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Abstract

We prove a strong form of spontaneous breaking of rotational symmetry for a simple
model of two-dimensional crystals with random defects in thermal equilibrium at low
temperature. The defects consist of isolated missing atoms.
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1 Introduction

1.1 Motivation

Solid state physics is about crystals. In spite of the tremendous achievements and
numerous applications of solid state physics, existence of crystals is mathematically
not rigorously understood. In particular, understanding the melting transition from
crystals to liquids seems out of reach for mathematicians. The unfortunate situation
is illustrated by the following quote from Le Bris and Lions from 2005 [7, Section 6.1]:
“Can one have some mathematical insight on the reason why matter at zero temperature
arranges in periodic crystals? This so-called crystal problem is a cornerstone of physics.
Unfortunately, nothing or almost nothing is known at the theoretical level. [. . . ] The
mathematical literature is really poor on the subject, whatever the model chosen.” Due
to recent work of Theil [11] and Flatley and Theil [3], crystallization at temperature zero
is mathematically much better understood by now. However, rigorous results for positive
temperature are still scarce.

For a mathematical approach towards crystallization at positive temperature, the
breaking of continuous symmetries appears a useful tool for recognizing crystals. There
are different approaches to spontaneous symmetry breaking, of which we shall explain
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Spontaneous breaking of rotational symmetry in the presence of defects

two. The first approach concerns Gibbs measures in infinite volume. A symmetry group
of the local specifications of Gibbs measures is spontaneously broken if there exists a
Gibbs measure which is not invariant under all operations in this symmetry group. The
second approach concerns the infinite volume limit of finite volume Gibbs measures with
boundary conditions. As before, we assume that the local specifications are left invariant
by some symmetry group. However the boundary conditions are assumed to violate
some of these symmetries. The symmetry group is spontaneously broken if even in the
infinite volume limit, the random configuration does not exhibit all the symmetries of
the local specifications. Typical examples of such symmetries are internal symmetries
like spin flips and spatial translations and rotations. Intuitively speaking, spontaneous
symmetry breaking in a particle system may be interpreted as long-range order.

Preservation of translational symmetry is well understood in two dimensions, see for
example Richthammer [10]. Among the more recent results on translational symmetry
breaking in crystalline systems, we mention Aizenman, Jansen, and Jung [1].

Hardly any mathematical results in realistic models are known in three dimensions.
A possible mathematical picture for the melting phenomenon in three dimensions is
the following: For low temperature, below the melting point, spatial symmetries like
translations and rotations might be spontaneously broken. Above the melting point, the
symmetries are preserved (i.e., not spontaneously broken). Proving this picture for any
realistic interaction potential is a major challenge for mathematical physics.

For very high temperature, however, we are in a gas phase and the Gibbs measure is
therefore unique (Dobrushin uniqueness arguments, e.g. [6]). The mathematical notion
of spontaneous breaking of the full translational symmetry group R3 down to some
lattice symmetry is related to the experimental observation of sharp Bragg peaks in
X-ray diffraction patterns at low temperatures up to the melting point. Crystallographers
even define crystals via the occurrence of such Bragg peaks [9].

Merkl and Rolles [8] prove spontaneous breaking of rotational symmetry for a toy
model of a crystal without defects. However, crystals at positive temperature exhibit
defects. These can be all kinds of local defects (e.g. missing atoms) and various non-local
defects. In this work, we consider a variant of the model from [8] which allows the
simplest type of local defects, isolated missing single atoms. Our approach can be
generalized in a straightforward way to isolated islands of missing atoms as long as the
islands are of bounded size. The model forbids non-local defects like crystal boundaries
and dislocation lines by definition. Furthermore, to make the presentation as simple
as possible, we work in two dimensions although the methods work as well in higher
dimensions. Roughly speaking, the higher the dimension, the easier symmetries are
spontaneously broken. For this reason, we consider dimension two the most interesting
for rotational symmetry breaking. We see the current work as one step towards a better
mathematical understanding of rotational symmetry breaking in crystals.

A first step towards more general defects in dimension d ≥ 2 is recently done by
Aumann [2]. Gaál [5] treats the case of hard spheres.

The presence of defects makes a Fourier analysis technique inappropriate for our
model. It is replaced by a geometric rigidity result from Friesecke, James, and Müller
[4]. On a macroscopic scale, geometric rigidity is well understood. This starts with a
result of Liouville. Consider a continuously differentiable map such that the derivative
at any point is a rotation. By Liouville’s result it is indeed globally a rotation. Friesecke,
James, and Müller [4] prove a powerful approximate version of Liouville’s result.

1.2 The model

We formulate our results in terms of a random point configuration described by a
random function ω defined on the triangular lattice. Values of ω describe either the
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location of an atom in the complex plane C or signalize the absence of an atom. (Quasi-)
Periodic boundary conditions are imposed on ω; cf. (1.1). The probability distribution of
ω is described by Boltzmann weights in terms of a Hamiltonian coming from rotationally
invariant local interactions, which favor the standard configuration, where particles are
located on a triangular lattice.

Assumptions. Throughout, we fix

(a) a real-valued potential function V defined in an open interval containing 1. We
assume that V is twice continuously differentiable with V ′′ > 0 and V ′(1) = 0.

(b) α ∈ (0, 1) sufficiently small, depending on V . (More specifically, α needs to be so
small that V is defined on [1− α, 1 + α] and Corollary 2.4 below holds.)

(c) l ∈ (1−α/2, 1+α/2). This parameter equals the distance of neighboring particles in
the standard configuration defined in (1.10) below. Thus, it is a control parameter
for the “pressure” of the system.

Let (A2, E) denote the triangular lattice, viewed as an undirected graph: A2 = Z+τZ

with τ = eπi/3 and E = {{x, y} : x, y ∈ A2, |x − y| = 1}; here |z| denotes the Euclidean
length of z ∈ C. We write x ∼ y if {x, y} ∈ E.

