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Synchronization for discrete mean-field rotators
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Abstract

We analyze a non-reversible mean-field jump dynamics for discrete q-valued rotators
and show in particular that it exhibits synchronization. The dynamics is the mean-
field analogue of the lattice dynamics investigated by the same authors in [30] which
provides an example of a non-ergodic interacting particle system on the basis of a
mechanism suggested by Maes and Shlosman [37].

Based on the correspondence to an underlying model of continuous rotators via
a discretization transformation we show the existence of a locally attractive periodic
orbit of rotating measures. We also discuss global attractivity, using a free energy
as a Lyapunov function and the linearization of the ODE which describes typical
behavior of the empirical distribution vector.
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1 Introduction

Systems of interacting classical rotators (S1-valued spins) on the sites of a lattice
and also on different graphs have been a source of challenging and fruitful research
in mathematical physics and probability. One likes to understand the nature of their
translation-invariant phases ([24, 3]), and the dependence on dimensionality ([20]); one
likes to understand the influence of different types of disorder, may it be destroying
long-range order ([1]) or even creating long-range order ([10]); their dynamical proper-
ties, the difference that discretizations of the spin values make to the system (see the
clock models in [22]). There is some similarity between rotators and massless models of
real-valued unbounded fields (gradient fields), see [21, 16, 9]. Roughly speaking the ex-
istence of ordered states for rotator models corresponds to existence of infinite-volume
gradient states.

There is usually much difference between the behavior of massless models of con-
tinuous spins and models of discrete spins. The low energy excitations of the first are
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waves (see however the discrete symmetry breaking phenomenon of [10]), the excita-
tions at very low temperatures of the latter can be described and controlled by contours
(see [6]).

There are however surprising situations when discrete models and continuous mod-
els behave the same: It is known that there can be even a continuum of extremal Gibbs
measures for certain discrete-spin models (see [24] for results in the nearest neighbor
q-state clock model in an intermediate temperature regime). A route to create such a
discrete system which is closely related but different from the clock models with nearest
neighbor interaction goes as follows: Apply a sufficiently fine discretization transforma-
tion to the extremal Gibbs measures of an initial continuous-spin model in the regime
where the initial system shows a continuous symmetry breaking. Then show that the
resulting uncountably many discretized measures are proper extremal Gibbs measures
for a discrete interaction (see [17, 30]). The model we are going to study here will also
be of this type.

There is another line of research leading to rotator models: Dynamical properties
of rotator models from the rigorous and non-rigorous side have attracted a lot of inter-
est from the statistical mechanics community and from the synchronisation community
(see [37, 4, 28]). Usually one studies a diffusive time-evolution of S1- valued spins of
mean-field type which tends to synchronize the spins, where the mean-field nature is
suggested by applications which come from systems of interacting neurons and collec-
tive motions of animal swarms. Typically the dynamics is not reversible here. The first
task one faces is to show (non-)existence of states describing collective synchronized
motion, depending on parameter regimes. Next come questions about the approach of
an initial state to these rotating states under time-evolution (see [4, 5]), influence of the
finite system size, and behavior at criticality (see [8]).

Our present research is motivated by a paper of Maes and Shlosman, [37], about
non-ergodicity in interacting particle systems (IPS). They conjectured that there could
be non-ergodic behavior of a q-state IPS on the lattice in space dimensions d ≥ 3 along
the following mechanism involving rotating states. The system they considered was the
q-state clock model with nearest neighbor scalarproduct interaction in an intermediate
temperature regime where it is proved to have a continuity of extremal Gibbs states
which can labelled by an angle. Then they proposed a dynamics which should have the
property to rotate the discrete spins according to local jump rules such that it possesses
a periodic orbit consisting of these Gibbs states.ÃŁ On the basis of this heuristic idea
of such a mechanism of rotating states, in a previous related work, [30], we considered
a very special choice of quasilocal rates for a Markov jump process on the integer lat-
tice in three or more spatial dimensions which provably shows this phenomenon. We
were able to show that this IPS has a unique translation-invariant measure which is
invariant under the dynamics but also possesses a non-trivial closed orbit of measures.
Initialized at time zero according to a measure on this orbit the discrete spins perform
synchronous rotations under the stochastic time evolution and don’t settle in the time-
invariant state. In particular we thereby constructed a lattice-translation invariant IPS
which is non-ergodic in time. While such behavior was known to be possible for proba-
bilistic cellular automata (infinite volume particle systems with simultaneous updating
in discrete time), see [7], it was not known to occur for IPS (infinite volume particle sys-
tems in continuous time) and our example answers an old open question in IPS (Liggett
question four of chapter one in [36]).

There are open questions nonetheless in the lattice model. Of course it would be very
interesting to see whether the periodic orbit of measures is attractive, what is the basin
of attraction, what more can be said about the behavior of trajectories of time-evolved
measures, but this is open. We also don’t know whether the original Maes-Shlosman
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conjecture is true and a simpler rotation dynamics with nearest neighbor interactions
also behaves qualitatively the same in an intermediate temperature regime.

In this paper let us therefore put ourselves to a mean-field situation and investigate
whether we find analogies to the lattice and what more can be said now. This is in-
teresting in itself since rotator models are naturally so often studied in a mean-field
setting. What is a good version of a jump dynamics for discrete mean-field rotators im-
plementing the Maes-Shlosman mechanism? Is there synchronisation for such a model
as it is known to happen in the Kuramoto model ([26, 11])? If yes, what can we say
about attractivity of the orbit of rotating states? Are there other attractors?

Note that a very first naive attempt to define a discrete-spin mean-field dynamics
showing synchonisation does not work: the simple scalarproduct interaction q-state
clock model does not have continuous symmetry breaking at any β. The model and
its dynamics will rather appear as a discretization image of the continuous model on
the level of measures. We consider the mean-field rotator model under equal-arc dis-
cretization into q segments and define associated jump rates. Next we give criteria on
the fineness of the discretization for existence and non-existence of the infinite-volume
limit, and discuss a path large deviation principle (LDP) for empirical measures and the
ODE for typical paths. We prove that the discretization images of rotator Gibbs mea-
sures in the phase-transition region form a locally attractive limit cycle. Further we
investigate local attractivity of the equidistribution and determine the non-attractive
manifold. The question of global attractivity can be answered in the following way:
Apart from measures with higher free energy than the equidistribution that get also
trapped in the locally attractive manifold of the equidistribution, all measures are at-
tracted by the limit cycle.

Summarizing, our mean-field results show many analogies to mean-field models of
continuous rotators, they are in nice parallel to the behavior of the corresponding lattice
system, but they go further since no stability result is known in the latter. It would be a
challenge to see to what extend this parallel really holds.

In the remainder of this introduction we present the construction and the main re-
sults without proofs.

1.1 Model and rotation dynamics

We look at continuous-spin mean-field Gibbs measures in the finite volume
VN = {1, . . . , N}which are the probability measures on the product space (S1)N equipped
with the product Borel sigma-algebra, defined by

µΦ,N (dσVN ) =
exp(−HN (σVN ))α⊗N (dσVN )∫

(S1)N
exp(−HN (σ̄VN ))α⊗N (dσ̄VN )

where α is the Lebesgue measure on S1. Here the energy function

HN (σVN ) = NΦ(LN (σVN ))

depends on the spin configuration σVN = (σi)i∈VN only through the empirical distri-
bution LN (σVN ) = 1

N

∑N
i=1 δσi . For details on this mean-field setup see [13]. Let us

consider real-valued potentials Φ defined on the space of probability measures P(S1)

on the sphere S1 of two-body interaction type,

Φ(ν) =

∫
ν(ds1)

∫
ν(ds2)V (s1, s2) (1.1)

where V is a symmetric pair-interaction function on (S1)2. We will refer to this model
as the planar rotator model. For the most part of the paper we will further specialize to
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the standard scalarproduct interaction with coupling strength β > 0

V (s1, s2) = −β
2
〈es1 , es2〉

where es = (cos s, sin s)T is the unit vector pointing into the direction with angle s.
Recall as a standard fact that the distribution of the empirical measures LN under µΦ,N

obeys a LDP with rate N and rate function given by the free energy

Ψ(ν) = Φ(ν) + S(ν|α)− inf
ν̃

(
Φ(ν̃) + S(ν̃|α)

)
(1.2)

where S denotes the relative entropy (for details on LDP theory see [12, 28]). In the
usual short notation let us write

µβ,N (LN ≈ ν) ≈ exp
(
−NΨ(ν)

)
.

It is well known (see [42]) that there exist multiple minimizers of Ψ in the scalarproduct
model if and only if β > βc = 2 corresponding to a second-order phase transition in the
inverse temperature at the critial value 2 and a breaking of the S1-symmetry.

1.1.1 Deterministic rotation, discretization and finite-volume Markovian dy-
namics for discretized systems

For any real time t we look at the joint rotation action Rt : (S1)N 7→ (S1)N given by the
sitewise rotation of all spins, that is (RtωVN )i = Rtωi where Rtes = e(s+t)mod(2π).

Let µN be a probability measure on (S1)N which has a smooth Lebesque density
relative to the product Lebesgue measure on (S1)N . Denote the measure resulting
from this deterministic rotation action Rt by µt,N := RtµN .

Next denote by T the local discretization map (local coarse-graining) with equal arcs
of the sphere written as [0, 2π) to the finite set {1, . . . , q}, that is with
Sk := [ 2π

q (k − 1), 2π
q k), S1 =

⋃q
k=1 Sk and T (s) = k if s ∈ Sk. Extend this map to config-

urations in the product space by performing it sitewise. In particular we will consider
images of measures under this discretization map T .

We will see that discretization after rotation of a continuous measure can be realized
as a jump process. In order to define such a Markov jump process on the discrete-spin
space {1, . . . , q}N we need some preparations. The following proposition describes the
interplay between the discretization map T and the deterministic rotation and is the
starting point for the introduction of the dynamics we are going to consider.

