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Inequalities for permanental processes
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Abstract

Permanental processes are a natural extension of the definition of squared Gaussian
processes. Each one-dimensional marginal of a permanental process is a squared
Gaussian variable, but there is not always a Gaussian structure for the entire process.
The interest to better know them is highly motivated by the connection established
by Eisenbaum and Kaspi, between the infinitely divisible permanental processes and
the local times of Markov processes. Unfortunately the lack of Gaussian structure
for general permanental processes makes their behavior hard to handle. We present
here an analogue for infinitely divisible permanental vectors, of some well-known in-
equalities for Gaussian vectors.
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1 Introduction

A real-valued positive vector (ψi, 1 ≤ i ≤ n) is a permanental vector if its Laplace
transform satisfies for every (α1, α2, ..., αn) in Rn+

E[exp{−1

2

n∑
i=1

αiψi}] = |I +Gα|−1/β (1.1)

where I is the n × n-identity matrix, α is the diagonal matrix diag(αi)1≤i≤n, G =

(G(i, j))1≤i,j≤n and β is a fixed positive number.
Such a vector (ψi, 1 ≤ i ≤ n) is a permanental vector with kernel (G(i, j), 1 ≤ i, j ≤ n)

and index β.
Necessary and sufficient conditions for the existence of permanental vectors have been
established by Vere-Jones [14].
Permanental vectors represent a natural extension of squared centered Gaussian vec-
tors. Indeed for β = 2 and G positive definite matrix, (1.1) is the Laplace transform of
a squared Gaussian vector: a vector (η21 , η

2
2 , ..., η

2
n) with (η1, η2, ..., ηn) centered Gaussian

vector with covariance G.
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Inequalities for permanental processes

The recent extension of Dynkin isomorphism theorem [5] (reminded at the beginning
of Section 2) to non necessarily symmetric Markov processes suggests that the path
behavior of local times of Markov processes should be closely related to the path be-
havior of infinitely divisible permanental processes. The problem is that permanental
processes are new objects of study. The original version of Dynkin isomorphism the-
orem connects local times of symmetric Markov processes to squared Gaussian pro-
cesses. The successful uses of this identity (see [1], [12] or [3]) are mostly based on
inequalities specific to Gaussian vectors such as Slepian Lemma, Sudakov inequality, or
concentration inequalities. Hence the preliminary question to face, in order to exploit
the extended Dynkin isomorphism theorem, seems to be the existence of analogous
inequalities for permanental vectors.
Here we provide some answers to this first question. We establish in Section 2 a tool
(Lemma 2.2) to stochastically compare permanental vectors with index 1/4. The choice
of the index is due to technical reasons (see Lemma 2.1), but one notes that infinitely
divisible permanental processes are related to local times independently of their in-
dexes. The obtained tool allows then to present in Section 3, inequalities analoguous
to Slepian lemma for infinitely divisible permanental vectors and a weak version of Su-
dakov inequality in Section 4. In Section 5, some concentration inequalities are proved.

2 A tool

We will use the extension of Dynkin’s isomorphism Theorem [4] to non necessarily sym-
metric Markov process established in [5]. Consider a transient Markov process X with
state space E and Green function g = (g(x, y), (x, y) ∈ E × E). We have shown that
there exists a permanental process (φx, x ∈ E), independent of X, with kernel g and in-
dex 2. We have proved that infinite divisibility characterizes the permanental processes
admitting the Green function of a Markov process for kernel. Let a and b be elements of
E. Denote by (Labx , x ∈ E) the process of the total accumulated local times of X condi-
tionned to start at a and killed at its last visit to b. Then the process (Laax + 1

2φx, x ∈ E)

has the law of the process ( 1
2φx, x ∈ E) under the probability 1

E[φa]
E[φa, . ].

Now let (ψx, x ∈ E) denote a permanental process, independent of X, with kernel g
and index β (such a process exists thanks to the infinite infinite divisibility of φ). Then
similarly to the above relation, one shows that for every β > 0, the process (Laax +
1
2ψx, x ∈ E) has the law of the process ( 1

2ψx, x ∈ E) under the probability 1
E[ψa]

E[ψa, . ].

We start by showing the existence of a nice density with respect to the Lebesgue mea-
sure for permanental vectors with index 1/4.

Lemma 2.1. A permanental vector (ψ1, ψ2, ..., ψn) with index 1/4 admits a density h

with respect to the Lebesgue measure on Rn. Moreover h is C2 with first and second
derivatives converging to 0 as |z| tends to 0.

Proof: Denote by µ̂(z) the Fourier transform of a permanental vector with index 2. Then
one checks that :

∫
Rn
|µ̂(z)|2dz < ∞. Hence µ ∗ µ ∗ µ ∗ µ admits a continuous density

with respect to the Lebesgue measure. We note then that:
∫
Rn
|µ̂(z)|4|z|2dz <∞, which

thanks to Proposition 28.1 in Sato’s book [13] (p.190) implies that the density of µ∗8 has
a C2 density with first and second derivatives converging to 0 as |z| tends to 0. 2

Let G be a n× n-matrix such that there exists a permanental vector with index 1/4 and
kernel G. For any measurable function F on Rn+, EG[F (ψ)] denotes the expectation with
respect to a permanental vector with kernel G and index 1/4. We define a functional F
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Inequalities for permanental processes

on such matrices G by setting

F(G) = EG[F (ψ)]

We denote by Ckj(G) the entry Gkj .
We now compute the derivatives of F with respect to Ckj . We have the following lemma.