Let N ∈ N. We define the set Ω∗l,N of configurations ω with periodic boundary

conditions to consist of all ω ∈ (C ∪ {7})A2 such that

ω(x+Nz) = ω(x) + lNz for all x, z ∈ A2 with ω(x) 6= 7, (1.1)

and ω(x + Nz) = 7 for x, z ∈ A2 with ω(x) = 7. This condition is sometimes called
quasi-periodicity; though this must not be confused with quasicrystals. For x ∈ A2,
ω(x) ∈ C is interpreted as the location of the particle with index x. If ω(x) = 7, then
there is a hole or a defect associated with x. Using quasi-periodicity, any ω ∈ Ω∗l,N is
uniquely determined by its restriction to the set of representatives

IN := {x+ τ2y : x, y ∈ {0, . . . , N − 1}} (1.2)

of A2/NA2. This allows us to identify Ω∗l,N with (C ∪ {7})IN .
Informally speaking, shifts of the index lattice by the box size N may be ignored.

Formally, two configurations ω, ω′ ∈ Ω∗l,N are identified if there exists z ∈ A2 such that
for all x ∈ A2 one has ω(x) = ω′(x + Nz). Let Ωl,N be the quotient space with respect
to the equivalence relation given by this identification. One may identify Ωl,N with a
measurable set of representatives Ωl,N ⊂ Ω∗l,N .

We introduce the set

ΛlN := [0, lN) + τ2[0, lN) (1.3)

of representatives for C/lNA2. Although the precise choice of the set of representatives
for Ωl,N in Ω∗l,N is irrelevant, a possible choice is ω(x) ∈ ΛlN for the lexicographically
smallest x ∈ IN with ω(x) 6= 7 if ω is not the constant configuration with value 7.

Let

defects(ω) := ω−1({7}) ∩ IN (1.4)

denote the set of defects in the configuration ω. For x ∈ IN and z ∈ {1, τ}, let

∆x,z := {x+ sz + tτz : s, t > 0, s+ t < 1} (1.5)
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denote the open triangle with corner points x, x+ z, and x+ τz. Let

TN := {∆x,z : x ∈ IN , z ∈ {1, τ}} and T := {∆x,z : x ∈ A2, z ∈ {1, τ}}. (1.6)

Note that the closures of the triangles in TN cover Λ1N . Let

N := {τ j : j ∈ Z} (1.7)

denote the set of neighbors of 0 in A2.
The space Ωl,N of allowed configurations consists of all ω ∈ Ωl,N satisfying the

following properties (Ω1)–(Ω4):

(Ω1) Hard-core restriction: |ω(x) − ω(y)| ∈ (1 − α, 1 + α) for all x, y ∈ A2 with x ∼ y,
ω(x) 6= 7, and ω(y) 6= 7.

(Ω2) Defects are isolated: For all x, y ∈ A2, one can have ω(x) = 7 and ω(y) = 7 only if
x = y or |x− y| > 2. This means that nearest and next-nearest neighbors of defects
are present.

For x ∈ A2, let

ω̂(x) :=

{
ω(x) if ω(x) 6= 7,
1
6

∑
z∈N ω(x+ z) if ω(x) = 7.

(1.8)

Extend ω̂ piecewise affine linearly to a map ω̂ : C→ C requiring that ω̂ is affine linear on
the closure of every triangle in T .

The map ω̂ is onto as can be seen from the following topological fact. Consider a
lattice Γ ⊂ R2 of rank 2. Then, every continuous map f : R2 → R2 with f(x+y) = f(x)+y

for all x ∈ R2 and y ∈ Γ is onto. Indeed, f − Id is bounded, and thus the restriction of f to
a large circle centered at any given z ∈ R2 has winding number 1 around z. Deforming
the large circle to a point, it follows that z ∈ range(f).

We require:

(Ω3) Excluded volume: ω̂ : C→ C is one-to-one (and thus bijective).

(Ω4) Orientation preservation: For all x ∈ A2 and all z ∈ N , one has

Im

(
ω̂(x+ τz)− ω̂(x)

ω̂(x+ z)− ω̂(x)

)
> 0. (1.9)

We remark that we could drop condition (Ω4) because it follows from the other conditions
(Ω1)–(Ω3). Since the proof of this fact is more analytic than stochastic and is not needed
in the current paper, we skip it. Condition (Ω3) is a very natural physical condition. For
sufficiently small α, it is presumably possible to skip also this condition. Thus (Ω1) and
(Ω2) are the relevant restrictions for our analysis while (Ω3) and (Ω4) are technically
convenient.

Note that the standard configuration

ωl : A2 → C, v 7→ lv (1.10)

is an allowed configuration. Thus, Ωl,N 6= ∅.
Let m ∈ R; m has the interpretation of a chemical potential. It parametrizes the

energetic cost of a defect. Define the Hamiltonian

Hm,N (ω) :=
1

2

∑
x∈IN

∑
y∈A2:y∼x

1{ω(x)6=7,ω(y)6=7}V (|ω(x)− ω(y)|) +m
∑
x∈IN

1{ω(x)=7} (1.11)
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Figure 1: An illustration of an allowed configuration on IN .

for ω ∈ Ωl,N .
Let λ denote the Lebesgue measure on C. We endow (C ∪ {7})IN with the reference

measure (λ+ δ7)IN . This yields a reference measure on Ω∗l,N . Restricting this reference
measure to Ωl,N and using the above identification, this defines in turn a reference
measure µN on Ωl,N . Note that µN (Ωl,N ) <∞ as a consequence of (Ω1).

For β > 0, we define the Boltzmann measure Pβ,m,N on Ωl,N by

Pβ,m,N (dω) :=
1

Zβ,m,N
e−βHm,N (ω) µN (dω) (1.12)

with partition sum

Zβ,m,N :=

∫
Ωl,N

e−βHm,N (ω) µN (dω). (1.13)

Clearly, Pβ,m,N and Zβ,m,N depend also on α, l, and V . Usually, we suppress these
parameters in the notation. Since V is bounded on [1− α, 1 + α] and µN (Ωl,N ) <∞, it
follows that Zβ,m,N <∞. Lemma 3.1 below shows that Zβ,m,N > 0 holds as well.