Proposition 1.1. There is a time-dependent linear generator QµN,t acting on discrete
observables on the discrete N -particle state space, g : {1, . . . , q}N 7→ R, such that an
infinitesimal change of T (µN,t)(g) =

∫
µN (dω)g(TRtω) can be written as

lim
ε↓0

1

ε

(
T (µN,t+ε)(g)− T (µN,t)(g)

)
= T (µN,t)(QµN,tg). (1.3)

This generator takes the form of a sum over single-site terms

QµN,tg(σ′VN ) :=

N∑
i=1

cµN,t(σ
′
VN , σ

′
VN + 1i)

(
g(σ′VN + 1i)− g(σ′VN )

)
(1.4)

where (σ′VN + 1i)j = σ′j + 1i=j (modulo q). Here cµN,t are certain time-dependent rates
for increasing a coordinate by 1 at single sites which have the feature to depend on time
(only) through the measure µN,t.
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Note, here and in what follows we obey the convention to write primes whenever
we speak of elements of coarse-grained spaces. The generator QµN,t defines a Markov
jump process (a continuous-time Markov chain) on the finite space {1, . . . , q}N . There
are only trajectories possible along which the variables σ′i increase their values by one
unit along the circle of q units according to the appropriate rates. An explicit expression
for the rates in terms of the underlying measure can be found in formula (2.1). The
process we are going to study will be of this type.

Let us specify to the case of a mean-field Gibbs measure µΦ,N with a rotation-
invariant interaction Φ. Then µΦ,t,N = µΦ,N stays constant under time-evolution and
consequently the rates become time-independent. From permutation invariance we
see that the resulting jump process obtained by mapping the trajectories of the paths
σVN (t) to trajectories of the empirical distributions LN (σVN (t)) is a Markov process with
generator which can be written in the form

QempN f(ν′) = N

q∑
k=1

ν′(k)cempN (k, ν′)
(
f(ν′ +

1

N
(δk+1 − δk))− f(ν′)

)
. (1.5)

Here f : P({1, . . . , q}) 7→ R is an observable on the simplex of q-dimensional probability
vectors, δk is the Dirac measure at k ∈ {1, . . . , q} and cempN (k, ν′) are the resulting rates
(given in (2.3)) describing the change of the empirical distribution at size N when one
particle changes its value from the state k to k + 1.

As a result of this construction of a Markovian dynamics we have the following corol-
lary.

Corollary 1.2. Consider a mean-field Gibbs measure µΦ,N for a rotation invariant
potential Φ. Then the stochastic dynamics on the space of empirical distributions
P({1, . . . , q}) with the above rates cempN (k, ν′) preserves the empirical distribution of the
discretized mean-field Gibbs measure (TµΦ,N )(LN ∈ · ) ∈ P({1, . . . , q}).

So far the construction of a mean-field dynamics for discrete rotators is largely in
parallel to our construction of a dynamics for a non-ergodic IPS on Zd as presented in
[30].

Our present aim for the mean-field setup is to understand large-N properties, mean-
field analogues of rotating states (that we will refer to as the periodic or closed orbit)
and mean-field analogues of non-ergodicity. We note that at finite N of course we do
not see a non-trivial closed orbit of measures. We will have to go to the limit N ↑ ∞
to see reflections in the mean-field system of the non-ergodicity proved to occur for the
IPS on the lattice. The picture one expects is the following: The empirical distribution
(or profile) of a finite but very large particle system will become close in O(1) time to an
empirical distribution (almost) on the periodic orbit. Then it will follow the orbit until
a time large enough such that the finiteness of the system size will be felt. From that
on it will not be sufficient to talk about a single profile anymore, rather more generally
about a distribution of profiles, which, as time goes by, will mix over different angles
along the orbit with equal probability. The relevant N -dependent mixing time we will
not discuss in this paper. The control of closeness of the stochastic evolution up to finite
times will be delivered by the path LDP which we are going to describe. Then we will
analyze the typical behavior of the minimizing paths. While doing that we will be able
to obtain additional information in mean field (which seem hard to get on the lattice)
about stability of the periodic orbit under the dynamics.
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1.1.2 Infinite-volume limit of rates for fine enough discretizations

To be able to understand the large-N behavior we must look more closely to the rates
cempN (k, ν′) and their large-N limit. As it turns out, the existence and well-definedness is
not completely automatic, but only holds if the discretization is sufficiently fine. This is
an issue which is related to the appearance of non-Gibbsian measures under discretiza-
tion transformations (see for example [15, 17, 18]) and provides a concrete application
of the techniques used in Gibbs non-Gibbs theory. On the constructive side we have the
following result in our mean-field setup.

Theorem 1.3. For any smooth mean-field interaction potential Φ : P(S1) 7→ R there is
an integer q(Φ) such that for all q ≥ q(Φ) the rates (2.3) have the infinite-volume limit

c(k, ν′) =
exp(−dΦνν′ (δ 2π

q k
− νν′))∫

Sk
exp(−dΦνν′ (δσ − νν

′))α(dσ)

where the measure νν
′

is the unique solution of the constrained free energy minimiza-
tion problem ν 7→ Φ(ν) + S(ν|α) in the set of ν ∈ P(S1) with given discretization image
ν′, in other words in the set {ν ∈ P(S1)|T (ν) = ν′}.

Here dΦν(δσ−ν) is the differential of the map Φ taken in the point ν ∈ P(S1) applied
to the signed measure δσ − ν on S1 with mass zero. It has the role of a mean field that
a single spin feels when the empirical spin distribution in the system is ν.

The assumption of fine enough discretizations q ≥ q(Φ) ensures that the minimizer
is unique and moreover Lipschitz continuous in total-variation distance as a function of
ν′ (see the proof of Lemma 2.2). For q < q(Φ) existence of the limiting rates can not be
ensured and indeed fails in the scalarproduct model for given q and low enough temper-
ature, see below. The constrained minimizer νν

′
can be characterized as the unique so-

lution of a typical mean-field consistency equation which reduces to a finite-dimensional
equation in the case of the scalarproduct model. This uniqueness of the constrained
free energy minimization is closely related to the notion of a mean-field Gibbs mea-
sure in terms of continuity of limiting conditional probabilities (see [17, 34]). Loosely
speaking, the absence of phase-transition for the constrained model equals Gibbsian-
ness of the transformed model. In mean-field this means, uniqueness of the constrained
free energy minimization problem equals existence and continuity of limiting single site
conditional probabilities. Absence of this continuity determines non-Gibbsianness and
therefore the issue of Gibbsianness versus non-Gibbsianness is closely connected to the
issue of the existence of the infinite-volume dynamics.

The continuous spin value appearing in the definition of the rate to jump from k to
k + 1 given by 2π

q k is the boundary between the segments of S1 labelled by k and by
k+ 1. It is illuminating to compare the expression for the rates to the ones obtained for
the non-ergodic IPS on the lattice from [30] and observe the analogy.

To get more concrete insight we specialize to the scalarproduct model where fine-
ness criterion on discretization and form of rates are (more) explicit. We have the
following proposition.

Theorem 1.4. Consider the standard scalarproduct model, let β > 0 be arbitrary (pos-
sibly in the phase-transition regime β > 2) and q be an integer large enough such that
β sin2(πq ) < 1. Then the constrained free energy minimizer νν

′
is unique and the jump

rates take the form

c(k, ν′) =
e
β〈e 2π

q
k
,Mβ(ν′)〉∫

Sk
eβ〈eω,Mβ(ν′)〉α(dω)

, for k = 0, . . . , q − 1 (1.6)
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where ν′ 7→Mβ(ν′) :=
∫
νν
′
(dω)eω takes values in the two-dimensional unit disk.

The vector Mβ(ν′) is the magnetization of the minimizing continuous-spin measure
νν
′

which is constrained to ν′. It is implicitly defined and can be computed from the
solution of a mean-field fixed point equation.

The above criterion on the fineness of the discretization is a mean-field version of the
sufficient criterion for Gibbsianness of discretized lattice measures from [32], [17], [30].
The correspondence between Gibbsianness and the existence of the infinite-volumes
rates above, comes from the fact, that in both cases hidden phase-transitions must be
excluded. The given criterion is stronger than an application of the criterion for preser-
vation of Gibbsianness under local transforms from [33] would give (where however
more general local transformations were considered).

We note that while some criterion on q is necessary the present criterion is probably
not sharp. Below we present an example where multiple constrained minimizers do
actually occur (corresponding to non-Gibbssianness of the discretized model) which
shows that large-β asymptotics of the bound on q is correct. The corresponding criterion
is given in Section 2.2 Equation (2.11).

1.1.3 Limiting dynamical system from path LDP as N ↑ ∞

It is possible to formulate a path LDP for our dynamics. The infinite-volume limit of
the rates enters into the rate function. This rate function is a time-integral involving
a Lagrangian density (see (2.3)). In the present introduction we restrict ourselves to
formulate as a consequence the following (weak) law of large numbers (LLN) on the
path level, for simplicity restricted to the planar rotor model.

Theorem 1.5. Let β sin2(πq ) < 1, τ ∈ (0,∞) be a finite time horizon. Let (Xt)
N
t≥0 be the

Markov jump process with generator QempN started in an initial probability measure ν′0
on {1, . . . , q}. Then we have

(Xt)
N
0≤t≤τ

N→∞−−−−→
(
ϕ(t, ν′0)

)
0≤t≤τ

in the uniform topology on the pathspace, where the flow ϕ(t, ν′0) is given as a solution
to the (q − 1)-dimensional ordinary differential equation

d

dt
ϕ(t, ν′0) = F

(
ϕ(t, ν′0)

)
(1.7)

with initial condition ϕ(0, ν′0) = ν′0, for the vector field F (ν′) =
(
F (ν′)(k)

)
k=1,...,q

acting

on P({1, . . . , q}) with components

F (ν′)(k) = c(k − 1, ν′)ν′(k − 1)− c(k, ν′)ν′(k), k = 1, . . . , q. (1.8)

While the LLN could also be obtained differently (and maybe more easily) the LDP
from which this result follows is of independent interest of course. It provides an in-
teresting link with Lagrangian dynamics. Its proof uses the Feng-Kurtz scheme (see
[19]).

