ, h〉 := (〈ζ1, h〉, . . . , 〈ζm, h〉). (5.1)

In other words, the diagram

N ⊂ Rm
f //M⊂ H
〈ζ,•〉

oo

V ⊂ Rm+

ψ

ff
φ

88
(5.2)

commutes.

Remark 5.1. According to [14, Proposition 3.11], for an arbitrary C3-submanifold M
with boundary of H and an arbitrary point h0 ∈ M there always exists a neighborhood
of h0 such that a diagram of form (5.2) exists and commutes. We will use this result for
the global analysis of the invariance problem in Section 6.

Remark 5.2. For a C3-submanifold M without boundary there even exist local para-
metrizations φ : V ⊂ Rm → U ∩ M with inverses being of the form 〈ζ, •〉 for some
ζ1, . . . , ζm ∈ D(A∗), see [11]. In the present situation, where M is a submanifold with
boundary, this is generally not possible, and thus, we consider the situation where the
diagram (5.2) commutes.

Let OM ⊂ CM ⊂ M be subsets. We assume that OM is open in M and CM is
compact. Our announced main result of this section reads as follows.

Theorem 5.3. The following statements are equivalent:

(1) OM is prelocally invariant in CM for (2.1).
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(2) The following conditions are satisfied:

OM ⊂ D(A), (5.3)

σj(h) ∈ ThM, h ∈ OM, j ∈ N, (5.4)

σj(h) ∈ Th∂M, h ∈ OM ∩ ∂M, j ∈ N, (5.5)

h+ γ(h, x) ∈ CM for F -almost all x ∈ E, for all h ∈ OM, (5.6)∫
E

|〈ηh, γ(h, x)〉|F (dx) <∞, h ∈ OM ∩ ∂M, (5.7)

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h) (5.8)

−
∫
E

Π(ThM)⊥γ(h, x)F (dx) ∈ ThM, h ∈ OM,

〈ηh, Ah+ α(h)〉 − 1

2

∑
j∈N
〈ηh, Dσj(h)σj(h)〉 (5.9)

−
∫
E

〈ηh, γ(h, x)〉F (dx) ≥ 0, h ∈ OM ∩ ∂M.

In either case, A and the mapping in (5.8) are continuous on OM.

Our strategy for proving Theorem 5.3 can be divided into the following steps:

• Define theRm-valued SDE (5.26), whose coefficients a, bj , c are given by pull-backs
in terms of α, σj , γ.

• Define the Rm-valued SDE (4.1), whose coefficients Θ,Σj ,Γ are given by pull-
backs in terms of a, bj , c.

• Provide conditions (4.2)–(4.5) for invariance of V for the SDE (4.1); this has al-
ready been established in Theorem 4.1.

• Translate these conditions into conditions (5.17)–(5.22) regarding invariance of N
for the SDE (5.26).

• Translate these conditions into conditions (5.3)–(5.9) regarding invariance of M
for the original SPDE (2.1).

Now, we start with the formal proofs. First, we prepare an auxiliary result.

Lemma 5.4. The following statements are true:

1. For each h ∈ H we have ∑
j∈N
‖Dσj(h)σj(h)‖ <∞,

and the mapping

H → H, h 7→
∑
j∈N

Dσj(h)σj(h)

is continuous.
2. If (5.6) is satisfied, then for each h ∈ OM we have∫

E

‖Π(ThM)⊥γ(h, x)‖F (dx) <∞,

and the mapping

OM → H, h 7→
∫
E

Π(ThM)⊥γ(h, x)F (dx)

is continuous.
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Proof. This follows from [14, Lemma 2.17 and Corollary 3.28].

Let G be another separable Hilbert space. For any k ∈ N we denote by Ckb (G;H) the
linear space consisting of all f ∈ Ck(G;H) such that Dif is bounded for all i = 1, . . . , k.
In particular, for each f ∈ Ckb (G;H) the mappings Dif , i = 0, . . . , k − 1 are Lipschitz
continuous. We do not demand that f itself is bounded, as this would exclude continuous
linear operators f ∈ L(G;H).

Definition 5.5. Let α : H → H, σj : H → H, j ∈ N and γ : H × E → H be mappings
satisfying ∑

j∈N
‖σj(h)‖2 <∞ and

∫
E

‖γ(h, x)‖2F (dx) <∞ (5.10)

for all h ∈ H, and let f : G→ H and g ∈ C2
b (H;G) be mappings. We define the mappings

(f, g)?λα : G→ G, (f, g)?Wσ
j : G→ G, j ∈ N and (f, g)?µγ : G× E → G as

((f, g)?λα)(z) := Dg(h)α(h) +
1

2

∑
j∈N

D2g(h)(σj(h), σj(h)) (5.11)

+

∫
E

(
g(h+ γ(h, x))− g(h)−Dg(h)γ(h, x)

)
F (dx),

((f, g)?Wσ
j)(z) := Dg(h)σj(h), (5.12)

((f, g)?µγ)(z, x) := g(h+ γ(h, x))− g(h), (5.13)

where h = f(z).

The following results show that the mappings from Definition 5.5 may be regarded
as pull-backs for jump-diffusions. First, we provide sufficient conditions which ensure
that the regularity conditions (2.2)–(2.4) and (2.6)–(2.8) are preserved.