1.3 Results

We remark that under the assumptions stated at the beginning of Section 1.2, for all
β > 0, m ∈ R, N ∈ N with N ≥ 4, x ∈ A2, and z ∈ N , one has

EPβ,m,N [ω̂(x+ z)− ω̂(x)] = lz. (1.14)

This follows from (1.1) together with the translational invariance of Pβ,m,N . In particular,
under Pβ,m,N , the distribution of ω̂(x+ z)− ω̂(x) is not rotationally invariant. Note that
|ω̂(x + z) − ω̂(x)| is bounded uniformly in N , and thus, equation (1.14) remains true
when one takes subsequential weak limits as N → ∞. As a consequence, any infinite
volume Gibbs measure obtained as such a subsequential limit is not rotationally invariant.
However, this soft result contains no quantitative information on the long-range order.
In particular, it does not answer how close directions between neighboring particles are
to the corresponding directions in the standard triangular lattice.

Therefore, we prove a much stronger form of breaking of rotational symmetry. For
sufficiently low temperature and for sufficiently large chemical potential m, uniformly in
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the system size N , the directions between neighboring particles are typically arbitrarily
close to the corresponding directions in the standard triangular lattice. In this sense, we
have strong long-range directional order for low temperature.

Theorem 1.1. Under the assumptions stated at the beginning of Section 1.2, there is a
constant m0 = m0(V ), such that the following holds:

lim
β→∞

sup
N≥4

sup
m≥m0

sup
x∈A2

sup
z∈N

EPβ,m,N [|ω̂(x+ z)− ω̂(x)− lz|2] = 0. (1.15)

Corollary 1.2. Under the assumptions of Theorem 1.1,

lim
β→∞

sup
N≥4

sup
m≥m0

sup
x∈A2

sup
z∈N

EPβ,m,N [|ω(x+ z)− ω(x)− lz|21{ω(x+z) 6=7,ω(x) 6=7}] = 0. (1.16)

A technically more convenient though equivalent way to express (1.15) is the following
theorem. For every triangle ∆ ∈ T , ω̂ is affine linear on ∆. Hence, its Jacobian ∇ω̂ is
constant on ∆; we denote by ∇ω̂(∆) this constant value.

Theorem 1.3. Under the assumptions of Theorem 1.1,

lim
β→∞

sup
N≥4

sup
m≥m0

sup
∆∈TN

EPβ,m,N [|∇ω̂(∆)− lId|2] = 0. (1.17)

The excluded cases N < 4 are somehow uninteresting and pathological; cf. Figure 2.

Finally, a remark on infinite volume limits. Since the above results are uniform in the
size N of the underlying lattice, the finite-volume results carry over to infinite-volume
Gibbs measures obtained as subsequential limits as N →∞.

Organization. In our proof of these results, we proceed as follows. In Section 2,
we compare the Hamiltonian of a configuration ω ∈ Ωl,N with the Hamiltonian of the
standard configuration ωl. Subsequently, in Section 3, we use these estimates to bound
the partition sum from below and the internal energy from above. Our proofs rely
crucially on the following rigidity estimate. We use it both locally (in Lemma 2.6), and
globally (in Lemma 3.2).

Theorem 1.4 (Friesecke, James, and Müller [4, Theorem 3.1]). Let U be a bounded
Lipschitz domain in Rn, n ≥ 2. There exists a constant C(U) with the following property:
For each v ∈W 1,2(U,Rn) there is an associated rotation R ∈ SO(n) such that

‖∇v −R‖L2(U) ≤ C(U)‖dist(∇v,SO(n))‖L2(U). (1.18)

We are interested in bounded domains U ⊂ R2 which are bounded by finitely many
pieces of straight lines and in continuous functions v : U → R2 that are piecewise
affine linear with respect to a triangulation of U . Note that these functions belong to
W 1,2(U,R2).

Remark 1.5. The constant C(U) in Theorem 1.4 is invariant under scaling: C(γU) =

C(U) for all γ > 0. Indeed, setting vγ(γx) = γv(x) for x ∈ U , we have ∇vγ(γx) =

∇v(x) and hence ‖∇vγ −R‖L2(γU) = γn/2‖∇v −R‖L2(U) and ‖dist(∇vγ ,SO(n))‖L2(γU) =

γn/2‖dist(∇v,SO(n))‖L2(U). This implies that for the interior UN of Λ1N , one can choose
the constant C(UN ) in Theorem 1.4 as a constant c1 independent of N .

2 An estimate for the Hamiltonian

We identify C with R2. In this section, we prove the following.
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Lemma 2.1. There exist constants c2 = c2(V ) > 0 and m1 = m1(V ) > 0 such that for all
N ≥ 4 and ω ∈ Ωl,N , one has

Hm,N (ω)−Hm,N (ωl) ≥ c2
∑

∆∈TN

dist(l−1∇ω̂(∆),SO(2))2 + (m−m1)|defects(ω)|. (2.1)

In particular, for m ≥ m1, one has Hm,N (ω) ≥ Hm,N (ωl) for all ω ∈ Ωl,N .

In this sense, ωl is a ground state for the Hamiltonian. A key ingredient for the proof
is the fact that deforming all triangles does not change the total area covered, cf. (2.30),
where we use (Ω3).

Here and in the rest of the paper, the distance is taken with respect to an arbi-
trary norm ‖·‖ on 2× 2-matrices (except for Lemma 3.2, where the Frobenius norm is
convenient).

First, we estimate the contribution of the Hamiltonian for single triangles. Then, we
show that the defects are negligible.

2.1 Estimates for individual triangles

Let ∆ be a triangle in R2 with corner points A1, A2, A3, i.e. the interior of the convex
hull of {A1, A2, A3}. Let further ω : R2 → R2 be the affine linear map that maps 0, 1, τ to
A1, A2, A3, respectively. We assume that (A1, A2, A3) is positively oriented, i.e. det∇ω > 0.
We introduce the sides of the triangle:

~a1 := A3 −A2, ~a2 := A1 −A3, ~a3 := A2 −A1,

aj := |~aj |.
(2.2)

Recall from (1.5) that l∆0,1 is an equilateral triangle with side length l.

Throughout, we write T � S for terms T ≥ 0 and S ≥ 0 if there are uniform constants
c, C > 0 such that cT ≤ S ≤ CT holds. If the constants depend on the fixed potential V ,
we write T �V S.