The dynamical system with vector field F introduced above provides the mean-field
analogue in the large-N limit of the non-ergodic IPS from [30]. So one expects that
it should reflect the non-ergodic lattice behavior (based on the rotation of states) by
showing a closed orbit and we will see that this is really the case.
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1.2 Properties of the flow

1.2.1 Closed orbit and equivariance property of the discretization map

Now we will come to the discussion of the analogue of the breaking of ergodicity in
the IPS in [30] occuring on the level of the infinite-volume limit of the mean-field sys-
tem. Recall that Φ is the interaction potential defined in (1.1) and Ψ is the free energy
defined in (1.2). Denote the continuous-spin free energy minimizers (infinite-volume
Gibbs measures on empirical magnetization) by

G(Φ) := argmin
(
ν 7→ Ψ(ν)

)
.

Denote the discrete-spin free energy minimizers by the measures

G′ := argmin
(
ν′ 7→ Ψ′(ν′)

)
where the discrete-spin free energy function Ψ′

Ψ′(ν′) := Ψ(νν
′
)

is defined via the constrained minimization given in Theorem 1.3.
The vector field F has the property that deterministic rotation of free energy mini-

mizers in P(S1) is reproduced by the flow of free energy minimizers in P({1, . . . , q}). In
the phase-transition regime of the planar rotor model the continuous-spin free energy
minimizers in P(S1) can be labelled by the angle of the magnetization values. Hence
the vector field F has a closed orbit. We can summarize the interplay between dis-
cretization, deterministic rotation of continuous measures and evolution according to
the flow (ϕt)t≥0 of the ODE for discrete measures in the following picture.

Theorem 1.6. The following diagram is commutating

P(S1) ⊃ G(Φ)
ν 7→Rtν //

T

��

G(Φ)

T

��
P({1, . . . , q}) ⊃ G′

ν′ 7→ϕ(t,ν′)

//

ν′ 7→νν
′

]]

G′

This picture is in perfect analogy to the behavior of the IPS from [30]. (Let us
point out that the generator from [30] is more involved since it contains another part
corresponding to a Glauber dynamics. This part was added for reasons which are not
present in the mean-field setup. It will not be treated here.)

1.2.2 Attractivity of the closed orbit

For the following we restrict to the standard scalarproduct model and we assume that
we are in the regime β > 2 where a non-trivial closed orbit exists. We want to under-
stand the dynamics in the infinite-volume limit. In our present mean-field setup this
boils down to a discussion of the finite-dimensional ODE, so we are left at this stage
with a purely analytical question. Note that our ODE for discrete rotators parallels a
non-linear PDE for the continuous rotators with all its intricacies (see [5]). Having the
benefit of finite dimensions however we have to deal with the additional difficulty that
in our case the r.h.s is only implicitly defined.

As our dynamics is non-reversible it is not clear a priori what the behavior of the
free energy Ψ′ for the discrete system will be under time evolution. However, since
we already know that the ODE has as a periodic orbit, namely the set of discretization
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images of continuous free energy minimizers, we might hope that the free energy Ψ′

will work as a Lyapunov function. As it turns out this is the case. A Lyapunov function
is a function that decreases along every trajectory of the ODE and hence if one knows
the minimizers of the Lyapunov function limiting behavior of the trajectories can be
inferred.

Proposition 1.7. Under the flow ϕ(t, ν′) the discrete-spin free energy Ψ′ is non-increasing,
d
dt

∣∣
t=0

Ψ′(ϕ(t, ν′)) ≤ 0, for all ν′ ∈ P({1, . . . , q}). The free energy does not change,
d
dt

∣∣
t=0

Ψ′(ϕ(t, ν′)) = 0, if and only if ν′ ∈ G′ or ν′ = 1
q

∑q
k=1 δk.

The proof is not as obvious as one would hope for and uses change of variables to
new variables after which certain convexity properties can be used. This seems to be
particular to the standard scalarproduct model. As a corollary we have the attractivity
of the periodic orbit formulated as follows.

Theorem 1.8. For any starting measure ν′ ∈ P({1, . . . , q}) with free energy
Ψ′(ν′) < Ψ′( 1

q

∑q
k=1 δk) the trajectory ϕ(t, ν′) enters any open neighborhood around the

periodic orbit G′ after finite time t.

In other words, starting measures with free energy already lower than the equidis-
tribution will approach the periodic orbit.

1.2.3 Stability analysis at the equidistribution

For the case of initial conditions ν′ with free energy Ψ′(ν′) ≥ Ψ′( 1
q

∑q
k=1 δk) we only

know from the previous reasoning that the trajectories enter any open neighborhood
around periodic orbit and equidistribution after finite time. So we are interested in the
stability of the dynamics locally around the equidistribution. Computing the lineariza-
tion of the r.h.s of the ODE from its defining fixed point equation and using discrete
Fourier transform we derive explicit expressions for its eigenvalues (see Lemma 3.3
and Figure 3). We see that the linearized dynamics rotates and exponentially sup-
presses the discrete Fourier-modes of the empirical measure except the lowest one
which is expanded. In particular we have the following result which is in analogy to the
behavior of the continuous model of [27].

Theorem 1.9. Assume that the limiting rates exist, then the equidistribution is locally
not purely attractive. The 2-dimensional non-attractive manifold is given by

{
ν′ ∈ P({1, . . . , q})

∣∣∣ q∑
k=1

ν′(k)ei
2π
q lk = 0 for all l ∈ {2, . . . , q − 2}

}
.

The following Figure 1 illustrates the correpondence between relevant parameter
regimes and the attractivity of the equidistribution.

1.3 Outline of the paper

In Section 2 Subsection 2.1 we consider the rotation dynamics first in the finite
volume as an IPS on the level of spins. We prove the rotation property given in Propo-
sition 1.1. After specializing to the case where the finite-volume dynamics leaves the
Gibbs measure invariant, we lift the dynamics to the level of empirical distributions
and prove Corollary 1.2. In Subsection 2.2 we prove Theorem 1.3 on the convergence
of the rates in the thermodynamic limit. We prove a useful lemma about uniqueness
of constrained free energy minimizers for fine enough discretization, still for a more
general interaction potential. Here we follow an adaptation of arguments presented
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Figure 1: The black area shows (β, q)-regimes where uniqueness of constrained free energy minimizers is guaranteed
by the criterion given in Theorem 1.4, in other words our construction certainly works. The light gray and white areas show
(β, q)-regimes where the complemetary criterion (2.11) holds, in other words our limiting dynamics can not be defined. In
the intermediate dark gray area we do not know whether our dynamics is well defined. However only in the white area the
equidistribution is purely attractive, in the relevant (β, q)-regimes we have non-attractivity. All analysis is done for β > 2
since we only work in the phase-transition region.

in [17, 25, 33]. The proof of Theorem 1.4 uses the special structure of the standard
scalarproduct interaction to derive a tangible criterion for the fineness of discretization
implying uniqueness of constrained minimizers which are needed for the existence of
limiting rates for the dynamics. In (2.11) we present a complementary criterion on the
coarseness of the discretization ensuring non-uniqueness of constrained minimizers. In
Subsection 2.3 we prove global existence of solutions of the infinite-volume dynamics
via Lipschitz continuity of the r.h.s. Further we prove Theorem 1.5 employing a LDP on
the level of paths.

Section 3 Subsection 3.1 contains the proof of the equivariance property indicated in
the diagram of Theorem 1.6. In Subsection 3.2 we derive the time-derivative of the free
energy and prove Proposition 1.7. As a consequence we obtain stability of the periodic
orbit formulated in Theorem 1.8. Subsection 3.3 is devoted to the local stability analysis
at the equidistribution and the proof of Theorem 1.9.

2 Rotation dynamics

2.1 Finite-volume rotation dynamics

We consider the time-dependent generator (1.4) acting on discrete observables on
the discrete N -particle state space and µN,t(dσVN ) = ρN,t(σVN )α⊗N (dσVN ) where α de-
notes the Lebesgue measure on S1 and the density ρN,t is supposed to be continuous.
The time-dependent rates are given by

cµN,t(σ
′
VN , σ

′
VN + 1i) :=

∫
T−1(σ′

VN\i
)
ρN,t(

2π
q σ
′
i, σVN\i)α

⊗N\i(dσVN\i)∫
T−1(σ′VN

)
ρN,t(σVN )α⊗N (dσVN )

. (2.1)
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Proof of Proposition 1.1: It suffices to check (1.3) for g = 1σ′VN
. We have

lim
ε↓0

1

ε

(
T (µN,t+ε)(g)− T (µN,t)(g)

)
= lim

ε↓0

1

ε

(∫T−1(σ′VN
)
ρN,t+ε(σVN )α⊗N (dσVN )∫

ρN,t+ε(σVN )α⊗N (dσVN )
−

∫
T−1(σ′VN

)
ρN,t(σVN )α⊗N (dσVN )∫

ρN,t(σVN )α⊗N (dσVN )

)
=

1

Z
lim
ε↓0

1

ε

(∫
(T−1(σ′VN

)−ε1VN )

ρN,t(σVN )α⊗N (dσVN )−
∫
T−1(σ′VN

)

ρN,t(σVN )α⊗N (dσVN )
)

=
1

Z

N∑
i=1

lim
ε↓0

1

ε

(∫
(T−1(σ′VN

)−ε1i)
ρN,t(σVN )α⊗N (dσVN )−

∫
T−1(σ′VN

)

ρN,t(σVN )α⊗N (dσVN )
)

=
1

Z

N∑
i=1

lim
ε↓0

1

ε

(∫
T−1(σ′

VN\i
)

∫
(T−1(σ′i)−ε)

ρN,t(σVN )α⊗N (dσVN )

−
∫
T−1(σ′

VN\i
)