Lemma 5.6. Let α : H → H, σj : H → H, j ∈ N and γ : H × E → H be mappings
satisfying the regularity conditions (2.2)–(2.4) and (2.6)–(2.8). Furthermore, let f ∈
C1
b (G;H) and g ∈ C3

b (H;G) be arbitrary. Then the following statements are true:

1. The mappings (f, g)?λα, ((f, g)?Wσ
j)j∈N and (f, g)?µγ also fulfill the regularity con-

ditions (2.2)–(2.4) and (2.6)–(2.8), but with the mappings ρn : E → R+, n ∈ N
appearing in (2.6), (2.7) only satisfying (2.9) instead of (2.5).

2. If g ∈ L(H;G), then the mappings ρn : E → R+, n ∈ N appearing in (2.6), (2.7)
even satisfy (2.5).

Proof. See [14, Lemma 2.24].

Recall that M denotes a C3-submanifold with boundary of the separable Hilbert
space H. Let N be a C3-submanifold with boundary of G. We assume there exist
parametrizations φ : V → M and ψ : V → N . Let f := φ ◦ ψ−1 : N → M and
g := f−1 :M→N . Then the diagram

N ⊂ G
f //M⊂ H
g

oo

V ⊂ Rm+

ψ

ee
φ

88

commutes. We assume that φ, ψ, Φ := φ−1, Ψ := ψ−1 have extensions φ ∈ C3
b (Rm;H),

ψ ∈ C3
b (Rm;G), Φ ∈ C3

b (H;Rm), Ψ ∈ C3
b (G;Rm). Consequently, the mappings f , g have

extensions f ∈ C3
b (G;H), g ∈ C3

b (H;G).
We define the subsets ON ⊂ CN ⊂ N by ON := g(OM) and CN := g(CM).
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Definition 5.7. Let β : OM → H, σj : OM → H, j ∈ N and γ : OM × E → H be
mappings satisfying (5.10) for all h ∈ OM. We define the mappings f?λβ : ON → G,
f?Wσ

j : ON → G, j ∈ N and f?µγ : ON × E → G as

(f?λβ)(z) := ((f, g)?λβ)(z),

(f?Wσ
j)(z) := ((f, g)?Wσ

j)(z),

(f?µγ)(z, x) := ((f, g)?µγ)(z, x)

according to (5.11)–(5.13).

Let a : G → G, bj : G → G, j ∈ N and c : G × E → G be mappings satisfying the
regularity conditions (2.2)–(2.4) and (2.6)–(2.8). In the sequel, for z ∈ ∂N the vector ξz
denotes the inward pointing normal vector to ∂N at z.

The following result shows how the invariance conditions of Theorem 5.3 translate
when we change to another manifold, and how this is related to the just defined pull-
backs.

Proposition 5.8. Suppose we have (5.3) and define β : OM → H as

β(h) := Ah+ α(h), h ∈ OM.

Moreover, we suppose that

a(z) = (f?λβ)(z), z ∈ ON , (5.14)

bj(z) = (f?Wσ
j)(z), j ∈ N and z ∈ ON , (5.15)

c(z, x) = (f?µγ)(z, x) for F -almost all x ∈ E, for all z ∈ ON . (5.16)

Then the following statements are true:

1. If conditions (5.4)–(5.9) are satisfied, then we also have

bj(z) ∈ TzN , z ∈ ON , j ∈ N, (5.17)

bj(z) ∈ Tz∂N , z ∈ ON ∩ ∂N , j ∈ N, (5.18)

z + c(z, x) ∈ CN for F -almost all x ∈ E, for all z ∈ ON , (5.19)∫
E

|〈ξz, c(z, x)〉|F (dx) <∞, z ∈ ON ∩ ∂N , (5.20)

a(z)− 1

2

∑
j∈N

Dbj(z)bj(z) (5.21)

−
∫
E

Π(TzN )⊥c(z, x)F (dx) ∈ TzN , z ∈ ON ,

〈ξz, a(z)〉 − 1

2

∑
j∈N
〈ξz, Dbj(z)bj(z)〉 (5.22)

−
∫
E

〈ξz, c(z, x)〉F (dx) ≥ 0, z ∈ ON ∩ ∂N .

2. If we have (5.4), (5.6) and (5.8), then we also have

β(h) = (g?λa)(h), h ∈ OM, (5.23)

σj(h) = (g?W b
j)(h), j ∈ N and h ∈ OM, (5.24)

γ(h, x) = (g?µc)(h, x) for F -almost all x ∈ E, for all h ∈ OM. (5.25)

Proof. This follows from [14, Propositions 3.23 and 3.33].

EJP 19 (2014), paper 51.
Page 16/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2882
http://ejp.ejpecp.org/


Invariant manifolds with boundary for jump-diffusions

Now, we consider the G-valued SDE{
dZt = a(Zt)dt+

∑
j∈N b

j(Zt)dβ
j
t +

∫
E
c(Zt−, x)(µ(dt, dx)− F (dx)dt)

Z0 = z0.
(5.26)

For our subsequent analysis, the following technical definition will be useful.