Lemma 2.2. Let ψ = (ψxk)1≤k≤n be a permanental vector with kernel
(G(xk, xj), 1 ≤ k, j ≤ n) and index 1/4. Let F be a bounded real valued function on Rn+,
admitting bounded second order derivatives. We have then:

∂

∂Ckk
EG[F (

ψ

2
)] = 4EG[

∂F

∂zk
(
ψ

2
)] +

1

2
EG[ψxk

∂2F

∂z2k
(
ψ

2
)]. (2.1)

Assume moreover that ψ is infinitely divisible. For k 6= j, we have:

∂

∂Ckj
EG[F (

ψ

2
)] = 4G(xj , xk)EG[

∂2F

∂zk∂zj
(
ψ

2
+ Lxjxk)], (2.2)

where Lxjxk is a vector independent of ψ with the law of the total accumulated local
time of an associated Markov process conditionned to start at xj and killed at its last
visit to xk.

Remark 2.2.1: Note that (2.2) completes the extended version of Dynkin isomorphism
theorem presented above. Indeed this extended version involves the process Lab only
for a = b, whereas in the symmetric case, according to the isomorphism theorem for
a 6= b, (Lab + 1

2η
2) has the same law as 1

2η
2 under 1

E[ηaηb]
E[ηaηb, . ], where η is a centered

Gaussian process with covariance G.

Proof of Lemma 2.2 : Thanks to Lemma 2.1, we know that ψ/2 admits a nice density
h(z,G) with respect to the Lebesgue measure on Rn. Moreover, we have:

h(z,G) =
1

(2π)n

∫
Rn
e−i<z,λ>|I − iGλ|−4dλ.

(2.1) We have
∂

∂Ckk
|I − iλG|−4 = −4|I − iGλ|−5 ∂

∂Ckk
|I − iGλ|.

Developing with respect to the kth line and then deriving with respect to Ckk, gives

∂

∂Ckk
|I − iλG|−4 = 4i|I − iGλ|−5λk|I − iGλ|kk, (2.3)

where for any square matrix A, we denote by |A|kj the determinant of the matrix ob-
tained by deleting the kth line and the jth column. We remark then that

|I − iGλ|kk = |I − iGλ| − λk
∂

∂λk
|I − iGλ|, (2.4)

hence

∂

∂Ckk
|I − iGλ|−4 = 4iλk|I − iGλ|−4 − 4iλ2k|I − iGλ|−5

∂

∂λk
|I − iGλ|

= 4iλk|I − iGλ|−4 + iλ2k
∂

∂λk
|I − iGλ|−4
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Inequalities for permanental processes

but ∂
∂λk
|I − iGλ|−4 = i

2EG[ψxk e
i
2

∑n
p=1 λpψxp ]. Consequently we obtain thanks to (2.3)

and (2.4)

(2π)n
∂h

∂Ckk
(z,G) =

∫
Rn

4iλke
−i<z,λ>|I − iGλ|−4dλ

−1

2

∫
Rn
λ2ke
−i<z,λ>EG[ψxke

i
2

∑n
p=1 λpψxp ]dλ

We have hence expressed ∂h
∂Ckk

(z,G) in terms of the density of (ψx1/2, ..., ψxn/2) and of

hkk the density of (ψx1/2, ..., ψxn/2) under 1
E[ψxk ]

E[ψxk , . ]:

∂h

∂Ckk
(z,G) = −4

∂h

∂zk
(z,G) + 4G(xk, xk)

∂2hkk
∂z2k

(z,G) (2.5)

Performing then several integrations by parts, one finally obtains (2.1).

(2.2) For k 6= j, we have:

∂h

∂Ckj
(z,G) =

4i

(2π)n

∫
Rn
λke
−i<z,λ>(I − iGλ)−1jk |I − iGλ|

−4dλ. (2.6)

Indeed, we have

∂

∂Ckj
|I − iGλ|−4 = −4|I − iGλ|−5 ∂

∂Ckj
|I − iGλ|

We develop first with respect to the jth column and derive with respect to Ckj to obtain:

|I − iGλ| = (−1)j+1(−iλj)G1j |I − iGλ|1,j

+(−1)j+2(−iλj)G2j |I − iGλ|2,j + ...+ (−1)k+j(−iλj)Gkj |I − iGλ|k,j + ...

hence

∂

∂Ckj
|I − iGλ| = −i(−1)k+jλj |I − iGλ|k,j = −iλj(I − iGλ)−1jk |I − iGλ|

Consequently:

∂h

∂Ckj
(z,G) =

4i

(2π)n

∫
Rn
λke
−i<z,λ> (I − iGλ)−1jk |I − iGλ|

−4dλ.

Since ψ is infinitely divisible, we know that there exists a diagonal matrix
D = Diag(D(i), 1 ≤ i ≤ n) with positive entries on the diagonal such that G̃ = DGD−1

is a potential matrix (see [5]). Denote by Lxjxk the local time process of the Markov
process X with Green function G̃, conditionned to start at xj and killed at xk. This is
actually the local time process of the h-path transform of X with the function h(x) =

G̃(x, xk), conditioned to start at xj . The Green function of this last process is

(G̃(xp, xq)
G̃(xq,xk)

G̃(xp,xk)
, 1 ≤ p, q ≤ n). Now note that this Green function is independent of

D, and is actually equal to (G(xp, xq)
G(xq,xk)
G(xp,xk)

, 1 ≤ p, q ≤ n). To compute the Laplace
transform of Lxjxk we make use of a well-known formula (see e.g. [12] (2.173) but for
the Green function (G(xp, xq)

G(xq,xk)
G(xp,xk)