Lemma 2.2. Let p(l) := 2
√

3V ′(l)/l. For sufficiently small α > 0 and side lengths
a1, a2, a3 ∈ (1− α, 1 + α), one has

3∑
j=1

V (aj)− 3V (l)− p(l)(λ(∆)− λ(l∆0,1)) �V
3∑
j=1

(aj − l)2. (2.3)

Proof. Heron’s formula gives the area of the triangle ∆ with side length a1, a2, and a3 as

λ(∆) =
1

4

√
(a1 + a2 − a3)(a2 + a3 − a1)(a3 + a1 − a2)(a1 + a2 + a3)

=: A(a1, a2, a3). (2.4)

The function A is twice continuously differentiable with

∂A

∂aj
(l, l, l) =

l

2
√

3
for j ∈ {1, 2, 3}. (2.5)

All second derivatives of A(a1, a2, a3) are bounded for a1, a2, a3 ∈ (1 − α, 1 + α), with
α > 0 small enough. Consequently,

λ(∆)− λ(l∆0,1) =
l

2
√

3

( 3∑
j=1

aj − 3l
)

+

3∑
j=1

O((aj − l)2) as aj → l. (2.6)
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Since V is twice differentiable, we get using the last equation

3∑
j=1

V (aj)− 3V (l) =V ′(l)
( 3∑
j=1

aj − 3l
)

+
1

2
V ′′(l)

3∑
j=1

(aj − l)2 +

3∑
j=1

oV ((aj − l)2)

=
2
√

3V ′(l)

l
(λ(∆)− λ(l∆0,1)) + V ′(l)

3∑
j=1

O((aj − l)2)

+
1

2
V ′′(l)

3∑
j=1

(aj − l)2 +

3∑
j=1

oV ((aj − l)2) as aj → l. (2.7)

By assumption, inf1−α2≤l≤1+α
2
V ′′(l) > 0. Clearly V ′(1) = 0 implies

sup
1−α2≤l≤1+α

2

|V ′(l)| ≤ α

2
sup

1−α2≤ξ≤1+α
2

|V ′′(ξ)| = OV (α).

The claim follows for α small enough.

Lemma 2.3. For sufficiently small α̃ > 0 and side lengths a1, a2, a3 ∈ (1− α̃, 1 + α̃), one
has

3∑
j=1

(aj − 1)2 � dist(∇ω,SO(2))2 (2.8)

with ω defined before (2.2).

Proof. Let E1 = 0, E2 = 1, E3 = τ denote the corner points of the standard equilateral
triangle. Set M := ∇ω; M is constant since ω is affine linear. Consequently, for any
cyclic permutation (i, j, k) of (1, 2, 3), one has

ai = |ω(Ej)− ω(Ek)| = |M(Ej − Ek)| = |Mvi|, (2.9)

where we set vi := Ej − Ek. Clearly, |vi| = 1. Now ai − 1 � (ai − 1)(ai + 1) = a2
i − 1

because ai ∈ (1− α̃, 1 + α̃) and α̃ is small enough. Using (2.9), we obtain

ai − 1 � a2
i − 1 = 〈vi,M∗Mvi〉 − |vi|2 = 〈vi, (M∗M − Id)vi〉. (2.10)

For Q ∈ R2×2
sym, the set of symmetric 2 × 2 matrices, set ‖Q‖v := (

∑3
j=1〈vj , Qvj〉2)1/2.

Clearly, ‖ · ‖v is a seminorm on R2×2
sym. To see that it is a norm, assume that ‖Q‖v = 0, i.e.

〈vj , Qvj〉 = 0 for j = 1, 2, 3. Using v1 + v2 + v3 = 0 and the symmetry of Q, it follows that
〈vj , Qvk〉 = 0 for all j, k ∈ {1, 2, 3}. Since v1, v2, v3 span R2, we conclude Q = 0. Since all
norms on R2×2

sym are equivalent, we have shown

3∑
j=1

(aj − 1)2 � ‖M∗M − Id‖2 (2.11)

for any norm ‖·‖.
We use now the following fact: Assume that S is a compact submanifold of Rd, given

as a set of zeros

S = {x ∈ U : f(x) = 0} (2.12)

for some open set U ⊆ Rd and some smooth function f : U → Rm, m ≤ d. Assume further
that ∇f has rank m on S. Then, there is a neighborhood U ′ ⊆ U of S such that for all
x ∈ U ′,

dist(x, S) � ‖f(x)‖. (2.13)
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We apply this fact to S = SO(2), U = {Q ∈ R2×2 : detQ > 0}, and f : U → R2×2
sym,

f(Q) = Q∗Q − Id; its derivative has full rank on S. For α̃ > 0 sufficiently small and
|aj − 1| < α̃, j = 1, 2, 3, M = ∇ω is close to SO(2); recall that detM = det∇ω > 0 by our
assumption on ω. Consequently,

‖M∗M − Id‖ � dist(M,SO(2)). (2.14)

Together with (2.11), this implies the claim.

Combining Lemmas 2.2 and 2.3 and scaling with l, which is close to 1, yields the
following.

Corollary 2.4. For sufficiently small α > 0 and side lengths a1, a2, a3 ∈ (1 − α, 1 + α),
and 1− α/2 < l < 1 + α/2, one has

3∑
j=1

V (aj)− 3V (l)− p(l)(λ(∆)− λ(l∆0,1)) �V dist(l−1∇ω,SO(2))2 (2.15)

with ω defined before (2.2).

2.2 Contributions from defects

Definition 2.5. For x ∈ A2, let U0(x) := {∆ ∈ T : x ∈ closure(∆)} denote the set of all
triangles in T incident to x. Let

U1(x) := {∆ ∈ T : all corner points of ∆ are contained in x+N +N} \ U0(x) (2.16)

denote the “second layer” of triangles around x. In the special case x = 0, we abbreviate
U0 := U0(0) and U1 := U1(0) (see Figure 2).

0

Figure 2: The gray area illustrates U0 and the white area U1 for N ≥ 4. For N < 4, which
is excluded, some of the triangles would coincide.