Definition 5.9. The set OM is called prelocally invariant in CM for (2.1) with solutions
given by (5.26) and f , if for all h0 ∈ OM there exists a local strong solution Z = Z(g(h0))

to (5.26) with lifetime τ > 0 such that (Zτ )− ∈ ON and Zτ ∈ CN up to an evanescent
set and f(Z) is a local mild solution to (2.1) with initial condition h0 and lifetime τ .

Lemma 5.10. Suppose OM is prelocally invariant in CM for (2.1) with solutions given
by (5.26) and f . Then the following statements are true:

1. OM is prelocally invariant in CM for (2.1).

2. ON is prelocally invariant in CN for (5.26).

Proof. This is an immediate consequence of Definitions 3.1 and 5.9.

The following result shows how the coefficients of locally invariant jump-diffusions
translate when we change to another manifold; they are given by the respective pull-
backs.

Proposition 5.11. Let Z be a local strong solution to (5.26) for some initial condition
z0 ∈ ON with lifetime τ > 0 such that (Zτ )− ∈ ON and Zτ ∈ CN up to an evanescent
set. Then r := f(Z) is a local strong solution to the SDE

drt = (g∗λa)(rt)dt+
∑
j∈N(g∗W b

j)(rt)dβ
j
t

+
∫
E

(g∗µc)(rt−, x)(µ(dt, dx)− F (dx)dt)

r0 = h0

(5.27)

with initial condition h0 = f(z0) and lifetime τ .

Proof. This follows from Itô’s formula for jump-diffusions in infinite dimension; see [14,
Proposition 2.25].

If the generator A is continuous, then the just introduced invariance concept trans-
fers to the sets ON and CN .

Lemma 5.12. Suppose A ∈ L(H). Then the following statements are equivalent:

(1) OM is prelocally invariant in CM for (2.1) with solutions given by (5.26) and f .

(2) ON is prelocally invariant in CN for (5.26) with solutions given by (2.1) and g.

Proof. (1) ⇒ (2): Let z0 ∈ ON be arbitrary and set h0 := f(z0) ∈ OM. There exists
a local strong solution Z = Z(g(h0)) = Z(z0) to (5.26) with lifetime τ > 0 such that
(Zτ )− ∈ ON and Zτ ∈ CN up to an evanescent set, and, since A ∈ L(H), the process
r = f(Z) is a local strong solution to (2.1) with initial condition h0 = f(z0). Therefore,
we have (rτ )− ∈ OM and rτ ∈ CM up to an evanescent set, and g(r) is a local strong
solution to (5.26) with initial condition z0 and lifetime τ , because Zτ = g(rτ ).
(2)⇒ (1): This implication is proven analogously.

Proposition 5.13. The following statements are equivalent:

(1) OM is prelocally invariant in CM for (2.1) with solutions given by (5.26) and f .
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(2) ON is prelocally invariant in CN for (5.26) and we have

OM ⊂ D(A), (5.28)

(A+ α)(h) = (g?λa)(h) for all h ∈ OM, (5.29)

σj(h) = (g?W b
j)(h) for all j ∈ N, for all h ∈ OM, (5.30)

γ(h, x) = (g?µc)(h, x) for F -almost all x ∈ E, for all h ∈ OM. (5.31)

In either case, A is continuous on OM.

Proof. (1)⇒ (2): By Lemma 5.10 the set ON is prelocally invariant in CN for (5.26). Let
h ∈ OM be arbitrary. Since OM is prelocally invariant in CM for (2.1) with solutions
given by (5.26) and f , there exists a local strong solution Z = Z(g(h)) to (5.26) with
lifetime τ > 0 such that (Zτ )− ∈ ON and Zτ ∈ CN up to an evanescent set and r := f(Z)

is a local mild solution to (2.1) with initial condition h and lifetime τ . By Proposition 5.11
the process r is a local strong solution to (5.27) with initial condition h = f(z) and
lifetime τ .

Let ζ ∈ D(A∗) be arbitrary. Since r is also a local weak solution to (2.1) with lifetime
τ , we have P-almost surely

〈ζ, rt∧τ 〉 = 〈ζ, h〉+

∫ t∧τ

0

(〈A∗ζ, rs〉+ 〈ζ, α(rs)〉)ds

+
∑
j∈N

∫ t∧τ

0

〈ζ, σj(rs)〉dβjs

+

∫ t∧τ

0

∫
E

〈ζ, γ(rs−, x)〉(µ(ds, dx)− F (dx)ds), t ≥ 0.

Therefore, we get up to an evanescent set

B +M c +Md = 0,

where the processes B, M c, Md are given by

Bt :=

∫ t∧τ

0

(
〈A∗ζ, rs〉+ 〈ζ, α(rs)− (g?λa)(rs)〉

)
ds,

M c
t :=

∑
j∈N

∫ t∧τ

0

〈ζ, σj(rs)− (g?W b
j)(rs)〉dβjs ,

Md
t :=

∫ t∧τ

0

∫
E

〈ζ, γ(rs−, x)− (g?µc)(rs−, x)〉(µ(ds, dx)− F (dx)ds).