, 1 ≤ p, q ≤ n)), which gives:

G(xj , xk)E[ei
∑n
p=1 λpL

xjxk
xp ] = ((I − iGλ)−1G)j,k

Note that : (I − iGλ)−1 = I + (I − iGλ)−1(iGλ). Hence for k 6= j:

(I − iGλ)−1jk = i[(I − iGλ)−1Gλ]jk = iλk[(I − iGλ)−1G]jk.
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We finally obtain:

(I − iGλ)−1jk = iλkG(xj , xk)E[ei
∑n
p=1 λpL

xjxk
xp ]. (2.7)

Making use of (2.7), we have:

∂h

∂Ckj
(z,G) =

−4

(2π)n

∫
Rn
e−i<z,λ> λkλj G(xj , xk) EG[ei

∑n
p=1 λp(

ψxp
2 +L

xjxk
xp )]dλ,

which leads to
∂h

∂Ckj
(z,G) = 4G(xj , xk)

∂2hjk
∂zk∂zj

(z,G) (2.8)

where hjk is the density of the vector (
ψ(xp)

2 +L
xjxk
xp , 1 ≤ p ≤ n). One finally obtains (2.2)

after two integrations by parts. 2

3 Slepian lemmas for permanental vectors

In view of Lemma 2.2, we see that in order to stochastically compare two permanental
vectors, we better have to choose them infinitely divisible. The problem is to find a
path from one vector to the other that stays in the set of infinitely divisible permanental
vectors. From the definition (1.1), one remarks that for a permanental vector there is
no unicity of the kernel. For an infinitely divisible permanental vector with kernel G one
can always choose a nonnegative kernel. Indeed, there exists a n × n-signature matrix
σ such that σGσ is the inverse of a M -matrix (see [5]). We remind that a signature
matrix is a diagonal matrix with its diagonal entries in {−1, 1}. A non singular matrix
A is a M -matrix if its off-diagonal entries are nonpositive and the entries of A−1 are
nonnegative. In particular all the entries of σGσ are nonnegative. We can choose
(|G(i, j)|, 1 ≤ i, j ≤ n) to be the kernel of ψ.
Given two inverse M -matrices, the problem becomes then to find a nice path from one
to the other that stays in the set of inverse M -matrices. Unlike for positive definite
matrices, linear interpolations between two inverse M -matrices are not always inverse
M -matrices. This creates the limits for the use of the presented tool.
Here are some results of comparison of infinitely divisible permanental processes. The
proofs are presented at the end of the section.

Lemma 3.1. Let ψ and ψ̃ be two infinitely divisible permanental vectors with index 1/4

and respective nonnegative kernels G and G̃ such that for every i, j

G−1(i, j) ≥ G̃−1(i, j). (3.1)

Then for every function F on Rn+ such that

• ∂2F
∂zi∂zj

≥ 0 for every i, j such that i 6= j

• ∂F
∂zi

+ zi
4
∂2F
∂z2i
≥ 0

we have:
E[F (ψ/2)] ≤ E[F (ψ̃/2)].

The proof of Lemma 3.1 will show that (3.1) implies that for every i, j G(i, j) ≤ G̃(i, j).

Lemma 3.2. Let ψ and ψ̃ be two infinitely divisible permanental vectors with index 1/4

and respective nonnegative kernels G and G̃ such that:

G−1(i, j) ≥ G̃−1(i, j) (3.2)
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Inequalities for permanental processes

for every 1 ≤ i, j ≤ n. Then for every positive s1, s2, ..., sn, we have:

P[∩ni=1(ψi > si)] ≤ P[∩ni=1(ψ̃i > si)]. (3.3)

If moreover: G(i, i) = G̃(i, i), for every 1 ≤ i ≤ n then

P[∩ni=1(ψi < si)] ≤ P[∩ni=1(ψ̃i < si)]. (3.4)

Under the assumptions of Lemma 3.2, we obtain for example:

E[F ( inf
1≤i≤n

ψi)] ≤ E[F ( inf
1≤i≤n

ψ̃i)]

for every increasing function F on R+ and when moreover G(i, i) = G̃(i, i) for every i,
then

E[F ( sup
1≤i≤n

ψi)] ≥ E[F ( sup
1≤i≤n

ψ̃i)].

As a direct consequence of the work of Fang and Hu [8], one can stochastically com-
pare two infinitely divisible squared Gaussian processes. Indeed let (η1, η2, ..., ηn) and
(η̃1, η̃2, ..., η̃n) be two centered Gaussian vectors with respective nonnegative covariance
matrices G and G̃, such that η2 = (η21 , η

2
2 , ..., η

2
n) and η̃2 = (η̃21 , η̃

2
2 , ..., η̃

2
n) are infinitely

divisible. We have then

If G̃−1(i, j) ≥ G−1(i, j) for every i, j,

then
E[F (η2)] ≥ E[F (η̃2)]

for every increasing in each variable function F on Rn+.
With elementary considerations, this comparison extends to permanental vectors with
symmetric kernels and index 1/4. The above lemmas can be seen as extensions of this
relation to infinitely divisible permanental vectors with non symmetric kernels.

Lemma 3.3. Let ψ be an infinitely divisible permanental vector with kernel G and
index 1/4. Then for every diagonal matrix D with nonnegative entries, there exists
an infinitely divisible permanental vector ψ̃ with kernel (G + D). Moreover for every
positive s1, s2, ..., sn, we have:

P[∩ni=1(ψi < si)] ≥ P[∩ni=1(ψ̃i < si)]

and
P[∩ni=1(ψi > si)] ≤ P[∩ni=1(ψ̃i > si)].