Lemma 2.6. There exists a constant c3 > 0 such that for all N ≥ 4 and ω ∈ Ωl,N with
ω(0) = 7, one has∑

∆∈U0

dist(∇ω̂(∆),SO(2))2 ≤ c3
∑

∆∈U1

dist(∇ω̂(∆),SO(2))2. (2.17)

Proof. We apply the theorem by Friesecke et al. (Theorem 1.4) to the interior U of⋃
∆∈U1

closure(∆), using

λ(∆0,1)
∑

∆∈U1

dist(∇ω̂(∆),SO(2))2 = ‖dist(∇ω̂,SO(2))‖2L2(U). (2.18)

Hence there exists a rotation R ∈ SO(2) with∑
∆∈U1

‖∇ω̂(∆)−R‖2 ≤ C(U)
∑

∆∈U1

dist(∇ω̂(∆),SO(2))2. (2.19)
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Spontaneous breaking of rotational symmetry in the presence of defects

We introduce the piecewise affine linear map σ : conv hull(N +N )→ R2, σ(x) = ω̂(x)−
ω̂(0)−Rx. The map σ belongs to the finite-dimensional vector space W of all continuous
piecewise affine linear maps σ′ : conv hull(N +N )→ R2 which are affine linear on the
closure of every ∆ and satisfy σ′(0) = 0 = 1

6

∑
τ∈N σ

′(τ). By definition of σ, one has∑
∆∈U1

‖∇ω̂(∆)−R‖2 =
∑

∆∈U1

‖∇σ(∆)‖2. (2.20)

If Q(σ′) :=
∑

∆∈U1
‖∇σ′(∆)‖2 = 0 for some σ′ ∈ W , then σ′ = 0. Indeed, we obtain

first that σ′ is constant on all triangles in U1. The value σ′(0) = 0 is the average of this
constant; hence the constant vanishes. Consequently, the quadratic form Q : W → R is
positive definite. Since W is finite-dimensional, any quadratic form on W is bounded
from above by a constant multiple of Q. In particular, for some constant c4 > 0 and any
σ′ ∈W , ∑

∆∈U0

‖∇σ′(∆)‖2 ≤ c4
∑

∆∈U1

‖∇σ′(∆)‖2. (2.21)

For the special case σ′ = σ this yields∑
∆∈U0

dist(∇ω̂(∆),SO(2))2 ≤
∑

∆∈U0

‖∇ω̂(∆)−R‖2 =
∑

∆∈U0

‖∇σ(∆)‖2

≤ c4
∑

∆∈U1

‖∇σ(∆)‖2 ≤ c4C(U)
∑

∆∈U1

dist(∇ω̂(∆),SO(2))2. (2.22)

We call the triangle ∆x,z ∈ TN present in the configuration ω ∈ Ωl,N if ω(x) 6= 7,
ω(x+ z) 6= 7, and ω(x+ τz) 6= 7. Let

T pres
N (ω) := {∆ ∈ TN : ∆ is present in ω}. (2.23)

If there is a defect at x, then by assumption (Ω2), all triangles in the second layer
U1(x) are present.

Lemma 2.7. For all N ≥ 4 and ω ∈ Ωl,N , one has∑
∆∈TN

dist(∇ω̂(∆),SO(2))2 �
∑

∆∈T pres
N (ω)

dist(∇ω̂(∆),SO(2))2, (2.24)

where the constants for � can be chosen independently of ω.

Proof. The bound “≥” holds trivially. For the upper bound, we proceed by splitting the
sum as follows∑

∆∈TN

dist(∇ω̂(∆),SO(2))2 =
∑

∆∈T pres
N (ω)

dist(∇ω̂(∆),SO(2))2

+
∑

x∈defects(ω)

∑
∆∈U0(x)

dist(∇ω̂(∆),SO(2))2. (2.25)

By Lemma 2.6,∑
x∈defects(ω)

∑
∆∈U0(x)

dist(∇ω̂(∆),SO(2))2 ≤ c3
∑

x∈defects(ω)

∑
∆∈U1(x)

dist(∇ω̂(∆),SO(2))2

= c3
∑

∆∈T pres
N (ω)

∑
x∈defects(ω)

1U1(x)(∆) dist(∇ω̂(∆),SO(2))2.

(2.26)

Now,
∑
x∈defects(ω) 1U1(x)(∆) ≤ 9 for all ω ∈ Ωl,N and ∆ ∈ TN . The claim follows.
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Spontaneous breaking of rotational symmetry in the presence of defects

2.3 Proof of Lemma 2.1

Let ω ∈ Ωl,N . For x ∈ IN and y ∈ A2 with x ∼ y, ω(x) 6= 7 and ω(y) 6= 7, we call the
undirected edge {x, y}

• a boundary edge with respect to ω if there exists z ∈ A2 with z ∼ x, z ∼ y, and
ω(z) = 7;

• an inner edge with respect to ω otherwise.

We denote the set of boundary and inner edges with respect to ω by ∂EN (ω) and E◦N (ω),
respectively.

Proof of Lemma 2.1. For all x ∈ IN and y ∈ IN+1 with x ∼ y, one has |ωl(x)− ωl(y)| = l

for the standard configuration ωl. Thus, any edge {x, y} contributes the amount V (l) to
Hm,N (ωl).

Let ω ∈ Ωl,N . For ∆ ∈ T pres
N (ω), let aj(∆), j = 1, 2, 3, denote the side lengths of the

triangle ω̂(∆). For any x ∈ IN with ω(x) = 7, there are 6 edges incident to x which are
neither boundary edges nor inner edges with respect to ω. Consequently, we obtain

Hm,N (ω)−Hm,N (ωl) + (6V (l)−m)|defects(ω)|

=
∑

{x,y}∈∂EN (ω)∪E◦
N (ω)

[V (|ω(x)− ω(y)|)− V (l)]

=
1

2

∑
∆∈T pres

N (ω)

( 3∑
j=1

V (aj(∆))− 3V (l)
)

+
1

2

∑
{x,y}∈∂EN (ω)

[V (|ω(x)− ω(y)|)− V (l)]. (2.27)

For the last equation, note that the first term counts only half of the contribution from
boundary edges, although their contribution needs to be fully counted.