∫
T−1(σ′i)

ρN,t(σVN )α⊗N (dσVN )
)

=
1

Z

N∑
i=1

lim
ε↓0

1

ε

(∫
T−1(σ′

VN\i
)

(∫ 2π
q (σ′i−1)

2π
q (σ′i−1)−ε

ρN,t(σVN )−
∫ 2π

q σ
′
i

2π
q σ
′
i−ε

ρN,t(σVN )
)
α⊗N (dσVN )

)

=

N∑
i=1

(
cµN,t(σ

′
VN − 1i, σ

′
VN )T (µN,t)(σ

′
VN − 1i)− cµN,t(σ′VN , σ

′
VN + 1i)T (µN,t)(σ

′
VN )
)

= T (µN,t)(QµN,tg)

2

Plugging in for ρ the Gibbs density for a rotation-invariant potential, the rates take
the time-independent form

cµΦ,N
(σ′VN , σ

′
VN + 1i) =

∫
T−1(σ′

VN\i
)
e
−NΦ( 1

N δ 2π
q
σ′
i
+N−1

N LN−1(σVN\i))α⊗N\i(dσVN\i)∫
T−1(σ′VN

)
e−NΦ(LN (σVN ))α⊗N (dσVN )

(2.2)

and T (µΦ,N )(QµΦ,N
g) = 0 for all discrete observables g. Hence T (µΦ,N ) is invariant

under QµΦ,N
. Notice one can rewrite the rates as

cµΦ,N
(σ′VN , σ

′
VN + 1i) =

µΦ,N−1[σ′VN\i](e
−NΦ

(
1
N δ 2π

q
σ′
i
+N−1

N LN−1(·)
)

+(N−1)Φ
(
LN−1(·)

)
)

µΦ,N−1[σ′VN\i](
∫
T−1(σ′i)

e−NΦ
(

1
N δσi+

N−1
N LN−1(·)

)
+(N−1)Φ

(
LN−1(·)

)
α(dσi))

where µΦ,N−1[σ′VN\i] stands for the Gibbs measure conditioned to the set T−1(σ′VN\i). In
fact only empirical distributions of the coarse-grained spin variables LN−1(σ′VN\i) and
the state of σ′i come into play. Thus by writing ν′ ∈ P({1, . . . , q}) for a possible empirical
measure LN with ν′(k) > 0 we can again re-express the rates as

cempN (k, ν′) =
µempΦ,N−1[ν̂′](e

−NΦ
(

1
N δ 2π

q
k
+N−1

N LN−1(·)
)

+(N−1)Φ
(
LN−1(·)

)
)

µempΦ,N−1[ν̂′]
(∫
Sk
e−NΦ

(
1
N δσ+N−1

N LN−1(·)
)

+(N−1)Φ
(
LN−1(·)

)
α(dσ))

(2.3)

where we now dropped the indication for the Gibbs measure in cempN and
ν̂′ = N

N−1ν
′ − 1

N−1δk. Notice for large N , ν′ ≈ ν̂′.
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We can now lift the whole process to the level of empirical distributions. The result-
ing generator is given in (1.5).

Proof of Corollary 1.2: We have to check T (µΦ,N )((QempN f) ◦ LN ) = 0 for all
bounded measurable functions f : P({1, . . . , q}) 7→ R.

T (µΦ,N )((QempN f) ◦ LN )

=
∑
σ′VN

T (µΦ,N )(σ′VN )N

q∑
k=1

LN (σ′VN )(k)cempN (k, LN (σ′VN ))×

(
f
(
LN (σ′VN ) +

1

N
(δk+1 − δk)

)
− f

(
LN (σ′VN )

))
=
∑
σ′VN

T (µΦ,N )(σ′VN )

N∑
i=1

q∑
k=1

δσ′i(k)cempN (k, LN (σ′VN ))×

(
f
(
LN (σ′VN ) +

1

N
(δk+1 − δk)

)
− f

(
LN (σ′VN )

))
=
∑
σ′VN

T (µΦ,N )(σ′VN )
N∑
i=1

cµΦ,N
(σ′VN , σ

′
VN + 1i)

(
f
(
LN (σ′VN + 1i)

)
− f

(
LN (σ′VN )

))
= T (µΦ,N )(QµΦ,N

(f ◦ LN )).

But T (µΦ,N )(QµΦ,N
(f ◦ LN )) = 0 since T (µΦ,N ) is invariant for QµΦ,N

. 2

2.2 Infinite-volume rates: Existence and non-existence

Let us prepare the proof of Theorem 1.3 by the following lemma.

Lemma 2.1. For any differentiable mean-field interaction potential Φ : P(S1) 7→ R with

sup
s,t∈Sk

|dµΦ(δs − δt)− dµ̃Φ(δs − δt)| ≤ C(q)‖µ̃− µ‖

where C(q) ↓ 0 for q ↑ ∞monotonically, there is an integer q(Φ) such that for all q ≥ q(Φ)

the free energy minimization problem ν 7→ Φ(ν) + S(ν|α) has a unique solution in the
set {ν ∈ P(S1)|T (ν) = ν′} for any ν′ ∈ P({1, . . . , q}).

We call this solution νν
′
. The proof follows a line of arguments given in [17] in the

lattice situation.

Proof of Lemma 2.1: Let µ be a solution of the constrained free energy minimiza-
tion problem ν 7→ Φ(ν) + S(ν|α) with T (µ) = ν′ and µ̃ be a solution of the constrained
free energy minimization problem ν 7→ Φ̃(ν)+S(ν|α) with Φ̃ being another continuously
differentiable mean-field interaction potential and T (µ̃) = ν′. Using Lagrange multipli-
ers to characterize the constrained extremal points of the free energy we find µ and µ̃

must have the form

µ(ds|Sk) =
1Sk exp(−dµΦ(δs − µ))∫

Sk
exp(−dµΦ(δs̄ − µ))α(ds̄)

α(ds) =: γk(ds|µ)

µ̃(ds|Sk) =
1Sk exp(−dµ̃Φ̃(δs − µ̃))∫

Sk
exp(−dµ̃Φ̃(δs̄ − µ̃))α(ds̄)

α(ds) =: γ̃k(ds|µ̃).

(2.4)

Let us estimate for a bounded measurable function f

|µ(f |Sk)− µ̃k(f |Sk)| ≤ |γk(f |µ)− γk(f |µ̃)|+ |γk(f |µ̃)− γ̃k(f |µ̃)|. (2.5)
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With ‖α1 − α2‖ := maxf bounded, measurable |α1(f)− α2(f)|/δ(f) denoting the total-variation
distance of probability measures where δ(f) := supx,y |f(x) − f(y)| is the variation of a
bounded function we have

|γk(f |µ̃)− γ̃k(f |µ̃)| ≤ δ(f)‖γk(·|µ̃)− γ̃k(·|µ̃)‖ =: δ(f)b(µ̃).

For the first term in (2.5) we similary write

|γk(f |µ)− γk(f |µ̃)| ≤ δ(f)‖γk(·|µ)− γk(·|µ̃)‖.

Now let u1(s) := dµΦ(δs − µ), u0(s) := dµ̃Φ(δs − µ̃), v := u1 − u0 and ut := u0 + tv. Define
hkt := exp(ut)1Sk/α(exp(ut)1Sk) and λkt (ds) := hkt (s)α(ds). Then we have

2‖γk(·|µ)− γk(·|µ̃)‖ = 2‖λk1 − λk0‖ ≤
∫ 1

0

dtα(| d
dt
hkt |)

=

∫ 1

0

dtλkt (|v − λkt (v)|)

≤
∫ 1

0

dt

∫
λkt (dx)

∫
λkt (dy)|v(x)− v(y)|

=

∫ 1

0

dt

∫
v(λkt )(dx)

∫
v(λkt )(dy)|x− y|

≤ sup
λ

∫ r

−r
λ(dx)

∫ r

−r
λ(dy)|x− y|

(2.6)

where the supremum is over all probability measures on the interval [−r, r] with
2r := sups,t∈Sk |dµΦ(δs − δt)− dµ̃Φ(δs − δt)|. By assumption we have

2r ≤ C(q)‖µ− µ̃‖ ≤ C(q) sup
l∈{1,...,q}

‖µ(·|Sl)− µ̃(·|Sl)‖ (2.7)

with C(q) ↓ 0 for q ↑ ∞ monotonically. Using the fact, that for all probability measures
p on [−r, r] we have

∫
p(dx)

∫
p(dy)|x− y| ≤ r and (2.7) we can thus find q(Φ) such that

‖γk(·|µ)− γk(·|µ̃)‖ ≤ C(q(Φ)) sup
l∈{1,...,q}

‖µ(·|Sl)− µ̃(·|Sl)‖

with C(q(Φ)) < 1. Hence for all q ≥ q(Φ)

|µ(f |Sk)− µ̃(f |Sk)| ≤ δ(f)
(
C(q) sup

l∈{1,...,q}
‖µ(·|Sl)− µ̃(·|Sl)‖+ b(µ̃)

)
.

Taking the supremum over f and over k we have

sup
k∈{1,...,q}

‖µ(·|Sk)− µ̃(·|Sk)‖ ≤ 1

1− C(q)
b(µ̃).