The following lemma is an immediat consequence of the fact that infinite divisibility
implies positive correlation (see [2]).

Lemma 3.4. Let ψ be a n-dimensional infinitely divisible permanental vector with index
β and nonnegative kernel G. Let ψ̃ be a n-dimensional permanental vector with index β
and kernel D defined by

D(i, j) =

{
0 if i 6= j

G(i, i) if i = j

Then for every positive s1, s2, ..., sn, we have:

P[∩ni=1(ψi < si)] ≥ P[∩ni=1(ψ̃i < si)]

and
P[∩ni=1(ψi > si)] ≥ P[∩ni=1(ψ̃i > si)].
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Proof of Lemma 3.1: The two matrices G and G̃ are inverse of M -matrices: G =

c(I − P )−1 and G̃ = c̃(I − P̃ )−1, where c and c̃ are positive numbers and P and P̃ are
convergent matrices (i.e. nonnegative matrices such that ρ(P ), ρ(P̃ ) < 1). Note that c
and P are not unique in the decomposition of G. One can hence choose c small enough
to have : c ≤ c̃. Consequently: G−1ij ≥ G̃−1ij , implies that : Pij ≤ P̃ij , for every i, j. For θ

in [0, 1], define the convergent matrix P (θ) by P (θ)ij = θP̃ij+(1−θ)Pij , and the constant
cθ by: cθ = θc̃+ (1− θ)c. Set then

G(θ) = cθ(I − P (θ))−1 (3.5)

The matrix G(θ) is the kernel of an infinitely divisible permanental vector with index
1/4. Set:

f(θ) = EG(θ)[F (ψ)] = F(G(θ))

We have: f ′(θ) =
∑

1≤i,j≤n
∂F
∂Cij

(G(θ))
∂Cij(G(θ))

∂θ . Note that : ∂P (θ)
∂θ (i, j) = P̃ij − Pij ≥ 0.

Hence for every integer k , (P (θ))k(i, j) is an increasing function of θ. Since cθ is also

an increasing function of θ, we obtain: ∂Cij(G(θ))
∂θ ≥ 0. Lemma 2.2 and the assumptions

on F lead then to: f ′(θ) ≥ 0. In particular: f(0) ≤ f(1), which means that: EG[F (ψ)] ≤
EG̃[F (ψ)]. 2

Proof of Lemma 3.2 (3.3) Let N be a real standard Gaussian variable and p the density
with respect to the Lebesgue measure of N1N<0. For ε > 0, set:

fε,c(x) = 1x>c + 1x≤c

∫ x−c
ε

−∞
p(y)dy. (3.6)

As ε tends to 0, fε,c converges pointwise to 1[c,+∞). Note that on (−∞, c], fε,c is C2 with
f ′ε,c ≥ 0 and f ′′ε,c ≥ 0.
Define the function Fε on Rn by

Fε(z) = Πn
k=1fε,sk(zk). (3.7)

One can not directly use Lemma 2.2 for Fε but thanks to (2.5), for any C kernel of an
infinitely divisible permanental vector with index 1/4, we have:

∂

∂C11
EC [Fε(

ψ

2
)]

=

∫
R
n−1
+

Πn
k=2fε,sk(zk)dz2...dzn

∫ ∞
0

fε,s1(z1){−4
∂h

∂z1
(z, C) + 4C(1, 1)

∂2h11
∂z21

(z, C)}dz1

Note that we have:∫∞
0

fε,s1(z1){−4
∂h

∂z1
(z, C) + 4C(1, 1)

∂2h11
∂z21

(z, C)}dz1

= 4h(z, C)|z1=s1
− 4C(1, 1)

∂h11
∂z1

(z, C)|z1=s1

+

∫ s1

0

fε,s1(z1){−4
∂h

∂z1
(z, C) + 4C(1, 1)

∂2h11
∂z21

(z, C)}dz1

= 4fε,s1(0)h(z, C)|z1=0
+ 4

∫ s1

0

h(z, C)f ′ε,s1(z1)dz1 − 4C1,1fε,s1(0)
∂h11
∂z1

(z, C)|z1=0

+ 4C1,1h11(z, C)|z1=0f
′′
ε,s1(0) + 4C1,1

∫ s1

0

h11(z, C)f ′′ε,s1(z1)dz1
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by performing two integration by parts. We note then that the two densities h and
h11 are connected as follows: 4C1,1h11(z, C) = z1h(z, C). One obtains in particular:
4C1,1

∂h11

∂z1
(z, C)|z1=0

= h(z, C)|z1=0
, which leads to:

∂
∂C11

EC [Fε(
ψ

2
)]

=

∫
R
n−1
+

Πn
k=2fε,sk(zk)dz2...dzn{3fε,s1(0)h(z, C)|z1=0

+ 4

∫ s1

0

h(z, C)f ′ε,s1(z1)dz1

+ 4C1,1

∫ s1

0

h11(z, C)f ′′ε,s1(z1)dz1}.

