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Abstract

We consider a d-dimensional SDE with an identity diffusion matrix and a drift vec-
tor being a vector function of bounded variation. We give a representation for the
derivative of the solution with respect to the initial data.
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Introduction

Consider an SDE of the form{
dϕt(x) = a(ϕt(x))dt+ dwt,

ϕ0(x) = x,
(0.1)

where x ∈ Rd, d ≥ 1, (wt)t≥0 is a d-dimensional Wiener process, a = (a1, . . . , ad) is a
bounded measurable mapping from Rd to Rd.

According to [23] there exists a unique strong solution to equation (0.1).
It is well known that if a is continuously differentiable and its derivative is bounded,

then equation (0.1) generates a flow of diffeomorphisms. It turns out that this condition
can be essentially reduced [12], and a flow of diffeomorphisms exists in the case of pos-
sible unbounded Hölder continuous drift vector a. Recently the case of discontinuous
drift was studied in [10, 11, 19, 20] and the weak differentiability of the solution to (0.1)
was proved under rather weak assumptions on the drift. The authors of [10] consider a
drift vector belonging to Lq(0, T ;Lp(R

d)) for some p, q such that

p ≥ 2, q > 2,
d

p
+

2

q
< 1.

They establish the existence of the Gâteaux derivative in L2(Ω× [0, T ];Rd). In [20] it is
proved that for a bounded measurable drift vector a the solution belongs to the space
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On differentiability of stochastic flow

L2(Ω;W 1,p(U)) for each t ∈ Rd, p > 1, and any open and bounded U ∈ Rd. The Malliavin
calculus is used in [19, 20].

The aim of our paper is to find a natural representation of the derivative ∇xϕt(x) if a
is discontinuous. We suppose that for 1 ≤ i ≤ d, ai is a function of bounded variation on
Rd, i.e. for each 1 ≤ j ≤ d, the generalized derivative µij = ∂ai

∂xj
is a signed measure on

Rd. Let µij,+, µij,− be measures from the Hahn-Jordan decomposition µij = µij,+−µij,−.
Denote |µij | = µij,+ + µij,−. Assume that for all 1 ≤ i, j ≤ d, |µij | is a measure of Kato’s
class, i.e.

lim
t↓0

sup
x∈Rd

∫
Rd

(∫ t

0

1

(2πs)d/2
exp

{
−‖y − x‖

2

2s

}
ds

)
|µij |(dy) = 0.

The condition we impose on the drift is more restrictive than that of [10, 20], but it
allows us to obtain a representation for the derivative in terms of intrinsic parameters
of the initial equation (see Theorem 2.3). Our methods are different from those used
in the papers cited above. We show that the derivative Yt(x) in x is a solution of the
following integral equation

Yt(x) = E +

∫ t

0

dAs(ϕ(x))Ys(x),

where At(ϕ(x)) is a continuous additive functional of the process (ϕt(x))t≥0, which is

equal to
∫ t
0
∇a(ϕs(x))ds if a is differentiable, E is the d-dimensional identity matrix.

This representation is a natural generalization of the expression for the derivative in
the smooth case.

In the one-dimensional case (see [3, 4]) the derivative was represented via the local
time of the process. It is well known that the solution of (0.1) does not have a local time
at a point in the multidimensional situation. We use continuous additive functionals for
the representation of the derivative. This method can be considered as a generalization
of the local time approach to the multidimensional case.

Our method can be used in the case of non-constant diffusion and.
The paper is organized as follows. In Section 1 we collect some definitions and

statements concerning continuous additive functionals. The main result of the paper is
formulated in Section 2 (see Theorem 2.3). For the proof we approximate equation (0.1)
by equations with smooth coefficients. The definitions and properties of approximating
equations are given in Sections 3, 4. We prove Theorem 2.3 in Section 5.

1 Preliminaries: W-functionals

In this section we collect some facts about continuous additive functionals which
will be used in the sequel. Further information can be found in [6]; [8], Ch. 6–8; [13],
Ch. II, §6.

Let (ξt,Mt,Px) be a homogeneous Markov process with a phase space Rd (see nota-
tions in [8]). Assume that ξt, t ≥ 0, has continuous trajectories and the infinite life-time.
Denote Nt = σ{ξs : 0 ≤ s ≤ t}.

Definition 1.1. A random function At, t ≥ 0, adapted to the filtration {Nt} is called a
continuous additive functional of the process (ξt)t≥0 if it is

• non-negative;

• continuous in t;

• homogeneous additive, i.e. for all t ≥ 0, s > 0, x ∈ Rd,

At+s = As + θsAt Px − almost surely, (1.1)

where θ is the shift operator.
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On differentiability of stochastic flow

If additionally for each t ≥ 0,

sup
x∈Rd

ExAt <∞,

then At, t ≥ 0, is called a W-functional.

Remark 1.2. It follows from Definition 1.1 that a W-functional is non-decreasing as a
function of t, and for all x ∈ Rd

Px{A0 = 0} = 1.

Definition 1.3. The function

ft(x) = ExAt, t ≥ 0, x ∈ Rd,

is called the characteristic of a W -functional At.

Proposition 1.4 (See [8], Theorem 6.3). A W-functional is defined by its characteristic
uniquely up to equivalence.

The following theorem states the connection between the convergence of functionals
and the convergence of their characteristics.

Theorem 1.5 (See [8], Theorem 6.4). Let An,t, n ≥ 1, be W-functionals of the process
(ξt)t≥0 and fn,t(x) = ExAn,t be their characteristics. Suppose that for each t > 0, a
function ft(x) satisfies the condition

lim
n→∞

sup
0≤u≤t

sup
x∈Rd

|fn,u(x)− fu(x)| = 0. (1.2)

Then ft(x) is the characteristic of a W-functional At. Moreover,

At = l.i.m.
n→∞

An,t,

where l.i.m. denotes the convergence in mean square (for any initial distribution of ξ0).