Now for Φ̃ = Φ of course b(µ̃) = 0 and thus µ = µ̃. 2

Proof of Theorem 1.3: We show for N ↑ ∞, cempN (k, ν′) → c(k, ν′) for all
k ∈ {1, . . . , q} and ν′ ∈ P({1, . . . , q}). For the nominator in the definition of cempN (k, ν′)

we have

µempΦ,N−1[ν̂′](e
−NΦ

(
1
N δ 2π

q
k
+N−1

N LN−1

)
+(N−1)Φ(LN−1)

)

=
1

Z1

∫
e
−NΦ

(
1
N δ 2π

q
k
+N−1

N LN−1

)
1T (LN−1)=ν̂′dα

⊗N\i

=
1

Z1

∫
e
−NΦ

(
1
N (δ 2π

q
k
−LN−1)+LN−1

)
1T (LN−1)=ν̂′dα

⊗N\i

=
1

Z1

∫
e
−NΦ(LN−1)−dLN−1

Φ
(
δ 2π
q
k
−LN−1

)
+o( 1

N )
1T (LN−1)=ν̂′dα

⊗N\i
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where Z1 is a normalization constant and we used Taylor expansion of the interaction
potential w.r.t measures. For the limitN ↑ ∞we can employ Varadhan’s lemma together
with Sanov’s theorem and Lemma 2.1 and write

1

Z1

∫
e
−NΦ(LN−1)−dLN−1

Φ
(
δ 2π
q
k
−LN−1

)
+o( 1

N )
1T (LN−1)=ν̂′dα

⊗N\i → 1

Z2
e
−d

νν
′Φ
(
δ 2π
q
k
−νν

′)
.

The condition q ≥ q(Φ) by Lemma 2.1 ensures, that on the set {ν ∈ P(S1)|T (ν) = ν′}
there exists indeed a unique minimizer of the free energy given by νν

′
.

Using the same arguments for the denominator of cempN (k, ν′) the normalization con-
stants cancel and we arrive at c(k, ν′). 2

Proof of Theorem 1.4: The first part of the theorem is an application of Lemma 2.1.
However we can use the special structure of the scalarproduct interaction to specify the
constant C(q(Φ)). Indeed, using the notation in the proof of Lemma 2.1, from (2.6) we
get

‖γk(·|µ)− γk(·|µ̃)‖ ≤ 1

4
sup
s,t∈Sk

|dµΦ(δs − δt)− dµ̃Φ(δs − δt)| (2.8)

where dµΦ(δs − δt) = −β〈
∫
µ(dω)eω, es − et〉. We have

sup
s,t∈Sk

|
∫ (

µ̃(dω)− µ(dω)
)
〈eω, es − et〉|

≤ sup
s,t∈Sk

sup
l∈{1,...,q}

|
∫
Sl

(
µ̃(dω|Sl)− µ(dω|Sl)

)
〈eω, es − et〉|

≤ sup
l∈{1,...,q}

sup
s,t∈Sk

sup
x,y∈Sl

|〈ex − ey, es − et〉|‖µ̃(·|Sl)− µ(·|Sl)‖

≤ 4 sin2(
π

q
) sup
l∈{1,...,q}

‖µ̃(·|Sl)− µ(·|Sl)‖

(2.9)

where the trigonometric bound follows from Cauchy-Schwartz’s inequality and
supx,y∈Sl ‖ex − ey‖2 ≤ 2 sin(πq ). By assumption β sin2(πq ) < 1 and thus the first result
follows.

Notice, in case of the standard scalarproduct potential we have

−dνν′Φ(δ 2π
q k
− νν

′
) = β〈

∫
νν
′
(dω)eω, e 2π

q k
〉+ β〈

∫
νν
′
(dω)eω,

∫
νν
′
(dω)eω〉

where the second summand is independent of the integration in the denominator of
the rates and thus cancels. Using the notation Mβ(ν′) =

∫
νν
′
(dω)eω we arrive at the

definition of the rates (1.6). 2

To complement the above criterion on the finess of descretization in order to have
unique constrained free energy minimizer for the rotator model, let us consider an
equivalent of a checkerboard configuration on the lattice. Namely the measure with
equal weight on segments facing in opposite directions. This will lead to a criterion
for non-uniqueness of the constrained minimizers. For convenience take q even. We
condition on ν′ = 1

2 (δ1 + δ q
2 +1), then from (2.4) we know for a constrained minimizers

νν
′

we have

Mβ(ν′) =
∑
k

ν′(k)

∫
Sk

νν
′
(dω|Sk)eω =

∑
k

ν′(k)

∫
Sk
eω exp(β〈eω,Mβ(ν′)〉)α(dω)∫

Sk
exp(β〈eω,Mβ(ν′)〉)α(dω)

.
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Note, this equation is often referred to the mean-field equation. By symmetry and under
suitable coordinates this fixed point equation becomes one-dimensional and reads

m =

∫ π
q

−πq
sin(ω) exp(βm sin(ω))α(dω)∫ π
q

−πq
exp(βm sin(ω))α(dω)

=: Fq(βm). (2.10)

Since Fq is concave, the equation (2.10) has no non-trivial fixed point if
d
dm |m=0

Fq(m) < 1/β, i.e. β( 1
2 −

q
4π sin( 2π

q )) < 1. On the other hand if

β
(

1− q

2π
sin(

2π

q
)
)
> 2 (2.11)

there must be a non-trivial fixed point since F is bounded and continuous. In other
words if (2.11) holds, there are two distinct measures νν

′

+ 6= νν
′

− . In particular∫
νν
′

+ (dω)eω = −
∫
νν
′

− (dω)eω 6= 0 and Ψ(νν
′

+ ) = Ψ(νν
′

− ) because of symmetry. Hence
in the regime (2.11) we just provided an example were the constrained model has mul-
tiple Gibbs measures and hence the limiting rates in Theorem 1.3 can not be defined
for all ν′.

2.3 Infinite-volume rotation dynamics

Let us in the sequel specify to the rotator model with scalarproduct potential and its
discretization, assumed to be in the parameter regime β > 2 and β sin2(πq ) < 1.

Lemma 2.2. The non-linear system of ordinary differential equations given in Theorem
1.5 with rates (1.6) is uniquely solvable globally in time.

Notice the ODE (1.8) in Theorem 1.5 can be interpreted as inflow from below into
state k minus outflow in the direction k + 1.

Proof of Lemma 2.2: For a given initial measure ν′0 the system (1.7) is uniquely
solvable locally in time by the Picard-Lindelöf theorem (see for example [2]). Indeed, we
show Lipschitz continuity of (1.8) as a function of ν′ w.r.t the total-variation distance. It
suffices to show Lipschitz continuity for ν′ 7→ νν

′
since (1.8) is a composition of Lipschitz

continuous functions of νν
′
. First note

‖νν
′
− ν ν̃

′
‖ ≤ sup

k∈{1,...,q}
‖νν

′
(·|Sk)− ν ν̃

′
(·|Sk)‖+ ‖ν′ − ν̃′‖.

Introducing γk(ds|νν′) as defined in (2.4) we can further write for a bounded measurable
function f

|νν
′
(f |Sk)− ν ν̃

′
(f |Sk)| = |γk

(
f |

q∑
l=1

ν′(l)νν
′
(·|Sl)

)
− γk

(
f |

q∑
l=1

ν̃′(l)ν ν̃
′
(·|Sl)

)
|

≤ δ(f)
(
β sin2(

π

q
) sup
l∈{1,...,q}

‖νν
′
(·|Sl)− ν ν̃

′
(·|Sl)‖

+ ‖γk
(
·|

q∑
l=1

ν′(l)ν ν̃
′
(·|Sl)

)
− γk

(
·|

q∑
l=1

ν̃′(l)ν ν̃
′
(·|Sl)

)
‖
)
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where we used (2.8) and (2.9) for the first summand. For the second summand we have

‖γk(·|
∑

l∈{1,...,q}

ν′(l)ν ν̃
′
(·|Sl))− γk(·|

∑
l∈{1,...,q}

ν̃′(l)ν ν̃
′
(·|Sl))‖

≤ β

4
sup
s,t∈Sk

|〈
q∑
l=1

ν′(l)

∫
ν ν̃
′
(·|Sl)(dω)eω −

q∑
l=1

ν̃′(l)

∫
ν ν̃
′
(·|Sl)(dω)eω, es − et〉|

≤ β

4
sup
s,t∈Sk

sup
i,j∈{1,...,q}

|〈
∫
ν ν̃
′
(·|Si)(dω)eω,−

∫
ν ν̃
′
(·|Sj)(dω)eω, es − et〉|‖ν′ − ν̃′‖

≤ β

2
sup
s,t∈Sk

‖es − et‖‖ν′ − ν̃′‖ = β sin(
π

q
)‖ν′ − ν̃′‖

where we used (2.6) in the first inequality. Thus taking the supremum over f and k and
using the fact, that we are in the right parameter regime β sin2(πq ) < 1, we have

sup
k∈{1,...,q}

‖νν
′
(·|Sk)− ν ν̃

′
(·|Sk)‖ ≤ C‖ν′ − ν̃′‖.

But this is Lipschitz continuity, implying local existence.
Solutions also always exist globally: If ν′t(k) = 0 for some k, we have d

dtν
′
t(k) =

c(k − 1, ν′t)ν
′
t(k − 1) ≥ 0. In other words, if a solution is on the boundary of the simplex,

the vector field forces the trajectory back inside the simplex. 2

Remark 2.3. The above lemma in particular proves, that the so called second-layer

mean-field specification γ′(k|ν′) :=

∫
Sk

exp(β〈Mβ(ν′),eω〉)α(dω)∫
exp(β〈Mβ(ν′),eω〉)α(dω)

is continuous w.r.t the bound-

ary entry ν′. This is the defining property for a system after coarse-graining to be called
Gibbs (see for example [33, 34, 29]).

Proof of Theorem 1.5: We use the Feng-Kurtz scheme as presented in [19, 14, 41]
to show convergence on the level of trajectories. The Feng-Kurtz scheme provides us
with a large deviation rate function that can be expressed as the integral of the Legen-
dre transform of the generator of the exponential semigroup defined by the dynamics.
This generator can be associated to the so-called Feng-Kurtz Hamiltonian, and the rate
function to the integral of a Lagrangian.