Since h(z, C)|z1=0
= 0, one obtains:

∂
∂C11

EC [Fε(
ψ

2
)]

=

∫
R
n−1
+

Πn
k=2fε,sk(zk)dz2...dzn

∫ s1

0

h(z, C){4f ′ε,s1(z1) + z1f
′′
ε,s1(z1)}dz1

Consequently: ∂
∂C11

EC [Fε(
ψ
2 )] ≥ 0. Similarly one obtains:

∂

∂Ckk
EC [Fε(

ψ

2
)] ≥ 0, (3.8)

for every 1 ≤ k ≤ n.
Thanks to (2.8), one computes:

∂

∂C12
EC [Fε(

ψ

2
)]

= 4C2,1

∫
R
n−2
+

Πn
k=3fε,sk(zk)dz3...dzn

∫
R2

+

fε,s1(z1)fε,s2(z2)
∂2h2,1
∂z1∂z2

(z,G)dz1dz2

= 4C2,1

∫
R
n−2
+

Πn
k=3fε,sk(zk)dz3...dzn{fε,s1(0)fε,s2(0)h2,1(z, C)|z1=z2=0

+ fε,s1(0)

∫ s2

0

h2,1(z, C)|z1=0
f ′ε,s2(z2)dz2 + fε,s2(0)

∫ s1

0

h2,1(z, C)|z2=0
f ′ε,s1(z1)dz1

+

∫ s2

0

∫ s1

0

h2,1(z, C)f ′ε,s1(z1)f ′ε,s2(z2)dz1dz2}.

Note that: h2,1(z, C)|z1=z2=0
= h2,1(z, C)|z1=0

= h2,1(z, C)|z2=0
= 0. Indeed, denote by Lab

the local time process of the Markov process associated to C conditioned to start at a
and to die at its last visit to b. Then we have: Laba > 0 a.s. and Labb > 0 a.s. We hence
obtain

∂
∂C12

EC [Fε(
ψ

2
)] (3.9)

= 4C2,1

∫
R
n−2
+

Πn
k=3fε,sk(zk)dz3...dzn

∫ s2

0

∫ s1

0

h2,1(z, C)f ′ε,s1(z1)f ′ε,s2(z2)dz1dz2},

which leads to: ∂
∂C12

EC [Fε(
ψ
2 )] ≥ 0.

Similarly one shows that for every i 6= j, ∂
∂Cij

EC [Fε(
ψ
2 )] ≥ 0.

One uses then the matrices G(θ) defined in (3.5) to obtain the conclusion similarly as in
the proof of Lemma 3.1 by dominated convergence.
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(3.4): Define the function F̃ε on Rn+ by:

F̃ε(x) =

n∏
k=1

(1− fε,sk(xk)) (3.10)

where fε,c is given by (3.6). Denote by f̃ε,c the function (1− fε,c). As ε tends to 0, F̃ε(x)

converges to
∏n
k=1 1xk<sk .

For every i, we have:
∂

∂Cii
EC [F̃ε(

ψ

2
)] ≤ 0. (3.11)

Indeed thanks to (2.8), for any C kernel of an infinitely divisible permanental vector
with index 1/4, we have, making use of the computations in the proof of (3.3)

∂

∂C11
EC [F̃ε(

ψ

2
)]

=

∫
R
n−1
+

Πn
k=2f̃ε,sk(zk)dz2...dzn

∫ ∞
0

(1− fε,s1(z1){−4
∂h

∂z1
(z, C) + 4C(1, 1)

∂2h11
∂z21

(z, C)}dz1

=
∂

∂C11
EC [

n∏
k=2

f̃ε,sk(
ψk
2

)]

−
∫
R
n−1
+

Πn
k=2f̃ε,sk(zk)dz2...dzn

∫ s1

0

h(z, C){4f ′ε,s1(z1) + z1f
′′
ε,s1(z1)}dz1

≤ 0

since ∂
∂C11

EC [
∏n
k=2 f̃ε,sk(ψk2 )] = 0.

∂

∂C12
EC [F̃ε(

ψ

2
)]

= 4C2,1

∫
R
n−2
+

Πn
k=3f̃ε,sk(zk)dz3...dzn

∫
R2

+

f̃ε,s1(z1)f̃ε,s2(z2)
∂2h2,1
∂z1∂z2

(z,G)dz1dz2

=
∂

∂C12
EC [

n∏
k=3

f̃ε,sk(
ψk
2

)]− ∂

∂C12
EC [

n∏
k=2

f̃ε,sk(
ψk
2

)]− ∂

∂C12
EC [f̃ε,s1(

ψ1

2
)

n∏
k=3

f̃ε,sk(
ψk
2

)]

+4C2,1

∫
R
n−2
+

Πn
k=3f̃ε,sk(zk)dz3...dzn

∫
R2

+

fε,s1(z1)fε,s2(z2)
∂2h2,1
∂z1∂z2

(z,G)dz1dz2

= 4C2,1

∫
R
n−2
+

Πn
k=3f̃ε,sk(zk)dz3...dzn

∫
R2

+

fε,s1(z1)fε,s2(z2)
∂2h2,1
∂z1∂z2

(z,G)dz1dz2

= 4C2,1

∫
R
n−2
+

Πn
k=3f̃ε,sk(zk)dz3...dzn

∫ s2

0

∫ s1

0

h2,1(z, C)f ′ε,s1(z1)f ′ε,s2(z2)dz1dz2}

≥ 0

thanks to the computations in the proof of (3.3). More generally, we obtain for every
i 6= j

∂

∂Cij
EC [F̃ε(

ψ

2
)] ≥ 0 (3.12)

We keep definition (3.5) for G(θ). Set: f(θ) = EG(θ)[F̃ε(ψ)], and for any kernel M of a

n-dimensional permanental vector with index 1/4: F̃ε(M) = EM [F̃ε(ψ)]. We have:

f ′(θ) =
∑

1≤i,j≤n,i 6=j

∂F̃ε
∂Cij

(G(θ))
∂Cij(G(θ))

∂θ
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For i 6= j, we have: ∂Cij(G(θ))
∂θ ≥ 0. Besides thanks to (3.12): ∂F̃ε