Proposition 1.6 (See [8], Lemma 6.1′). If for any t ≥ 0 the sequence of non-negative
additive functionals {An,t : n ≥ 1} of the Markov process (ξt)t≥0 converges in probability
to a continuous functional At, then the convergence in probability is uniform, i.e.

∀ T > 0 sup
t∈[0,T ]

|An,t −At| → 0, n→∞, in probability.

Let h be a non-negative bounded measurable function on Rd, let the process (ξt)t≥0
has a transition probability density pt(x, y). Then

At :=

∫ t

0

h(ξs)ds

is a W -functional of the process (ξt)t≥0 and its characteristic is equal to

ft(x) =

∫
Rd

(∫ t

0

ps(x, y)ds

)
h(y)dy =

∫
Rd
kt(x, y)h(y)dy,

where

kt(x, y) =

∫ t

0

ps(x, y)ds.

Let a measure ν be such that
∫
Rd
kt(x, y)ν(dy) is a function continuous in (t, x). If we

can choose a sequence of non-negative bounded continuous functions {hn : n ≥ 1} such
that for each T > 0,

lim
n→∞

sup
t∈[0,T ]

sup
x∈Rd

∣∣∣∣∫
Rd
kt(x, y)hn(y)dy −

∫
Rd
kt(x, y)ν(dy)

∣∣∣∣ = 0,
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On differentiability of stochastic flow

then by Theorem 1.5 there exists a W-functional corresponding to the measure ν with its
characteristic being equal to

∫
Rd
kt(x, y)ν(dy). Formally we will denote this functional

by
∫ t
0
dν
dy (ξs)ds.

A sufficient condition for the existence of a W-functional corresponding to a given
measure is stated in the following theorem.

Theorem 1.7 (See [8], Theorem 6.6). Let the condition

lim
t↓0

sup
x∈Rd

ft(x) = lim
t↓0

sup
x∈Rd

∫
Rd
kt(x, y)ν(dy) = 0 (1.3)

hold. Then ft(x) is the characteristic of a W-functional Aνt . Moreover,

Aνt = l.i.m.
h→0

∫ t

0

fh(ξu)

h
du,

and the sequence of characteristics of functionals
∫ t
0
fh(ξu)
h du converges to ft(x) in sense

of the relation (1.2).

Let us return to the SDE (0.1). Let (ϕt)t≥0 be a solution of equation (0.1) with
bounded measurable a. The transition probability density pϕt (y, z) of the process (ϕt)t≥0
satisfies the Gaussian estimates (see [2])

K1

td/2
exp

{
−k1
‖y − z‖2

t

}
≤ pϕt (y, z) ≤ K2

td/2
exp

{
−k2
‖y − z‖2

t

}
(1.4)

valid in every domain of the form t ∈ [0, T ], y ∈ Rd, z ∈ Rd, where T > 0, K1, k1,K2, k2
are positive constants that depend only on d, T, and ‖a‖∞.

Denote by kwt (x, y) the kernel kt(x, y) built on the transition density of the Wiener
process, i.e.

kwt (x, y) =

∫ t

0

1

(2πs)d/2
exp

{
−‖y − x‖

2

2s

}
ds. (1.5)

It is easily to see ([8], Ch. 8, §1) that for all x ∈ Rd, y ∈ Rd, x 6= y, kwt (x, y) = k̃t(‖x−y‖),
where

k̃t(r) =
1

2πd/2
r2−d

∫ ∞
r2/2t

sd/2−2e−sds, r > 0. (1.6)

Therefore, the kernel kwt (x, y) has a singularity if x = y (for d > 1) and the integral

ft(x) =

∫
Rd
kwt (x, y)ν(dy)

is not well defined for all measures.

Definition 1.8 (see [16]). A measure ν is a measure of Kato’s class if

lim
t↓0

sup
x∈Rd

∫
Rd
kwt (x, y)ν(dy) = 0. (1.7)

It follows from (1.4) that a measure ν satisfies the condition (1.3) if and only if it
belongs to Kato’s class.

Remark 1.9. A measure ν satisfies the condition (1.7) if and only if

sup
x∈R

∫
|x−y|≤1

ν(dy) <∞, when d = 1;

lim
ε↓0

sup
x∈R2

∫
|x−y|≤ε

ln
1

|x− y|
ν(dy) = 0, when d = 2;

lim
ε↓0

sup
x∈Rd

∫
|x−y|≤ε

|x− y|2−dν(dy) = 0, when d ≥ 3.
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On differentiability of stochastic flow

The proof is a slight modification of that for the case of ν(dx) = f(x)dx given in [1],
Theorem 4.5 (see also [22], Exercise 1 on p. 12). Here f is a non-negative Borel
measurable function. We use the representation (1.6) in the proof.

Example 1.10. Let d = 1. For each y ∈ Rd, the measure ν = δy belongs to Kato’s class
and corresponds to the W-functional

Lt(y) = lim
ε↓0

1

2ε

∫ t

0

1[y−ε,y+ε] (ws) ds,

which is called the local time of a Wiener process at the point y. Assume that ν is a
measure of Kato’s class. This means now that supx∈R ν([x, x + 1]) < ∞. Then (see [21],
Ch. X, §2) the corresponding W-functional can be represented in the form

Aνt =

∫
R

Lt(y)ν(dy).

Remark 1.11. If d ≥ 2, then δy does not belong to Kato’s class. This is in consistency
with the well-known fact that the local time at a point for a multidimensional Wiener
process does not exist.

Example 1.12. If ν(dy) = f(y)dy, where f is a non-negative bounded function, then ν

is a measure of Kato’s class and Aνt =
∫ t
0
f(ξs)ds.

Example 1.13. Let S ⊂ Rd be a compact (d − 1)-dimensional C1-manifold. Denote by
σS the surface measure. Then for any non-negative bounded function f , the measure
ν(dy) = f(y)σS(dy) belongs to Kato’s class.