The process B is a finite variation process which is continuous, and hence predictable,
M c is a continuous square-integrable martingale and Md is a purely discontinuous
square-integrable martingale. ThereforeB+M c+Md is a special semimartingale. Since
the decomposition B + M of a special semimartingale into a finite variation process B
and a local martingale M is unique (see [18, Corollary I.3.16]) and the decomposition
of a local martingale M = M c +Md into a continuous local martingale M c and a purely
discontinuous local martingale Md is unique (see [18, Theorem I.4.18]), we deduce that
B = M c = Md = 0 up to an evanescent set. By the Itô isometry, we obtain P-almost
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surely ∫ t∧τ

0

(
〈A∗ζ, rs〉+ 〈ζ, α(rs)− (g?λa)(rs)〉

)
ds = 0, t ≥ 0, (5.32)∫ t∧τ

0

(∑
j∈N
|〈ζ, σj(rs)− (g?W b

j)(rs)〉|2
)
ds = 0, t ≥ 0, (5.33)

∫ t∧τ

0

(∫
E

|〈ζ, γ(rs−, x)− (g?µc)(rs−, x)〉|2F (dx)

)
ds = 0, t ≥ 0. (5.34)

Since the process r is càdlàg, by Lemma 5.6 and Lebesgue’s dominated convergence
theorem (applied to the sum

∑
j∈N and to the integral

∫
E

) the integrands appearing in
(5.32)–(5.34) are continuous in s = 0, and hence, we get

〈A∗ζ, h〉+ 〈ζ, α(h)− (g?λa)(h)〉 = 0, (5.35)∑
j∈N
|〈ζ, σj(h)− (g?W b

j)(h)〉|2 = 0, (5.36)∫
E

|〈ζ, γ(h, x)− (g?µc)(h, x)〉|2F (dx) = 0. (5.37)

Identity (5.35) shows that ζ 7→ 〈A∗ζ, h〉 is continuous on D(A∗), proving h ∈ D(A∗∗).
Since A = A∗∗, see [21, Theorem 13.12], we obtain h ∈ D(A), which yields (5.28).
Using the identity 〈A∗ζ, h〉 = 〈ζ,Ah〉, we obtain

〈ζ,Ah+ α(h)− (g?λa)(h)〉 = 0 for all ζ ∈ D(A∗),

and hence (5.29). For an arbitrary j ∈ N we obtain, by using (5.36),

〈ζ, σj(h)− (g?W b
j)(h)〉 = 0 for all ζ ∈ D(A∗),

showing (5.30). By (5.37), for all ζ ∈ D(A∗) we have

〈ζ, γ(h, x)− (g?µc)(h, x)〉 = 0 for F -almost all x ∈ E.

Using Lemma 3.6, for F -almost all x ∈ E we obtain

〈ζ, γ(h, x)− (g?µc)(h, x)〉 = 0 for all ζ ∈ D(A∗),

which proves (5.31).
(2) ⇒ (1): Let h0 ∈ OM be arbitrary. Since ON is prelocally invariant in CN for (5.26),
there exists a local strong solution Z = Z(g(h0)) to (5.26) with lifetime τ > 0 such
that (Zτ )− ∈ ON and Zτ ∈ CN up to an evanescent set. By Proposition 5.11 and
conditions (5.28)–(5.31), the process r := f(Z) is a local strong solution to (2.1) with
initial condition h0 and lifetime τ , showing that OM is prelocally invariant in CM for
(2.1) with solutions given by (5.26) and f .
Additional Statement: If conditions (5.28), (5.29) are satisfied, then we have

Ah = (g?λa)(h)− α(h), h ∈ OM,

and hence, the continuity of A on OM follows from Lemma 5.6.

For the rest of this section, let G = Rm, where m ∈ N denotes the dimension of
the submanifold M. We assume there exist elements ζ1, . . . , ζm ∈ D(A∗) such that the
mapping f : N →M has the inverse (5.1), that is, diagram (5.2) commutes.
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We define the subsets OV ⊂ CV ⊂ V by OV := ψ−1(ON ) and CV := ψ−1(CN ). Recall
that OM is open inM and CM is compact. Since f : N →M is a homeomorphism, ON
is open in N and CN is compact. Furthermore, since ψ : V → N is a homeomorphism,
OV is open in V and CV is compact. We define the mappings for the Rm-valued SDE
(5.26) as

a := 〈A∗ζ, f〉+ (f, 〈ζ, •〉)?λα : Rm → Rm, (5.38)

bj := (f, 〈ζ, •〉)?Wσj : Rm → Rm for j ∈ N, (5.39)

c := (f, 〈ζ, •〉)?µγ : Rm × E → Rm, (5.40)

where 〈A∗ζ, f〉 := (〈A∗ζ1, f〉, . . . , 〈A∗ζm, f〉). Then for each h ∈ OM we have

a(z) = 〈A∗ζ, h〉+ 〈ζ, α(h)〉, (5.41)

bj(z) = 〈ζ, σj(h)〉, j ∈ N (5.42)

c(z, x) = 〈ζ, γ(h, x)〉, x ∈ E (5.43)

where z = 〈ζ, h〉 ∈ ON . Furthermore, we define the mappings

Θ := (ψ,Ψ)?λa : Rm → Rm, (5.44)

Σj := (ψ,Ψ)?W b
j : Rm → Rm, for j ∈ N, (5.45)