∂Cij
(G(θ)) ≥ 0. We obtain:

f ′ ≥ 0 on [0, 1]. Hence: f(0) ≤ f(1), which means for every ε > 0

EF̃ε(ψ)] ≤ E[F̃ε(ψ̃)]

By letting ε tend to 0, we finally obtain:

E[∩ni=1(ψi < si)] ≤ E[∩ni=1(ψ̃i < si)].2

Proof of Lemma 3.3: First we use the fact that G is an inverse M -matrix hence for
every diagonal matrix D, (G + D) is still an inverse M -matrix (see e.g. [10]). Then for
θ in [0, 1], define the M -matrix G(θ) by: G(θ) = θG+ (1− θ)(G+D), and the associated
function f on [0, 1]:

f(θ) = EG(θ)[F̃ε(ψ)],

where F̃ε is defined by (3.10). Thanks to (3.11), one obtains the first inequality by
letting ε tend to 0. The second one is obtained similarly with F̃ε replaced by Fε (defined
by (3.7)). One concludes thanks to (3.8). 2

4 A weak Sudakov inequality

Let (ηx)x∈E be a centered Gaussian process with covariance function G. Define d on
E × E by

dη(x, y) = (G(x, x) +G(y, y)− 2G(x, y))1/2 = E[(ηx − ηy)2]1/2,

then dη is a pseudo-distance on E.
Suppose that there exists a finite subset S of E such that for every distinct x and y

elements of S, dη(x, y) > u, then according to Sudakov inequality

E[sup
x∈S

ηx] ≥ 1

17
u
√

log |S|. (4.1)

We consider now a kernel G = (G(x, y), (x, y) ∈ E×E), such that G is a bipotential. This
means that both G and Gt are Green functions of transient Markov processes. This is
equivalent (see [6]) to the assumption that for any finite subset S of E, both G|S×S and
Gt|S×S

are inverse of diagonally dominantM -matrices (a matrix (Aij)1≤i,j≤n is diagonally

dominant if for every i,
∑n
j=1Aij ≥ 0).

For (ψx, x ∈ E) permanental process with index 1/4 admitting G for kernel, define the
function dG on E × E by

dG(x, y) = (G(x, x) +G(y, y)−G(x, y)−G(y, x))1/2. (4.2)

As a consequence of [6], we know that dG is a pseudo-distance on E. When there is no
ambiguity, dG will be denoted by d.
Following [11], we define E[supx∈E ψx] as being sup{E[supx∈F ψx], F finite subset of E}.

Lemma 4.1. Let (ψx, x ∈ E) be a permanental process with a kernel G and index 1/4.
Assume that:

(1) G is a bipotential and that for every x in S, G(x, x) = 1.

(2) S is a finite subset of E such that for every distinct x and y elements of S: G(x, y) ≤ a.

Set: u = (2− 2a)1/2. Then for every x, y in S: d(x, y) ≥ u and

E[sup
x∈S

√
ψx] ≥ 1

17
√

2
u
√

log |S|.
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Up to a multiplicative constant, permanental processes associated to Lévy processes
satisfy (1).

The proof of Lemma 4.1 is based on the following lemma.

Lemma 4.2. Let G be the inverse of a diagonally dominant M -matrix. Then for every
diagonal matrix D with nonnegative entries, G + D is still the inverse of a diagonally
dominant M -matrix.

Indeed, one already knows that G + D is an inverse M -matrix. This is Theorem 1.6 in
[10]. Making use of its proof, one easily shows that the M -matrix (G+D)−1 is diagonally
dominant.

Proof of Lemma 4.1: We simply write: S = {1, 2, ..., n}. Set: a = supi6=j G(i, j). We
have: a ≤ 1.
Define the kernel G̃ on S × S as follows: G̃(i, i) = 1 and for i 6= j, G̃(i, j) = a.
Set: G(θ) = θG + (1 − θ)G̃. For every θ in [0, 1], G(θ) is a potential. Indeed, (θG + (1 −
θ)Diag(b− a)) is a Green function (thanks to Lemma 4.2). Since this is also true for its
transpose, it remains a potential if we add the nonnegative constant (1 − θ)a to each
entry (see e.g. [6]).
We use now the functions F̃ε defined by (3.10) to define H̃ε((yi)1≤i≤n) = F̃ε((

√
yi)1≤i≤n)),

and set: f(θ) = EG(θ)[H̃ε(
ψ
2 )]. We compute f ′(θ).

f ′(θ) =
∑

1≤k,j≤n

∂

∂Ckj
EG(θ)[H̃ε(

ψ

2
)]
∂G(θ)(k, j)

∂θ

Thanks to Lemma 2.2, we have: ∂
∂Ckj

EG(θ)[H̃ε(
ψ
2 )] ≥ 0. Besides note that that: ∂G(θ)(k,j)

∂θ =

G(k, j)− G̃(k, j). We obtain:

f ′(θ) =
∑

1≤k,j≤n

∂

∂Ckj
EG(θ)[H̃ε(

ψ

2
)](G(k, j)− G̃(k, j)) ≤ 0.

Consequently we have for every ε > 0:

EG[H̃ε(
ψ

2
)] ≤ EG̃[H̃ε(

ψ

2
)]

and in particular as ε tends to 0, one obtains:

EG[sup
x∈S

√
ψx] ≥ EG̃[sup

x∈S

√
ψx]. (4.3)

Now, G̃ is a covariance matrix, the corresponding vector ψ is the half sum of eight iid
squared centered Gaussian vectors with covariance G̃. Denote by η̃ a centered Gaussian
vector with covariance G̃. We have:

EG[sup
x∈S

√
ψx] ≥ 1√

2
E[sup
x∈S
|η̃x|] (4.4)

Note that for every distinct i and j in S:

dG̃(i, j) = E[(η̃i − η̃j)2]1/2 = (2− 2a)1/2 = u.