Example 1.14. Let d ≥ 2. Assume that a measure ν is such that

∃k, γ > 0 ∀x ∈ Rd ∀ρ ∈ (0, 1] : ν(B(x, ρ))≤kρ
d−2+γ .

Then (c.f. [5], §2)

∃c = c(d, γ) ∀x ∈ Rd ∀ρ ∈ (0, 1] :

∫
B(x,ρ)

|x− y|2−dν(dy) ≤ ckργ .

This inequality together with Remark 1.9 yields that ν is a measure of Kato’s class. In
particular, the Hausdorff measure on the Sierpinski carpet in R2 is such a measure (see
[5], Example 2.2).

We will need the uniform estimates on the moments of a W-functional.

Proposition 1.15 ([13], Ch. II, §6, Lemma 3). For all m ≥ 1, t > 0,

sup
x∈Rd

Ex(At)
m ≤ m!

(
sup
x∈Rd

ft(x)

)m
. (1.8)

Making use of this proposition one can easily obtain the following modification of
Khas’minskii’s Lemma (see [14] or [22], Ch.1 Lemma 2.1).

Lemma 1.16. Let the W-function ft satisfies the condition (1.3). Let At be the corre-
sponding W-functional. Then for all p > 0, t ≥ 0, there exists a constant C depending on
p, t, and ‖ft‖∞ such that for all x ∈ Rd,

sup
x∈Rd

Ex exp {pAt} ≤ C. (1.9)
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On differentiability of stochastic flow

By the definition of a W-functional, Aνt is measurable w.r.t. the σ-algebra generated
by the Markov process. Since we have assumed that all the processes are continuous
and have the infinite life-times, we may assume that Aνt = Aνt (·) is a measurable function
defined on C([0,∞),Rd) that depends only on behavior of functions on [0, t] (if there is
no misunderstanding, sometimes we will consider Aνt as a function on C([0, t],Rd)).

Let (ϕt(x))t≥0 be a solution of (0.1) defined on a probability space (Ω,F ,Ft,P).
By Px denote the distribution of the process (ϕt(x))t≥0. In Dynkin’s notation [8]
((ϕt(x))t≥0,Ft,P) is called a Markov family of random functions (the measures Px are
measures on the space of continuous functions, the measure P is a probability on
(Ω,F)). The composition Aνt (ϕ.(x)), t ≥ 0, is an additive functional of (ϕt(x))t≥0 cor-
responding to the measure ν. Note that Aνt (ϕ.(x)) is defined on (Ω,F ,Ft,P) for any
x ∈ Rd.

If the measure ν belongs to Kato’s class, then the corresponding additive functionals
of (ϕt)t≥0 and the Wiener process are well defined. Denote the corresponding measur-
able mappings by Aν,ϕt and Aν,wt . By the Girsanov theorem, for each x ∈ Rd, the distribu-
tions of the processes (ϕt(x))t≥0 and (x+ wt)t≥0 are equivalent. The question naturally
arises whether the mappings Aν,ϕt and Aν,wt are the same. The answer is positive and it
is formulated in the next Lemma.

Lemma 1.17. Let ν be a measure of Kato’s class. Then for any x ∈ Rd,

Aν,wt (ϕ.(x)) = Aν,ϕt (ϕ.(x)) P− almost surely.

Proof. For x ∈ Rd, denote by (wt(x))t≥0 the process (x+ wt)t≥0. According to Theorem
1.7,

Aν,wt (w.(x)) = l.i.m.
h↓0

∫ t

0

fwh (ws(x))

h
ds.

Then by the Girsanov theorem,

Aν,wt (ϕ.(x)) = P−lim
h↓0

∫ t

0

fwh (ϕs(x))

h
ds, (1.10)

where P−lim means the limit in probability.
It remains to show that the characteristics of

∫ t
0
fwh (ϕs(x))

h ds converge uniformly to∫
Rd
kϕt (x, y)ν(dy) as h ↓ 0 (see Theorem 1.5). This proof is routine and technical, so we

postpone it to Appendix.

2 The main result

Let a be a bounded measurable function of bounded variation. Denote by ∇a the

matrix
(
∂ai

∂xj

)
1≤i,j≤d

and for 1 ≤ i, j ≤ d, by µij the signed measure ∂ai

∂xj
. Let µij =

µij,+ − µij,− be the Hahn-Jordan decomposition of µij . Further on we suppose that for
all 1 ≤ i, j ≤ d, the measure |µij | = µij,+ + µij,− belongs to Kato’s class.

By Theorem 1.7, there exist W -functionals Aµ
ij,±,w
t (we will denote the correspond-

ing mappings by Aij,±t (·)) with their characteristics defined according to the formula

f ij,±t (x) =

∫
Rd
kwt (x, y)µij,±(dy).

Denote Aijt = Aij,+t −Aij,−t , At = (Aijt )1≤i,j≤d.

Remark 2.1. Assume that the measure µij can be represented in the form µij = µ̃ij,+−
µ̃ij,−, where µ̃ij,+, µ̃ij,− are from Kato’s class and are not necessarily orthogonal. Then
Aµ

ij,+ −Aµij,− = Aµ̃
ij,+ −Aµ̃ij,− .
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On differentiability of stochastic flow

Remark 2.2. Recall that the mappings Aij,+t , Aij,−t are continuous and monotonous in
t. So the function t→ Aijt is a continuous function of bounded variation on [0, T ] almost
surely.

The main result on differentiability of a flow generated by equation (0.1) with respect
to the initial conditions is given in the following theorem.

Theorem 2.3. Let a : Rd → Rd be such that for all 1 ≤ i ≤ d, ai is a function of bounded
variation on Rd. Put µij = ∂ai

∂xj
, 1 ≤ i, j ≤ d. Assume that the measures |µij |, 1 ≤ i, j ≤ d,

belong to Kato’s class. Let Yt(x), t ≥ 0, be a solution to the integral equation

Yt(x) = E +

∫ t

0

dAs(ϕ(x))Ys(x), (2.1)

where E is the d × d-identity matrix, the integral on the right-hand side of (2.1) is the
Lebesgue-Stieltjes integral with respect to the continuous function of bounded variation
t→ At(ϕ(x)).