Since |V | is bounded on (1− α, 1 + α) by some constant c5(V ), we get the following
estimate for the last sum in (2.27):∑

{x,y}∈∂EN (ω)

[V (|ω(x)− ω(y)|)− V (l)] ≥− 2c5(V )|∂EN (ω)|

=− 12c5(V )|defects(ω)|. (2.28)

We now estimate the first sum on the right hand side of (2.27). By (Ω1), one has
aj(∆) ∈ (1− α, 1 + α) and, by (Ω4), det∇ω̂(∆) > 0 for all ∆ ∈ T pres

N (ω). Thus, Corollary
2.4 and Lemma 2.7 yield

∑
∆∈T pres

N (ω)

( 3∑
j=1

V (aj(∆))− 3V (l)− p(l)(λ(ω̂(∆))− λ(l∆0,1))
)

�V
∑

∆∈T pres
N (ω)

dist(l−1∇ω̂(∆),SO(2))2

�V
∑

∆∈TN

dist(l−1∇ω̂(∆),SO(2))2. (2.29)

Note that by (Ω3) and periodicity (1.1), ω̂ maps any measurable set of representatives of
C modulo NA2 onto a set having the Lebesgue measure λ(ΛlN ). Consequently,∑

∆∈TN

(λ(ω̂(∆))− λ(l∆0,1)) = λ(ΛlN )− λ(lΛ1N ) = 0. (2.30)
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Spontaneous breaking of rotational symmetry in the presence of defects

Hence, since for x ∈ defects(ω) the area of the image of the hexagon U0(x) under ω̂ is
uniformly bounded by (Ω1) and (Ω2), we find∣∣∣∣∣∣

∑
∆∈T pres

N (ω)

(λ(ω̂(∆))− λ(l∆0,1))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

∆∈TN\T pres
N (ω)

(λ(ω̂(∆))− λ(l∆0,1))

∣∣∣∣∣∣
≤ c6|defects(ω)| (2.31)

with a uniform constant c6 > 0. Combining this with (2.29), we obtain∑
∆∈T pres

N (ω)

( 3∑
j=1

V (aj(∆))− 3V (l)
)

≥c7
∑

∆∈TN

dist(l−1∇ω̂(∆),SO(2))2 − c6|p(l)| · | defects(ω)| (2.32)

with a constant c7 > 0.
Note that p(l) = 2

√
3V ′(l)/l as defined in Lemma 2.2 is bounded for l ∈ (1− α/2, 1 +

α/2). Combining (2.27), (2.28), and (2.32) yields the claim.

3 Uniform finite-volume estimates

3.1 Lower bound for the partition sum

Lemma 3.1. For all ε > 0, there exists r = r(ε) > 0 such that for all β > 0, m,N , one has

Zβ,m,N ≥
λ(ΛlN )

πr2
e−|IN |(3βε−log(πr2))e−βHm,N (ωl). (3.1)

Proof. For r > 0, we consider the set of configurations which are, up to translations,
sufficiently close to the standard configuration and have no defects

Sr,l,N := {ω ∈ Ωl,N : ω(x) 6= 7 and |ω(x)− ω(0)− ωl(x)| < r for all x ∈ A2}. (3.2)

Let ε > 0. Since V is continuous, for all sufficiently small r > 0, for all N , for all
ω ∈ Sr,l,N and all x, y ∈ A2 with x ∼ y, one has |V (|ω(x)−ω(y)|)−V (l)| < ε. Consequently,
|Hm,N (ω)−Hm,N (ωl)| ≤ 3|IN |ε for all ω ∈ Sr,l,N and we conclude for all β > 0 that

Zβ,m,N ≥
∫
Sr,l,N∩Ωl,N

e−βHm,N (ω) µN (dω) ≥ e−3β|IN |εe−βHm,N (ωl)µN (Sr,l,N ∩ Ωl,N ). (3.3)

We now argue that Sr,l,N ⊆ Ωl,N for sufficiently small r ∈ (0, α/4). Using |l − 1| < α/2,
we get for all ω ∈ Sr,l,N and x, y ∈ A2 with x ∼ y,∣∣|ω(x)− ω(y)| − 1

∣∣ ≤∣∣|ω(x)− ω(y)| − l
∣∣+ |l − 1|

<
∣∣|ω(x)− ω(y)| − |ωl(x)− ωl(y)|

∣∣+ α/2

<2r + α/2 ≤ α. (3.4)

Hence, condition (Ω1) is satisfied. Condition (Ω2) is satisfied by absence of defects in
Sr,l,N .

To see that ω̂ is one-to-one, note that for sufficiently small r and ω ∈ Sr,l,N , the
Jacobi matrix ∇ω̂ is close to l times the identity matrix and hence 〈v,∇ω̂(x)v〉 > 0 for all
v ∈ R2 \ {0} and all x ∈ R2 for which ω̂ is differentiable at x. This shows that condition
(Ω3) is fulfilled.

Condition (Ω4) is satisfied for ωl and translations of it, and consequently also for
ω ∈ Sr,l,N for r sufficiently small. We conclude Sr,l,N ⊆ Ωl,N . Thus, µN (Sr,l,N ) =

(πr2)|IN |−1λ(ΛlN ) by the definition of µN , since integration over ω(x) for all x 6= 0

given ω(0) yields the factor πr2 and integration over ω(0) yields the volume λ(ΛlN ).
Consequently, we get the assertion (3.1) of the lemma.
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Spontaneous breaking of rotational symmetry in the presence of defects

3.2 Upper bound for the internal energy

For ω ∈ Ωl,N , we abbreviate

Am,l,N (ω) := Hm,N (ω)−Hm,N (ωl). (3.5)

Recall from Remark 1.5 that UN = (0, N) + τ2(0, N).

Lemma 3.2. There exists a constant c8 > 0 such that for all β > 0, m ∈ R, N ≥ 4, and
ω ∈ Ωl,N , one has

Am,l,N (ω)− (m−m1)|defects(ω)| ≥ c8‖l−1∇ω̂ − Id‖2L2(UN ) (3.6)

with m1 the constant from Lemma 2.1.