Sudakov inequality (4.1) gives:

E[sup
i∈S

η̃i] ≥
1

17
u
√

log |S|.

Consequently, we have obtained thanks to (4.4)

EG[sup
x∈S

√
ψx] ≥ 1

17
√

2
u
√

log |S|.2
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5 Concentration inequalities for permanental processes

Here is a well-known concentration inequality for Gaussian vectors. There exists a
universal constant K such that for every centered Gaussian vector (ηi)1≤i≤n

P[| sup
1≤i≤n

ηi − E[ sup
1≤i≤n

ηi]| ≥ Kyσ] ≤ 2e−y
2

(5.1)

where σ = sup1≤i≤nE[η2i ]1/2.
The following two subsections present partial extensions of (5.1) to infinitely disivible
permanental vectors.

5.1 Sub-gaussiannity

According to [6] given a bipotential (G(x, y), (x, y) ∈ E × E), G+tG
2 is positive definite.

Set G1 = ( G(x,y)√
G(x,x)G(y,y)

, (x, y) ∈ E × E), then G1+G
t
1

2 is also positive definite. Let η =

(ηx)x∈E be a centered Gaussian process with covariance G1+G
t
1

2 . Define d1 on E × E by

d1(x, y) = (2−G1(x, y)−G1(y, x))1/2 = E[(ηx − ηy)2]1/2.

Then d1 is a pseudo-distance on E.
Note that G1 is the kernel of an infinitely divisible permanental process.

Proposition 5.1. Let (ψt)t∈E be a permanental process with kernel G1 and index 2/d

with d integer and 1 ≤ d ≤ 8. We have then

EG1
[ sup
s,t∈E

|
√
ψt −

√
ψs|] ≤ KE[sup

t∈E
ηt] (5.2)

where K is an universal constant.
Moreover for every finite subset T of E, and every u > 0, we have:

PG1
[ sup
s,t∈T

|
√
ψt −

√
ψs| > K(E[sup

t∈T
ηt] + u)] ≤ (exp{ u2

50ρ2
} − 1)−1 (5.3)

where ρ = supt,s∈T d1(s, t).

Proof: Denote by ||.||, the euclidian norm inRd. Note that for every s, t in T : (
√

ψt
G(t,t) ,

√
ψs

G(s,s) )

has the same law as 1√
2
(||η̃t||, ||η̃s||) with (η̃t, η̃s) = ((η

(k)
t )1≤k≤d, (η

(k)
s )1≤k≤d), where

the couples (η
(k)
t , η

(k)
s ), 1 ≤ k ≤ d, are i.i.d. with a centered gaussian law such that

E[η
(k)
t ] = 1, E[η

(k)
s ] = 1 and E[η

(k)
t η

(k)
s ] =

√
G1(t, s)G1(s, t). Hence

|

√
ψt

G(t, t)
−

√
ψs

G(s, s)
| ≤ 1√

2
||η̃t − η̃s|| =

1√
2

(

d∑
k=1

|η(k)t − η(ks )|2)1/2.

One obtains for every λ > 0

EG1 [exp(λ2|
√
ψt −

√
ψs|2])] ≤ E[exp(

λ2

2

d∑
k=1

|η(k)t − η(ks )|2)] ≤ E[exp(
λ2

2
|η(1)t − η(1s )|2)]d

and consequently :

E[exp(λ2|
√
ψt −

√
ψs|2])] ≤ (1− λ2δ2(s, t))−d/2
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where δ(s, t) = (2− 2
√
G1(s, t)G1(t, s))1/2. Choosing λ = 1

5δ(s,t) , one obtains

EG1 [exp(

√
ψt −

√
ψs

5δ(s, t)
)2] ≤ 2,

which implies that (
√
ψt−E(

√
ψt), t ∈ T ) and (

√
ψt−
√
ψs, t ∈ T ) are subgaussian relative

to the scale 5δ.
One obviously has: d1(s, t) ≤ δ(s, t). But note also that: δ(s, t) ≤

√
2d1(s, t). Indeed for

every a, b in [0, 1]

a+ b− 2
√
ab ≤

√
a+
√
b− 2

√
ab =

√
a(1−

√
b) +

√
b(1−

√
a) ≤ 2−

√
a−
√
b

and hence
a+ b− 2

√
ab ≤ 2− (a+ b).

Add 2 to each member of the previous inequality and obtain

2− 2
√
ab ≤ 2(2− a− b).

Consequently (
√
ψt−E(

√
ψt), t ∈ T ) and (

√
ψt−
√
ψs, t ∈ T ) are also subgaussian relative

to the scale 5
√

2d1. Proposition 5.1 is then a direct consequence of [11] Chapter 11,
p.316, Theorem 11.18 and Theorem 12.8. 2

5.2 Lévy measure of infinitely divisible permanental vectors

The following concentration inequalities for infinitely divisible permanental vectors are
a consequence of a remarkable property of their Lévy measure.

Theorem 5.2. Let ψ = (ψi)1≤i≤n be an infinitely divisible vector with kernel
(G(i, j), 1 ≤ i, j ≤ n) and index 2. Then for any Lipschitz function f with constant α with
respect to the norm ||x|| =

∑n
i=1 |xi|, every y ≥ 0, we have

P[|f(ψ)− E[f(ψ)]| > y] ≤ 2 exp{−1

8
min(

4y2

αM2n2
,

y

αMn
)

where M = sup1≤i≤nG(i, i).