The Feng-Kurtz Hamiltonian for the generator QempN reads

H(ν′, f) =

q∑
k=1

ν′(k)c(k, ν′)
(
edfν′ (δk+1−ν′)−dfν′ (δk−ν

′) − 1
)

where f : P({1, . . . , q})→ R is a differentiable observable and we used the convergence
of the rates from Theorem 1.4. This Hamiltonian is of the form as presented in [19]
Section 10.3. with b(ν′) := F (ν′) and η(ν′, δk+1 − δk) := ν′(k)c(k, ν′). Following the
roadmap of [19] we verify (using references as in [19]):

1. Xn is exponentially tight in the path space by Theorem 4.1. since

E(eNλ‖X
N
t+δ−X

N
t ‖|FNt ) ≤ E(eλPois(NKδ)) = eNKδ(e

λ−1)

where Pois(r) stands for a Poisson random variable with intensity r,
K := supν′∈P ({1,...,q}),N∈N,k∈{1,...,q} c

emp
N (k, ν′) and FNt = σ((Xs)

N
0≤s≤t). In partic-

ular limδ↓0Kδ(e
λ − 1) = 0 and thus criterion b) of Theorem 4.1. is satisfied.

2. The comparison principle holds for the generator H (ensuring the existence of
the so-called exponential semigroup corresponding to H) since the conditions of
Lemma 10.12. are satisfied. In particular we used the Lipschitz continuity of
F (ν′) from our Lemma 2.2. This property ensures existence of a LDP for the
finite-dimensional distributions of the process.
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Further since also (10.18) in [19] is satisfied, Theorem 10.17. in [19] gives the LDP on
the level of paths implicitly via the exponential semigroup.

In order to get a nice variational representation of the large deviation rate func-
tion we follow the Feng-Kurtz scheme and calculate the cost function in form of the
Lagrangian of H for the measure ν′ and the velocity u′ (a zero-weight signed measure
on {1, . . . , q}) as in Lemma 10.19. in [19]

L(ν′, u′) := sup
p∈Rq

(
〈p, u′〉 −

q∑
k=1

ν′(k)cL(k, ν′)
(
ep(k+1)−p(k) − 1

))
≥ 0.

Let PNν′0
denote the law of the Markov process QempN started in ν′0, then by Theorem

10.22. in [19] we have

PNν′0

(
(·t)t∈[0,Tf ] ≈ (ν′t)t∈[0,Tf ]

)
≈ exp

(
−N

∫ Tf

0

L(ν′t,
d

dt
ν′t)dt

)
where the approximation signs should be understood in the sense of the LDP with the
Skorokhod topology on the space of càdlàg paths. In fact by [19] Theorem 4.14 the LDP
even holds in the uniform topology.

To obtain the LLN we need to show L(ν′t,
d
dtν
′
t) = 0 if d

dtν
′
t is given by (1.7). But this

is true: The Lagrangian for (1.7) reads

L(ν′t,
d

dt
ν′t) = sup

p

(
〈p, d

dt
ν′t〉 −

q∑
k=1

ν′t(k)c(k, ν′t)(e
p(k+1)−p(k) − 1)

)
= sup

p

( q∑
k=1

ν′t(k)c(k, ν′t)(p(k + 1)− p(k) + 1− ep(k+1)−p(k))
)

=: sup
p
J(p)

(2.12)

with ∂
∂p(l)J(p) = ν′t(l − 1)c(l − 1, ν′t)(1 − ep(l)−p(l−1)) − ν′t(l)c(l, ν

′
t)(1 − ep(l+1)−p(l)). In

case ν′t(l) = 0 for some l ∈ {1, . . . , q} and p∗ realizing the supremum in (2.12) we have
ν′t(k)c(k, ν′t)(1−ep

∗(k+1)−p∗(k)) = 0 for all k ∈ {1, . . . , q} and since c(k, ν′t) > 0 in particular
p∗(k + 1) = p∗(k) whenever ν′t(k) > 0. Thus L(ν′t,

d
dtν
′
t) = 0. In case ν′t(k) > 0 for all

k ∈ {1, . . . , q}, J is strictly concave away from any constant vector p = (c, . . . , c)T ∈ Rq,
to be precise

〈z, ( ∂2

∂p(i)∂p(j)
J)i,jz〉 = −

q∑
k=1

ν′t(k)c(k, ν′t)e
p(k+1)−p(k)(zk+1 − zk)2

for all q-dimensional vectors z, and thus J(0) is the global maximum of J . Hence
L(ν′t,

d
dtν
′
t) = 0. Since L(ν′t, ·) is strictly convex as a Legendre tranform of the strictly

convex Feng-Kurtz Hamiltonian H, the flow (1.7) is the unique dynamics such that∫ Tf
0

L(ν′t,
d
dtν
′
t)dt = 0. But that means, according to the LDP, that (1.7) is the unique

limiting dynamics as N →∞. 2

Remark 2.4. If one is only interested in the (weak) LLN for Xn, one can also apply
Theorem 2 of [39], with the minor alteration, that our rates are N -dependent but con-
vergent. The proof of the result uses martingale respesentation to derive tightness
of (PNν′0

)N∈N (in the pathspace equipped with the Skorokhod topology). The unique-
ness of the limiting (deterministic) process is shown by a coupling argument. For
the sake of accessibility we compare the notation in [39] with ours: γω(k) := δ1(k),
A(k, y, ν′) := cempN (k, ν′), all given topologies on P({1, . . . , q}) are equivalent, the Lips-
chitz condition (B4) is satisfied since ν′ 7→ cempN (k, ν′) is a composition of Lipschitz con-
tinuous functions (where we have to use Lemma 2.2), (B3), (B2) and (B1) are trivially
satisfied.
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3 Properties of the flow

In [30] one of the main results states the existence of a unique translation-invariant
invariant measure for the rotation dynamics combined with a Glauber dynamics on
the lattice, which is not the long-time limit of all starting measures. This is done by
identifying a set of starting measures, namely the set of extremal translation-invariant
Gibbs measures of a discretized version of the XY model, which is not attracted to the
invariant measure. Further results about attractivity of the rotation dynamics alone for
general starting measures seemed to be difficult on the lattice.

In this section we reproduce the equivariance properties of the discretization map
for the dynamical system. Further we investigate attractivity properties of the flow.

Before we start let us note, that (as in the lattice situation) the commutator (in
the form of the Lie bracket) of the rotation dynamics and the corresponding Glauber
dynamics vanishes on G′. In general there is no reason to believe that the two dynamics
do commute.

In the sequel we denote ν′t a probability measure on {1, . . . , q} at time t under the
rotation dynamics (1.7).

3.1 Closed orbit and equivariance of the discretization map

Proof of Theorem 1.6: For ν ∈ G(Φ) we have T (ν) ∈ G′ by the contraction principle.
Further for ν′ ∈ G′ we have

inf
ν

Ψ(ν) = inf
ν̃′

inf
ν:Tν=ν̃′

Ψ(ν) = inf
ν̃′

Ψ′(ν̃′) = Ψ′(ν′) = Ψ(νν
′
),

hence νν
′ ∈ G(Φ) and we have established a one-to-one correspondence between G′ and

G(Φ).
Let us verify the dynamical aspects of the diagram. Let νt ∈ G(Φ) and compute the

derivative (in analogy to Proposition 1.1) and note that indeed the left-sided and the
right-sided derivatives coincide

d

dε
|ε=0T (νt+ε)(k) =

d

dε
|ε=0

∫
Sk
α(dσ) exp(β〈eσ,Mβ(T (νt+ε))〉)∫
α(dσ) exp(β〈eσ,Mβ(T (νt+ε))〉)

=
d

dε
|ε=0

∫ 2π
q k−ε

2π
q (k−1)−ε α(dσ) exp(β〈eσ,Mβ(T (νt))〉)∫

α(dσ) exp(β〈eσ,Mβ(T (νt))〉)

=
exp(β〈e 2π

q (k−1),Mβ(T (νt))〉)− exp(β〈e 2π
q k
,Mβ(T (νt))〉)∫

α(dσ) exp(β〈eσ,Mβ(T (νt))〉)
= c(k − 1, T (νt))T (νt)(k − 1)− c(k, T (νt))T (νt)(k) = F (T (νt))(k).

(3.1)

By Lemma 2.2, the differential equation (1.7) is uniquely solvable globally in time.
Since (T (νt))t≥0 is a trajectory in P({1, . . . , q}) solving the differential equation we have
T (νt+s) = ϕ(s, T (νt)) for all s, t ≥ 0.

Note: One can also show higher differentiability of the flow with respect to the initial
condition. Strong enough differentiability of F would ensure that. This again would be
guaranteed by strong enough differentiability of ν′ 7→ Mβ(ν′). One can employ an im-
plicit function theorem applied to the mean-field equation to get that kind of regularity.
Unfortunately a price to pay could a priori be the assumption of an unspecified maybe
large q, so some additional technical work would be needed. 2

In the sequel we will often refer to G′ as the periodic orbit of the flow (ϕt)t≥0.
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3.2 Attractivity of the closed orbit via free energy

Lemma 3.1. The time derivative of the free energy on P({1, . . . , q}) reads

d

dt
|t=0Ψ′(ϕ(t, ν′))

=
∑

k∈{1,...,q}

e
β〈e 2π

q
k
,Mβ(ν′)〉∫

Sk
eβ〈eω,Mβ(ν′)〉α(dω)

ν′(k) log
ν′(k + 1)

∫
Sk
eβ〈eω,Mβ(ν′)〉α(dω)

ν′(k)
∫
Sk+1

eβ〈eω,Mβ(ν′)〉α(dω)
.