Then Yt(x) is the derivative of ϕt(x) in Lp-sense: for all p > 0, x ∈ Rd, h ∈ Rd, t ≥ 0,

E

∥∥∥∥ϕt(x+ εh)− ϕt(x)

ε
− Yt(x)h

∥∥∥∥p → 0, ε→ 0, (2.2)

where ‖ · ‖ is a norm in the space Rd. Moreover,

P
{
∀t ≥ 0 : ϕt(·) ∈W 1

p,loc(R
d,Rd),∇ϕt(x) = Yt(x) for λ-a.a. x

}
= 1,

where λ is the Lebesgue measure on Rd.

Remark 2.4. The differentiability was proved in [10, 20]. We give a representation for
the derivative. Note that the Sobolev derivative is defined up to the Lebesgue null set.

Remark 2.5. Consider the non-homogeneous SDE{
dϕt(x) = a(t, ϕt(x))dt+ dwt,

ϕ0(x) = x.

Similarly to the arguments given in Section 1 a theory of non-homogeneous additive
functionals of non-homogeneous Markov processes can be constructed. All the for-
mulations and proofs can be literally rewritten with natural necessary modifications.
Unfortunately, there are no corresponding references, therefore we did not carry out
the corresponding reasonings.

Consider examples of functions a for which |µij |, 1 ≤ i, j ≤ d, are measures of Kato’s
class.

Example 2.6. Let for all 1 ≤ i ≤ d, ai be a Lipschitz function. By Rademacher’s theorem
[9] the Frechét derivatives µij = ∂ai

∂xj
exist almost surely w.r.t. the Lebesgue measure.

It is easy to verify that they are bounded and the Frechét derivative coincides with the
derivative considered in the generalized sense. Then |µij | belongs to Kato’s class.

Let now h ∈ C1(Rd,Rd), D be a bounded domain in Rd with C1 boundary ∂D. Put
a(x) = h(x)1x∈D. It follows from Example 1.13 that for all 1 ≤ i, j ≤ d, |µij | is a measure
of Kato’s class because (cf. [24])

µij(dx) =
∂ai

∂xj
(x)1x∈Ddx+ hi(x) cos(nj(x))σ∂D(dx),

where n(x) = (n1(x), . . . , nd(x)) is the outward unit normal vector at the point x ∈ ∂D.

ECP 19 (2014), paper 45.
Page 7/17

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-2886
http://ecp.ejpecp.org/


On differentiability of stochastic flow

Condition (1.7) is also satisfied by the measure generated by a being a linear combi-
nation of the form

h0(x) +

m∑
k=1

hk(x)1x∈Dk , (2.3)

where h0 ∈ Lip(Rd,Rd), hk ∈ C1(Rd,Rd), 1 ≤ k ≤ d, Dk is a bounded domain in Rd with
C1 boundary.

Further examples of a can be obtained as the limits of sequences of the functions of
form (2.3).

In one-dimensional case all the functions of bounded variation generate measures
belonginig to Kato’s class (see Example 1.10).

See also Example 1.14 showing that if |µij | are “Hausdorff-type” measures with a
parameter greater than (d− 1), then a satisfies assumptions of the Theorem.

The idea of the proof of Theorem 2.3 is to approximate the solution of equation
(0.1) by solutions of SDEs with smooth coefficients. The definition and properties of
approximating equations are given in Sections 3, 4. The proof of the Theorem itself is
presented in Section 5.

3 Approximation by SDEs with smooth coefficients

For n ≥ 1, let gn ∈ C∞0 (Rd) be a non-negative function such that
∫
Rd
gn(z)dz = 1, and

gn(x) = 0, |x| ≥ 1/n. Put

an(x) = (gn ∗ a)(x) =

∫
Rd
gn(x− y)a(y)dy, x ∈ Rd, n ≥ 1, (3.1)

where the function a satisfies the assumptions of Theorem 2.3. Note that

sup
n
‖an‖∞ ≤ ‖a‖∞, (3.2)

and an → a, n→∞, in L1,loc(R
d). Passing to subsequences we may assume without loss

of generality that an(x)→ a(x), n→∞, for almost all x w.r.t. the Lebesgue measure.
Consider the SDE {

dϕn,t(x) = an(ϕn,t(x))dt+ dwt,

ϕn,0(x) = x, x ∈ Rd.
(3.3)

Put ∇an =
(
∂ain
∂xj

)
1≤i,j≤d

. Denote by Yn,t(x) the matrix of derivatives of ϕn,t(x) in x, i.e.,

Y ijn,t(x) =
∂ϕin,t(x)

∂xj
. Then Yn,t(x) satisfies the equation

Yn,t(x) = E +

∫ t

0

∇an(ϕn,s(x))Yn,s(x)ds, (3.4)

where E is the d-dimensional identity matrix.

Lemma 3.1. For each p ≥ 1,

1) for all t ≥ 0 and any compact set U ∈ Rd,

sup
x∈U, n≥1

(E(‖ϕn,t(x)‖p + ‖ϕt(x)‖p)) <∞;

2) for all x ∈ Rd, T ≥ 0,

E

(
sup

0≤t≤T
‖ϕn,t(x)− ϕt(x)‖p

)
→ 0 as n→∞,

where ‖ · ‖ is a norm in the space Rd.
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On differentiability of stochastic flow

Proof. Statement 1) follows from the uniform boundedness of the coefficients and the
finiteness of the moments of a Wiener process; 2) is proved in [18], Theorem 3.4.

For 1 ≤ i, j ≤ d, put µijn =
∂ain
∂xj

. By the properties of convolution of a generalized
function (see [24], Ch. 2, §7),

∇an = ∇a ∗ gn.