Proof. For this proof, it is convenient to work with the Frobenius norm on 2×2−matrices
and its corresponding inner product. Recall that all triangles in TN have the same
Lebesgue measure. Using this and Lemma 2.1, we get

Am,l,N (ω)− (m−m1)|defects(ω)| ≥c2
∑

∆∈TN

dist(l−1∇ω̂(∆),SO(2))2

=c2λ(∆0,1)−1
∑

∆∈TN

λ(∆)dist(l−1∇ω̂(∆),SO(2))2

=c2λ(∆0,1)−1‖dist(l−1∇ω̂,SO(2))‖2L2(UN ). (3.7)

By Theorem 1.4 and Remark 1.5 there exists a random rotation RN (ω) ∈ SO(2) such that
one has

‖dist(l−1∇ω̂,SO(2))‖2L2(UN ) ≥ c1
−1‖l−1∇ω̂ −RN (ω)‖2L2(UN ). (3.8)

Combining (3.7) and (3.8) yields

Am,l,N (ω)− (m−m1)|defects(ω)| ≥ c8‖l−1∇ω̂ −RN (ω)‖2L2(UN )

= c8

(
‖l−1∇ω̂ − Id‖2L2(UN ) + 2〈l−1∇ω̂ − Id, Id−RN (ω)〉L2(UN ) + ‖Id−RN (ω)‖2L2(UN )

)
≥ c8

(
‖l−1∇ω̂ − Id‖2L2(UN ) + 2〈l−1∇ω̂ − Id, Id−RN (ω)〉L2(UN )

)
(3.9)

with a constant c8 > 0. We introduce the periodic function σω(x) := l−1ω̂(x) − x for
x ∈ C. Its derivative equals ∇σω = l−1∇ω̂ − Id. By the fundamental theorem of calculus,
derivatives of periodic functions are orthogonal in L2 to any constant function. Thus, the
scalar product on the right-hand side in (3.9) vanishes, and we get the claim.

Lemma 3.3. There exists a uniform constant c9 such that the following holds: For all
δ > 0, there exist c10 > 0 and c11 ∈ R such that for any β ≥ c9, m ≥ m0 := m1 + 1 (with
m1 as in Lemma 2.1) and any N ≥ 4, one has

1

|TN |
EPβ,m,N [Am,l,N ] ≤ δ

2
+ c10 exp

{
|IN |

(
−βδ

8
− log β + c11

)}
. (3.10)

As a consequence,

lim sup
β→∞

sup
N≥4

sup
m≥m0

1

|TN |
EPβ,m,N [Am,l,N (ω)] ≤ 0. (3.11)
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Spontaneous breaking of rotational symmetry in the presence of defects

Proof. Let δ > 0. We calculate

Zβ,m,NEPβ,m,N [Am,l,N (ω)] =

∫
Ωl,N

Am,l,N (ω)e−βHm,N (ω) µN (dω)

=e−βHm,N (ωl)

∫
Ωl,N

Am,l,N (ω)e−βAm,l,N (ω) µN (dω). (3.12)

Next, we split the domain of integration into

Ω>δl,N := {ω ∈ Ωl,N : Am,l,N (ω) > δ|IN |} and Ω≤δl,N := Ωl,N \ Ω>δl,N . (3.13)

For the latter domain, we estimate∫
Ω

≤δ
l,N

Am,l,N (ω)e−βAm,l,N (ω) µN (dω) ≤δ|IN |Zβ,m,NeβHm,N (ωl)

=
δ

2
|TN |Zβ,m,NeβHm,N (ωl). (3.14)

For the remaining part, we first apply the inequality xe−x ≤ e−x/2 with x = βAm,l,N ,
then we use the exponential Chebyshev inequality. This yields∫

Ω>δl,N

Am,l,N (ω)e−βAm,l,N (ω) µN (dω) ≤ 1

β

∫
Ω>δl,N

e−βAm,l,N (ω)/2 µN (dω)

≤ 1

β

∫
Ωl,N

eβ(Am,l,N (ω)−δ|IN |)/4e−βAm,l,N (ω)/2 µN (dω)

=
e−βδ|IN |/4

β

∫
Ωl,N

e−βAm,l,N (ω)/4 µN (dω). (3.15)

Lemma 3.2 implies∫
Ωl,N

e−βAm,l,N (ω)/4 µN (dω)

≤
∫

Ωl,N

exp

{
−β c8

4
‖l−1∇ω̂ − Id‖2L2(UN ) −

β

4
(m−m1)|defects(ω)|

}
µN (dω). (3.16)

We use again the notation σω(x) := l−1ω̂(x)− x for x ∈ C:

‖l−1∇ω̂ − Id‖2L2(UN ) =‖∇σω‖2L2(UN )

=
∑

∆∈TN

‖∇σω‖2L2(∆) = λ(∆0,1)
∑

∆∈TN

‖∇σω(∆)‖2. (3.17)

Take an equilateral triangle ∆ ∈ TN with corner points A, B, and C. We claim that

‖∇σω(∆)‖2 ≥ c12

(
‖σω(A)− σω(B)‖2 + ‖σω(B)− σω(C)‖2 + ‖σω(C)− σω(A)‖2

)
(3.18)

with a constant c12 > 0 not depending on the choice of ∆. Since σω is affine linear on ∆,
the claim reduces to showing for any matrix M ∈ R2×2

‖M‖2 ≥ c12

(
‖MA−MB‖2 + ‖MB −MC‖2 + ‖MC −MA‖2

)
. (3.19)

Note that translating ∆ does not change the claim. Thus, we can reduce the claim
further to the special cases ∆ = ∆0,1 and ∆ = τ∆0,1. Since both sides in (3.19) are a
square of a matrix norm on 2× 2-matrices, and all such norms are equivalent, the claim
(3.18) follows.
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Spontaneous breaking of rotational symmetry in the presence of defects

We bound (3.16) further from above using (3.17) and (3.18) to obtain the upper bound∫
Ωl,N

exp
{
− βc13

∑
x∈IN , y∈A2

x∼y

‖σω(x)− σω(y)‖2 − β

4
(m−m1)|defects(ω)|

}
µN (dω) (3.20)

with a uniform constant c13 > 0. By partitioning Ωl,N according to the set D ⊂ IN of
defects, (3.20) is equal to∑
D⊂IN

e−β(m−m1)|D|/4
∫
{defects(ω)=D}

exp
{
− βc13

∑
x∈IN , y∈A2

x∼y

‖σω(x)− σω(y)‖2
}
µN (dω).