(3.2)

Proof of Lemma 3.1: We have Ψ′(ν′) = Ψ(νν
′
) = S(νν

′ |α) + Φ(νν
′
) + Const where

Φ(νν
′
) = −β2 ‖

∫
νν
′
(dω)eω‖2 = −β2 ‖Mβ(ν′)‖2 and

S(νν
′
|α) =

∫
dνν

′
log

dνν
′

dα
=

∑
k∈{1,...,q}

ν′(k)

∫
νν
′
(dω|Sk) log

ν′(k)eβ〈eω,Mβ(ν′)〉∫
Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃)

=
∑

k∈{1,...,q}

ν′(k)

∫
νν
′
(dω|Sk)[log ν′(k) + β〈eω,Mβ(ν′)〉 − log

∫
Sk

eβ〈eω,Mβ(ν′)〉α(dω)]

= S(ν′|α′) + β‖Mβ(ν′)‖2 −
∑
k

ν′(k) log(q

∫
Sk

eβ〈eω,Mβ(ν′)〉α(dω))

where we used νν
′

=
∑
k∈{1,...,q} ν

′(k)
∫
νν
′
(·|Sk) and wrote α′ := 1

q

∑q
k=1 δk for the

equidistribution. The time derivative is now a simple calculation using the definition
of the flow. 2

Proof of Proposition 1.7: First note, if ν′ ∈ G′ or ν′ = 1
q

∑q
k=1 δk we have

ν′(k) = K
∫
Sk
eβ〈eω,Mβ(ν′)〉α(dω) and hence d

dt |t=0Ψ′(ϕ(t, ν′)) = 0. For any distribution
with no weight on at least one k ∈ {1, . . . , q}, the r.h.s of (3.2) is minus infinity.

Let us change the perspective and assume βMβ(ν′) =: x ∈ R2 to be given instead of

ν′. Let Γk : R2 → R2,Γk(x1, x2) =

∫
Sk
eω exp(〈eω,(x1,x2)〉)α(dω)∫

Sk
exp(〈eω,(x1,x2)〉)α(dω)

and define

Λx := {{λ1, ..., λq} ∈ Rq+|
∑
k λkΓk(x) = x} the space of unnormalized measures such

that their corresponding probability measures (λk/‖λ‖l1)k∈{1,...,q} have magnetization
x/β, in particular ‖λ‖l1 = β. Let us rewrite the free energy and prove instead of
d
dt |t=0Ψ′(ϕ(t, ν′)) ≤ 0,

0 ≥
∑

k∈{1,...,q}

e
〈e 2π

q
k
,x〉∫

Sk
e〈eω,x〉α(dω)

λ(k) log
λ(k + 1)

∫
Sk
e〈eω,x〉α(dω)

λ(k)
∫
Sk+1

e〈eω,x〉α(dω)
=: Gx(λ1, ...λq)

for λ ∈ Λx. One way to do this is to show that for given x ∈ R2 the maximum of Gx under
the constraint {λ1, ...λq} ∈ Λx is lower or equal zero. Let us apply Lagrange multipliers
α1, α2, then we must solve the following q + 2 equations

d

dλk
[Gx(λ1, ...λq) + α1(

∑
k

λkΓk(x)1 − x1) + α2(
∑
k

λkΓk(x)2 − x2)] = 0∑
k

λkΓk(x) = x.
(3.3)

The first line of (3.3) reads

e
〈e 2π

q
k
,x〉∫

Sk
e〈eω,x〉α(dω)

log
λ(k + 1)

∫
Sk
e〈eω,x〉α(dω)

λ(k)
∫
Sk+1

e〈eω,x〉α(dω)
− e

〈e 2π
q
k
,x〉∫

Sk
e〈eω,x〉α(dω)

+
e
〈e 2π

q
(k−1)

,x〉∫
Sk−1

e〈eω,x〉α(dω)

λ(k − 1)

λ(k)
+ α1Γk(x)1 + α2Γk(x)2 = 0.
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Multiplying these equations with λk, summing and applying the constraint condition
we have Gx(λ1, ...λq) + 〈α, x〉 = 0 and thus the sign is determined by the Lagrange

multipliers. Define β > 0 such that x
β =

∫
eωe
〈eω,x〉α(dω)∫

e〈eω,x〉α(dω)
and λk := β

∫
Sk
e〈eω,x〉α(dω)∫
e〈eω,x〉α(dω)

the

Gibbs measure for x rescaled with β. In particular
∑
k λkΓk(x) = x. First we show

λ := (λi)i∈{1,...,q} is an extremal point of Gx under the constraint Λx. Indeed, set α1 = x2

and α2 = −x1, then the first q equations in (3.3) read

e
〈e 2π

q
(k−1)

,x〉
− e
〈e 2π

q
k
,x〉∫

Sk
e〈eω,x〉α(dω)

+ x2

∫
Sk

cos(ω)e〈eω,x〉α(dω)∫
Sk
e〈eω,x〉α(dω)

− x1

∫
Sk

sin(ω)e〈eω,x〉α(dω)∫
Sk
e〈eω,x〉α(dω)

.

But this is zero since
∫
Sk

(x2 cos(ω)− x1 sin(ω))e〈eω,x〉α(dω) = e
〈e 2π

q
(k−1)

,x〉
− e
〈e 2π

q
k
,x〉

.

Secondly we show Gx is concave on Λx, indeed

∂

∂λk
Gx(λ) = c(k, x) log

λ(k + 1)
∫
Sk
e〈eω,x〉α(dω)

λ(k)
∫
Sk+1

e〈eω,x〉α(dω)
− c(k, x) + c(k − 1, x)

λ(k − 1)

λ(k)

thus the Hessian matrix has non-zero entries only on the diagonal and on the two neigh-
boring diagonals

(
∂

∂λk
)2Gx(λ) = −(

c(k, x)

λk
+
c(k − 1, x)λk−1

λ2
k

)

∂2

∂λk+1∂λk
Gx(λ) =

c(k, x)

λk+1
and

∂2

∂λk−1∂λk
Gx(λ) =

c(k − 1, x)

λk
.

In order to check definiteness we apply an arbitrary vector (λ1z1, . . . , λqzq)
T from both

sides, which gives us

q∑
i=1

(wizizi+1 + wi−1zi−1zi − (wi + wi−1)z2
i ) =

q∑
i=1

wi(2zizi+1 − (z2
i + z2

i+1))

where we wrote wi := λic(i, x). Since zizi+1 ≤
z2
i+z2

i+1

2 the Hessian is negative semidefi-
nite and thus Gx is concave. Hence λ must be a global maximum for Gx. To show that
the time derivative of Ψ′ along trajectories of the flow is indeed strictly negative away
from the periodic orbit and the equidistribution we notice, the eigenspace for the eigen-
value zero is {v ∈ Rq|v = cλ}. Thus the only direction in which D2Gx(λ) is not strictly
negative is the one along λ, but cλ /∈ Λx unless c = 1. Hence λ is the only maximum
in Gx. Since all Gx are disjoint and every probability measure belongs to some Gx/β ,
we showed that Ψ′ is indeed strictly decreasing away from the periodic orbit and the
equidistribution. 2

Figure 2 shows the time-derivative of the Lyapunov function (3.2) for special values
of β and ν′. Its negativity away from the equidistribution and the periodic orbit is clearly
visible.

Proof of Theorem 1.8: Let Kε := {ν′| infµ′∈G′
∑q
k=1 |ν′(k) − µ′(k)| ≥ ε} then

d
ds |s=0Ψ′(ϕ(s, ν′)) ≤ δε < 0 for all ν′ ∈ Kε for some δε < 0 by compactness of Kε and
Proposition 1.7. Assume (ϕ(t, ν′))t≥0 ∈ Kε for all t ≥ 0, then for all s ≥ 0

Ψ′(ϕ(t+ s, ν′))−Ψ′(ϕ(t, ν′)) =

∫ s

0

d

dh
Ψ′(ϕ(t+ h, ν′))dh ≤ δεs.

But Ψ′ ≥ 0 which is a contradiction. Since Ψ′(ν′) < Ψ′( 1
q

∑
k δk) for any Gibbs measure

ν′ and by assumption Ψ′(ν′) < Ψ′( 1
q

∑
k δk), the flow ϕ(t, ν′) can only leave Kε towards

the periodic orbit. 2
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Figure 2: Numerical simulations for the time-derivative of the Lyapunov function along the line (of ten-dimensional
probability measures) going through the equidistribution and the Gibbs measure with order parameterm∗e0. The left figure
(respectively on the right) shows the situation with β = 2.3 (respectively β = 3.) In both figures the left local maximum
belongs to the equidistribution. The right local maximum is at the Gibbs measure. In all cases, at the boundaries of the
simplex, the function goes to minus infinity. S′ = {1, . . . , q}.

3.3 Local stability analysis at the equidistribution via linearization

Recall the definition of the flow

d

dt
|t=0ϕ(t, ν′)(k) = c(k − 1, ν′)ν′(k − 1)− c(k, ν′)ν′(k) = F (ν′)(k).

In order to understand local attractivity, we calculate the linearized r.h.s dF . To simplify
notation, let us write just d

dε when we mean d
dε |ε=0, νν

′

k := νν
′
(·|Sk) and

mβ(ν) :=
∫
ν(dω)eω. For any ν′ ∈ P({1, . . . , q}) and zero-weight signed measure ρ on

{1, . . . , q} we have

dFν′(ρ)(k) =
d

dε
F (ν′ + ερ)(k) =

( d
dε
c(k − 1, ν′ + ερ)

)
ν′(k − 1)

−
( d
dε
c(k, ν′ + ερ)

)
ν′(k) + c(k − 1, ν′)ρ(k − 1)− c(k, ν′)ρ(k)

with

d

dε
c(k, ν′ + ερ) = βc(k, ν′)〈e 2π

q k
−
∫
Sk

eβ〈eω,Mβ(ν′)〉eωα(dω),
d

dε
Mβ(ν′ + ερ)〉

= β[c(k, ν′)〈e 2π
q k
,
d

dε
Mβ(ν′ + ερ)〉 − e

β〈e 2π
q
k
,Mβ(ν′)〉

〈mβ(νν
′

k ),
d

dε
Mβ(ν′ + ερ)〉].