For each n ≥ 1, 1 ≤ i, j ≤ d, put µij,±n = µij,±∗gn and µijn = µij,+n −µij,−n (c.f. Remark 2.1).
Then, according to Theorem 1.7, there exist W-functionals Aij,±n,t of a Wiener process on
Rd which correspond to the measures µij,±n and have characteristics of the form

f ij,±n,t (x) =

∫
Rd
kwt (x, y)µij,±n (dy), 1 ≤ i, j ≤ d. (3.5)

The functional Aijn,t = Aij,+n,t −A
ij,−
n,t is given by the formula

Aijn,t =

∫ t

0

∂ain
∂xj

(wu)du (3.6)

(see Example 2).

Lemma 3.2. For each T > 0, x ∈ Rd, ε > 0, 1 ≤ i, j ≤ d,

Pw(x)

{
sup

0≤t≤T

∣∣∣Aij,±n,t −Aij,±t ∣∣∣ > ε

}
→ 0, n→∞,

where Pw(x) is the distribution of the process (x+ wt)t≥0.

The following simple proposition used for the proof of Lemma 3.2 is easily checked.

Proposition 3.3. Let ν, νn, n ≥ 1, be from the Kato class, f, fn, n ≥ 1, be the character-
istics of the corresponding W-functionals of a Wiener process, and the representation
νn = gn ∗ ν hold true. Then the relation fn,t = gn ∗ ft is fulfilled.

Proof of Lemma 3.2. To prove the convergence of functionals in mean square it is suffi-
cient to show that for each T > 0, 1 ≤ i, j ≤ d,

lim
n→∞

sup
0≤t≤T

sup
x∈Rd

|f ij,±n,t (x)− f ij,±t (x)| = 0 (3.7)

(see Theorem 1.5). Then the uniform convergence in probability follows from Proposi-
tion 1.6.

For each 0 < δ < t,

sup
x∈Rd

∣∣∣f ij,±n,t (x)− f ij,±t (x)
∣∣∣ = sup

x∈Rd

∣∣∣∣∫
Rd
kwt (x, y)

(
µij,±n (dy)− µij,±(dy)

)∣∣∣∣ = I± + II±,

where

I± = sup
x∈Rd

∣∣∣∣∣
∫
Rd

(
µij,±n (dy)− µij,±(dy)

) ∫ δ

0

1

(2πs)d/2
exp

{
−‖y − x‖

2

2s

}
ds

∣∣∣∣∣ , (3.8)

II± = sup
x∈Rd

∣∣∣∣∫
Rd

(
µij,±n (dy)− µij,±(dy)

) ∫ t

δ

1

(2πs)d/2
exp

{
−‖y − x‖

2

2s

}
ds

∣∣∣∣ .
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On differentiability of stochastic flow

We have

I± ≤ sup
x∈Rd

∫
Rd
|µijn |(dy)

∫ δ

0

1

(2πs)d/2
exp

{
−‖y − x‖

2

2s

}
ds+

sup
x∈Rd

∫
Rd
|µij |(dy)

∫ δ

0

1

(2πs)d/2
exp

{
−‖y − x‖

2

2s

}
ds = I1 + I2.

Because of the condition (1.7), for each ε > 0, we can choose δ so small that I2 is less
then ε/4. To obtain the same estimate for I1, note that by the associative, distributive
and commutative properties of convolution (see [24], Ch. II, §7),

I1 = sup
x∈Rd

(|µn| ∗ kδ)(x) ≤ ((|µ| ∗ gn) ∗ kδ) (x) = sup
x∈Rd

(|µ| ∗ (gn ∗ kδ)) (x) =

sup
x∈Rd

(|µ| ∗ (kδ ∗ gn)) (x) = sup
x∈Rd

((|µ| ∗ kδ) ∗ gn) (x) ≤ sup
x∈Rd

(|µ| ∗ kδ) (x) = I2 < ε/4.

We get I± < ε/2.

Consider II±. The functions

qij,±δ,t (x) :=

∫
Rd
µij,±(dy)

∫ t

δ

1

(2πs)d/2
exp

{
−‖x− y‖

2

2s

}
ds

are equicontinuous in x for t ∈ [δ, T ]. We have

sup
δ<t<T

II± = sup
δ<t<T

sup
x∈Rd

|(qij,±δ,t ∗ gn)(x)− qij,±δ,t (x)| → 0, n→∞.

Then there exists n0 such that for all n > n0, supδ<t<T II
± < ε/2.

Lemma 3.4. For each T > 0, x ∈ Rd, ε > 0, 1 ≤ i, j ≤ d,

P

{
sup

0≤t≤T

∣∣∣Aij,±n,t (ϕn(x))−Aij,±t (ϕ(x))
∣∣∣ > ε

}
→ 0, n→∞.

For the proof we make use of the following proposition

Proposition 3.5. Let X,Y be complete separable metric spaces, (Ω,F , P ) be a prob-
ability space. Let measurable mappings ξn : Ω → X, hn : X → Y , n ≥ 0, be such
that

1) ξn → ξ0, n→∞, in probability;

2) hn → h0, n→∞, in measure ν, where ν is a probability measure on X;

3) for all n ≥ 1 the distribution Pξn of ξn is absolutely continuous w.r.t. the measure ν;

4) the sequence of densities {dPξndν : n ≥ 1} is uniformly integrable w.r.t. the measure
ν.

Then hn(ξn)→ h0(ξ0), n→∞, in probability.

The proof can be found, for example, in [7], Corollary 9.9.11 or [15], Lemma 2.

Proof of Lemma 3.4. Fix T > 0 and x ∈ Rd. Since ϕt, ϕn,t, n ≥ 1, are measur-
able functions of a Wiener process, we may assume without loss of generality that
Ω = C([0, T ],Rd), F = σ{wt : 0 ≤ t ≤ T}, P = P is the Wiener measure, and put
ξn = (ϕn,t(x))0≤t≤T , ξ0 = (ϕt(x))0≤t≤T , ν = Pw(x) is the distribution of the process

(wt(x))0≤t≤T , X = C([0, T ],Rd), Y = C([0, T ]), h±n = Aij,±n,t (·), h±0 = Aij,±t (·). Then
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{ξn : n ≥ 0} is a sequence of random elements in the space (Ω,F ,P) taking values on
C([0, T ],Rd). Lemma 3.1 entails the convergence ξn → ξ0, n → ∞, in probability P
uniformly in t ∈ [0, T ]. This implies the first assertion of Proposition 3.5.