(3.21)

By (Ω2), defects are isolated in IN . Whence, for each set D of defects, we can choose a
spanning tree S of IN \ defects(ω). We bound (3.21) from above by restricting the sum of
pairs x ∼ y to edges {x, y} of S,∫

Ωl,N

e−βAm,l,N (ω)/4 µN (dω)

≤
∑
D⊂IN

e−β(m−m1)|D|/4
∫
{ω∈Ωl,N :defects(ω)=D}

exp
{
− βc13

∑
{x,y}∈S

‖σω(x)− σω(y)‖2
}
µN (dω)

≤
∑
D⊂IN

e−β(m−m1)|D|/4
(∫

R2

e−βc13l
−2‖u‖2λ(du)

)|IN |−|D|−1

λ(ΛlN ), (3.22)

where the factor λ(ΛlN ) stems from integrating the root of S over the set of representa-
tives ΛlN of C/lNA2; a Gaussian integral arises for each of the |IN | − |D| − 1 edges of S.
In the last sum, we allow all subsets D of IN regardless whether they occur as a set of
defects of an allowed configuration. There exists a uniform constant c14 > 0 such that∫

R2

e−βc13l
−2‖u‖2λ(du) ≤ c14

2β
, (3.23)

and hence∫
Ωl,N

e−βAm,l,N (ω)/4 µN (dω)

≤
(
c14

2β

)|IN |−1

λ(ΛlN )
∑
D⊂IN

exp

{
−
(
β

4
(m−m1) + log

(
c14

2β

))
|D|
}
. (3.24)

Take a uniform constant c9 so large that for all β ≥ c9 and m ≥ m0 = m1 + 1 one has

β

4
(m−m1) + log

(
c14

2β

)
≥ 0. (3.25)

For these β and m, we get∑
D⊂IN

exp

{
−
(
β

4
(m−m1) + log

(
c14

2β

))
|D|
}

=

(
1 + exp

{
−β

4
(m−m1)− log

(
c14

2β

)})|IN |
≤ 2|IN |. (3.26)

Thus, ∫
Ωl,N

e−βAm,l,N (ω)/4 µN (dω) ≤ 2

(
c14

β

)|IN |−1

λ(ΛlN ). (3.27)
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Spontaneous breaking of rotational symmetry in the presence of defects

We combine (3.12) with (3.14), (3.15), and (3.27) to obtain

EPβ,m,N [Am,l,N (ω)] ≤ δ

2
|TN |+

2

c14

e−βδ|IN |/4

Zβ,m,N

(
c14

β

)|IN |
λ(ΛlN )e−βHm,N (ωl). (3.28)

Next, we insert the lower bound for the partition sum from Lemma 3.1 with ε := δ/24

and r = r(ε). Using also |TN | ≥ 1, we obtain

EPβ,m,N [Am,l,N (ω)] ≤δ
2
|TN |+

2

c14

e−βδ|IN |/4

π−1r−2e−|IN |(3βε−log(πr2))

(
c14

β

)|IN |
≤δ

2
|TN |+ c10|TN | exp

{
|IN |

(
−βδ

8
− log β + c11

)}
(3.29)

with constants c10 > 0 and c11 ∈ R depending on δ. This yields Claim (3.10).
For any given δ > 0, −βδ/8 − log β + c11(δ) → −∞ as β → ∞. Consequently, Claim

(3.11) follows.

3.3 Proof of the main results

Proof of Theorem 1.3. The claim follows if we show

lim
β→∞

sup
N≥4

sup
m≥m0

1

|TN |
∑

∆∈TN

EPβ,m,N [|∇ω̂(∆)− lId|2] = 0. (3.30)

This can be seen as follows: For x ∈ A2, let θx : Ωl,N → Ωl,N , θxω(y) = ω(y−x) for y ∈ A2,
denote the shift operator. For any x ∈ A2, Pβ,m,N is invariant under θx. Consequently,
for any ∆̃ ∈ TN and x ∈ IN , we get

EPβ,m,N [|∇ω̂(∆̃ + x)− lId|2] =EPβ,m,N [|∇ω̂(∆̃)− lId|2]. (3.31)

For any ∆1 ∈ TN , the set
{

∆ = ∆̃ + x : ∆̃ ∈ {∆1, τ∆1}, x ∈ IN
}

modulo translations by
elements of NA2 runs over all elements of TN . Using this first and then using (3.31)
yields ∑

∆∈TN

EPβ,m,N [|∇ω̂(∆)− lId|2] =
∑

∆̃∈{∆1,τ∆1}

∑
x∈IN

EPβ,m,N [|∇ω̂(∆̃ + x)− lId|2]

=
∑

∆̃∈{∆1,τ∆1}

∑
x∈IN

EPβ,m,N [|∇ω̂(∆̃)− lId|2]

≥
∑
x∈IN

EPβ,m,N [|∇ω̂(∆1)− lId|2]

=|IN |EPβ,m,N [|∇ω̂(∆1)− lId|2]. (3.32)

Since 2|IN | = |TN |, (3.30) implies Claim (1.17).
To prove (3.30), we consider

l−2
∑

∆∈TN

λ(∆)EPβ,m,N [|∇ω̂(∆)− lId|2] =
∑

∆∈TN

λ(∆)EPβ,m,N [|l−1∇ω̂(∆)− Id|2]

=EPβ,m,N [‖l−1∇ω̂ − Id‖2L2(UN )]. (3.33)

Lemma 3.2 implies

0 ≤ l−2
∑

∆∈TN

λ(∆)EPβ,m,N [|∇ω̂(∆)− lId|2] ≤ c−1
8 EPβ,m,N [Am,l,N (ω)] (3.34)

for m ≥ m0 = m1 + 1. Note that the middle term in (3.34) equals up to a constant∑
∆∈TN EPβ,m,N [|∇ω̂(∆)− lId|2] because λ(∆) is constant for ∆ ∈ TN . The claim follows

from Lemma 3.3.
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Proof of Theorem 1.1. For any equilateral triangle with side length 1 having corner
points A1, A2, A3 ∈ R2, the map

R2×2 3M 7→ max{‖M(A2 −A1)‖, ‖M(A3 −A2)‖, ‖M(A1 −A3)‖} (3.35)

is a matrix norm and hence equivalent to any other matrix norm on R2×2. Thus Theorem
1.1 follows from Theorem 1.3.
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