To compute the derivative d
dεMβ(ν′+ερ), we use the 2q-dimensional mean-field equation

and apply the implicit function theorem. We have

d

dε
Mβ(ν′ + ερ) =

∑
k

ν′(k)
d

dε
mβ(νν

′+ερ
k ) +

∑
k

ρ(k)mβ(νν
′

k )

with

d

dε
mβ(νν

′+ερ
k ) =

d

dε

∫
Sk
eω̃e

β〈eω̃,Mβ(ν′+ερ)〉α(dω̃)∫
Sk
eβ〈eω̃,Mβ(ν′+ερ)〉α(dω̃)

= β(

∫
Sk
eω̃e

β〈eω̃,Mβ(ν′)〉〈eω̃, ddεMβ(ν′ + ερ)〉α(dω̃)∫
Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃)

−
∫
Sk
eω̃e

β〈eω̃,Mβ(ν′)〉α(dω̃)
∫
Sk
eβ〈eω̃,Mβ(ν′)〉〈eω̃, ddεMβ(ν′ + ερ)〉α(dω̃)

(
∫
Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃))2

)

=: W (k,Mβ(ν′))
d

dε
Mβ(ν′ + ερ).
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Recall eω =

(
cos(ω)

sin(ω)

)
then W (k,Mβ(ν′)) = β

(
A(k) B(k)

B(k) C(k)

)
is a 2× 2 matrix with

A(k) :=

∫
Sk

cos2(ω̃)eβ〈eω̃,Mβ(ν′)〉α(dω̃)∫
Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃)

−
(∫Sk cos(ω̃)eβ〈eω̃,Mβ(ν′)〉α(dω̃)∫

Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃)

)2
B(k) :=

∫
Sk

cos(ω̃) sin(ω̃)eβ〈eω̃,Mβ(ν′)〉α(dω̃)∫
Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃)

−
∫
Sk

cos(ω̃)eβ〈eω̃,Mβ(ν′)〉α(dω̃) ·
∫
Sk

sin(ω̃)eβ〈eω̃,Mβ(ν′)〉α(dω̃)

[
∫
Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃)]2

C(k) :=

∫
Sk

sin2(ω̃)eβ〈eω̃,Mβ(ν′)〉α(dω̃)∫
Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃)

−
(∫Sk sin(ω̃)eβ〈eω̃,Mβ(ν′)〉α(dω̃)∫

Sk
eβ〈eω̃,Mβ(ν′)〉α(dω̃)

)2
some functions of the covariances. Consequently

d

dε
Mβ(ν′ + ερ) =

∑
l

ρ(l)[I2×2 −
∑
k

ν′(k)W (k,Mβ(ν′))]−1mβ(νν
′

l ) (3.4)

whenever the inverse matrix exists.
Up to this point all calculations are made for general ν′ ∈ P({1, . . . , q}). But we are

only interested in stability results at the equidistribution (eq). For ν′ = eq the inverse
matrix exists as will become clear from the following calculations.

dFeq(ρ)(k) =
1

q

( d
dε
c(k − 1, eq + ερ)− d

dε
c(k, eq + ερ)

)
+

q

2π

(
ρ(k − 1)− ρ(k)

)
.

Since mβ(νeqk ) = q
2π

∫
Sk
eωα(dω) we can write

d

dε
c(k, eq + ερ) =

βq

2π
[〈e 2π

q k
,
d

dε
Mβ(eq + ερ)〉 − q

2π
〈
∫
Sk

eωα(dω),
d

dε
Mβ(eq + ερ)〉]

=
βq

2π
〈

 cos( 2π
q k)− q

2π

∫
Sk

cos(ω)α(dω)

sin( 2π
q k)− q

2π

∫
Sk

sin(ω)α(dω)

 ,
d

dε
Mβ(eq + ερ)〉.

Using the vector

v(k) =


q

2π (
∫
Sk

cos(ω)α(dω)−
∫
Sk−1

cos(ω)α(dω)) +
∫
Sk

sin(ω)α(dω)

q
2π (
∫
Sk

sin(ω)α(dω)−
∫
Sk−1

sin(ω)α(dω))−
∫
Sk

cos(ω)α(dω)


which is close to zero for large q, we can write

dFeq(ρ)(k) =
q

2π

(
ρ(k − 1)− ρ(k)

)
+

β

2π
〈v(k),

d

dε
Mβ(eq + ερ)〉.

Before we go on with the analysis of d
dεMβ(eq + ερ) let us remark:

Remark 3.2. For small β, dFeq is a small pertubation of the rotation matrix q
2π (D − I)

with Dkl = 1l=k+1. Thinking of q
2π as a time rescaling, one can consider the linear

system of differential equations on probability vectors x of length q

ẋ = (D − I)x.

Using discrete Fourier transform, it is immediately seen, that this system is attractive
towards the equidistribution.
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Let us look at the effect of the pertubation:

d

dε
Mβ(eq + ερ) =

∑
l

ρ(l)[I2×2 −
1

q

∑
k

W (k, 0)]−1mβ(νeql )

where I2×2 − 1
q

∑
kW (k, 0) =

(
1− β

2 (1− ( qπ )2 sin2(πq )) 0

0 1− β
2 (1− ( qπ )2 sin2(πq ))

)
. This

matrix is invertible as long as β(1− ( qπ )2 sin2(πq )) 6= 2. By the arguments provided in the

second part of the proof of Theorem 1.9 below, β(1 − ( qπ )2 sin2(πq )) < 2 in the relevant
parameter regimes. Hence we can write

d

dε
Mβ(eq + ερ) =

q

2π − βπ(1− ( qπ )2 sin2(πq ))

∑
l

ρ(l)

∫
Sl

eωα(dω)

and thus

dFeq(ρ)(k) =
q

2π
[
(
ρ(k − 1)− ρ(k)

)
+

β

2π − βπ(1− ( qπ )2 sin2(πq ))

∑
l

〈
∫
Sl

eωα(dω), v(k)〉ρ(l)]

=
q

2π
[
(
ρ(k − 1)− ρ(k)

)
+

4β sin2(πq )

2π − βπ(1− ( qπ )2 sin2(πq ))

∑
l

sin(
2π

q
(k − l))ρ(l)

+
2βq sin2(πq )

2π2 − βπ2(1− ( qπ )2 sin2(πq ))

∑
l

(
cos(

2π

q
(k − l))− cos(

2π

q
(k − l − 1))

)
ρ(l)].

In matrix notation this is

M̃β(i, j) :=
q

2π

(
δj=(i−1) − δj=i + c1 sin(

2π

q
(i− j))

+ c2[cos(
2π

q
(i− j))− cos(

2π

q
(i− j − 1)]

)
where the property

∑
j M̃β(i, j) = 0 for all i ∈ {1, . . . , q} reflects conservation of mass.

Lemma 3.3. The eigenvalues of M̃ are given by

λ1 =
q

2π

(
[(c2

q

2
− 1)(1− cos(

2π

q
))] + i[(c2

q

2
− 1) sin(

2π

q
)− c1

q

2
]
)

λj =
q

2π

(
[cos(

2π

q
j)− 1]± i sin(

2π

q
j)
)

for j ∈ {2, . . . , q − 2}

λq−1 =
q

2π

(
[(c2

q

2
− 1)(1− cos(

2π

q
))]− i[(c2

q

2
− 1) sin(

2π

q
)− c1

q

2
]
)

λq = 0.

where c1 =
4βπ sin2(πq )

2π2−βπ2+βq2 sin2(πq )
and c2 =

2βq sin2(πq )

2π2−βπ2+βq2 sin2(πq )
.

Proof of Lemma 3.3: Since M̃ is rotation invariant, we can employ discrete
Fourier transformation to calculate the eigenvalues and eigenvectors of M̃ . The k-th
eigenvector is given by

uk =
1
√
q

exp(i
2π

q
kl)l∈{1,...,q}
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and with M̂β(n) := M̃β(i, (i+ n)mod(q)) the k-th eigenvalue reads

λk =

q−1∑
n=0

M̂β(n) exp(−i2π
q
kn).

Calculating separately for the summands in M̃ , the result follows. 2

Notice, the eigenvalues always come in conjugated pairs. The eigenvectors have
zero weight (except for the one belonging to the zero eigenvalue).

-30 -25 -20 -15 -10 -5
R

-15

-10

-5

5

10

15

iR

Figure 3: Spectrum of M̃ for q = 100, β = 50. The two positive real-part eigenvalues are clearly visible.

Proof of Theorem 1.9: The eigenspaces for the eigenvalues λ2, . . . , λq−2 have neg-
ative real part and therefore belong to the attractive manifold of the equidistribution.
The eigenspaces for the perturbated eigenvalues λ1, λq−1 form a locally non-attractive
manifold if

2π

q
Re(λ1,q−1) = (cos(

2π

q
)− 1)(1− q

2
c2) > 0

or equivalently if q
2c2 =

βq2 sin2(πq )

2π2−βπ2+βq2 sin2(πq )
> 1. Since we assume β > 2 this is again

equivalent to 2 > β(1− ( qπ )2 sin2(πq )). Now if 2 > β(1− q
2π sin( 2π

q )) (in other words (2.11)
fails and we are in parameter regimes where our construction is not excluded from
being welldefined), then 2 > β(1−( qπ )2 sin2(πq )). But this is true since β(1− q

2π sin( 2π
q )) >

β(1 − ( qπ )2 sin2(πq )) is equivalent to cos(πq ) < q
π sin(πq ) and q

π sin(πq ) = cos(ξ) for some
ξ ∈ [0, πq ]. Thus in the relevant parameter regimes there exists a non-attractive manifold
given by the lowest Fourier modes. 2

An illustration is given in Figure 1. Notice, limq→∞
q
2c2 = β

2 and hence all real parts
go to zero as they should. We would like to point out, that in [27] although a rotation
dynamics on the continuous system driven by Brownian motion is considered, similar
attractivity conditions appear. In particular, in the low temperature regime, the periodic
orbit attracts every measure, except the equidistribution and whatever is attracted to
it. The attractive manifold for the equidistribution is also given by a continuous version
of our attractive manifold given by

{ν′ ∈ P({1, . . . , q})|
q∑

k=1

ν′(k) exp(i
2π

q
k) = 0 and

q∑
k=1

ν′(k) exp(−i2π
q
k) = 0}.
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