According to Lemma 3.2, Aijn,t → Aijt as n → ∞, in probability measure Pw(x) uni-
formly in t ∈ [0, T ]. This means that h±n → h±, n → ∞, as elements of C([0, T ]) in
measure Pw(x). So the second assertion of Proposition 3.5 is justified. The absolute
continuity of the distribution of (ϕn,t(x))0≤t≤T w.r.t. the measure Pw(x) follows from
Girsanov’s theorem. The density is defined by the formula

βn =
dPϕn(x)

dPw(x)
= exp

{∫ T

0

(an(ws(x)), dws(x))− 1

2

∫ T

0

‖an(ws(x))‖2ds

}
.

As

E exp

{
1

2

∫ T

0

‖an(ws(x))‖2ds

}
≤ exp

{
T

2
sup
y∈Rd

‖a(y)‖2
}
<∞,

where ‖ · ‖ is a norm in Rd, we have that for each p > 1,

E exp

{
p

∫ T

0

(an(ws(x)), dws(x))− p2

2

∫ T

0

‖an(ws(x))‖2ds

}
= 1

(cf. [17], Theorem 6.1). The uniform integrability of the family {dPϕn(x)

dPw(x)
: n ≥ 1} follows

from the estimate

E exp

{
p

(∫ T

0

(an(ws(x)), dws(x))− 1

2

∫ T

0

‖an(ws(x))‖2ds

)}
=

E exp

{
p

∫ T

0

(an(ws(x)), dws(x))− p2

2

∫ T

0

‖an(ws(x))‖2ds

}
×

exp

{
1

2
(p2 − p)

∫ T

0

‖an(ws(x))‖2ds

}
≤

exp
{

(p2 − p)‖an‖2∞T
}
E exp

{
p

∫ T

0

(an(ws(x)), dws(x))− p2

2

∫ T

0

‖an(ws(x))‖2ds

}
=

exp
{

(p2 − p)‖an‖2∞T
}
≤ exp

{
(p2 − p)‖a‖2∞T

}
valid for p > 1. Thus all the assertions of Proposition 3.5 are fulfilled and we have

sup
0≤t≤T

∣∣∣Aij,±n,t (ϕn(x))−Aij,±t (ϕ(x))
∣∣∣→ 0, n→∞,

in probability P. The Lemma is proved.

4 Convergence of the derivatives of solutions

Recall that Yt(x), Yn,t(x), t ≥ 0, x ∈ Rd, are the solutions of equations (2.1), (3.4),
respectively. In this section we show the convergence of the sequence {Yn,t(x) : n ≥ 1}
in probability uniformly in t. This together with Lemma 3.1 allow us to prove Theorem
2.3.

Lemma 4.1. 1) For all T ≥ 0, x ∈ Rd, p > 0,

sup
n≥1

E sup
0≤t≤T

‖Yn,t(x)‖p <∞,
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2) For all T ≥ 0, x ∈ Rd, p > 0,

E sup
0≤t≤T

‖Yn,t(x)− Yt(x)‖p → 0, n→∞,

where
‖Y ‖ = max

1≤i,j≤d
|Y ij |.

For the proof we need the following two propositions. The first one is a version of
the Gronwall-Bellman inequality and can be obtained by a standard argument.

Proposition 4.2. Let x(t) be a continuous function on [0,+∞), C(t) be a non-negative
continuous function on [0,+∞), K(t) be a non-negative, non-decreasing function, and
K(0) = 0. If for all 0 ≤ t ≤ T ,

x(t) ≤ C(t) +

∣∣∣∣∫ t

0

x(s)dK(s)

∣∣∣∣ ,
then

x(T ) ≤
(

sup
0≤t≤T

C(t)

)
exp{K(T )}.

Proposition 4.3. For all t ≥ 0, p > 0, 1 ≤ i, j ≤ d, there exists a constant C such that

sup
x∈Rd

sup
n≥1

E
(

exp
{
pAij,±n,t (ϕn(x))

}
+ exp

{
pAij,±t (ϕ(x))

})
< C. (4.1)

Proof. The statement of the Proposition follows from Lemma 1.16 and the inequalities
(1.4), which allow us to obtain the estimates uniform in n ≥ 1.

Proof of Lemma 4.1. For all t > 0, define the variation of Aij· on [0, t] by

VarAijt (ϕ(x)) := Aij,+t (ϕ(x)) +Aij,−t (ϕ(x)),

and put
VarAt(ϕ(x)) := Σ1≤i,j≤d VarAijt (ϕ(x)).

The variations of An,t(ϕn(x)), n ≥ 1, are defined similarly.
The proof of 1). We have

‖Yn,t(x)‖ ≤ 1 +

∥∥∥∥∫ t

0

(dAn,s(ϕn(x)))Yn,s(x)

∥∥∥∥ ≤ 1 +

∫ t

0

‖Yn,s(x)‖ d (VarAn,s(ϕn(x))) .

Making use of the Gronwall-Bellman lemma we get

‖Yn,t(x)‖ ≤ exp {VarAn,t(ϕn(x))} ≤ exp {VarAn,T (ϕn(x))} . (4.2)

The statement 1) follows now from the estimate (4.2) and Proposition 4.3.
The proof of 2). We have

‖Yn,t(x)− Yt(x)‖ ≤
∥∥∥∥∫ t

0

(dAn,s(ϕn(x))− dAs(ϕ(x)))Ys(x)

∥∥∥∥+∥∥∥∥∫ t

0

dAn,s(ϕn(x)) (Yn,s(x)− Ys(x))

∥∥∥∥ ≤∥∥∥∥∫ t

0

(dAn,s(ϕn(x))− dAs(ϕ(x)))Ys(x)

∥∥∥∥+

∫ t

0

‖Yn,s(x)− Ys(x)‖ d (VarAn,s(ϕ(x))) .