Γ := (ψ,Ψ)?µc : Rm × E → Rm (5.46)

and consider the Rm-valued SDE (4.1). According to Lemma 5.6, the mappings a,
(bj)j∈N, c as well as Θ, (Σj)j∈N, Γ satisfy the regularity conditions (2.2)–(2.4) and (2.6)–
(2.8). Note that

Θ(y) = (ψ?λa)(y), y ∈ OV (5.47)

Σj(y) = (ψ?W b
j)(y), j ∈ N and y ∈ OV (5.48)

Γ(y, x) = (ψ?µc)(y, x), x ∈ E and y ∈ OV . (5.49)

Note that V is a m-dimensional C3-submanifold with boundary of Rm, and that for
y ∈ ∂V the inward pointing normal vector to ∂V at y is given by the first unit vector
e1 = (1, 0, . . . , 0) ∈ Rm. Therefore, Theorem 4.1 together with Lemma 4.2 provides the
statement of Theorem 5.3 for the particular case, where the submanifold is an open
subset in the half space Rm+ .

Lemma 5.14. Suppose that OM is prelocally invariant in CM for (2.1). Then the set
OM is prelocally invariant in CM for (2.1) with solutions given by (5.26) and f .

Proof. Let h0 ∈ OM be arbitrary. Since OM is prelocally invariant in CM for (5.26),
there exists a local mild solution r = r(h0) to (2.1) with lifetime τ > 0 such that (rτ )− ∈
OM and rτ ∈ CM up to an evanescent set. Since ζ1, . . . , ζm ∈ D(A∗) and r is also a local
weak solution to (2.1), setting Z := 〈ζ, r〉 we have, by taking into account (5.41)–(5.43),
P-almost surely

Zt∧τ = 〈ζ, rt∧τ 〉 = 〈ζ, h0〉+

∫ t∧τ

0

(〈A∗ζ, rs〉+ 〈ζ, α(rs)〉)ds

+
∑
j∈N

∫ t∧τ

0

〈ζ, σj(rs)〉dβjs +

∫ t∧τ

0

∫
E

〈ζ, γ(rs−, x)〉(µ(ds, dx)− F (dx)ds)

= 〈ζ, h0〉+

∫ t∧τ

0

a(Zs)ds+
∑
j∈N

∫ t∧τ

0

bj(Zs)dβ
j
s

+

∫ t∧τ

0

∫
E

c(Zs−, x)(µ(ds, dx)− F (dx)ds), t ≥ 0.
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Therefore, the process Z is a local strong solution to (5.26) with initial condition 〈ζ, h0〉
and lifetime τ such that (Zτ )− ∈ ON and Zτ ∈ CN up to an evanescent set. By (5.1) we
have f(Zτ ) = rτ , and hence, the process f(Z) is a local mild solution to (2.1) with initial
condition h0 and lifetime τ .

Now, we are ready to provide the proof of Theorem 5.3.

Proof of Theorem 5.3. (1) ⇒ (2): By Lemma 5.14, the set OM is prelocally invariant in
CM for (2.1) with solutions given by (5.26) and f . Therefore, we have two implications:

• Proposition 5.13 yields (5.3) and

(A+ α)(h) = (〈ζ, •〉?λa)(h), h ∈ OM, (5.50)

σj(h) = (〈ζ, •〉?W bj)(h) for all j ∈ N, for all h ∈ OM, (5.51)

γ(h, x) = (〈ζ, •〉?µc)(h, x) for F -almost all x ∈ E, for all h ∈ OM. (5.52)

• By Lemma 5.10, the set ON is prelocally invariant in CN for (5.26). Hence, by
(5.47)–(5.49) and Proposition 5.13, the set OV is prelocally invariant in CV for
(4.1) with solutions given by (5.26) and Ψ.

The latter statement has two further consequences:

• By Lemma 5.12, the set ON is prelocally invariant in CN for (5.26) with solutions
given by (4.1) and ψ. Thus, Proposition 5.13 yields

a(z) = (Ψ?
λΘ)(z), z ∈ ON , (5.53)

bj(z) = (Ψ?
WΣj)(z), j ∈ N and z ∈ ON , (5.54)

c(z, x) = (Ψ?
µΓ)(z, x) for F -almost all x ∈ E, for all z ∈ ON . (5.55)

• By Lemma 5.10, the set OV is prelocally invariant in CV for (4.1). Theorem 4.1
implies that conditions (4.2)–(4.5) are satisfied.

In view of (4.2)–(4.5), Lemma 4.2, identities (5.53)–(5.55) and Proposition 5.8 we obtain
(5.17)–(5.22), where ξz denotes the inward pointing normal vector to ∂N at z. Taking
into account (5.50)–(5.52), applying Proposition 5.8 we arrive at (5.4)–(5.9).
(2) ⇒ (1): Suppose that conditions (5.3)–(5.9) are satisfied. By (5.3) and (5.41), for all
z ∈ ON we obtain

a(z) = 〈A∗ζ, h〉+ 〈ζ, α(h)〉 = 〈ζ,Ah+ α(h)〉 = (f?λ(A+ α))(z),

where h = f(z) ∈ OM. Thus, we have

a(z) = (f?λ(A+ α))(z), z ∈ ON , (5.56)

bj(z) = (f?Wσ
j)(z), j ∈ N and z ∈ ON , (5.57)

c(z, x) = (f?µγ)(z, x), x ∈ E and z ∈ ON , (5.58)

which has two implications:

• By (5.4), (5.6), (5.8) and Proposition 5.8 we obtain (5.50)–(5.52).