One obtains for example with the function f(u) =
∑
i=1 |ui|, the following inequalities

P[|
∑n
i=1(ψi − E[ψi])

n
]| ≥ M y] ≤ 2 exp{−1

8
min(y2,

y

2
)} (5.4)

and

P[| sup
1≤i≤n

| ψi
G(i, i)

− ψ1

G(1, 1)
| −E[ sup

1≤i≤n
| ψi
G(i, i)

− ψ1

G(1, 1)
|]| ≥ 2x] ≤ 2 exp{−1

8
min(

2x2

n2
,
x

n
)}.

(5.5)

Proof: We use a result of Houdré (Corollary 2 in [9]) for infinitely divisible vectors X
without Gaussian component such that E[||X||2] <∞, and a Lévy measure ν on Rn such
that for every k ≥ 3 ∫

Rn
||u||kν(du) ≤ Ck−2k!

2

∫
Rn
||u||2ν(du), (5.6)

for some C > 0, where ||.|| is the euclidian norm. For such vectors and any Lipschitz
function f with constant α, we have then thanks to Corollary 2 in [9], for every x ≥ 0

P[|f(X)− E[f(X)]| ≥ x] ≤ 2 exp{−1

8
min(

2x2

αν(2)
,
x

αC
)
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with ν(2) =
∫
Rn
||u||2ν(du).

One can actually choose another norm than the euclidian norm and keep the same
result. We choose to take the norm : ||u|| =

∑n
i=1 |ui|.

We check now that (5.6) is satisfied. The expression of the Lévy measure ν of (ψi2 )1≤i≤n
has been established in [5]. Indeed, this permanental vector is infinitely divisible hence
there exists a transient Markov process (Yt, t ≥ 0) with state space {1, 2, ..., n} and finite
Green function equal to (D(i)G(i, j)D(j)−1, 1 ≤ i, j ≤ n) (D is a positive function), such
that for every i

uiν(du) =
G(i, i)

2
Eii[Lj ∈ duj , 1 ≤ j ≤ n]

where (Lj , 1 ≤ j ≤ n) is the total accumulated local time process of Y and for 1 ≤ i, j ≤
n, Eij is the expectation under the condition that Y starts at i and is killed at its last
visit to j. In particular: Eij [Lk] = G(i, k)G(k,j)

G(i,j) .

Denote by ν(k) the quantity
∫
Rn
||u||kν(du). We have:

ν(2) = ν((

n∑
i=1

ui)
2) = ν(

n∑
j=1

uj(

n∑
i

ui)) =
1

2

n∑
j=1

G(j, j)Ejj [

n∑
i=1

Li]

thanks to the definition of ν. We hence obtain

ν(2) =
1

2

∑
1≤i,j≤n

G(i, j)G(j, i) (5.7)

Similarly we have:

ν(k + 1) =
1

2

n∑
i=1

G(i, i)Eii[(

n∑
j=1

Lj)k]. (5.8)

For every i and for k ≥ 2, we have thanks to Kac’s moment formula

G(i, i)Eii[(

n∑
j=1

Lj)k] = G(i, i)
∑

(p1,p2,...,pk)∈{1,...,n}k
Eii[

k∏
m=1

Lpm ]

=
∑

(p1,p2,...,pk)∈{1,...,n}k

∑
σ∈Sk

G(i, pσ(1))G(pσ(1), pσ(2))....G(pσ(k−1), pσ(k))G(pσ(k), i)

where Sk is the set of permutations of (1, 2, ..., k).
Note that this computations are independent of D.
We use now the following necessary property for kernels of infinitely divisible perma-
nental vectors. For every i, j, k in {1, ..., n}, we have

G(i, j)G(j, k) ≤ G(i, k)G(j, j). (5.9)

Indeed, denote by Tk the first hitting time of k by Y , then:

Pij [Tk <∞] = Eij [Lk]
Ekj [Lk]

≤ 1, which leads to (5.9).

Hence for k ≥ 2

G(i, i)Eii[(

n∑
j=1

Lj)k] ≤
∑

(p1,p2,...,pk)∈{1,...,n}k

∑
σ∈Sk

G(i, pσ(k))G(pσ(k), i)

k−1∏
m=1

G(pσ(m), pσ(m))

≤ Mk−1
n∑
j=1

G(i, j)G(j, i)|A(k, j)|, (5.10)

whereA(k, j) = {(p1, p2, ..., pk)×σ ∈ {1, ..., n}k×Sk : pσ(k) = j} andM = sup1≤i≤nG(i, i).

EJP 18 (2013), paper 99.
Page 14/15

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2919
http://ejp.ejpecp.org/


Inequalities for permanental processes

Note that for a fixed k, the sets A(k, j), 1 ≤ j ≤ n form a partition of {(p1, p2, ..., pk)×σ ∈
{1, ..., n}k ×Sk}. Hence:

∑n
j=1 |A(k, j)| = nk k!, which leads to: |A(k, j)| = nk−1 k!, since

|A(k, j)| is independent of j. This leads with (5.8) and (5.10) to

ν(k + 1) ≤Mk−1nk−1k! ν(2)

which gives
ν(k) ≤ (Mn)k−2(k − 1)! ν(2).

Choosing C = Mn, we see that condition (5.6) is satisfied. We then remark that ν(2) ≤
1
2 (Mn)2. 2
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