By Proposition 4.2,

‖Yn,t(x)− Yt(x)‖ ≤ sup
0≤u≤t

∥∥∥∥∫ u

0

(dAn,s(ϕn(x))− dAs(ϕ(x)))Ys(x)

∥∥∥∥ exp {VarAn,t(ϕn(x))} .

(4.3)
To estimate the right-hand side of (4.3) we make use of the following Proposition.
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Proposition 4.4. Let {gn : n ≥ 1} be a sequence of continuous monotonic functions on
[0, T ], and f ∈ C([0, T ]). Suppose that for each t ∈ [0, T ], gn(t)→ g(t), as n→∞. Then

sup
t∈[0,T ]

∣∣∣∣∫ t

0

f(s)dgn(s)−
∫ t

0

f(s)dg(s)

∣∣∣∣→ 0, n→∞.

We get

sup
0≤u≤t

∥∥∥∥∫ u

0

(dAn,s(ϕn(x))− dAs(ϕ(x)))Ys(x)

∥∥∥∥ exp {VarAn,t(ϕn(x))} ≤

sup
0≤u≤t

∥∥∥∥∫ u

0

(
dA+

n,s(ϕn(x))− dA+
s (ϕ(x))

)
Ys(x)

∥∥∥∥ exp {VarAn,t(ϕn(x))}+

sup
0≤u≤t

∥∥∥∥∫ u

0

(
dA−n,s(ϕn(x))− dA−s (ϕ(x))

)
Ys(x)

∥∥∥∥ exp {VarAn,t(ϕn(x))} . (4.4)

Consider the first summand in the right-hand side of (4.4). Put gn(s) = A+
n,s(ϕn(x)),

g(s) = A+
s (ϕ(x)), and f(s) = Ys(x). Then Lemma 3.4, Proposition 4.3, and Proposition

4.4 provide that

sup
0≤u≤t

∥∥∥∥∫ u

0

(
dA+

n,s(ϕn(x))− dA+
s (ϕ(x))

)
Ys(x)

∥∥∥∥ exp {VarAn,t(ϕn(x))} → 0 as n→∞,

in probability. Similarly it is proved that the second summand in the right-hand side of
(4.4) tends to 0 as n→∞.

This and statement 1) entail statement 2) of the Lemma.

5 The proof of Theorem 2.3

Proof. Define approximating equations by (3.3), where an, n ≥ 1, are determined by
(3.1). From Lemma 3.1 and the dominated convergence theorem we get the relation

E sup
t∈[0,T ]

∫
U

|ϕin,t(x)− ϕit(x)|pdx→ 0, n→∞,

valid for any bounded domain U ⊂ Rd, T > 0, p ≥ 1, and 1 ≤ i ≤ d. So for each 1 ≤ i ≤ d,
there exists a subsequence {nik : k ≥ 1} such that

sup
t∈[0,T ]

∫
U

|ϕinik,t(x)− ϕit(x)|pdx→ 0 a.s. as k →∞.

Without loss of generality we can suppose that

sup
t∈[0,T ]

∫
U

|ϕin,t(x)− ϕit(x)|pdx→ 0 a.s. as n→∞. (5.1)

Arguing similarly and taking into account Lemma 4.1 we arrive at the relation

sup
t∈[0,T ]

∫
U

|Y ijn,t(x)− Y ijt (x)|pdx→ 0, n→∞, almost surely, (5.2)

which is fulfilled for all 1 ≤ i, j ≤ d, p ≥ 0.

Since the Sobolev space is a Banach space, the relations (5.1), (5.2) mean that Yt(x)

is the matrix of derivatives of the solution to (0.1).
Let us verify (2.2). We have for all x, h ∈ Rd, α ∈ R,

ϕn,t(x+ αh) = ϕn,t(x) +

∫ α

0

Yn,t(x+ uh)du.
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It follows from Lemmas 3.1 and 4.1 that

ϕt(x+ αh) = ϕt(x) +

∫ α

0

Yt(x+ uh)du. (5.3)

The following lemma implies the relation

∀y0 ∈ Rd : Yt(y)→ Yt(y0), y → y0, (5.4)

in probability and hence in all Lp. This completes the proof of the Theorem, as (5.3) and
(5.4) implies (2.2).

Lemma 5.1. Let ν be a measure of Kato’s class. Then for any t ≥ 0, x0 ∈ Rd, ε > 0,

P {|Aνt (ϕ(x))−Aνt (ϕ(x0))| > ε} → 0 as x→ x0. (5.5)

Proof. For e ∈ Rd, denote by νe the shift of the measure ν by the vector e, i.e. for each
A ⊂ Rd,

νe(A) = ν(x : x− e ∈ A).

Then

Aνt (ϕ(x)) = A
νx−x0
t (ϕ·(x)− x+ x0).

Note that for fixed x and x0 the process (ξt)t≥0 := (ϕt(x)−x+x0)t≥0 can be considered as
a Markov process starting from x0, and its distribution is equivalent to the distribution
Pw(x0) of the Wiener process starting from x0. Indeed,

ξt = x0 +

∫ t

0

ã(ξs)ds+ w(t),

where ã(y) = a(y+x−x0). Similarly to the proof of Lemma 5 it can be checked that the

family of the Radon-Nikodym densities
{
dPϕ·(x)−x+x0
dPw(x0)

, x ∈ Rd
}

are uniformly integrable

with respect to Pw(x0). By Proposition 3.1 and Lemma 3.5 to prove (5.5) it suffices to
verify that

A
νx−x0
t (w(x0))→ Aνt (w(x0)), x→ x0, in probability P. (5.6)

By ν(R)(dy) = 1|y|≤Rν(dy) denote the restriction of the measure ν to the ball {y :

|y| ≤ R}. Put fwt (y) = EAνt (w(y)), fwR,t(y) = EAν
(R)

t (w(y)). Then

EA
νx−x0
t (w(y)) = fwt (y + x− x0), EA

ν
(R)
x−x0
t (w(y)) = fwR,t(y + x− x0).