• By (5.4)–(5.9) and Proposition 5.8 we have (5.17)–(5.22).

In view of (5.47)–(5.49), we obtain the following consequences:

• By (5.17), (5.19), (5.21) and Proposition 5.8 we obtain (5.53)–(5.55).

• By (5.17)–(5.22), Proposition 5.8 and Lemma 4.2 we have (4.2)–(4.5).
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Therefore, by Theorem 4.1, the set OV is prelocally invariant in CV for (4.1). By (5.53)–
(5.55) and Proposition 5.13, the set ON is prelocally invariant in CN for (5.26) with
with solutions given by (4.1) and ψ. According to Lemma 5.10, the set ON is prelocally
invariant in CN for (5.26). By (5.3), (5.50)–(5.52) and Proposition 5.13, the set OM is
prelocally invariant in CM for (2.1) with solutions given by (5.26) and f .
Additional Statement: If OM is prelocally invariant in CM for (2.1) with solutions given
by (5.26) and f , then Proposition 5.13 implies that A is continuous on OM. Using
Lemma 5.4, we obtain that the mapping in (5.8) is continuous on OM.

6 Global analysis of the invariance problem on submanifolds with
boundary and proofs of the main results

In this section, we perform global analysis of the invariance problem and prove our
main results. The idea is to localize the invariance problem and to apply Theorem 5.3
from the previous section. In order to realize this idea, we will switch between the
original SPDE (2.1) and the SPDE (6.3), which only makes sufficiently small jumps.

Before we start with the proofs of our main results, we prepare some auxiliary re-
sults. Let B ∈ E be a set with F (Bc) <∞.

Lemma 6.1. The mappings αB : H → H and γB : H × E → H defined as

αB(h) := α(h)−
∫
Bc
γ(h, x)F (dx), (6.1)

γB(h, x) := γ(h, x)1B(x) (6.2)

also satisfy the regularity conditions (2.2), (2.6), (2.7).

Proof. See [14, Lemma 2.18].

Now, we consider the SPDE
drBt = (ArBt + αB(rBt ))dt+

∑
j∈N σ

j(rBt )dβjt
+
∫
E
γB(rBt−, x)(µ(dt, dx)− F (dx)dt)

rB0 = h0.

(6.3)

We define %B as the first time where the Poisson random measure makes a jump outside
B; that is

%B = inf{t ≥ 0 : µ([0, t]×Bc) = 1}

Lemma 6.2. The mapping %B is a strictly positive stopping time.

Proof. See [14, Lemma 2.20].

The following result shows that the SPDEs (2.1) and (6.3) locally have the same mild
solutions.

Proposition 6.3. Let h0 : Ω → H be a F0-measurable random variable, let B ∈ E be
a set with F (Bc) < ∞, and let 0 < τ ≤ %B be a stopping time. Then the following
statements are true:

1. If there exists a local mild solution r to (2.1) with lifetime τ , then there also exists
a local mild solution rB to (6.3) with lifetime τ such that

rτ1[[0,τ [[ = (rB)τ1[[0,τ [[. (6.4)
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2. If there exists a local mild solution rB to (6.3) with lifetime τ , then there also exists
a local mild solution r to (2.1) with lifetime τ such that (6.4) is satisfied.

In particular, in either case we have (rτ )− = ((rB)τ )−.

Proof. See [14, Proposition 2.21].

Recall that M denotes a C3-submanifold with boundary of H. The following result
shows how the invariance conditions regarding α, σj , γ and αB , σj , γB are related.

Proposition 6.4. Let OM ⊂M be a subset which is open inM, and suppose that

OM ⊂ D(A),

h+ γ(h, x) ∈M for F -almost all x ∈ E, for all h ∈ OM.

Then the following statements are true:

1. We have (5.7)–(5.9) if and only if∫
E

|〈ηh, γB(h, x)〉|F (dx) <∞, h ∈ OM ∩ ∂M, (6.5)

Ah+ αB(h)− 1

2

∑
j∈N

Dσj(h)σj(h) (6.6)

−
∫
E

Π(ThM)⊥γ
B(h, x)F (dx) ∈ ThM, h ∈ OM,

〈ηh, Ah+ αB(h)〉 − 1

2

∑
j∈N
〈ηh, Dσj(h)σj(h)〉 (6.7)

−
∫
E

〈ηh, γB(h, x)〉F (dx) ≥ 0, h ∈ OM ∩ ∂M.

2. The mapping in (5.8) is continuous on OM if and only if the mapping in (6.6) is
continuous on OM.

Proof. This follows from [14, Lemma 3.27 and Proposition 3.19].

The following auxiliary result shows that for each h0 ∈ M there exists a neighbor-
hood of h0 such that the assumptions from Section 5 are fulfilled, and that the global
jump condition (1.4) can be localized by choosing the set B ∈ E for γB appropriately.

Proposition 6.5. Suppose that condition (1.4) is satisfied. Then, for all h0 ∈ M there
exist

(i) a constant ε > 0 such that Bε(h0)∩M is a submanifold as in Section 5, i.e., diagram
(5.2) commutes,

(ii) subsets OM ⊂ CM ⊂ Bε(h0) ∩M with h0 ∈ OM as in Section 5, i.e., OM is open
in Bε(h0) ∩M and CM is compact,

(iii) and a set B ∈ E with F (Bc) <∞

such that we have

h+ γB(h, x) ∈ CM for F -almost all x ∈ E, for all h ∈ OM. (6.8)

Proof. This follows from [14, Proposition 3.11 and Lemma 3.15].

Finally, we require the following result about the existence of strong solutions to
(2.1) under stochastic invariance.
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Lemma 6.6. Suppose that M ⊂ D(A) and that A is continuous on M. Let h0 ∈ M
be arbitrary, and let r = r(h0) be a local weak solution to (2.1) with initial condition h0

lifetime τ > 0 such that (rτ )− ∈M up to an evanescent set. Then r is also a local strong
solution to (2.1) with lifetime τ .

Proof. See [14, Lemma 2.7].

Now, we are ready to provide the proofs of our main results.

Proof of Theorem 2.4. (1) ⇒ (2): We will prove that prelocal invariance of M for (2.1)
implies conditions (1.2)–(1.4), (1.6)–(1.8), the continuity of A and the mapping in (1.7)
onM, and and that for each h0 ∈M there is a local strong solution r = r(h0) to (2.1).

According to Lemma 3.3 we have (1.4). Let h0 ∈ M be arbitrary. By Proposition 6.5
there exist quantities as in (i)–(iii) such that condition (6.8) is satisfied.

We will show that OM is prelocally invariant in CM for (6.3). Indeed, let g0 ∈ OM be
arbitrary. SinceOM is open inBε(h0)∩M, there exists δ > 0 such thatBδ(g0)∩M ⊂ OM.
Since M is prelocally invariant for (2.1), there exist a local mild solution r = r(g0) to
(2.1) with lifetime 0 < τ ≤ %B such that (rτ )− ∈ M up to an evanescent set. According
to Proposition 6.3, there exists a local mild solution rB = rB,(g0) to (6.3) with lifetime τ
such that (rτ )− = ((rB)τ )−. The mapping

% := inf{t ≥ 0 : rt /∈ Bδ(g0)} ∧ τ

is a strictly positive stopping time, and we obtain up to an evanescent set

((rB)%)− = (r%)− ∈ Bδ(g0) ∩M ⊂ OM.

Furthermore, using (6.8) and Lemma 3.5 we obtain (rB)% ∈ CM up to an evanescent
set. Hence, the set OM is prelocally invariant in CM for (6.3).

Theorem 5.3, applied to the SPDE (6.3), yields (5.3)–(5.5), (6.5)–(6.7) and that A
and the mapping in (6.6) are continuous on OM. Since (5.3) and (1.4) are satisfied,
by Proposition 6.4 we also have (5.7)–(5.9) and the mapping in (5.8) is continuous on
OM. Since h0 ∈ M was arbitrary, we deduce (1.2), (1.3), (1.6)–(1.8) and that A and the
mapping in (1.7) are continuous onM. By Lemma 6.6, for each h0 ∈M there is a local
strong solution r = r(h0) to (2.1).
(2) ⇒ (1): Now, we will prove that conditions (1.2)–(1.4) and (1.6)–(1.8) imply prelocal
invariance ofM for (2.1) and the statement regarding local invariance.

Let h0 ∈ M be arbitrary. By Proposition 6.5 there exist quantities as in (i)–(iii) such
that condition (6.8) is satisfied.

We will show that CM is prelocally invariant in OM for (6.3). By (1.2), (1.3) and
(1.6)–(1.8) we have (5.3)–(5.5) and (5.7)–(5.9). Since (5.3) and (1.4) are satisfied, by
Proposition 6.4 we also have (6.5)–(6.7). Consequently, by (5.3)–(5.5), (6.8), (6.5)–(6.7)
and Theorem 5.3, the set CM is prelocally invariant in OM for (6.3).

Now, we will show that M is prelocally invariant for (2.1). Since CM is prelocally
invariant in OM for (6.3), there exists a local mild solution rB to (6.3) with lifetime
0 < τ ≤ %B such that up to an evanescent set

((rB)τ )− ∈ OM and (rB)τ ∈ CM.

According to Proposition 6.3, there exists a local mild solution r to (2.1) with lifetime τ
such that (r)τ1[[0,τ [[ = (rB)τ1[[0,τ [[. We obtain up to an evanescent set

(rτ )− = ((rB)τ )− ∈ OM ⊂M
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as well as

rτ1[[0,τ [[ = (rB)τ1[[0,τ [[ ∈ CM ⊂M.

Using Lemma 3.4, by (1.4) we obtain rτ ∈ M up to an evanescent set, proving thatM
is prelocally invariant for (2.1).

If even condition (2.10) is satisfied, then by Lemma 3.4 we obtain rτ ∈ M up to an
evanescent set, and hence,M is locally invariant for (2.1).