It is easy to see that the function (s, y) → fwR,t(y) is uniformly continuous in (s, y) ∈
[0, t]×Rd. So by Theorem 1.5 we have the convergence in probability

A
ν
(R)
x−x0
t (w(y))→ Aν

(R)

t (w(y)), x→ x0, (5.7)

for any y ∈ Rd.
It follows from [8], Theorem 8.4 that for any R > 0 and y ∈ Rd we have the equality

Aν
(R)

t (w(y)) = Aνt (w(y)) a.s. on the set {sups∈[0,t] |y + ws| < R}. This together with (5.7)
entails (5.6).
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6 Appendix: The proof of Lemma 1.17

Note that Bht (ϕ(x)) =
∫ t
0
fwh (ϕs(x))

h ds is a W-functional. Let us estimate its character-
istic.

EBht (ϕ(x)) = E

∫ t

0

fwh (ϕs(x))

h
ds =

1

h

∫ h

0

du

∫
Rd

(∫ t

0

ds

∫
Rd
pwu (z, y)pϕs (x, z)dz

)
ν(dy).

From the estimates (1.4) we obtain (see also the proof of Theorem 6.6. in [8])

EBht (ϕ(x)) ≤
1

h

∫ h

0

du

∫
Rd

(∫ t

0

ds

∫
Rd

K

ud/2
exp

{
−k‖y − z‖

2

u

}
K

sd/2
exp

{
−k‖z − x‖

2

s

}
dz

)
ν(dy) =

K̃
1

h

∫ h

0

du

∫
Rd

(∫ t

0

1

(2π(u+ s))d/2
exp

{
−k‖y − x‖

2

u+ s

}
ds

)
ν(dy) =

K̃
1

h

∫ h

0

du

∫
Rd

(∫ t+u

u

1

(2πs)d/2
exp

{
−k‖y − x‖

2

s

}
ds

)
ν(dy) =

K̂
1

h

∫ h

0

du

∫
Rd

(∫ (t+u)/2k

u/2k

1

(2πs)d/2
exp

{
−‖y − x‖

2

2s

}
ds

)
ν(dy) =

K̂
1

h

∫ h

0

(
fw(t+u)/2k(x)− fwu/2k(x)

)
du.

where K̃ = K2π2(2/k)d/2, K̂ = 2K2k1−dπd. Taking into account (1.1), we get

fw(t+u)/2k(x)− fwu/2k(x) = Twu/2kf
w
t/2k(x) ≤ ‖fwt/2k‖∞.

By Proposition 1.15,

sup
x∈Rd

Ex
(
Bht (ϕ)

)2 ≤ 2K̂2
(
‖fwt/2k‖∞

)2
. (6.1)

Therefore, the second moment of Bht (ϕ) is bounded uniformly in h. This implies the
uniform integrability and, consequently the convergence in L1 holds in (1.10). Then the
characteristic of the functional Aν,wt (ϕ(x)) is equal to

f̃t(x) = lim
h↓0
E

∫ t

0

fwh (ϕs(x))

h
ds.

If we show that

f̃t(x) =

∫
Rd
kϕt (x, y)ν(dy), (6.2)

then the statement of the Lemma follows from Proposition 1.4. We have, for each
0 < δ < t,∣∣∣∣E∫ t

0

fwh (ϕs(x))

h
ds−

∫
Rd
kϕt (x, y)ν(dy)

∣∣∣∣ ≤
E

∫ δ

0

fwh (ϕs(x))

h
ds+

∫ δ

0

(∫
Rd
pϕs (x, y)ν(dy)

)
ds+∣∣∣∣E∫ t

δ

fwh (ϕs(x))

h
ds−

∫ t

δ

(∫
Rd
pϕs (x, y)ν(dy)

)
ds

∣∣∣∣ = I + II + III.

Consider I. Arguing as in the proof of (6.1) we arrive at the inequality

I ≤ ‖fwδ/2k‖∞.
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Making use of (1.4) and changing the variables we get

II ≤ 2Kπd/2(k)1−d/2
∫ δ/2k

0

ds

∫
Rd

1

(2πs)d/2
exp

{
−‖y − x‖

2

2s

}
ν(dy)

≤ 2Kπd/2(k)1−d/2‖fwδ/2k‖∞.

For each ε > 0, the condition (1.7) allows us to choose δ so small that

I < ε/3, II < ε/3. (6.3)

Further,

III =

∣∣∣∣∣
∫ t

δ

ds

∫
Rd
ν(dy)

∫
Rd

(pϕs (x, z)− pϕs (x, y))

(
1

h

∫ h

0

pwu (z, y)du

)
dz

∣∣∣∣∣ .
The measure 1

h

(∫ h
0
pwu (z, y)du

)
dz converges weakly to the δ-measure at the point y.

The function pϕs (x, y) is equicontinuous in y for s ∈ [δ, t], x ∈ Rd. So∫
Rd

(pϕs (x, z)− pϕs (x, y))

(
1

h

∫ h

0

pwu (z, y)du

)
dz → 0, h ↓ 0,

uniformly in x and s. Besides, from (1.4)∣∣∣∣∣
∫
Rd

(pϕs (x, z)− pϕs (x, y))

(
1

h

∫ h

0

pwu (z, y)du

)
dz

∣∣∣∣∣ ≤∫
Rd

K

sd/2

(
exp

{
−k‖x− z‖

2

s

}
+ exp

{
−k‖x− y‖

2

s

})(
1

h

∫ h

0

pwu (z, y)du

)
dz ≤ 2K

sd/2
.

By the dominated convergence theorem,

III → 0 as h ↓ 0. (6.4)

Now the equality (6.2) follows from (6.3) and (6.4). The Lemma is proved.
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