Proof of Theorem 2.8. Let h0 ∈ M be arbitrary. Then there exists a unique mild and
weak solution r = r(h0) to (2.1); see, e.g., [12, Corollary 10.9]. Defining the stopping
time

τ := inf{t ≥ 0 : rt /∈M}, (6.9)

we claim that

P(τ =∞) = 1. (6.10)

Suppose, on the contrary, that (6.10) is not satisfied. Then there exists N ∈ N such that
P(τ ≤ N) > 0. We define the bounded stopping time τ0 := τ ∧ N . By the closedness
of M in H, we have (rτ0)− ∈ M up to an evanescent set. Therefore, by relation (1.4)
and Lemma 3.5 we obtain rτ0 ∈ M up to an evanescent set. We define the filtration
F(τ0) := (Fτ0+t)t≥0, the sequence (β(τ0),j)j∈N of real-valued processes by

β
(τ0),j
t := βjτ0+t − βjτ0 , t ≥ 0, (6.11)

and the random measure µ(τ0) on R+ × E by

µ(τ0)(ω;B) := µ(ω;Bτ0(ω)), ω ∈ Ω and B ∈ B(R+)⊗ E , (6.12)

where we use the notation

Bτ0 := {(t+ τ0, x) ∈ R+ × E : (t, x) ∈ B}.

According to [13, Lemma 4.6], the sequence (β(τ0),j)j∈N is a sequence of real-valued
independent standard Wiener processes, adapted to F(τ0), and µ(τ0) is a homogeneous
Poisson random measure relative to the filtration F(τ0) with compensator dt ⊗ F (dx).
The process rτ0+• is a weak solution to the time-shifted SPDE

drt = (Art + α(rt))dt+
∑
j∈N σ

j(rt)dβ
(τ0),j
t

+
∫
E
γ(rt−, x)(µ(τ0)(dt, dx)− F (dx)dt)

r0 = h0

(6.13)

with initial condition rτ0 , because for each ζ ∈ D(A∗) we have P-almost surely

〈ζ, rτ0+t〉 = 〈ζ, rτ0〉+ 〈ζ, rτ0+t − rτ0〉

= 〈ζ, rτ0〉+

∫ τ0+t

τ0

(
〈A∗ζ, rs〉+ 〈ζ, α(rs)〉

)
ds+

∑
j∈N

∫ τ0+t

τ0

〈ζ, σj(rs)〉dβjs

+

∫ τ0+t

τ0

∫
E

〈ζ, γ(rs−, x)〉(µ(ds, dx)− F (dx)ds)

= 〈ζ, rτ0〉+

∫ t

0

(
〈A∗ζ, rτ0+s〉+ 〈ζ, α(rτ0+s)〉

)
ds+

∑
j∈N

∫ t

0

〈ζ, σ(rτ0+s)〉dβ(τ0),j
s

+

∫ t

0

∫
E

〈ζ, γ(r(τ0+s)−, x)〉(µ(τ0)(ds, dx)− F (dx)ds), t ≥ 0.
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There exists K ∈ N such that P(Γ) > 0, where

Γ := {τ ≤ N} ∩ {‖rτ0‖ ≤ K}.

By choosing a suitable covering M =
⋃
k∈NMk according to Lindelöf’s Lemma [1,

Lemma 1.1.6] and arguing as in the second part of the proof of Theorem 2.4, there exists
a local weak solution rK to the time-shifted SPDE (6.13) with the Fτ0 -measurable initial
condition rτ01{‖rτ0‖≤K} and lifetime % > 0 such that (rK)% ∈ M up to an evanescent
set. Noting that {τ ≤ N} = {τ = τ0}, by the uniqueness of weak solutions to (6.13) we
obtain up to an evanescent set

(rτ+•)
%
1Γ = (rτ0+•)

%
1Γ = (rK)%1Γ ∈M,

which contradicts the definition (6.9) of τ . Therefore, relation (6.10) is satisfied and we
obtain r ∈ M up to an evanescent set. Hence, Lemma 6.6 implies that r is a strong
solution to (2.1).

For the proof of Theorem 2.11 we prepare an auxiliary result.

Lemma 6.7. For all h ∈ ∂M we have (ThM)+ = ThM∩ {ηh}+, where

{ηh}+ = {g ∈ H : 〈ηh, g〉 ≥ 0}

Proof. See [14, Lemma 3.7].

Proof of Theorem 2.11. Relation (2.12) implies (1.6). Furthermore, presuming (1.2), we
have (1.5) if and only if (1.7), (1.8) are satisfied. Indeed, noting that

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h)−
∫
E

γ(h, x)F (dx)

= Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h)−
∫
E

Π(ThM)⊥γ(h, x)F (dx)

−ΠThM

∫
E

γ(h, x)F (dx), h ∈M,

(6.14)

we have (1.7) if and only if

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h)−
∫
E

γ(h, x)F (dx) ∈ ThM, h ∈M,

and, by Lemma 6.7, we have (1.8) if and only if

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h)−
∫
E

γ(h, x)F (dx) ∈ (ThM)+, h ∈ ∂M,

showing that condition (1.5) is equivalent to (1.7), (1.8).

Now, suppose that even condition (2.13) is satisfied. Since, by Theorem 2.4, the
mapping in (1.7) is continuous onM, identity (6.14) together with relations (2.6), (2.13)
and Lebesgue’s dominated convergence theorem shows that the mapping in (1.5) is
continuousM.
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